FCC TEST REPORT

FCC ID: 2BFMF-AC7300

Report No. : SSP24060067-1E

Applicant: Ecostar Energy Solutions & Restoration Inc.

Product Name: Thermostat

Model Name : AC7300

Test Standard: FCC Part 15.247

Date of Issue : 2024-06-17

Shenzhen CCUT Quality Technology Co., Ltd.

1F, Building 35, Changxing Technology Industrial Park, Yutang Street, Guangming District, Shenzhen, Guangdong, China; (Tel.:+86-755-23406590 website: www.ccuttest.com)

This test report is limited to the above client company and the product model only. It may not be duplicated without prior permitted by Shenzhen CCUT Quality Technology Co., Ltd.

FCC Test Report Page 1 of 42

Test Report Basic Information

Applicant..... Ecostar Energy Solutions & Restoration Inc. Address of Applicant....: 8520 NW 44th court Lauderhill Florida United States 33351 Manufacturer.... Hubei Telin energy-saving equipment Co., Ltd No.1 Lingcheng Industrial Park, Lingxiang Town, Daye, Huangshi City, Hubei Address of Manufacturer.....: Province, China Product Name..... Thermostat Brand Name....: Telin Main Model..... AC7300 Series Models..... FCC Part 15 Subpart C KDB 558074 D01 15.247 Meas Guidance v05r02 ANSI C63.4-2014 Test Standard..... ANSI C63.10-2013 **Date of Test** 2024-06-08 to 2024-06-15 Test Result..... PASS (Lahm Peng) Authorized Signatory.....

Note: This test report is limited to the above client company and the product model only. It may not be duplicated without prior permitted by Shenzhen CCUT Quality Technology Co., Ltd.. All test data presented in this test report is only applicable to presented test sample.

FCC Test Report Page 2 of 42

CONTENTS

1. General Information	5
1.1 Product Information	5
1.2 Test Setup Information	6
1.3 Compliance Standards	
1.4 Test Facilities	
1.5 List of Measurement Instruments	
1.6 Measurement Uncertainty	
2. Summary of Test Results	
3. Antenna Requirement	10
3.1 Standard and Limit	
3.2 Test Result	10
4. Conducted Emissions	11
4.1 Standard and Limit	11
4.2 Test Procedure	11
4.3 Test Data and Results	12
5. Radiated Emissions	15
5.1 Standard and Limit	15
5.2 Test Procedure.	
5.3 Test Data and Results	17
6. Band-edge Emissions(Radiated)	21
6.1 Standard and Limit	
6.2 Test Procedure	
6.3 Test Data and Results	21
7. Maximum Conducted Output Power	23
7.1 Standard and Limit	
7.2 Test Procedure	
7.3 Test Data and Results	
8. Occupied Bandwidth(-6dB)	
8.1 Standard and Limit	
8.2 Test Procedure.	
8.3 Test Data and Results	
9. Maximum Power Spectral Density	
9.1 Standard and Limit.	
9.2 Test Procedure	
9.3 Test Data and Results	
10. Band-edge Emission(Conducted)	
10.1 Standard and Limit	
10.2 Test Procedure.	
10.3 Test Data and Results	
11. Conducted RF Spurious Emissions	
11.1 Standard and Limit	
11.2 Test Procedure.	
11.2 Test Procedure	

Report No: SSP24060067-1E

Revision	Issue Date	Description	Revised By
V1.0	2024-06-17	Initial Release	Lahm Peng

FCC Test Report Page 4 of 42

1. General Information

1.1 Product Information

Product Name:	Thermostat	
Trade Name:	Telin	
Main Model:	AC7300	
Series Models:	-	
Rated Voltage:	AC 24V or DC 3V by AA*2 battery	
Hardware Version:	V1.0	
Software Version:	V1.0	
Note 1: The test data is gathered from a production sample, provided by the manufacturer.		

Report No: SSP24060067-1E

Wireless Specification			
Wireless Standard:	802.11b/g/n		
Operating Frequency:	2412MHz ~ 2462MHz for 802.11b/g/n(HT20)		
operating Frequency.	2422MHz ~ 2452MHz for 802.11n(HT40)		
RF Output Power:	7.16dBm		
Number of Channel:	11/7		
Channel Separation:	5MHz		
Modulation:	CCK, OFDM, QPSK, BPSK, 16QAM, 64QAM		
Antenna Gain:	0dBi		
Type of Antenna:	PCB Antenna		
Type of Device:	☐ Portable Device ☐ Modular Device		

FCC Test Report Page 5 of 42

1.2 Test Setup Information

List of Test Mo	odes					
Test Mode	De	escription		Remark		
TM1	{	302.11b		2412MHz/2437MH:	z/2462MHz	
TM2	8	302.11g		2412MHz/2437MH:	z/2462MHz	
TM3	802	11n(H20)		2412MHz/2437MH:	z/2462MHz	
TM4	802	11n(H40)		2422MHz/2437MH:	z/2452MHz	
List and Detai	List and Details of Auxiliary Cable					
Descrip	otion	Length (cm)		Shielded/Unshielded	With/Without Ferrite	
-		-		-	-	
-		-		-	-	
List and Detai	List and Details of Auxiliary Equipment					
Descrip	Description Manufacturer		r	Model	Serial Number	
AC Power	Adapter	JINGSAI		YW-2430	-	
-		-		-	-	

Report No: SSP24060067-1E

List of Channels							
No. of	Frequency	No. of	Frequency	No. of	Frequency	No. of	Frequency
Channel	(MHz)	Channel	(MHz)	Channel	(MHz)	Channel	(MHz)
01	2412	05	2432	09	2452	13	
02	2417	06	2437	10	2457	14	
03	2422	07	2442	11	2462	15	
04	2427	08	2447	12		16	

FCC Test Report Page 6 of 42

1.3 Compliance Standards

Compliance Standards			
FCC Part 15 Subpart C	FEDERAL COMMUNICATIONS COMMISSION, RADIO FREQUENCY DEVICES, Intentional Radiators		
All measurements contained in this	report were conducted with all above standards		
According to standards for test i	methodology		
FCC Part 15 Subpart C	FEDERAL COMMUNICATIONS COMMISSION, RADIO FREQUENCY DEVICES, Intentional Radiators		
KDB 558074 D01 15.247 Meas Guidance v05r02	GUIDANCE FOR COMPLIANCE MEASUREMENTS ON DIGITAL TRANSMISSION SYSTEM, FREQUENCY HOPPING SPREAD SPECTRUM SYSTEM, AND HYBRID SYSTEM DEVICES OPERATING UNDER SECTION 15.247 OF THE FCC RULES		
ANSI C63.4-2014	American National Standard for Methods of Measurement of Radio-Noise Emission from Low-Voltage Electrical and Electronic Equipment in the range of 9 kHz to 40 GHz.		
ANSI C63.10-2013	American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices		
Maintenance of compliance is the re	esponsibility of the manufacturer or applicant. Any modification of the product, which		

Report No: SSP24060067-1E

Maintenance of compliance is the responsibility of the manufacturer or applicant. Any modification of the product, which result is lowering the emission, should be checked to ensure compliance has been maintained.

1.4 Test Facilities

	Shenzhen CCUT Quality Technology Co., Ltd.		
Laboratory Name:	1F, Building 35, Changxing Technology Industrial Park, Yutang Street,		
	Guangming District, Shenzhen, Guangdong, China		
CNAS Laboratory No.:	L18863		
A2LA Certificate No.:	6893.01		
FCC Registration No:	583813		
ISED Registration No.:	CN0164		
All measurement facilities used to collect the measurement data are located at 1F, Building 35, Changxing			

All measurement facilities used to collect the measurement data are located at 1F, Building 35, Changxing Technology Industrial Park, Yutang Street, Guangming District, Shenzhen, Guangdong, China.

FCC Test Report Page 7 of 42

1.5 List of Measurement Instruments

Description	Manufacturer	Model	Serial Number	Cal. Date	Due. Date	
Conducted Emissions						
AMN	ROHDE&SCHWARZ	ENV216	101097	2023-10-21	2024-10-20	
EMI Test Receiver	ROHDE&SCHWARZ	ESPI	100242	2023-07-31	2024-07-30	
		Radiated Emission	ons			
EMI Test Receiver	ROHDE&SCHWARZ	ESPI	100154	2023-07-31	2024-07-30	
Spectrum Analyzer	KEYSIGHT	N9020A	MY48030972	2023-07-31	2024-07-30	
Spectrum Analyzer	ROHDE&SCHWARZ	FSV40-N	101692	2023-07-31	2024-07-30	
Amplifier	SCHWARZBECK	BBV 9743B	00251	2023-07-31	2024-07-30	
Amplifier	HUABO	YXL0518-2.5-45		2023-07-31	2024-07-30	
Amplifier	COM-MW	DLAN-18G-4G-02	10229104	2023-07-31	2024-07-30	
Loop Antenna	DAZE	ZN30900C	21104	2023-08-07	2024-08-06	
Broadband Antenna	SCHWARZBECK	VULB 9168	01320	2023-08-07	2024-08-06	
Horn Antenna	SCHWARZBECK	BBHA 9120D	02553	2023-08-07	2024-08-06	
Horn Antenna	COM-MW	ZLB7-18-40G-950	12221225	2023-08-07	2024-08-06	
	Conducted RF Testing					
RF Test System	MWRFTest	MW100-RFCB	220418SQS-37	2023-07-31	2024-07-30	
Spectrum Analyzer	KEYSIGHT	N9020A	ATO-90521	2023-07-31	2024-07-30	

Report No: SSP24060067-1E

1.6 Measurement Uncertainty

Test Item	Conditions	Uncertainty
Conducted Emissions	9kHz ~ 30MHz	±1.64 dB
	9kHz ~ 30MHz	±2.88 dB
Padiated Emissions	30MHz ∼ 1GHz	±3.32 dB
Radiated Emissions	1GHz ~ 18GHz	±3.50 dB
	18GHz ~ 40GHz	±3.66 dB
Conducted Output Power	9kHz ~ 26GHz	±0.50 dB
Occupied Bandwidth	9kHz ~ 26GHz	±4.0 %
Conducted Spurious Emission	9kHz ~ 26GHz	±1.32 dB
Power Spectrum Density	9kHz ~ 26GHz	±0.62 dB

FCC Test Report Page 8 of 42

2. Summary of Test Results

FCC Rule	Description of Test Item	Result
FCC Part 15.203	Antenna Requirement	Passed
FCC Part 15.247(i)	RF Exposure(see the RF exposure report)	Passed
FCC Part 15.207	Conducted Emissions	Passed
FCC Part 15.209, 15.247(d)	Radiated Emissions	Passed
FCC Part 15.247(d)	Band-edge Emissions(Radiated)	Passed
FCC Part 15.247(b)(3)	Maximum Conducted Output Power	Passed
FCC Part 15.247(a)(2)	Occupied Bandwidth(-6dB)	Passed
FCC Part 15.247(e)	Maximum Power Spectral Density	Passed
FCC Part 15.247(d)	Band-edge Emissions(Conducted)	Passed
FCC Part 15.247(d)	Conducted RF Spurious Emissions	Passed

Report No: SSP24060067-1E

Passed: The EUT complies with the essential requirements in the standard

Failed: The EUT does not comply with the essential requirements in the standard

N/A: Not applicable

FCC Test Report Page 9 of 42

3. Antenna Requirement

3.1 Standard and Limit

According to FCC Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

Report No: SSP24060067-1E

3.2 Test Result

This product has an PCB antenna, fulfill the requirement of this section.

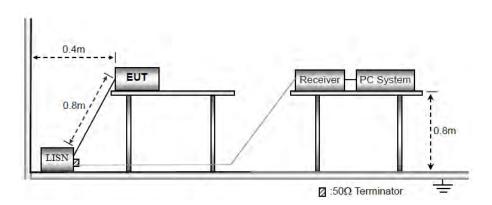
FCC Test Report Page 10 of 42

4. Conducted Emissions

4.1 Standard and Limit

According to the rule FCC Part 15.207, Conducted emissions limit, the limit for a wireless device as below:

Frequency of Emission	Conducted emissions (dBuV)		
(MHz)	Quasi-peak	Average	
0.15-0.5	66 to 56	56 to 46	
0.5-5	56	46	
5-30	60	50	


Report No: SSP24060067-1E

Note 1: Decreases with the logarithm of the frequency in the range 0.15 MHz to 0.5 MHz

Note 2: The lower limit applies at the band edges

4.2 Test Procedure

Test is conducting under the description of ANSI C63.10 - 2013 section 6.2.

Test Setup Block Diagram

- a) The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.
- b) The following is the setting of the receiver

Attenuation: 10dB

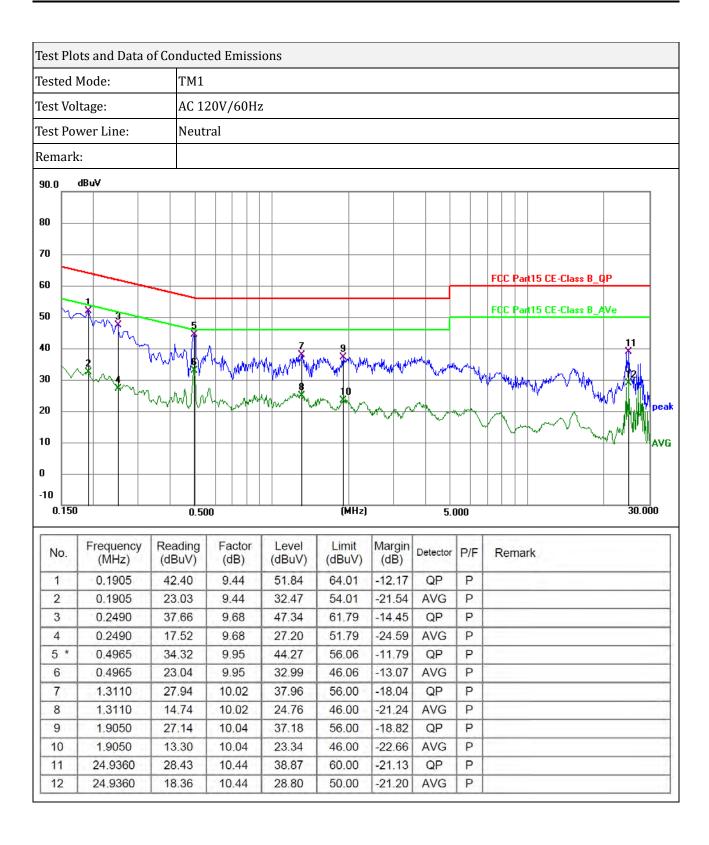
Start Frequency: 0.15MHz Stop Frequency: 30MHz IF Bandwidth: 9kHz

c) The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipment powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.

FCC Test Report Page 11 of 42

d) Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.

Report No: SSP24060067-1E


- e) I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- f) LISN is at least 80 cm from nearest part of EUT chassis.
- g) For the actual test configuration, please refer to the related Item photographs of the test setup.

4.3 Test Data and Results

All of the 802.11b, 802.11g and 802.11n modes have been tested, the EUT complied with the FCC Part 15.207 standard limit for a wireless device, and with the worst case $802.11b_2412MHz$ as below:

Remark: Level = Reading + Factor, Margin = Level - Limit

FCC Test Report Page 12 of 42

FCC Test Report Page 13 of 42

Test	Plots	and Data	of Con	duct	ed Em	issic	ons											
Teste	ed Mo	d Mode: TM1																
Test	Volta	age:	A	AC 1	C 120V/60Hz													
Test	Powe	er Line:	I	ive	re													
Rem	ark:																	
90.0	dB	euV	I_															
30.0																		
80																		
70																		
		\perp											ECC E	0 - 41	5 CE-Cla	D (1	D	
60			-	\downarrow									FULT	aiti	J CE-CIO	188 D_G	-	
50	4	MANA TO THE REAL PROPERTY OF THE PARTY OF TH		3	5			_					FCC I	Part1	5 CE-Cla	ss B_A	Ve	
40 3		. 447	MANAMAN	۸.	1	444	JINTA A	× ×	t	9 X						11 *		
	\mathcal{N}	Im.		U T PI	[MANY APAN	1 Vm 1 Vr	"γ"	VTVV	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	hanka	pure of La	m/ye kee.	WW	M.	بالتلاميا	
30		- W	WW.	1111		AMM	Maryman	MA.	Λ ,κ	10,,,,		J				12	Δ) , [M	k
20			- 1	м.			7 9 90 .	" V	V"	V*V~~	-	$\stackrel{\sim}{\rightarrow}$		4	~~ √	<u> </u>		peak
10																*	Λ Λ	AVG
0																		
-10																		
	150			0.50				(MH	z)		5.1	000					30.0) 00
No). ¹	Frequency (MHz)	Read (dBu		Fact (dB		Level (dBuV)	Limit (dBuV	/) N	largin (dB)	Detector	P/F	Ren	nark	(
1		0.1500	49.0	38	9.27	7	58.35	66.00	-	7.65	QP	Р						
2		0.1500	28.9	98	9.27	7	38.25	56.00	_	17.75	AVG	Р						
3	*	0.4964	39.0		9.93	\rightarrow	48.98	56.06	\rightarrow	7.08	QP	Р						
4		0.4964	27.9		9.93	_	37.84	46.06	_	8.22	AVG	Р						
5	\perp	0.5685	35.0		9.94	\rightarrow	44.94	56.00	_	11.06	QP	Р						
6	\perp	0.5685	21.9		9.94	\rightarrow	31.93	46.00	_	14.07	AVG	Р						
7	\perp	1.5945	32.8		10.0	\rightarrow	42.84	56.00	_	13.16	QP	Р						
8	\perp	1.5945	18.		10.0	\rightarrow	28.55	46.00	_	17.45	AVG	Р						
9	\perp	3.0120	30.		10.1	\rightarrow	40.26	56.00	-	15.74	QP	Р						
10	_	3.0120	12.3		10.1	$\overline{}$	22.41	46.00	_	23.59	AVG	Р						
11	_	15.5850	29.		10.2	\rightarrow	39.85	60.00	_	20.15	QP	Р						
12	!	15.5850	13.8	34	10.2	8	24.12	50.00) -:	25.88	AVG	P						
<u> </u>																		

FCC Test Report Page 14 of 42

5. Radiated Emissions

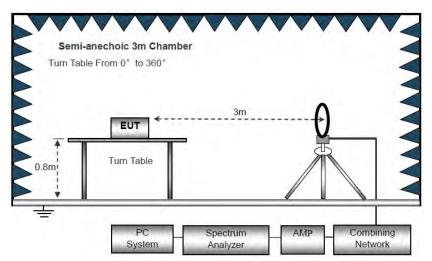
5.1 Standard and Limit

According to §15.247(d), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § 15.205(c)).

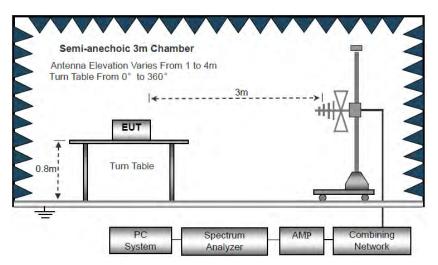
Report No: SSP24060067-1E

According to the rule FCC Part 15.209. Radiated emission limit for a wireless device as below:

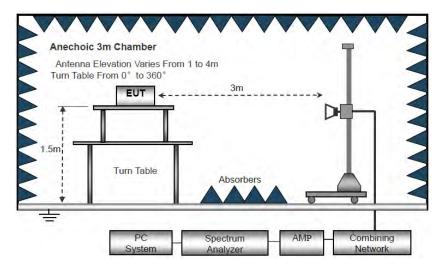
Frequency of Emission	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(kHz)	300
0.490~1.705	24000/F(kHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3
Note: The more stringent limit applies	at transition frequencies.	


The emission limit in this paragraph is based on measurement instrumentation employing an average detector. The provisions in §15.35 for limiting peak emissions apply. Spurious Radiated Emissions measurements starting below or at the lowest crystal frequency.

Note: Spurious Radiated Emissions measurements starting below or at the lowest crystal frequency.


5.2 Test Procedure

Test is conducting under the description of ANSI C63.10 - 2013 section 6.3 to 6.6.


FCC Test Report Page 15 of 42

Block Diagram of Radiated Emission Below 30MHz

Block Diagram of Radiated Emission From 30MHz to 1GHz

Block Diagram of Radiated Emission Above 1GHz

FCC Test Report Page 16 of 42

a) The EUT is placed on a turntable, which is 0.8m above ground plane for test frequency range blew 1GHz, and 1.5m above ground plane for test frequency range above 1GHz.

Report No: SSP24060067-1E

- b) EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest
- c) Use the following spectrum analyzer settings:

Span = wide enough to fully capture the emission being measured

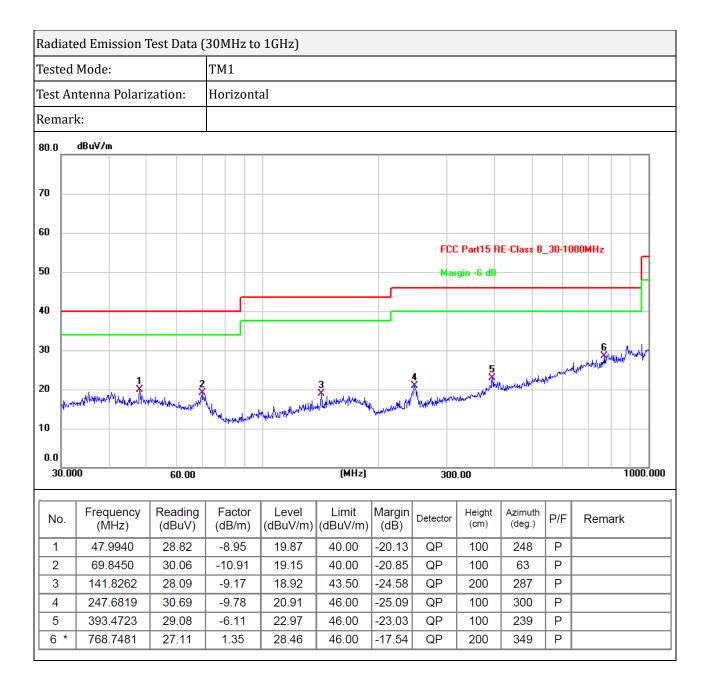
RBW = 1 MHz for $f \ge 1$ GHz, 100 kHz for f < 1 GHz, 10kHz for f < 30MHz

VBW ≥ RBW, Sweep = auto

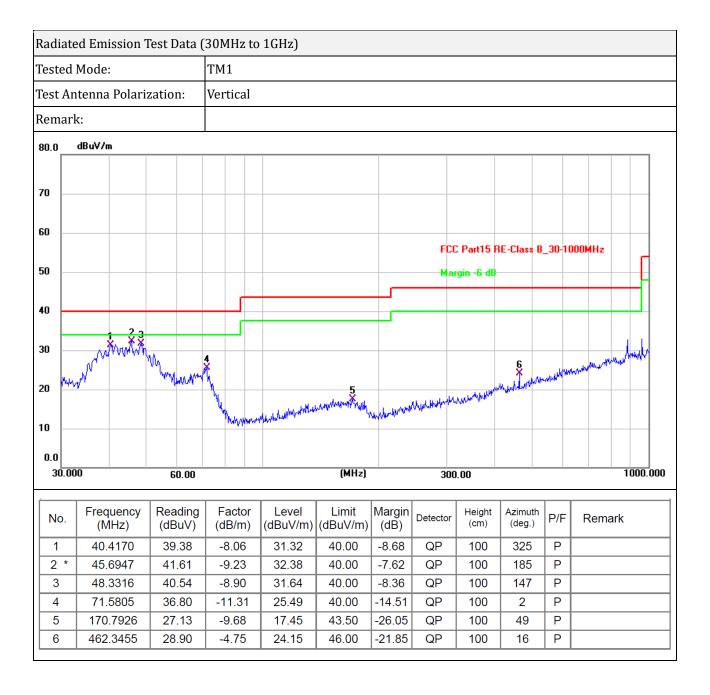
Detector function = peak

Trace = max hold

emissions.


- d) Follow the guidelines in ANSI C63.4-2014 with respect to maximizing the emission by rotating the EUT, adjusting the measurement antenna height and polarization, etc. The peak reading of the emission, after being corrected by the antenna factor, cable loss, pre-amp gain, etc., is the peak field strength, submit this data. Each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- e) The peak level, once corrected, must comply with the limit specified in Section 15.209. Set the RBW = 1MHz, VBW = 10Hz, Detector = PK for AV value, while maintaining all of the other instrument settings.
- f) For the actual test configuration, please refer to the related item EUT test photos.

5.3 Test Data and Results


All of the 802.11b, 802.11g and 802.11n modes have been tested, the EUT complied with the FCC Part 15.247 standard limit for a wireless device, and with the worst case 802.11b_2412MHz as below:

Remark: Level = Reading + Factor, Margin = Level - Limit

FCC Test Report Page 17 of 42

FCC Test Report Page 18 of 42

FCC Test Report Page 19 of 42

Radiated Emi	ission Test Dat	a (Above 1GH	z)				
Frequency	Reading	Correct	Result	Limit	Margin	Polar	Detector
MHz	dBuV/m	dB/m	dBuV/m	dBuV/m	dB	H/V	PK/AV
		802.	11b Lowest Cl	nannel (2412N	ИHz)		
4824	75.27	-14.72	60.55	74	-13.45	Н	PK
4824	62.14	-14.72	47.42	54	-6.58	Н	AV
7236	63.2	-8.41	54.79	74	-19.21	Н	PK
7236	47.02	-8.41	38.61	54	-15.39	Н	AV
4824	74.3	-14.72	59.58	74	-14.42	V	PK
4824	60.74	-14.72	46.02	54	-7.98	V	AV
7236	63.08	-8.41	54.67	74	-19.33	V	PK
7236	50.96	-8.41	42.55	54	-11.45	V	AV
		802	.11b Middle Cl	nannel (2437N	(Hz)		
4874	76.72	-14.64	62.08	74	-11.92	Н	PK
4874	62.92	-14.64	48.28	54	-5.72	Н	AV
7311	64.03	-8.28	55.75	74	-18.25	Н	PK
7311	45.68	-8.28	37.4	54	-16.6	Н	AV
4874	75.02	-14.64	60.38	74	-13.62	V	PK
4874	60.88	-14.64	46.24	54	-7.76	V	AV
7311	65.05	-8.28	56.77	74	-17.23	V	PK
7311	45.65	-8.28	37.37	54	-16.63	V	AV
		802.	11b Highest C	hannel (2462N	MHz)		
4924	75.61	-14.53	61.08	74	-12.92	Н	PK
4924	61.84	-14.53	47.31	54	-6.69	Н	AV
7386	62.81	-8.13	54.68	74	-19.32	Н	PK
7386	47.71	-8.13	39.58	54	-14.42	Н	AV
4924	74.8	-14.53	60.27	74	-13.73	V	PK
4924	60.43	-14.53	45.9	54	-8.1	V	AV
7386	64.94	-8.13	56.81	74	-17.19	V	PK
7386	50.51	-8.13	42.38	54	-11.62	V	AV

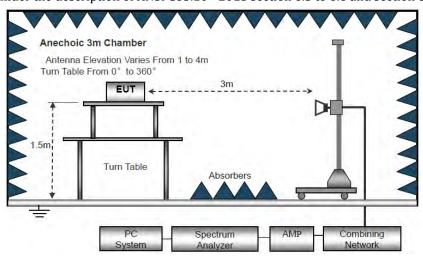
Note 1: this EUT was tested in 3 orthogonal positions and the worst case position data was reported.

Note 2: Testing is carried out with frequency rang 9kHz to the tenth harmonics. The measurements greater than 20dB below the limit from 9kHz to 30MHz.

Note 3: 18GHz-26GHz not recorded for no spurious point have a margin of less than 6 dB with respect to the limits.

FCC Test Report Page 20 of 42

6. Band-edge Emissions(Radiated)


6.1 Standard and Limit

According to §15.247(d), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § 15.205(c)).

Report No: SSP24060067-1E

6.2 Test Procedure

Test is conducting under the description of ANSI C63.10 - 2013 section 6.3 to 6.6 and section 6.10.

Test Setup Block Diagram

As the radiated emissions testing, set the Lowest and Highest Transmitting Channel, observed the outside band of 2310MHz to 2400MHz and 2483.5MHz to 2500MHz, than mark the higher-level emission for comparing with the FCC rules.

6.3 Test Data and Results

Based on all tested data, the EUT complied with the FCC Part 15.247 standard limit, and with the worst case as below:

FCC Test Report Page 21 of 42

Test Mode	Frequency	Limit	Result	
rest Mode	MHz	dBuV/dBc	resuit	
Lavyagt	2310.00	<54 dBuV	Pass	
Lowest	2390.00	<54 dBuV	Pass	
Highost	2483.50	<54 dBuV	Pass	
Highest	2500.00	<54 dBuV	Pass	

Radiated Emission Test Data (Band edge emissions)												
Frequency	Reading	Correct	Result	Limit	Margin	Polar	Detector					
MHz	dBuV/m	dB/m	dBuV/m	dBuV/m	dB	H/V	PK/AV					
	802.11b Lowest Channel (2412MHz)											
2310	68.42	-21.34	47.08	74	-26.92	Н	PK					
2310	51.22	-21.34	29.88	54	-24.12	Н	AV					
2390	65.74	-20.96	44.78	74	-29.22	Н	PK					
2390	52.09	-20.96	31.13	54	-22.87	Н	AV					
2400	67.21	-20.91	46.3	74	-27.7	Н	PK					
2400	55.28	-20.91	34.37	54	-19.63	Н	AV					
2310	65.3	-21.34	43.96	74	-30.04	V	PK					
2310	49.31	-21.34	27.97	54	-26.03	V	AV					
2390	65.53	-20.96	44.57	74	-29.43	V	PK					
2390	51.72	-20.96	30.76	54	-23.24	V	AV					
2400	70.45	-20.91	49.54	74	-24.46	V	PK					
2400	53.65	-20.91	32.74	54	-21.26	V	AV					
		802.	11b Highest C	hannel (2462N	ИHz)							
2483.50	72.14	-20.51	51.63	74	-22.37	Н	PK					
2483.50	56.69	-20.51	36.18	54	-17.82	Н	AV					
2500	68.49	-20.43	48.06	74	-25.94	Н	PK					
2500	49.95	-20.43	29.52	54	-24.48	Н	AV					
2483.50	68.36	-20.51	47.85	74	-26.15	V	PK					
2483.50	52.17	-20.51	31.66	54	-22.34	V	AV					
2500	68.76	-20.43	48.33	74	-25.67	V	PK					
2500	51.17	-20.43	30.74	54	-23.26	V	AV					

Remark: Level = Reading + Factor, Margin = Level - Limit

FCC Test Report Page 22 of 42

7. Maximum Conducted Output Power

7.1 Standard and Limit

According to 15.247(b)(3). For systems using digital modulation in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the *maximum conducted output power* is the highest total transmit power occurring in any mode.

Report No: SSP24060067-1E

7.2 Test Procedure

A spectrum analyzer or similar device shall be used to observe a sample of the modulated transmitter's radio frequency power output.

- 1) A measurement instrument with an integrated channel bandwidth function may be used to automate the test process.
- 2) Set center of frequency = operating frequency.
- 3) Connect the EUT to the RF input of the spectrum analyzer via a low loss RF cable
- 4) Set the RBW = 1MHz, VBW = 3MHz, Detector = RMS, Sweep = Auto.
- 5) Set the SPAN to 40MHz/80MHz for 20MHz/40MHz emission bandwidth mode.
- 6) Measure the highest amplitude appearing on spectral display and mark the value.
- 7) Repeat the above procedures until all frequency measured was complete.

Test Setup Block Diagram

7.3 Test Data and Results

FCC Test Report Page 23 of 42

Duty Cycle

Test Mode	Test Channel MHz	Duty Cycle (%)	Correction Factor (dBm)	1/T (kHz)
	2412	98.53	0	1.07
802.11b	2437	98.74	0	1.07
	2462	98.74	0	1.07
	2412	97.8	0.1	5.62
802.11g	2437	96.7	0.15	5.68
	2462	96.7	0.15	5.68
	2412	96.47	0.16	6.1
802.11n(HT20)	2437	97.65	0.1	6.02
	2462	Duty Cycle (%) 2 98.53 0 98.74 0 98.74 0 97.8 0 96.7 96.7 96.7 96.7 97.65 0.1 96.47 96.15 96.15 0.17	0.16	6.1
	2422	96.15	0.17	10
802.11n(HT40)	2437	96.15	0.17	10
	2452	96.15	0.17	10

Test Mode	Test Channel (MHz)	Conducted Power (dBm)	Duty Factor (dB)	Total Power (dBm)	Limit (dBm)	Test Result
	2412	7.16	0	7.16	30	Pass
802.11b	2437	6.65	0	6.65	30	Pass
	2462	6.64	0	6.64	30	Pass
	2412	2.99	0.1	3.09	30	Pass
802.11g	2437	2.5	0.15	2.65	30	Pass
	2462	2.18	0.15	2.33	30	Pass
	2412	2.76	0.16	2.92	30	Pass
802.11n(HT20)	2437	2.3	0.1	2.4	30	Pass
	2462	2.01	0.16	2.17	30	Pass
	2422	1.64	0.17	1.81	30	Pass
802.11n(HT40)	2437	1.16	0.17	1.33	30	Pass
	2452	0.57	0.17	0.74	30	Pass

Note: Total Power = Conducted Power + Duty Factor

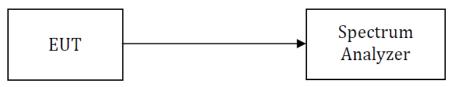
FCC Test Report Page 24 of 42

FCC Test Report Page 25 of 42

FCC Test Report Page 26 of 42

8. Occupied Bandwidth(-6dB)

8.1 Standard and Limit

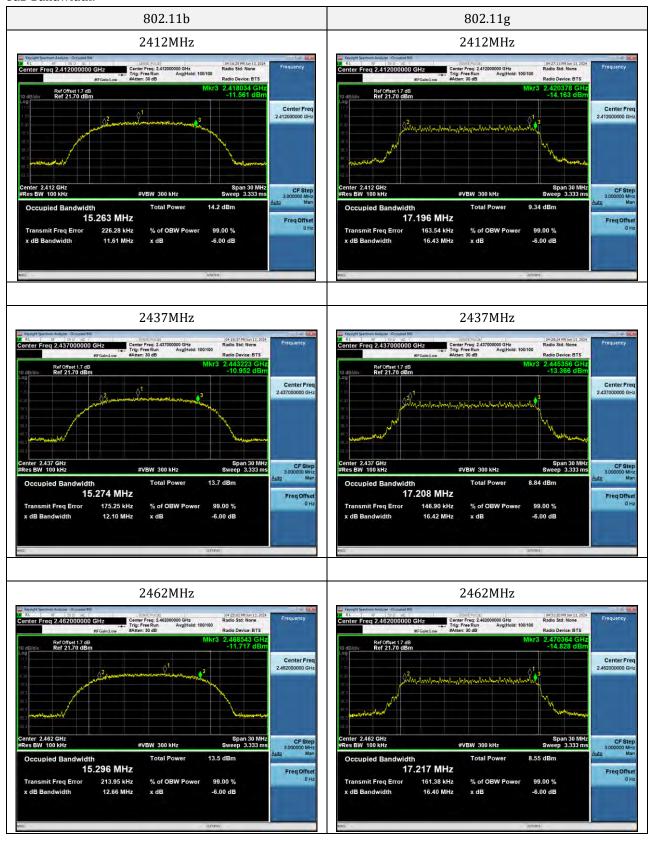

According to 15.247(a)(2), Systems using digital modulation techniques may operate in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

Report No: SSP24060067-1E

8.2 Test Procedure

According to the ANSI 63.10-2013, section 6.9, the emission bandwidth test method as follows.

- 1) Remove the antenna from the EUT and connect to the spectrum analyzer via a low loss RF cable.
- 2) Set the spectrum analyzer to any one measured frequency within its operating range.
- 3) Set RBW = 100kHz, VBW = 300kHz, Sweep = Auto.
- 4) Set a reference level on the measuring instrument equal to the highest peak value.
- 5) Measure the frequency difference of two frequencies that were attenuated 6dB from the reference level. Record the frequency difference as the emission bandwidth.
- 6) Repeat the above procedures until all frequencies measured were complete.


Test Setup Block Diagram

8.3 Test Data and Results

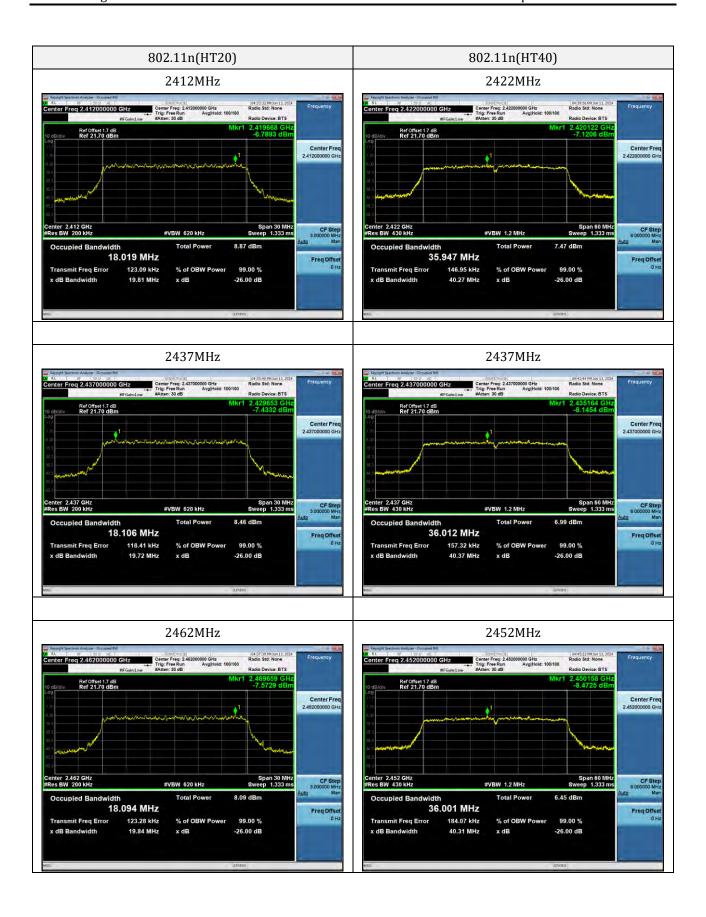
Test Mode	Test Channel	6dB Bandwidth	99% Bandwidth	6bdBm Limit	Test Result	
rest Mode	(MHz)	(MHz)	(MHz)	(MHz)		
	2412	11.615	15.283	0.5	Pass	
802.11b	2437	12.096	15.277	0.5	Pass	
	2462	12.658	15.275	0.5	Pass	
	2412	16.428	17.32	0.5	Pass	
802.11g	2437	16.419	17.345	0.5	Pass	
	2462	16.405	17.343	0.5	Pass	
	2412	16.945	18.019	0.5	Pass	
802.11n(HT20)	2437	16.978	18.106	0.5	Pass	
	2462	16.948	18.094	0.5	Pass	
	2422	35.14	35.947	0.5	Pass	
802.11n(HT40)	2437	35.143	36.012	0.5	Pass	
	2452	35.151	36.001	0.5	Pass	

FCC Test Report Page 27 of 42

6dB Bandwidth:



FCC Test Report Page 28 of 42



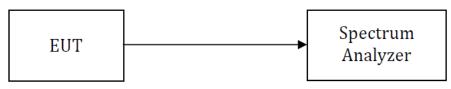
FCC Test Report Page 29 of 42

99% Bandwidth:

FCC Test Report Page 30 of 42

FCC Test Report Page 31 of 42

9. Maximum Power Spectral Density

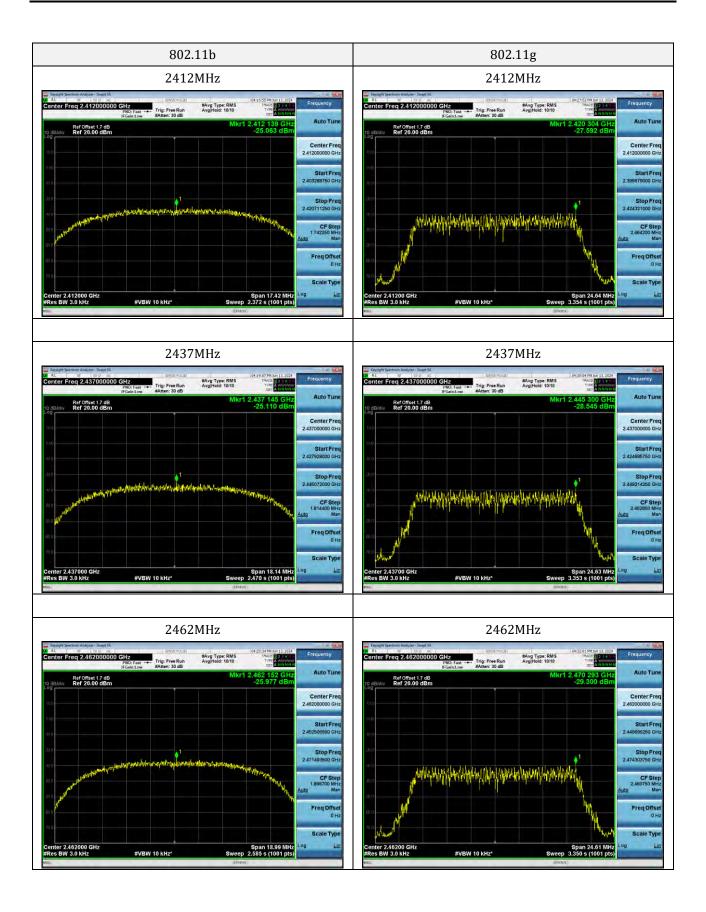

9.1 Standard and Limit

According to FCC 15.247(e), For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

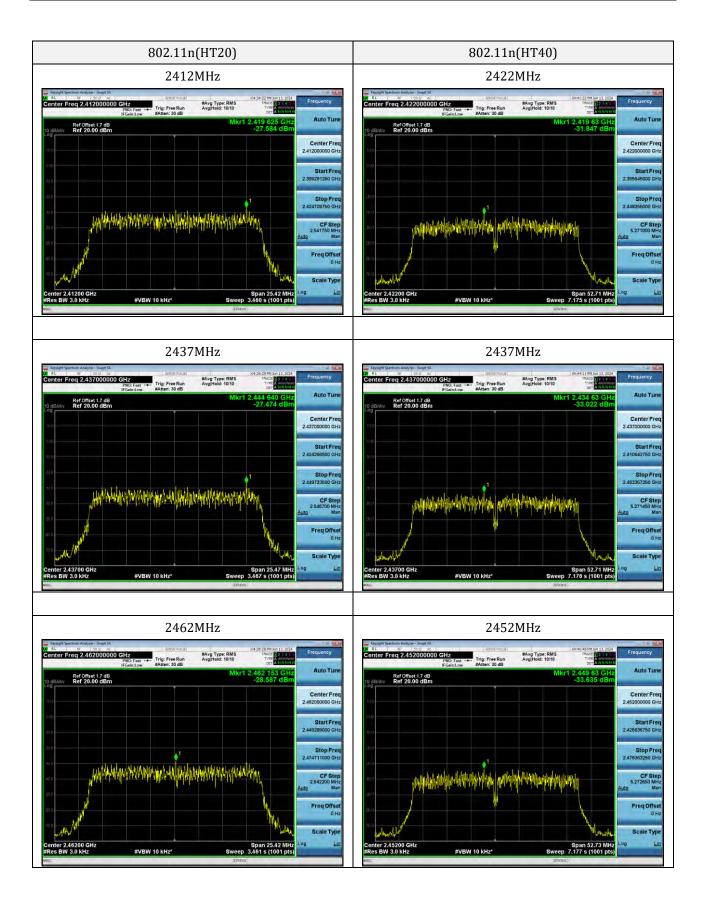
Report No: SSP24060067-1E

9.2 Test Procedure

- 1) Remove the antenna from the EUT and connect to the spectrum analyzer via a low loss RF cable.
- 2) Set the spectrum analyzer to any one measured frequency within its operating range.
- 3) Set RBW = 3kHz, VBW = 10kHz, Sweep = Auto, Detector = RMS.
- 4) Measure the highest amplitude appearing on spectral display and mark the value.
- 5) Repeat above procedures until all frequencies measured were complete.



Test Setup Block Diagram


9.3 Test Data and Results

Test Mode	Test Channel (MHz)	Conducted PSD (dBm/3kHz)	Duty Factor (dB)	Total PSD (dBm/3kHz)	Limit (dBm/3kHz)	Test Result
	2412	-25.06	0	-25.06	8	Pass
802.11b	2437	-25.11	0	-25.11	8	Pass
	2462	-25.98	0	(dBm/3kHz) (dBm	8	Pass
	2412	-27.59	0.1	-27.49	8	Pass
802.11g	2437	-28.55	0.15	-28.4	8	Pass
	2462	-29.3	0.15	-29.15	25.06 8 25.11 8 25.98 8 27.49 8 28.4 8 29.15 8 27.42 8 27.37 8 28.43 8 21.68 8	Pass
	2412	-27.58	0.16	-27.42	8	Pass
802.11n(HT20)	2437	-27.47	Hz) (dB) (dBm/3kHz) (dBm/3 0 -25.06 8 0 -25.11 8 0 -25.98 8 0.1 -27.49 8 0.15 -28.4 8 0.15 -29.15 8 0.16 -27.42 8 0.1 -27.37 8 0.16 -28.43 8 0.17 -31.68 8 0.17 -32.85 8	8	Pass	
	2462	-28.59	0.16	-28.43	8	Pass
	2422	-31.85	0.17	-31.68	8	Pass
802.11n(HT40)	2437	-33.02	0.17	-32.85	8	Pass
	2452	-33.64	0.17	-33.47	8	Pass

FCC Test Report Page 32 of 42

FCC Test Report Page 33 of 42

FCC Test Report Page 34 of 42

10. Band-edge Emission(Conducted)

10.1 Standard and Limit

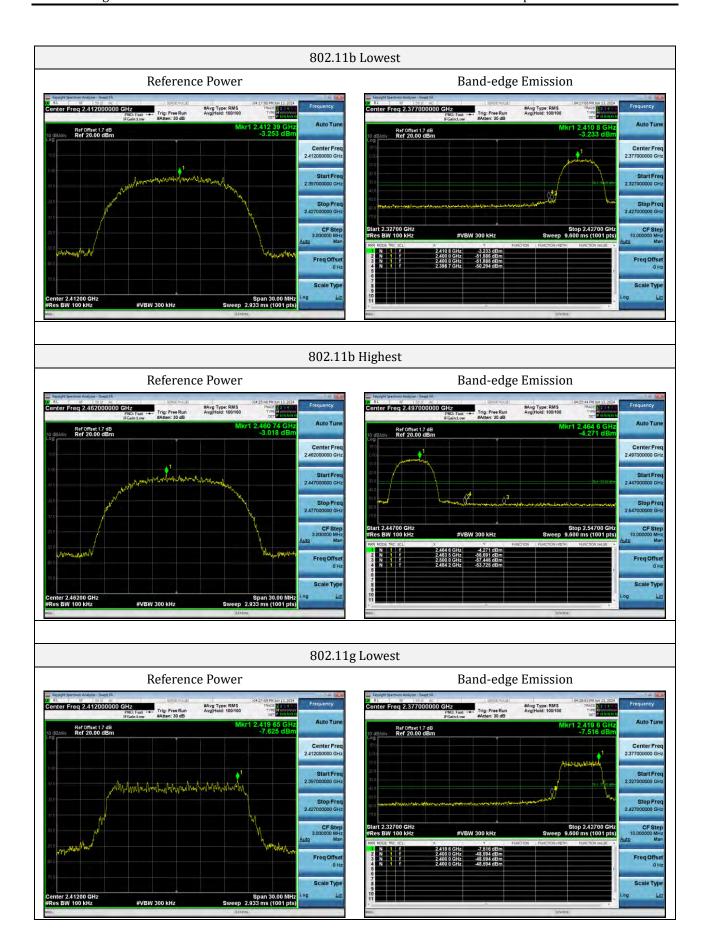
According to §15.247(d), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § 15.205(c)).

Report No: SSP24060067-1E

10.2 Test Procedure

Test is conducting under the description of ANSI C63.10 - 2013 section 6.10.

- 1) Remove the antenna from the EUT and connect to the spectrum analyzer via a low loss RF cable.
- 2) Set the spectrum analyzer to any one measured frequency within its operating range.
- 3) Set RBW = 100kHz, VBW = 300kHz, Sweep = Auto, Detector = RMS.
- 4) Measure the highest amplitude appearing on spectral display and set it as a reference level.
- 5) Set a convenient frequency span including 100 kHz bandwidth from band edge.
- 6) Measure the emission and marking the edge frequency.
- 7) Repeat above procedures until all frequencies measured were complete.



10.3 Test Data and Results


FCC Test Report Page 35 of 42

Test Mode	Band-edge	Test Channel (MHz)	Max. Value (dBc)	Limit (dBc)	Test Result
002.111	Lowest	2412	-47.04	-30	Pass
802.11b	Highest	2462	-50.7	-30	Pass
002.11-	Lowest	2412	-40.97	-30	Pass
802.11g	Highest	2462	-45.65	-30	Pass
002 11 ~ (UT20)	Lowest	2412	-41.03	-30	Pass
802.11n(HT20)	Highest	2462	-45.12	-30	Pass
002.11 ~ (UT.40)	Lowest	2422	-34.21	-30	Pass
802.11n(HT40)	Highest	2452	-38.96	-30	Pass

FCC Test Report Page 36 of 42

FCC Test Report Page 37 of 42

FCC Test Report Page 38 of 42

FCC Test Report Page 39 of 42

11. Conducted RF Spurious Emissions

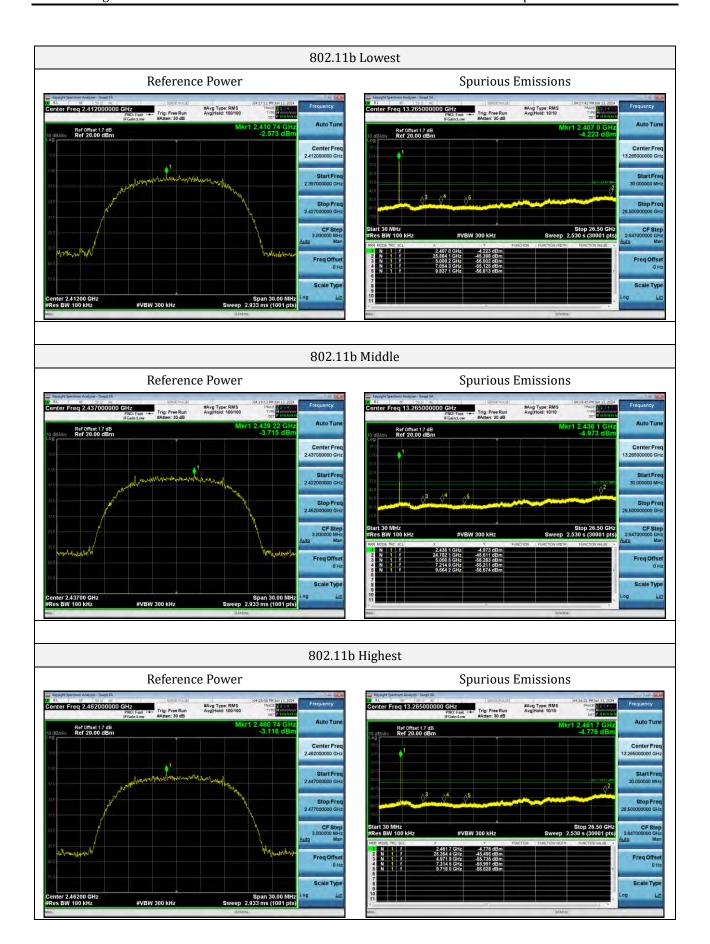
11.1 Standard and Limit

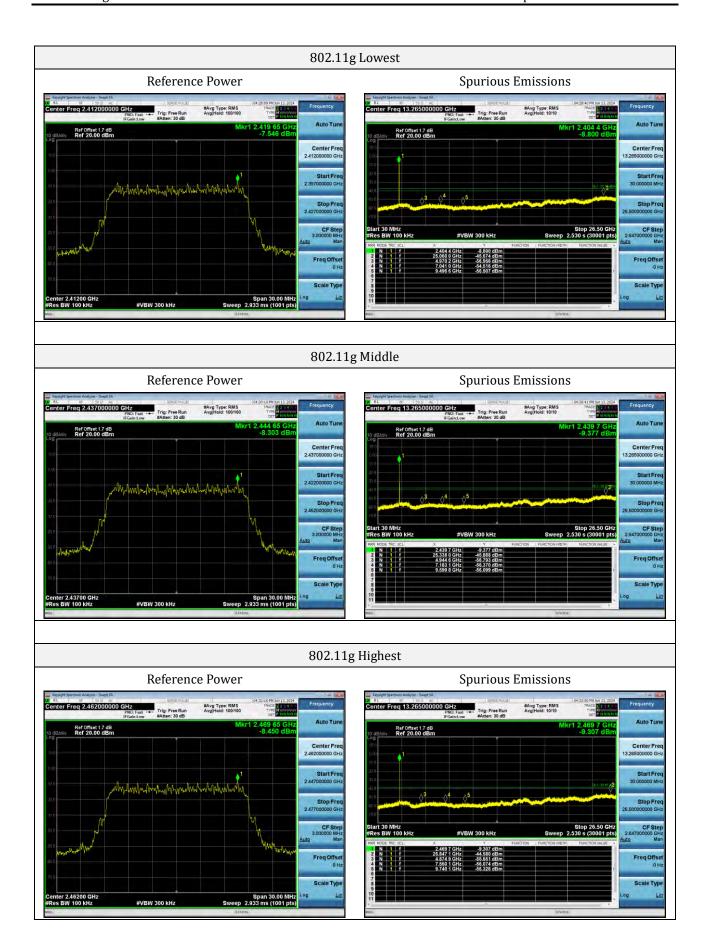
According to §15.247(d), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § 15.205(c)).

Report No: SSP24060067-1E

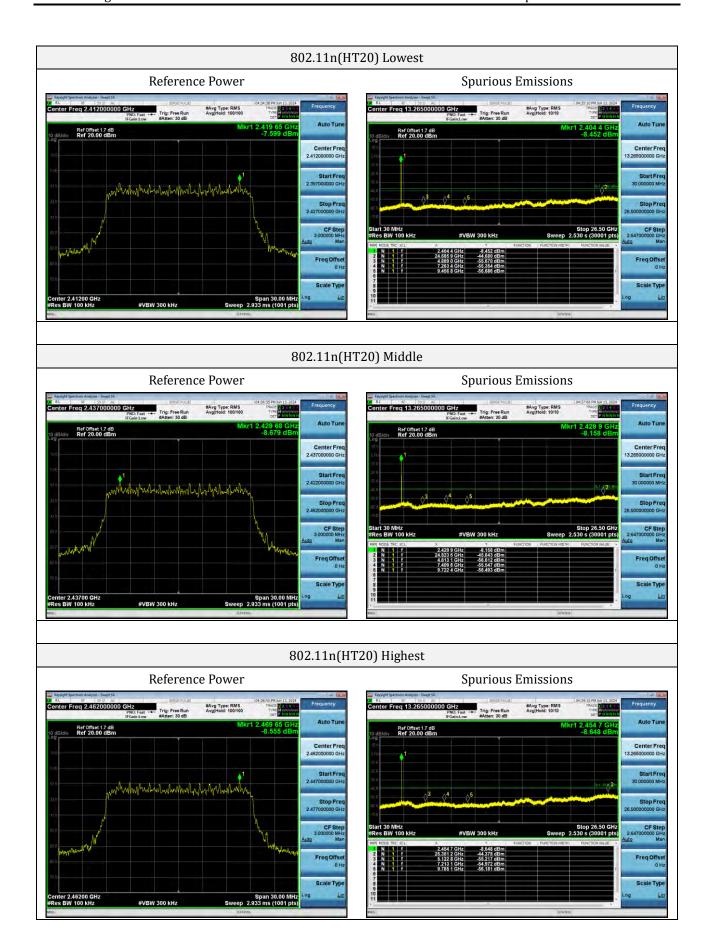
11.2 Test Procedure

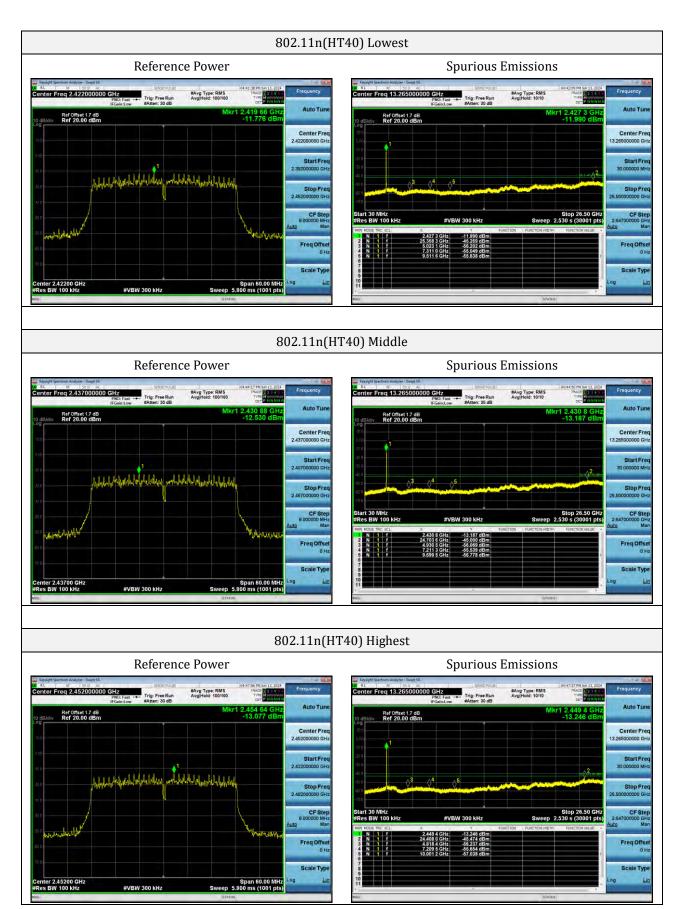
Test is conducting under the description of ANSI C63.10 - 2013 section 6.7.


- 1) Remove the antenna from the EUT and connect to the spectrum analyzer via a low loss RF cable.
- 2) Set the spectrum analyzer to any one measured frequency within its operating range.
- 3) Set RBW = 100kHz, VBW = 300kHz, Sweep = Auto, Detector = RMS.
- 4) Measure the highest amplitude appearing on spectral display and set it as a reference level.
- 5) Measure the spurious emissions with frequency range from 9kHz to 26.5GHz.
- 6) Repeat above procedures until all measured frequencies were complete.


11.3 Test Data and Results

Note: The measurement frequency range is from 9kHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions measurement data.


FCC Test Report Page 40 of 42


FCC Test Report Page 41 of 42

FCC Test Report Page 42 of 42

FCC Test Report Page 43 of 42

***** END OF REPORT *****

FCC Test Report Page 44 of 42