

Test Report

Report No.: MTi240402014-01E2

Date of issue: 2024-05-11

Applicant: Aliix Tech, INC

Product: Body Worn Camera

Model(s): Model X, X-1, X-2

FCC ID: 2BFS2-ATI-X

Shenzhen Microtest Co., Ltd. http://www.mtitest.cn

Instructions

- 1. This test report shall not be partially reproduced without the written consent of the laboratory.
- 2. The test results in this test report are only responsible for the samples submitted
- 3. This test report is invalid without the seal and signature of the laboratory.
- 4. This test report is invalid if transferred, altered, or tampered with in any form without authorization.
- 5. Any objection to this test report shall be submitted to the laboratory within 15 days from the date of receipt of the report.

Address: 101, No. 7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China. Tel: (86-755)88850135 Fax: (86-755) 88850136 Web: www.mtitest.cn E-mail: mti@51mti.com

Table of contents

1	General Description		
	1.1 1.2 1.3 1.4 1.5	Description of the EUT Description of test modes Environmental Conditions Description of support units Measurement uncertainty	5 7 7
2	Sum	nmary of Test Result	8
3	Test	Facilities and accreditations	9
	3.1	Test laboratory	9
4	List	of test equipment	10
5	Eval	luation Results (Evaluation)	11
	5.1	Antenna requirement	
6	Radi	io Spectrum Matter Test Results (RF)	
	6.1 6.2 6.3 6.4 6.5 6.6 6.7	Duty Cycle Maximum conducted output power Power spectral density Emission bandwidth and occupied bandwidth Band edge emissions (Radiated) Undesirable emission limits (below 1GHz) Undesirable emission limits (above 1GHz).	
Ph	otogr	aphs of the test setup	55 77 77 88 99 10 11 11 12 12 13 15 15 15 15 17 19 24 29 35 36 38 44 44 50 50 56 57
Ph	otogr	aphs of the EUT	36
	Appe Appe Appe Appe Appe	endix A1: Emission Bandwidth	

Test Result Certification Applicant: Aliix Tech, INC 3F., No. 335, Ruiguang Rd., Neihu Dist., Taipei City 114, Taiwan (R.O.C.) Address: Aliix Tech, INC Manufacturer: 3F., No. 335, Ruiguang Rd., Neihu Dist., Taipei City 114, Taiwan (R.O.C.) Address: **Factory:** Aliix Tech, INC 3F., No. 335, Ruiguang Rd., Neihu Dist., Taipei City 114, Taiwan (R.O.C.) Address: **Product description** Product name: **Body Worn Camera** Trademark: ATI Model name: Model X X-1, X-2 Series Model(s): Standards: 47 CFR Part 15E KDB 789033 D02 General UNII Test Procedures New Rules v02r01 Test Method: ANSI C63.10-2013 **Date of Test** Date of test: 2024-04-11 to 2024-04-30 Test result: **Pass**

Test Engineer	:	Yanice Xie
		(Yanice.Xie)
Reviewed By		Dowid. Cee
		(David Lee)
Approved By	•	leon chen
		(Leon Chen)

1 General Description

1.1 Description of the EUT

Product name:	Body Worn Camera
Model name:	Model X
Series Model(s):	X-1, X-2
Model difference:	All the models are the same circuit and module, except the model name and color.
Electrical rating:	Input: DC 3.85V from battery
Battery:	Rechargeable Li-ion(single sale): 3.85V 1720mAh 6.62Wh
Accessories:	N/A
Hardware version:	V0
Software version:	V1.96
Test sample(s) number:	MTi240402014-01S1001
RF specification	
Operating frequency range:	802.11a/n(HT20)/ac(HT20): U-NII Band 1: 5180MHz to 5240MHz; 802.11n(HT40)/ac(HT40): U-NII Band 1: 5190MHz to 5230MHz; 802.11ac(HT80):
Channel number:	U-NII Band 1: 5210MHz; 802.11a/n(HT20)/ac(HT20): U-NII Band 1: 4; 802.11n(HT40)/ac(HT40): U-NII Band 1: 2; 802.11ac(HT80): U-NII Band 1: 1;
Modulation type:	802.11a: OFDM(BPSK, QPSK, 16QAM, 64QAM); 802.11n: OFDM (BPSK, QPSK, 16QAM, 64QAM); 802.11ac: OFDM (BPSK, QPSK, 16QAM, 64QAM, 256QAM);
Antenna(s) type:	FPC Antenna
Antenna(s) gain:	1.53dBi

1.2 Description of test modes

No.	Emission test modes	
Mode1	802.11a mode	
Mode2	802.11n20 mode	
Mode3	802.11n40 mode	
Mode4	802.11ac20 mode	
Mode5	802.11ac40 mode	
Mode6	802.11ac80 mode	

1.2.1 Operation channel list

U-NII Band 1

Bandwidth:	20MHz	Bandwidth:	40MHz	Bandwidth:	80MHz
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
36	5180	38	5190	42	5210
40	5200	46	5230	/	/
44	5220	/	1	/	/
48	5240	/	/	/	/

Test Channel List

Operation Band: 5150-5250 MHz

Bandwidth	Bandwidth Lowest Channel (LCH)		Highest Channel (HCH)
(MHz)	(MHz)	(MHz)	(MHz)
20	5180	5200	5240
40	5190	/	5230
80	/	5210	/

Note: The test software provided by manufacturer is used to control EUT for working in engineering mode, that enables selectable channel, and capable of continuous transmitting mode.

Test Software:

For power setting, refer to below table.

Mode	LCH	MCH	НСН
802.11a	13	13	13
802.11n(HT20)	13	13	13
802.11n(HT40)	11	11	11
802.11ac(VHT20)	13	13	13
802.11ac(VHT40)	11	11	11
802.11ac(VHT80)	8	8	8

1.3 Environmental Conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15°C ~ 35°C
Humidity:	20% RH ~ 75% RH
Atmospheric pressure:	98 kPa ~ 101 kPa

1.4 Description of support units

Support equipment list					
Description	Model	Serial No.	Manufacturer		
1	1	1	1		
Support cable list					
Description	Length (m)	From	То		
1	1	1	1		

1.5 Measurement uncertainty

Measurement	Uncertainty
Time	±1 %
RF output power, conducted	±1 dB
Power Spectral Density, conducted	±1 dB
Occupied channel bandwidth	±3 %
Radiated spurious emissions (above 1GHz)	±5.3dB
Radiated spurious emissions (9kHz~30MHz)	±4.3dB
Radiated spurious emissions (30MHz~1GHz)	±4.7dB
Temperature	±1 °C
Humidity	± 5 %

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Address: 101, No. 7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China. Tel: (86-755)88850135 Fax: (86-755) 88850136 Web: www.mtitest.cn E-mail: mti@51mti.com

2 Summary of Test Result

No.	Item	Requirement	Result
1	Antenna requirement	Part 15.203	Pass
2	Duty Cycle	/	Pass
3	Maximum conducted output power	47 CFR Part 15.407(a)(1)(i) 47 CFR Part 15.407(a)(1)(ii) 47 CFR Part 15.407(a)(1)(iii) 47 CFR Part 15.407(a)(1)(iv)	Pass
4	Power spectral density	47 CFR Part 15.407(a)(1)(i) 47 CFR Part 15.407(a)(1)(ii) 47 CFR Part 15.407(a)(1)(iii) 47 CFR Part 15.407(a)(1)(iv)	Pass
5	Emission bandwidth and occupied bandwidth	U-NII 1, U-NII 2A, U-NII 2C: No limits, only for report use.	Pass
6	Band edge emissions (Radiated)	47 CFR Part 15.407(b)(1) 47 CFR Part 15.407(b)(10)	Pass
7	Undesirable emission limits (below 1GHz)	47 CFR Part 15.407(b)(9)	Pass
8	Undesirable emission limits (above 1GHz)	47 CFR Part 15.407(b)(1) 47 CFR Part 15.407(b)(10)	Pass
9	Conducted Emission at AC power line	47 CFR 15.207(a)	N/A

Notes:

1.N/A means not applicable.

Since the EUT power by DC supply, therefore AC power line conducted emissions test is not required.

3 Test Facilities and accreditations

3.1 Test laboratory

Test laboratory:	Shenzhen Microtest Co., Ltd.		
Test site location:	101, No.7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China		
Telephone:	(86-755)88850135		
Fax:	(86-755)88850136		
CNAS Registration No.:	CNAS L5868		
FCC Registration No.:	448573		
IC Registration No.:	21760		
CABID:	CN0093		

4 List of test equipment

No.	Equipment	Manufacturer	Model	Serial No.	Cal. date	Cal. Due		
	Power spectral density Emission bandwidth and occupied bandwidth Duty Cycle Maximum conducted output power							
1	Wideband Radio Communication Tester	Rohde&schwarz	CMW500	149155	2024-03-20	2025-03-19		
2	ESG Series Analog Ssignal Generator	Agilent	E4421B	GB40051240	2024-03-21	2025-03-20		
3	PXA Signal Analyzer	Agilent	N9030A	MY51350296	2024-03-21	2025-03-20		
4	Synthesized Sweeper	Agilent	83752A	3610A01957	2024-03-21	2025-03-20		
5	MXA Signal Analyzer	Agilent	N9020A	MY50143483	2024-03-21	2025-03-20		
6	RF Control Unit	Tonscend	JS0806-1	19D8060152	2024-03-21	2025-03-20		
7	Band Reject Filter Group	Tonscend	JS0806-F	19D8060160	2024-03-21	2025-03-20		
8	ESG Vector Signal Generator	Agilent	N5182A	MY50143762	2024-03-20	2025-03-19		
9	DC Power Supply	Agilent	E3632A	MY40027695	2024-03-21	2025-03-20		
		Band edge Undesirable emi	emissions (Radi ission limits (abo					
1	EMI Test Receiver	Rohde&schwarz	ESCI7	101166	2024-03-20	2025-03-19		
2	Double Ridged Broadband Horn Antenna	schwarabeck	BBHA 9120 D	2278	2023-06-17	2025-06-16		
3	Horn antenna	Schwarzbeck	BBHA 9170	00987	2023-06-17	2025-06-16		
4	Amplifier	Agilent	8449B	3008A01120	2024-03-20	2025-03-19		
5	Multi-device Controller	TuoPu	TPMDC	1	2024-03-20	2025-03-19		
6	MXA signal analyzer	Agilent	N9020A	MY54440859	2024-03-21	2025-03-20		
7	PXA Signal Analyzer	Agilent	N9030A	MY51350296	2024-03-21	2025-03-20		
8	Pre-amplifier	Space-Dtronics	EWLAN1840 G	210405001	2024-03-21	2025-03-20		
		Undesirable em	ission limits (belo	ow 1GHz)				
1	EMI Test Receiver	Rohde&schwarz	ESCI7	101166	2024-03-20	2025-03-19		
2	TRILOG Broadband Antenna	schwarabeck	VULB 9163	9163-1338	2023-06-11	2025-06-10		
3	Active Loop Antenna	Schwarzbeck	FMZB 1519 B	00066	2024-03-23	2025-03-22		
4	Amplifier	Hewlett-Packard	8447F	3113A06184	2024-03-20	2025-03-19		
5	Multi-device Controller	TuoPu	TPMDC	1	2024-03-20	2025-03-19		

5 Evaluation Results (Evaluation)

5.1 Antenna requirement

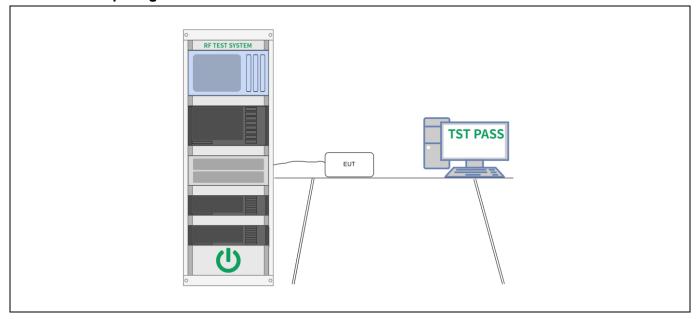
	Refer to 47 CFR Part 15.203, an intentional radiator shall be designed to
	ensure that no antenna other than that furnished by the responsible party
Test Requirement:	shall be used with the device. The use of a permanently attached antenna or
	of an antenna that uses a unique coupling to the intentional radiator shall be
	considered sufficient to comply with the provisions of this section.

5.1.1 Conclusion:

Report No.: MTi240402014-01E2

The antenna of the EUT is permanently attached.
The EUT complies with the requirement of FCC PART 15.203.

6 Radio Spectrum Matter Test Results (RF)


6.1 Duty Cycle

Test Requirement:	All measurements are to be performed with the EUT transmitting at 100% duty cycle at its maximum power control level; however, if 100% duty cycle cannot be achieved, measurements of duty cycle, x, and maximum-power transmission duration, T, are required for each tested mode of operation.
Test Limit:	No limits, only for report use.
Test Method:	ANSI C63.10-2013 section 12.2 (b)
Procedure:	 i) Set the center frequency of the instrument to the center frequency of the transmission. ii) Set RBW >= EBW if possible; otherwise, set RBW to the largest available value. iii) Set VBW >= RBW. iv) Set detector = peak. v) The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T, where T is defined in item a1) of 12.2, and the number of sweep points across duration T exceeds 100.

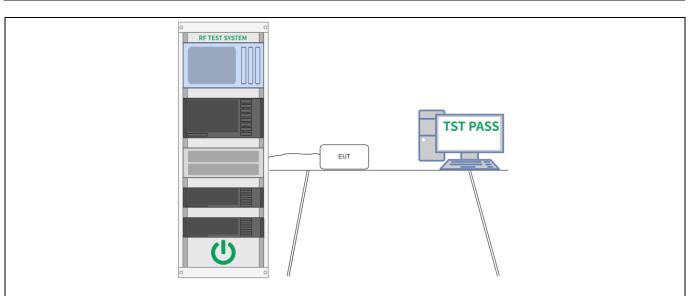
6.1.1 E.U.T. Operation:

Operating Environment:						
Temperature:	26 °C		Humidity:	45 %	Atmospheric Pressure:	100 kPa
Pre test mode:		Mode	e1, Mode2,	Mode3, Mod	e4, Mode5, Mode6	
Final test mode:		Mode	e1, Mode2,	Mode3, Mod	e4, Mode5, Mode6	

6.1.2 Test Setup Diagram:

6.1.3 Test Data:

Please Refer to Appendix for Details.


6.2 Maximum conducted output power

Test Requirement:	47 CFR Part 15.407(a)(1)(i) 47 CFR Part 15.407(a)(1)(ii) 47 CFR Part 15.407(a)(1)(iii) 47 CFR Part 15.407(a)(1)(iv)
1	For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).
1	For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
l t	For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W.
l c	Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power.
	For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.
	For client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the extenna exceeds 6 dBi.
	the directional gain of the antenna exceeds 6 dBi. ANSI C63.10-2013, section 12.3
	Refer to ANSI C63.10-2013 section 12.3

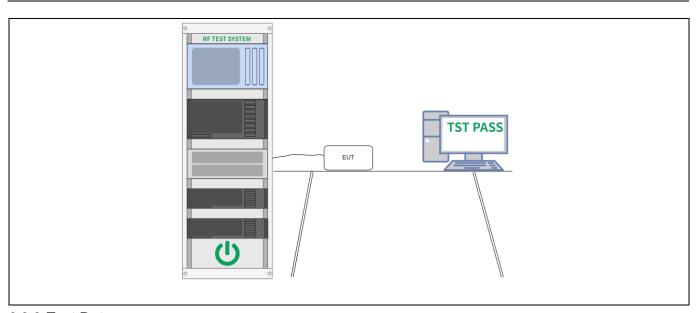
6.2.1 E.U.T. Operation:

Operating Environment:						
Temperature:	ure: 26 °C		Humidity:	54 %	Atmospheric Pressure:	100 kPa
Pre test mode:		Mode	e1, Mode2,	Mode3, Mode4	, Mode5, Mode6	
Final test mode:		Mode	e1, Mode2,	Mode3, Mode4	, Mode5, Mode6	

6.2.2 Test Setup Diagram:

6.2.3 Test Data:

Please Refer to Appendix for Details.


6.3 Power spectral density

0.5 I Ower spectial de	
Test Requirement:	47 CFR Part 15.407(a)(1)(i) 47 CFR Part 15.407(a)(1)(ii) 47 CFR Part 15.407(a)(1)(iii) 47 CFR Part 15.407(a)(1)(iv)
Test Limit:	For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
	For an indoor access point operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, the
	maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
	For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band.
	Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.
	For client devices in the 5.15-5.25 GHz band, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
Test Method:	ANSI C63.10-2013, section 12.5
Procedure:	Refer to ANSI C63.10-2013, section 12.5

6.3.1 E.U.T. Operation:

Operating Envi	Operating Environment:					
Temperature:	26 °C		Humidity:	54 %	Atmospheric Pressure:	100 kPa
Pre test mode:		Mode	e1, Mode2,	Mode3, Mode4	, Mode5, Mode6	
Final test mode:		Mode	e1, Mode2,	Mode3, Mode4	, Mode5, Mode6	

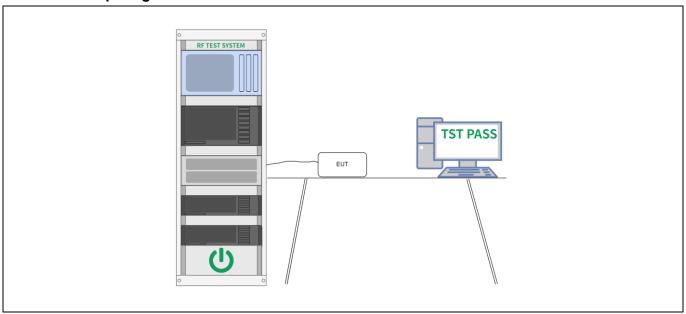
6.3.2 Test Setup Diagram:

6.3.3 Test Data:

Please Refer to Appendix for Details.

6.4 Emission bandwidth and occupied bandwidth

Test Requirement:	U-NII 1, U-NII 2A, U-NII 2C: No limits, only for report use.
Test Limit:	U-NII 1, U-NII 2A, U-NII 2C: No limits, only for report use.
Test Method:	ANSI C63.10-2013, section 6.9 & 12.4
Procedure:	Emission bandwidth: a) Set RBW = approximately 1% of the emission bandwidth. b) Set the VBW > RBW. c) Detector = peak. d) Trace mode = max hold. e) Measure the maximum width of the emission that is 26 dB down from the peak of the emission. Compare this with the RBW setting of the instrument. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%.
	Occupied bandwidth: a) The instrument center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be between 1.5 times and 5.0 times the OBW. b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to
	5% of the OBW, and VBW shall be approximately three times the RBW, unless otherwise specified by the
	applicable requirement. c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the
	spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given
	in 4.1.5.2. d) Step a) through step c) might require iteration to adjust within the specified range.
	e) Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace
	stabilizes) shall be used.
	f) Use the 99% power bandwidth function of the instrument (if available) and report the measured bandwidth.
	g) If the instrument does not have a 99% power bandwidth function, then the trace data points are recovered and directly summed in linear power terms. The recovered
	amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached;
	that frequency is recorded as the lower frequency. The process is repeated until 99.5% of the total is reached; that frequency is recorded as the upper frequency. The 99% power bandwidth is
	the difference between these two frequencies. h) The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument display; the plot axes and the scale units per division shall be clearly labeled.



Tabular data may
be reported in addition to the plot(s).

6.4.1 E.U.T. Operation:

Operating Environment:						
Temperature:	re: 26 °C		Humidity:	54 %	Atmospheric Pressure:	100 kPa
Pre test mode:		Mode	e1, Mode2,	Mode3, Mode4	, Mode5, Mode6	
Final test mode:		Mode	e1, Mode2,	Mode3, Mode4	, Mode5, Mode6	

6.4.2 Test Setup Diagram:

6.4.3 Test Data:

Please Refer to Appendix for Details.

6.5 Band edge emissions (Radiated)

Test Requirement:	47 CFR Part 15.407(b)(1) 47 CFR Part 15.407(b)(10)
Test Limit:	For transmitters operating in the 5.15-5.25 GHz band; All emissions outside

For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of −27 dBm/MHz.

Report No.: MTi240402014-01E2

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-	608-614	5.35-5.46
	16.69525		
2.1735-2.1905	16.80425-	960-1240	7.25-7.75
	16.80475		
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-	9.3-9.5
		1646.5	
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-	13.25-13.4
		1722.2	
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-	2483.5-2500	17.7-21.4
	156.52525		
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-	240-285	3345.8-3358	36.43-36.5
12.52025			
12.57675-	322-335.4	3600-4400	(2)
12.57725			
13.36-13.41			

¹Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

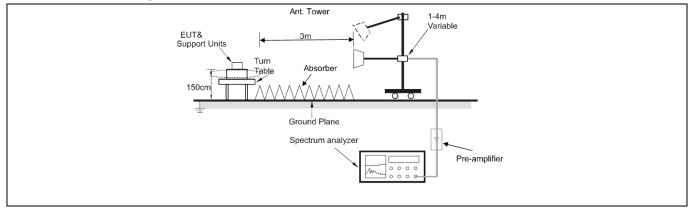
The field strength of emissions appearing within these frequency bands shall not exceed the limits shown in § 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in § 15.209shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in § 15.209shall be demonstrated based on the average value of the measured emissions. The provisions in § 15.35apply to these measurements.

Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field strength	Measuremen
	(microvolts/meter)	t distance
	, ,	(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100 **	3
88-216	150 **	3
216-960	200 **	3

Address: 101, No. 7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China. Tel: (86-755)88850135 Fax: (86-755) 88850136 Web: www.mtitest.cn E-mail: mti@51mti.com

²Above 38.6


	Above 960	500	3
	intentional radia frequency band However, opera sections of this In the emission The emission line employing a ClikHz, 110–490 k	ators operating under this is 54-72 MHz, 76-88 MHz ation within these frequence part, e.g., §§ 15.231 and table above, the tighter limits shown in the above to SPR quasi-peak detector Hz and above 1000 MHz.	undamental emissions from section shall not be located in the , 174-216 MHz or 470-806 MHz. by bands is permitted under other 15.241. The mit applies at the band edges able are based on measurements except for the frequency bands 9–90 Radiated emission limits in these is employing an average detector.
Test Method:	ANSI C63.10-2	013, section 12.7.4, 12.7.	6, 12.7.7
Procedure:	Above 1GHz: a. For above 10 meters above the rotated 360 deg. b. The EUT was which was mound to deter and vertical pole of the rotatable tal maximum reading. The test-recest and the rotatable tal maximum reading. The test-recest and then report would be	GHz, the EUT was placed he ground at a 3 meter ful grees to determine the positions of the antenna in the interest of the maximum value arizations of the antenna in the was turned from 0 degrees as turned from 0 degrees was turned from 0 degrees. The interest of the EUT in peak the testing could be stopped as the interest of the EUT in peak the testing could be stopped as the interest of the EUT in peak the testing could be stopped as the interest of the EUT in peak the interest of the int	on the top of a rotating table 1.5 ly-anechoic chamber. The table was sition of the highest radiation. the interference-receiving antenna,
	been displayed	•	y, so only the above nathlonics flat

6.5.1 E.U.T. Operation:

Operating Environment:								
Temperature:	26 °C		Humidity:	54 %	Atmospheric Pressure:	100 kPa		
Pre test mode:		Mode	Mode1, Mode2, Mode3, Mode4, Mode5, Mode6					
Final test mode: All of the listed pre-test mode were tested, only the data of the worst (Mode1) is recorded in the report						of the worst mode		

6.5.2 Test Setup Diagram:

6.5.3 Test Data:

Mode1 /	e1 / Polarization: Horizontal / Band: 5150-5250 MHz / BW: 20 / CH: L								
	No. N	Лк. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	
	1	4500.000	50.04	-8.74	41.30	74.00	-32.70	peak	
	2	4500.000	40.92	-8.74	32.18	54.00	-21.82	AVG	
	3	5150.000	70.16	-6.13	64.03	74.00	-9.97	peak	
	4 *	5150.000	56.99	-6.13	50.86	54.00	-3.14	AVG	

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		4500.000	49.90	-8.74	41.16	74.00	-32.84	peak
2		4500.000	40.72	-8.74	31.98	54.00	-22.02	AVG
3		5150.000	67.75	-6.13	61.62	74.00	-12.38	peak
4	*	5150.000	55.44	-6.13	49.31	54.00	-4.69	AVG

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1	5350.000	50.98	-5.63	45.35	74.00	-28.65	peak
2	5350.000	41.44	-5.63	35.81	54.00	-18.19	AVG
3	5460.000	51.88	-5.63	46.25	74.00	-27.75	peak
4 *	5460.000	41.90	-5.63	36.27	54.00	-17.73	AVG

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		5350.000	51.04	-5.63	45.41	74.00	-28.59	peak
2		5350.000	40.44	-5.63	34.81	54.00	-19.19	AVG
3		5460.000	49.90	-5.63	44.27	74.00	-29.73	peak
4	*	5460.000	40.61	-5.63	34.98	54.00	-19.02	AVG

6.6 Undesirable emission limits (below 1GHz)

Test Requirement:	47 CFR Part 15.407(b)	(9)							
Test Limit:	Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in § 15.209. Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:								
	Frequency (MHz)	Field strength (microvolts/meter)	Measuremen t distance						
	0.009-0.490	2400/F(kHz)	(meters)						
	0.490-1.705	24000/F(kHz)	30						
	1.705-30.0	30	30						
	30-88	100 **	3						
	88-216	150 **	3						
	216-960	200 **	3						
	Above 960	500 n paragraph (g), fundamenta	3						
	intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241. In the emission table above, the tighter limit applies at the band edges. The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9–90 kHz, 110–490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.								
Test Method:	ANSI C63.10-2013, section 12.7.4, 12.7.5								
Procedure:	meters above the ground was rotated 360 degree b. The EUT was set 3 contenna, which was more. The antenna height is ground to determine the and vertical polarization d. For each suspected then the antenna was to frequency of below 30N the rotatable table was maximum reading. e. The test-receiver system Bandwidth with Maximum f. If the emission level of specified, then testing of would be reported. Other would be re-tested one then reported in a data	of the EUT in peak mode was could be stopped and the pe erwise the emissions that did by one using quasi-peak mo sheet.	of the highest radiation. Interference-receiving Ile-height antenna tower. Our meters above the Id strength. Both horizontal make the measurement. Inged to its worst case and If to 4 meters (for the test Ito heights 1 meter) and If do degrees to find the In the strength of the test Ito heights 1 meter of the test Ito heights 1 meter of the test Ito heights 1 meter of the test If the strength						
	channel. h. The radiation measu Transmitting mode, and case.	owest channel, the middle clared rements are performed in X, I found the X axis positioning	Y, Z axis positioning for g which it is the worst						
	i. Repeat above proced	ures until all frequencies me	easured was complete.						

Remark:

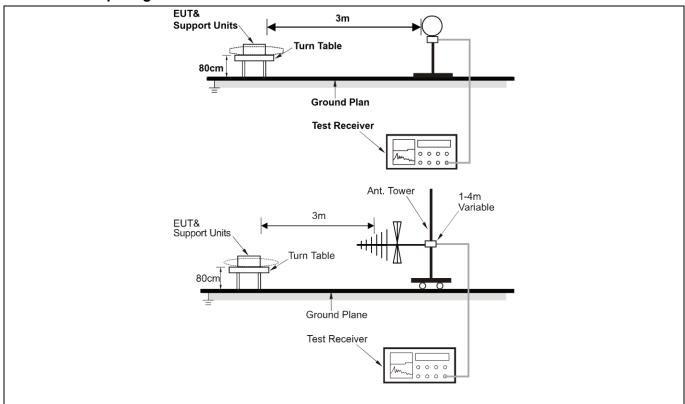
- 1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor
- 2. Scan from 9kHz to 30MHz, the disturbance below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

Report No.: MTi240402014-01E2

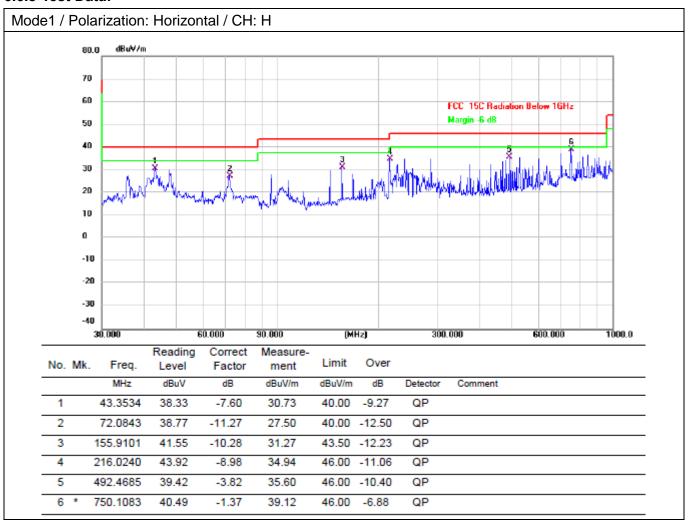
3. The disturbance below 1GHz was very low and the harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.

Above 1GHz:

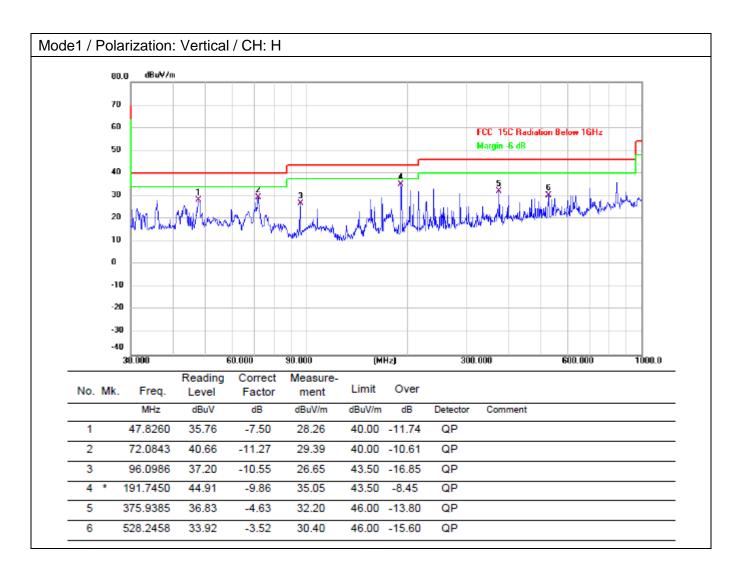
- a. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak or average method as specified and then reported in a data sheet.
- g. Test the EUT in the lowest channel, the middle channel, the Highest channel.
- h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
- i. Repeat above procedures until all frequencies measured was complete. Remark:
- 1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor
- 2. Scan from 18GHz to 40GHz, the disturbance above 18GHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 3. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.
- 4. The disturbance above 18GHz were very low and the harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.


6.6.1 E.U.T. Operation:

Operating Environment:



Temperature:	26 °C		Humidity:	54 %	Atmospheric Pressure:	100 kPa
Pre test mode: Mode1, Mode2, Mode3, Mode4, Mode5, Mode6						
Final test mode	e:		•	re-test mode w ded in the repo	vere tested, only the data or	of the worst mode


6.6.2 Test Setup Diagram:

6.6.3 Test Data:

Report No.: MTi240402014-01E2 Page 28 of 78

Undesirable emission limits (above 1GHz)

47 CEP Part 15 407(b)(1)

Test Requirement:	47 CFR Part 15.407(b)(1)
Test Limit:	For transmitters operating in the 5.15-5.25 GHz band: All emissions outside

of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

Report No.: MTi240402014-01E2

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-	608-614	5.35-5.46
	16.69525		
2.1735-2.1905	16.80425-	960-1240	7.25-7.75
	16.80475		
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-	9.3-9.5
		1646.5	
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-	13.25-13.4
		1722.2	
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-	2483.5-2500	17.7-21.4
	156.52525		
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-	240-285	3345.8-3358	36.43-36.5
12.52025			
12.57675-	322-335.4	3600-4400	(2)
12.57725			
13.36-13.41			

¹Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

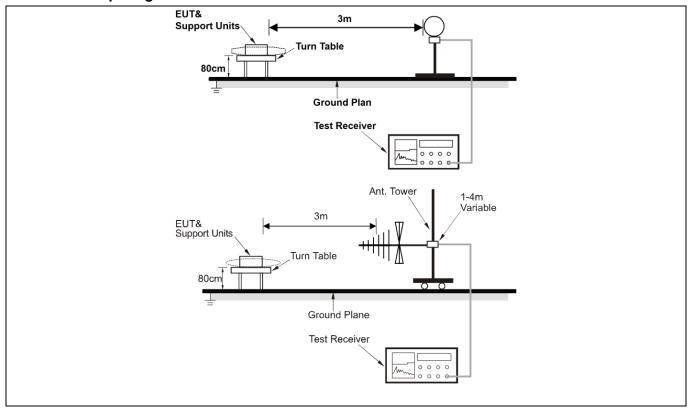
The field strength of emissions appearing within these frequency bands shall not exceed the limits shown in § 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in § 15.209shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in § 15.209shall be demonstrated based on the average value of the measured emissions. The provisions in § 15.35apply to these measurements.

Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field strength	Measuremen
	(microvolts/meter)	t distance
	, ,	(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100 **	3
88-216	150 **	3
216-960	200 **	3

Address: 101, No. 7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China. Tel: (86-755)88850135 Fax: (86-755) 88850136 Web: www.mtitest.cn E-mail: mti@51mti.com

²Above 38.6


Above 960 500 ** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241. In the emission table above, the tighter limit applies at the band edges. The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector. ANSI C63.10-2013, section 12.7.4, 12.7.6, 12.7.7 Test Method: Procedure: Above 1GHz: a. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak or average method as specified and then reported in a data sheet. g. Test the EUT in the lowest channel, the middle channel, the Highest channel. h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case. i. Repeat above procedures until all frequencies measured was complete. Remark: 1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor 2. Scan from 18GHz to 40GHz, the disturbance above 18GHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported. 3. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report. 4. The disturbance above 18GHz were very low and the harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.

6.7.1 E.U.T. Operation:

Operating Envi	ronment					
Temperature:	26 °C		Humidity:	54 %	Atmospheric Pressure:	100 kPa
Pre test mode:		Mode	e1, Mode2,	Mode3, Mode4	, Mode5, Mode6	
Final test mode	e:			re-test mode w	vere tested, only the data ort	of the worst mode

6.7.2 Test Setup Diagram:

6.7.3 Test Data:

Mode1 /	Polari	zatio	on: Horizonta	al / CH: L					
	No.	Mk.	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
	1		10360.000	48.78	3.46	52.24	74.00	-21.76	peak
	2		10360.000	37.66	3.46	41.12	54.00	-12.88	AVG
	3		15540.000	6.76	47.26	54.02	74.00	-19.98	peak
	4	*	15540.000	-2.91	47.26	44.35	54.00	-9.65	AVG

No.	. M	k.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		103	360.000	47.93	3.46	51.39	74.00	-22.61	peak
2		103	360.000	37.86	3.46	41.32	54.00	-12.68	AVG
3		155	40.000	7.08	47.26	54.34	74.00	-19.66	peak
4	*	155	540.000	-3.01	47.26	44.25	54.00	-9.75	AVG

Mode1 / Polarization: Horizontal / CH: M Reading Correct Measure-Limit Over No. Mk. Freq. Level Factor ment dBuV dB dBuV/m dBuV/m dΒ MHz Detector 10400.000 49.43 3.13 52.56 74.00 -21.44 1 peak 2 10400.000 39.44 3.13 42.57 54.00 -11.43 AVG 3 6.89 53.41 74.00 -20.59 15600.000 46.52 peak 4 15600.000 -3.2646.52 43.26 54.00 -10.74 AVG

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1	10	400.000	47.99	3.13	51.12	74.00	-22.88	peak
2	10	400.000	38.08	3.13	41.21	54.00	-12.79	AVG
3	15	600.000	6.29	46.52	52.81	74.00	-21.19	peak
4	* 15	600.000	-3.78	46.52	42.74	54.00	-11.26	AVG

ode1 /	Polari	zatic	n: Horizonta	al / CH: H					
	No.	Mk.	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
	1		10480.000	49.30	3.56	52.86	74.00	-21.14	peak
	2		10480.000	39.13	3.56	42.69	54.00	-11.31	AVG
	3		15720.000	7.41	46.46	53.87	74.00	-20.13	peak
	4	*	15720.000	-2.79	46.46	43.67	54.00	-10.33	AVG

No.	Mk.	k.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		104	80.000	48.95	3.56	52.51	74.00	-21.49	peak
2		104	80.000	38.89	3.56	42.45	54.00	-11.55	AVG
3		157	20.000	6.70	46.46	53.16	74.00	-20.84	peak
4	*	157	20.000	-3.34	46.46	43.12	54.00	-10.88	AVG

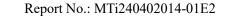
Photographs of the test setup

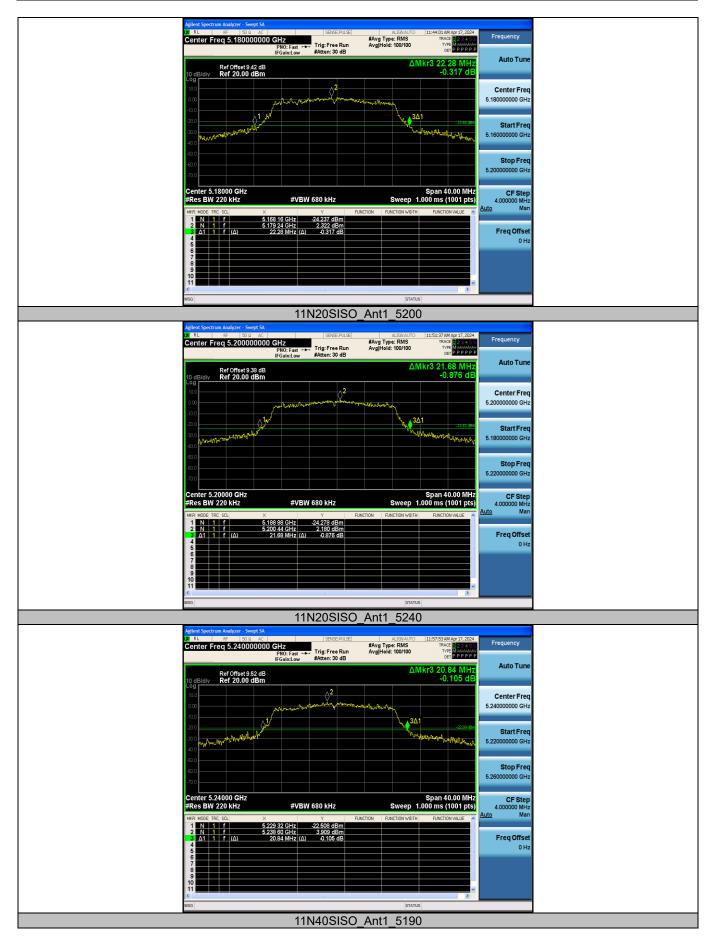
Refer to Appendix - Test Setup Photos.

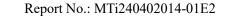
Photographs of the EUT

Refer to Appendix - EUT Photos

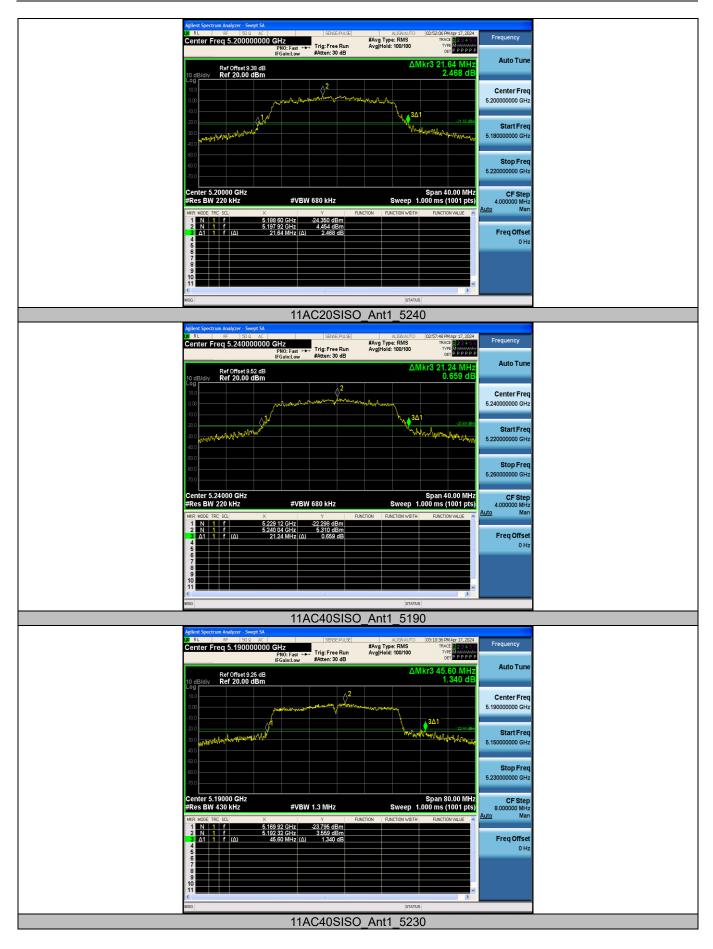
Appendix

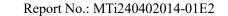


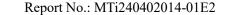

Appendix A1: Emission Bandwidth


Test Result

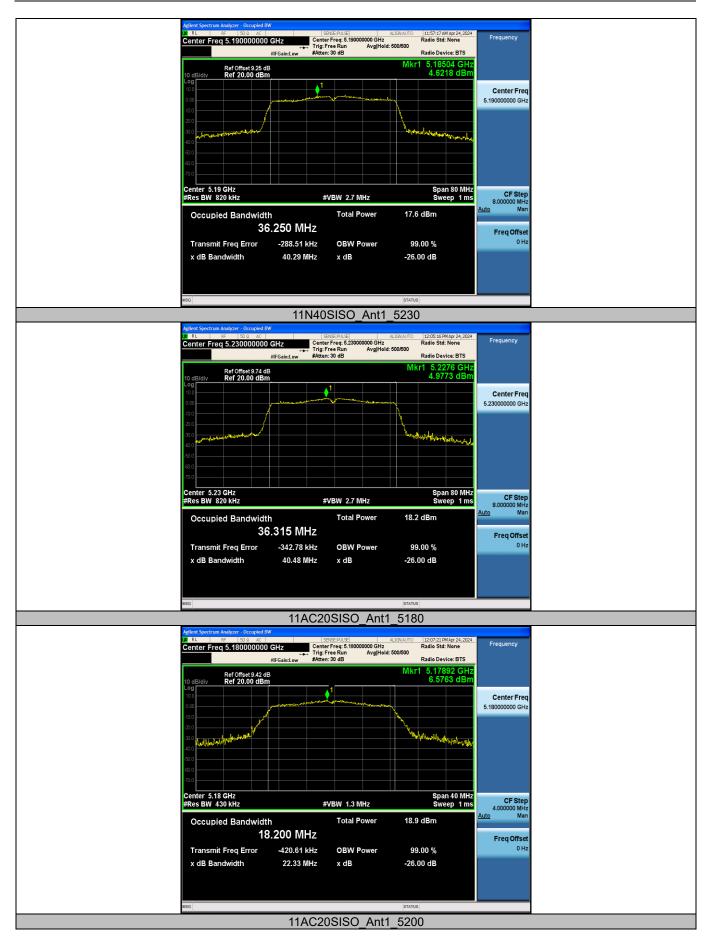
TestMode	Antenna	Frequency[MHz]	26db EBW [MHz]	FL[MHz]	FH[MHz]
11A	Ant1	5180	21.120	5168.960	5190.080
		5200	21.040	5189.040	5210.080
		5240	21.120	5229.120	5250.240
11N20SISO	Ant1	5180	22.280	5168.160	5190.440
		5200	21.680	5188.880	5210.560
		5240	20.840	5229.320	5250.160
11N40SISO	Ant1	5190	44.000	5169.920	5213.920
		5230	41.600	5210.240	5251.840
11AC20SISO	Ant1	5180	21.040	5169.160	5190.200
		5200	21.640	5188.600	5210.240
		5240	21.240	5229.120	5250.360
11AC40SISO	Ant1	5190	45.600	5169.920	5215.520
		5230	44.480	5209.840	5254.320
11AC80SISO	Ant1	5210	88.800	5168.720	5257.520






Appendix A2: Occupied channel bandwidth Test Result

TestMode	Antenna	Frequency[MHz]	OCB [MHz]	FL[MHz]	FH[MHz]
11A	Ant1	5180	17.249	5170.9158	5188.1648
		5200	17.088	5191.0770	5208.1650
		5240	17.209	5230.9792	5248.1882
11N20SISO	Ant1	5180	18.354	5170.4470	5188.8010
		5200	18.100	5190.5902	5208.6902
		5240	18.175	5230.5404	5248.7154
11N40SISO	Ant1	5190	36.250	5171.5865	5207.8365
		5230	36.315	5211.4997	5247.8147
11AC20SISO	Ant1	5180	18.200	5170.4794	5188.6794
		5200	18.167	5190.5668	5208.7338
		5240	18.186	5230.5150	5248.7010
11AC40SISO	Ant1	5190	36.388	5171.5400	5207.9280
		5230	36.264	5211.5544	5247.8184
11AC80SISO	Ant1	5210	75.374	5172.2054	5247.5794


Page **45** of **78** Report No.: MTi240402014-01E2


Test Graphs

Appendix B: Duty Cycle

Test Result

TestMode	Antenna	Frequency[MHz]	Transmission Duration [ms]	Transmission Period [ms]	Duty Cycle [%]
11A	Ant1	5180	1.40	1.44	97.22
		5200	1.40	1.44	97.22
		5240	1.40	1.44	97.22
11N20SISO	Ant1	5180	1.30	1.35	96.30
		5200	1.31	1.35	97.04
		5240	1.31	1.35	97.04
11N40SISO	Ant1	5190	0.65	0.69	94.20
		5230	0.65	0.69	94.20
11AC20SISO	Ant1	5180	1.31	1.36	96.32
		5200	1.32	1.36	97.06
		5240	1.32	1.36	97.06
11AC40SISO	Ant1	5190	0.66	0.70	94.29
		5230	0.66	0.70	94.29
11AC80SISO	Ant1	5210	0.32	0.36	88.89

Page **51** of **78** Report No.: MTi240402014-01E2

Test Graphs

