

Page 1 of 82

TEST REPORT

Product Name	:	Android TV Box
Brand Mark	:	TZ BOX
Model No.	:	MODEL X
Report Number	:	BLA-EMC-202403-A8901
FCC ID	:	2BFM3-TZS128A1
Date of Sample Receipt	:	2024/3/26
Date of Test	:	2024/3/26 to 2024/4/19
Date of Issue	:	2024/4/19
Test Standard	:	47 CFR Part 15, Subpart C 15.247
Test Result	:	Pass

Prepared for:

SHENZHEN Newglee Technology Co., Ltd. Room E601, UNIS Harbour, Langshan Rd, North High-Tech Park, Nanshan **District, Shenzhen, China**

Prepared by:

BlueAsia of Technical Services(Shenzhen) Co.,Ltd. Building C, No. 107, Shihuan Road, Shiyan Sub-District, Baoan District, Shenzhen, Guangdong Province, China TEL: +86-755-23059481

Compiled by:

Approved by:

Jozu 13 hue. Theng

Review by:

Date:

BlueAsia of Technical Services(Shenzhen) Co.,Ltd.

Add: Building C, No. 107, Shihuan Road, Shiyan Sub-District, Baoan District, Shenzhen, Guangdong Province, China Tel: +86-755-23059481 Email: marketing@cblueasia.com www.cblueasia.com

REPORT REVISE RECORD

Version No.	Date	Description
00	2024/4/19	Original

TABLE OF CONTENTS

1	T	EST SUMMARY	5
2	G	ENERAL INFORMATION	6
3	G	ENERAL DESCRIPTION OF E.U.T.	6
4	T	EST ENVIRONMENT	8
5	Т	EST MODE	8
6		IEASUREMENT UNCERTAINTY	
_		ESCRIPTION OF SUPPORT UNIT	
7			
8		EST FACILITY	
9		ABORATORY LOCATION	
10	T	EST INSTRUMENTS LIST	.10
11	С	ONDUCTED EMISSIONS AT AC POWER LINE (150KHZ-30MHZ)	. 12
1	1.1	LIMITS	12
1	1.2	BLOCK DIAGRAM OF TEST SETUP	.12
1	1.3		
1	1.4	TEST DATA	. 14
12	С	ONDUCTED BAND EDGES MEASUREMENT	17
1	2.1	LIMITS	17
1	2.2	BLOCK DIAGRAM OF TEST SETUP	.17
1	2.3	TEST Data	. 17
13	R	ADIATED SPURIOUS EMISSIONS	.18
1	3.1	LIMITS	18
1	3.2	BLOCK DIAGRAM OF TEST SETUP	.19
1	3.3	PROCEDURE	19
1	3.4	TEST Data	. 21
14	R	ADIATED EMISSIONS WHICH FALL IN THE RESTRICTED BANDS	. 30
1	4.1	LIMITS	.30
1	4.2	BLOCK DIAGRAM OF TEST SETUP	.31
1	4.3		
1	4.4	TEST DATA	. 33
15	С	ONDUCTED SPURIOUS EMISSIONS	. 38

	15.1	LIMITS	8
	15.2	BLOCK DIAGRAM OF TEST SETUP	8
	15.3	TEST DATA	8
16	POW	VER SPECTRUM DENSITY	
	16.1	LIMITS	-
	16.2	BLOCK DIAGRAM OF TEST SETUP	
-	16.3	TEST DATA	9
17	CON	IDUCTED PEAK OUTPUT POWER	
	17.1	LIMITS	
	17.2	BLOCK DIAGRAM OF TEST SETUP	-
	17.3	TEST DATA	
18	MINI	MUM 6DB BANDWIDTH	1
	18.1	LIMITS	1
	18.2	BLOCK DIAGRAM OF TEST SETUP4	1
	18.3	TEST DATA	1
19	ANT	ENNA REQUIREMENT42	
	19.1	CONCLUSION	2
20	APP	ENDIX14	3
AP	PENDI	X A: PHOTOGRAPHS OF TEST SETUP	1
AP	PENDI	X B: PHOTOGRAPHS OF EUT7	3

1 TEST SUMMARY

Test item	Test Requirement	Test Method	Class/Severity	Result
Conducted Emissions at AC Power Line (150kHz-30MHz)	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.2	47 CFR Part 15, Subpart C 15.207	Pass
Conducted Band Edges Measurement	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.8 & Section 11.13.3.2	47 CFR Part 15, Subpart C 15.247(d)	Pass
Radiated Spurious Emissions	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.4,6.5,6.6	47 CFR Part 15, Subpart C 15.209 & 15.247(d)	Pass
Radiated Emissions which fall in the restricted bands	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 6.10.5	47 CFR Part 15, Subpart C 15.209 & 15.247(d)	Pass
Conducted Spurious Emissions	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.6 & Section 11.11	47 CFR Part 15, Subpart C 15.247(d)	Pass
Power Spectrum Density	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 11.10.2	47 CFR Part 15, Subpart C 15.247(e)	Pass
Conducted Peak Output Power	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 7.8.5	47 CFR Part 15, Subpart C 15.247(b)(3)	Pass
Minimum 6dB Bandwidth	47 CFR Part 15, Subpart C 15.247	ANSI C63.10 (2013) Section 11.8.1	47 CFR Part 15, Subpart C 15.247a(2)	Pass
Antenna Requirement	47 CFR Part 15, Subpart C 15.247	N/A	47 CFR Part 15, Subpart C 15.203 & 15.247(c)	Pass

2 GENERAL INFORMATION

Applicant	SHENZHEN Newglee Technology Co.,Ltd.
Address	Room E601,UNIS Harbour, Langshan Rd, North High-Tech Park, Nanshan District, Shenzhen, China
Manufacturer	SHENZHEN Newglee Technology Co.,Ltd.
Address	Room E601,UNIS Harbour, Langshan Rd, North High-Tech Park, Nanshan District, Shenzhen, China
Factory	Shenzhen Juhui Weiye Technology Co., Ltd.
Address	Floor 2&3, Building 1, Anjia Industrial Park, Shijia Community, Matian Street, Guangming New District, Shenzhen
Product Name	Android TV Box
Test Model No.	MODEL X

3 GENERAL DESCRIPTION OF E.U.T.

Hardware Version	MGS905X3_S2-MAIN_V4-20240219F
Software Version	V1.7.1
Operation Frequency:	2402MHz-2480MHz
Modulation Type:	GFSK
Rate data:	1Mbps, 2Mbps
Channel Spacing:	2MHz
Number of Channels:	40
Antenna Type:	Internal Antenna
Antenna Gain:	5dBi (Provided by the applicant)

Operation	Operation Frequency each of channel						
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	11	2422MHz	21	2442MHz	31	2462MHz
2	2404MHz	12	2424MHz	22	2444MHz	32	2464MHz
: :	::	: :	: :	: :	: :	: :	: :
9	2418MHz	19	2438MHz	29	2458MHz	39	2478MHz
10	2420MHz	20	2440MHz	30	2460MHz	40	2480MHz

Operation Frequency each of channel

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2442MHz
The Highest channel	2480MHz

4 TEST ENVIRONMENT

Environment	Temperature	Voltage
Normal	25°C	DC5V

5 TEST MODE

TEST MODE	TEST MODE DESCRIPTION
Transmitting mode	Keep the EUT in continuously transmitting mode with modulation.

6 MEASUREMENT UNCERTAINTY

Parameter	Expanded Uncertainty (Confidence of 95%)
Occupied Channel Bandwidth	±5 %
RF output power, conducted	±1.5 dB
Power Spectral Density, conducted	±3.0 dB
Unwanted Emissions, conducted	±3.0 dB
Temperature	±3 °C
Supply voltages	±3 %
Time	±5 %
Unwanted Radiated Emission (30MHz ~ 1000MHz)	±4.35 dB
Unwanted Radiated Emission (1GHz ~ 18GHz)	±4.44 dB
AC Power Line Conducted Emission(150kHz-30MHz)	±3.45dB

7 DESCRIPTION OF SUPPORT UNIT

Device Type	Manufacturer	Model Name	Serial No.	Remark
TV	Xiaomi	N/A	N/A	From lab (No.BLA-ZC-BS-2022026)

8 TEST FACILITY

The test facility is recognized, certified, or accredited by the following organizations:

• FCC — Designation No.: CN1252

BlueAsia of Technical Services(Shenzhen) Co., Ltd has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Designation CN1252.

•ISED — CAB identifier No.: CN0028

BlueAsia of Technical Services(Shenzhen) Co., Ltd has been registered by Certification and Engineering

Bureau of ISED for radio equipment testing with CAB identifier CN0028.

9 LABORATORY LOCATION

All tests were performed at:

BlueAsia of Technical Services(Shenzhen) Co.,Ltd.

Building C, No. 107, Shihuan Road, Shiyan Sub-District, Baoan District, Shenzhen, Guangdong Province, China

Telephone: TEL: +86-755-28682673 FAX: +86-755-28682673

10 TEST INSTRUMENTS LIST

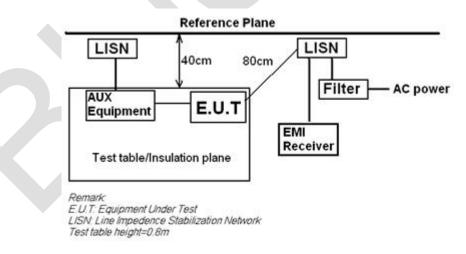
Test Equipm	nent Of Radiated	Spurious Emissions			
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due
Chamber 1	SKET	966	N/A	2023/11/16	2026/11/15
Chamber 2	SKET	966	N/A	2021/07/20	2024/07/19
Spectrum	R&S	FSP40	100817	2023/08/30	2024/08/29
Receiver	R&S	ESR7	101199	2023/08/30	2024/08/29
Receiver	R&S	ESPI7	101477	2023/07/07	2024/07/06
broadband Antenna	Schwarzbeck	VULB9168	00836 P:00227	2022/10/12	2025/10/11
Horn Antenna	Schwarzbeck	BBHA9120D	01892 P:00331	2022/09/13	2025/09/12
Horn Antenna	Schwarzbeck	BBHA 9170	1106	2022/04/24	2024/04/23
Amplifier	SKET	LNPA_30M01G-30	SK2021060801	2023/07/07	2024/07/06
Amplifier	SKET	PA-000318G-45	N/A	2023/08/30	2024/08/29
Amplifier	SKET	LNPA_18G40G-50	SK2022071301	2023/07/14	2024/07/13
Filter group	SKET	2.4G/5G Filter group r	N/A	2023/07/07	2024/07/06
EMI software	EZ	EZ-EMC	EEMC-3A1	N/A	N/A
Loop antenna	SCHNARZBE CK	FMZB1519B	00102	2022/09/14	2025/09/13
1kHZ calibration audio source	SKET	MCS-ABT-C35	N/A	2023/09/04	2024/09/03
Free Field Microphone	SKET	MGS MP 663	0414	2023/09/04	2024/09/03
Audio shielding box	SKET	SB-ABT-C35	N/A	2023/04/30	2024/04/29
Controller	SKET	N/A	N/A	N/A	N/A
Coaxial Cable	BlueAsia	BLA-XC-02	N/A	N/A	N/A
Coaxial Cable	BlueAsia	BLA-XC-03	N/A	N/A	N/A
Coaxial Cable	BlueAsia	BLA-XC-01	N/A	N/A	N/A
Signal Generator DTV	ECREDIX	DSG-1000	N/A	N/A	N/A

Test Equipment Of Conducted Emissions at AC Power Line (150kHz-30MHz)								
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due			
Shield room	SKET	833	N/A	2023/11/16	2025/11/15			
Receiver	R&S	ESPI3	101082	2023/08/30	2024/08/29			
LISN	R&S	ENV216	3560.6550.15	2023/08/30	2024/08/29			
LISN	AT	AT166-2	AKK1806000003	2023/08/30	2024/08/29			
ISN	TESEQ	ISNT8-cat6	53580	2023/08/30	2024/08/29			
Single-channel vehicle artificial power network	Schwarzbeck	NNBM 8124	01045	2023/07/07	2024/07/06			
Single-channel vehicle artificial power network	Schwarzbeck	NNBM 8124	01075	2023/07/07	2024/07/06			
EMI software	EZ	EZ-EMC	EEMC-3A1	N/A	N/A			

Test Equipment Of RF Conducted Test							
Equipment	Manufacturer	Model	S/N	Cal.Date	Cal.Due		
Spectrum	R&S	FSP40	100817	2023/08/30	2024/08/29		
Spectrum	Agilent	N9020A	MY49100060	2023/08/30	2024/08/29		
Spectrum	Agilent	N9020A	MY54420161	2023/08/30	2024/08/29		
Signal Generator	Agilent	N5182A	MY47420955	2023/08/30	2024/08/29		
Signal Generator	Agilent	N5181A	MY46240904	2023/07/07	2024/07/06		
Signal Generator	R&S	CMW500	132429	2023/08/30	2024/08/29		
BluetoothTester	Anritsu	MT8852B	06262047872	2023/08/30	2024/08/29		
Power probe	DARE	RPR3006W	14100889SN042	2023/09/01	2024/08/31		
Power detection box	CDKMV	MW100-PSB	MW201020JYT	2023/07/07	2024/07/06		
DCPowersupply	zhaoxin	KXN-305D	20K305D1221363	2023/08/30	2024/08/29		
DCPowersupply	zhaoxin	RXN-1505D	19R1505D050168	2023/08/30	2024/08/29		
2.4GHz/5GHz RF Test software	MTS	MTS 8310	Version 2.0.0.0	N/A	N/A		
Audio Analyzer	Audio Precision	ATS-1	ATS141094	2023/07/07	2024/07/06		

(150kH+ 20MH+) dı d Emionia 1.1. . .

11 CONDUCTED EMISSIONS AT AC POWER LINE (150KHZ-30MHZ)


Test Standard	47 CFR Part 15, Subpart C 15.247					
Test Method	ANSI C63.10 (2013) Section 6.2					
Test Mode (Pre-Scan)	ТХ					
Test Mode (Final Test)	ТХ					
Tester	Jozu					
Temperature	25°C					
Humidity	60%					

11.1 LIMITS

Frequency of	Conducted limit(dBµV)						
emission(MHz)	Quasi-peak	Average					
0.15-0.5	66 to 56*	56 to 46*					
0.5-5	56	46					
5-30	60	50					

*Decreases with the logarithm of the frequency.

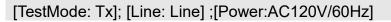
11.2 BLOCK DIAGRAM OF TEST SETUP

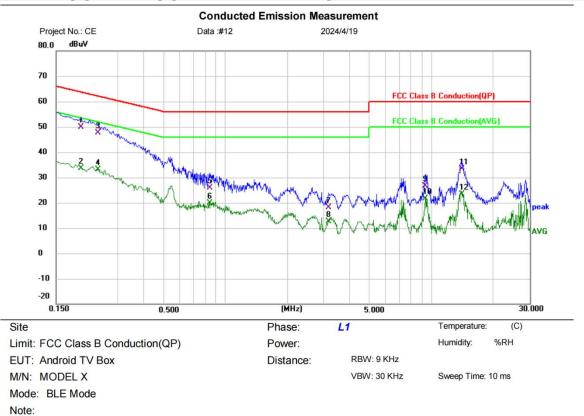
11.3 PROCEDURE

1) The mains terminal disturbance voltage test was conducted in a shielded room.

2) The EUT was connected to AC power source through a LISN 1 (Line Impedance Stabilization Network) which provides a 50ohm/50H + 5ohm linear impedance. The power cables of all other units of the EUT were connected to a second LISN 2, which was bonded to the ground reference plane in the same way as the LISN 1 for the unit being measured. A multiple socket outlet strip was used to connect multiple power cables to a single LISN provided the rating of the LISN was not exceeded.

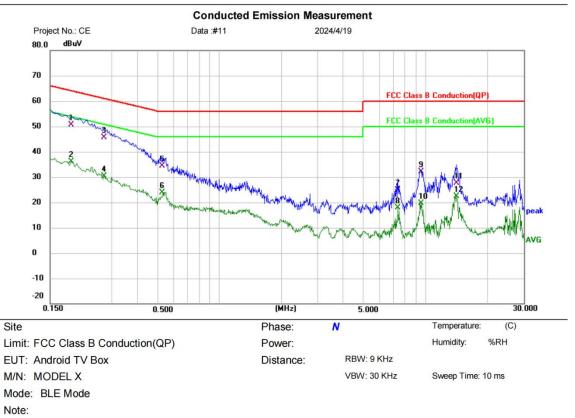
3) The tabletop EUT was placed upon a non-metallic table 0.8m above the ground reference plane. And for floor-standing arrangement, the EUT was placed on the horizontal ground reference plane,


4) The test was performed with a vertical ground reference plane. The rear of the EUT shall be 0.4 m from the vertical ground reference plane. The vertical ground reference plane was bonded to the horizontal ground reference plane. The LISN 1 was placed 0.8 m from the boundary of the unit under test and bonded to a ground reference plane for LISNs mounted on top of the ground reference plane. This distance was between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2.


5) In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10 on conducted measurement.

Remark: LISN=Read Level+ Cable Loss+ LISN Factor

11.4 TEST DATA



No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		Antenna Height	Table Degree	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	cm	degree	Comment
1	*	0.1980	39.56	10.34	49.90	63.69	-13.79	QP			
2		0.1980	23.37	10.34	33.71	53.69	-19.98	AVG			
3		0.2380	37.16	10.50	47.66	62.17	-14.51	QP			
4		0.2380	22.62	10.50	33.12	52.17	- <mark>19.05</mark>	AVG			
5		0.8420	15.81	9.99	25.80	56.00	-30.20	QP			
6		0.8420	9.89	9.99	19.88	46.00	-26.12	AVG			
7		3.1660	<mark>8.1</mark> 3	10.05	18.18	56.00	-37.82	QP			
8		3.1660	2.61	10.05	12.66	46.00	-33.34	AVG			
9		9.3460	15.24	11.39	26.63	60.00	-33.37	QP			
10		9.3460	10.15	11.39	21.54	50.00	-28.46	AVG			
11		14.0660	34.58	-1.25	33.33	60.00	-26.67	QP			
12		14.0660	24.66	-1.25	23.41	50.00	-26.59	AVG			
*:Ma	ximu	m data	x:Over lim	it !:over	margin						(Reference Onl
Recei	ver:	ESPI_	_1			Spectrum	Analyzer:	ES	PI		
I.S.I	N:					Engineer	Signature				

Test Result: Pass

[TestMode: Tx]; [Line: Neutral] ;[Power:AC120V/60Hz]

1.500			Reading	Correct	Measure-				Antenna	Table	
No.	Mk.	Freq.	Level	Factor	ment	Limit	Over		Height	Degree	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	cm	degree	Comment
1	*	0.1900	40.52	10.18	50.70	64.04	-13.34	QP			
2		0.1900	25.87	10.18	36.05	54.04	-17.99	AVG			
3		0.2740	35.76	9.91	45.67	61.00	-15.33	QP			
4		0.2740	20.56	9.91	30.47	51.00	-20.53	AVG			
5		0.5299	24.49	9.82	34.31	56.00	-21.69	QP			
6		0.5299	13.94	9.82	23.76	46.00	-22.24	AVG			
7		7.3579	13.83	11.06	24.89	60.00	-35.11	QP			
8		7.3579	6.88	11.06	17.94	50.00	-32.06	AVG			
9		9.5300	20.63	11.41	32.04	60.00	-27.96	QP			
10		9.5300	8.27	11.41	19.68	50.00	-30.32	AVG			
11		14.1579	29.07	-1.38	27.69	60.00	-32.31	QP			
12		14.1579	23.87	- <mark>1</mark> .38	22.49	50.00	-27.51	AVG			
:Ma	ximu	m data	x:Over lim	it !:over	margin						(Reference Only

Maximum d	ata	x:Over limit	1:over margin			Reference
Receiver:	ESPI	_1		Spectrum Analyzer:	ESPI	
L.I.S.N:				Engineer Signature		

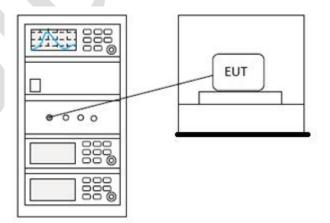
Test Result: Pass

Notes:

1. An initial pre-scan was performed on the line and neutral lines with peak detector.

2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.

3. Final Level =Receiver Read level + LISN Factor + Cable Loss.


Test Standard	47 CFR Part 15, Subpart C 15.247					
Test Method	ANSI C63.10 (2013) Section 7.8.8 & Section 11.13.3.2					
Test Mode (Pre-Scan)	ТХ					
Test Mode (Final Test)	ТХ					
Tester	Jozu					
Temperature	25 ℃					
Humidity	60%					

12 CONDUCTED BAND EDGES MEASUREMENT

12.1 LIMITS

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.209(a) (see §15.205(c)).

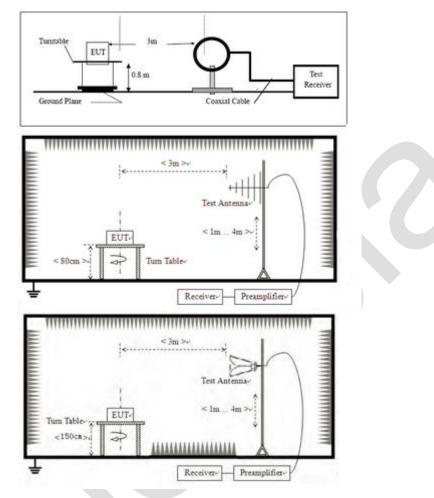
12.2 BLOCK DIAGRAM OF TEST SETUP

12.3 TEST DATA

Pass: Please Refer To Appendix: Appendix1 For Details

13 RADIATED SPURIOUS EMISSIONS

Test Standard	47 CFR Part 15, Subpart C 15.247						
Test Method	ANSI C63.10 (2013) Section 6.4,6.5,6.6						
Test Mode (Pre-Scan)	ТХ						
Test Mode (Final Test)	ТХ						
Tester	Jozu						
Temperature	25°C						
Humidity	60%						


13.1 LIMITS

Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

13.2 BLOCK DIAGRAM OF TEST SETUP

13.3 PROCEDURE

a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

h. Test the EUT in the lowest channel, the middle channel, the Highest channel.

i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.

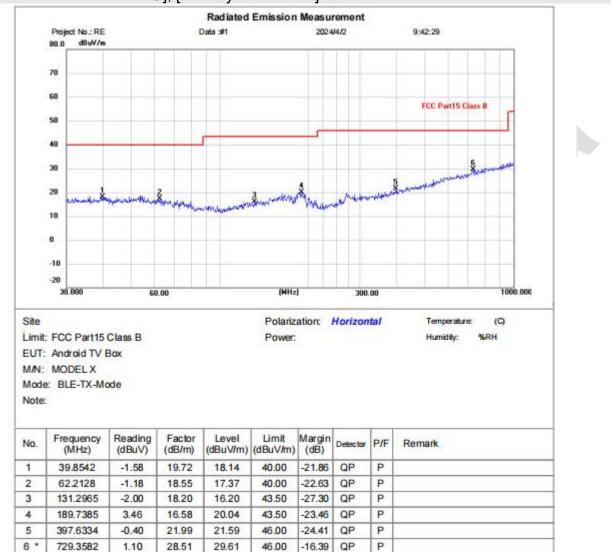
j. Repeat above procedures until all frequencies measured was complete.

Remark:

1) For emission below 1GHz, through pre-scan found the worst case is the lowest channel. Only the worst case is recorded in the report.

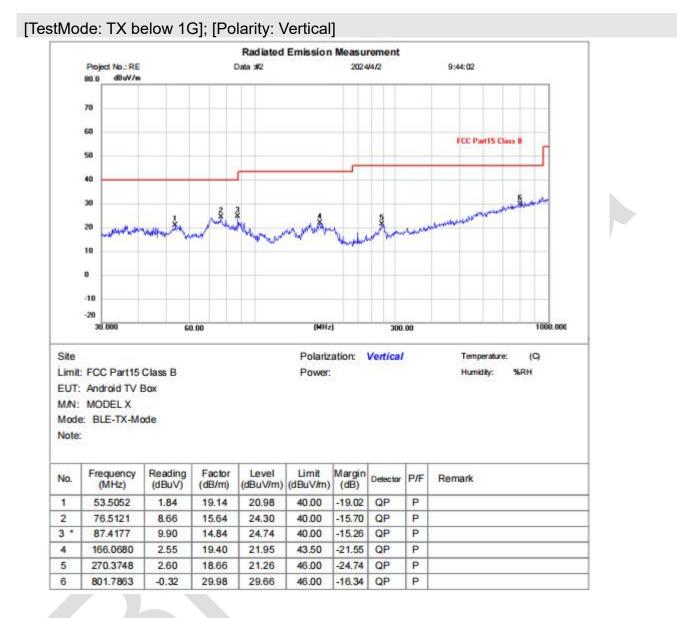
2) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level = Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor


3) Scan from 9kHz to 25GHz, the disturbance above 12.75GHz and below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported. fundamental frequency is blocked by filter, and only spurious emission is shown.

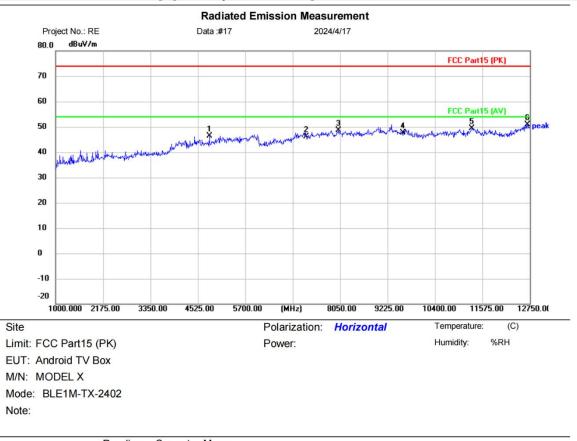
4) For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.

13.4 TEST DATA


Remark: During the test, pre-scan the BLE 1M, BLE 2M, and found the BLE 1M which it is worse case.

[TestMode: TX below 1G]; [Polarity: Horizontal]

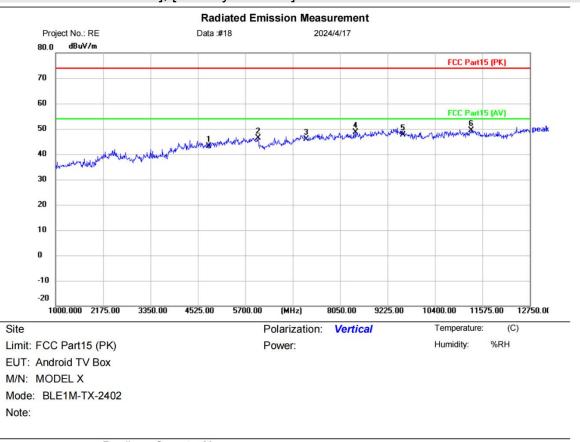
Test Result: Pass



Test Result: Pass

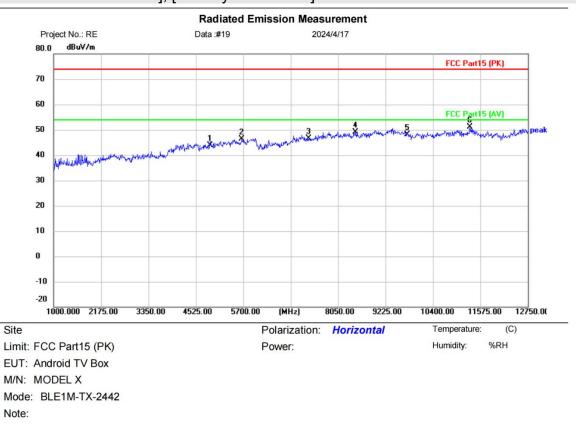
Remark: During the test, pre-scan the BLE 1M, BLE 2M, and found the BLE 1M which it is worse case.

[TestMode: TX low channel]; [Polarity: Horizontal]



No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4807.000	40.76	5.64	46.40	74.00	-27.60	peak	
2		7206.000	36.78	9.24	46.02	74.00	-27.98	peak	
3		8003.000	38.71	9.89	48.60	74.00	-25.40	peak	
4		9608.000	35.20	12.31	47.51	74.00	-26.49	peak	
5		11316.50	36.59	12.69	49.28	74.00	-24.72	peak	
6	*	12691.25	37.62	13.30	50.92	74.00	-23.08	peak	

*:Maximum da	ata x:Over I	imit !:over margin			(Reference Only
Receiver:	ESR_1		Spectrum Analyzer:	FSP40	
Antenna:	EZ 9120D 1G-18	G	Engineer Signature		
st Result: I	Pass				


[TestMode: TX low channel]; [Polarity: Vertical]

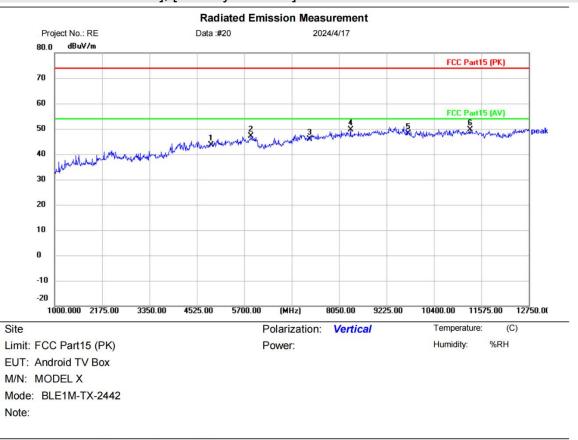
Mk	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
	4804.000	37.45	5.64	43.09	74.00	-30.91	peak	
	6017.250	40.84	5.63	46.47	74.00	-27.53	peak	
	7206.000	36.65	9.24	45.89	74.00	-28.11	peak	
	8437.750	38.14	10.54	48.68	74.00	-25.32	peak	
	9608.000	35.32	12.31	47.63	74.00	-26.37	peak	
*	11304.75	36.72	12.70	49.42	74.00	-24.58	peak	
		MHz 4804.000 6017.250 7206.000 8437.750 9608.000	MHz dBuV 4804.000 37.45 6017.250 40.84 7206.000 36.65 8437.750 38.14 9608.000 35.32 * 11304.75 36.72	MHz dBuV dB 4804.000 37.45 5.64 6017.250 40.84 5.63 7206.000 36.65 9.24 8437.750 38.14 10.54 9608.000 35.32 12.31 * 11304.75 36.72 12.70	MHz dBuV dB dBuV/m 4804.000 37.45 5.64 43.09 6017.250 40.84 5.63 46.47 7206.000 36.65 9.24 45.89 8437.750 38.14 10.54 48.68 9608.000 35.32 12.31 47.63 * 11304.75 36.72 12.70 49.42	MHz dBuV dB dBuV/m dBuV/m 4804.000 37.45 5.64 43.09 74.00 6017.250 40.84 5.63 46.47 74.00 7206.000 36.65 9.24 45.89 74.00 8437.750 38.14 10.54 48.68 74.00 9608.000 35.32 12.31 47.63 74.00 * 11304.75 36.72 12.70 49.42 74.00	MHz dBuV dB dBuV/m dBuV/m dBuV/m dB 4804.000 37.45 5.64 43.09 74.00 -30.91 6017.250 40.84 5.63 46.47 74.00 -27.53 7206.000 36.65 9.24 45.89 74.00 -28.11 8437.750 38.14 10.54 48.68 74.00 -25.32 9608.000 35.32 12.31 47.63 74.00 -26.37 * 11304.75 36.72 12.70 49.42 74.00 -24.58	MHz dBuV dB dBuV/m dBuV/m dB Detector 4804.000 37.45 5.64 43.09 74.00 -30.91 peak 6017.250 40.84 5.63 46.47 74.00 -27.53 peak 7206.000 36.65 9.24 45.89 74.00 -28.11 peak 8437.750 38.14 10.54 48.68 74.00 -25.32 peak 9608.000 35.32 12.31 47.63 74.00 -26.37 peak * 11304.75 36.72 12.70 49.42 74.00 -24.58 peak

*:Maximum	data	x:Over limit	!:over margin			<pre> Reference Only</pre>
Receiver:	ESR	_1		Spectrum Analyzer:	FSP40	
Antenna:	EZ 9	120D 1G-18G		Engineer Signature		
t Result:	Pas	S				

[TestMode: TX mid channel]; [Polarity: Horizontal]

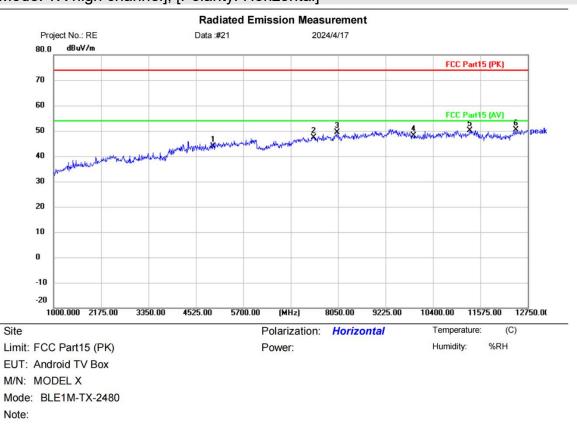
Deedline

Ormert


.....

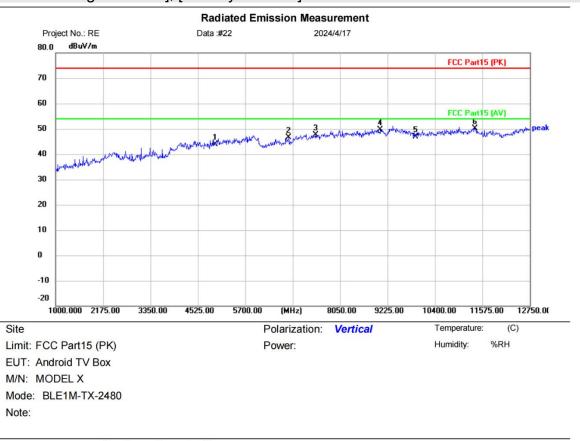
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4884.000	38.15	5.75	43.90	74.00	-30.10	peak	
2		5664.750	38.58	7.83	46.41	74.00	-27.59	peak	
3		7326.000	37.09	9.43	46.52	74.00	-27.48	peak	
4		8473.000	38.48	10.77	49.25	74.00	-24.75	peak	
5		9768.000	35.94	12.22	48.16	74.00	-25.84	peak	
6	*	11316.50	38.53	12.69	51.22	74.00	-22.78	peak	

*:Maximum c	lata	x:Over limit	l:over margin			(Reference Only
Receiver:	ESR	_1		Spectrum Analyzer:	FSP40	
Antenna:	EZ 9	120D 1G-18G		Engineer Signature		
st Result:	Pas	S				


[TestMode: TX mid channel]; [Polarity: Vertical]

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4884.000	37.76	5.75	43.51	74.00	-30.49	peak	
2		5864.500	38.60	8.48	47.08	74.00	-26.92	peak	
3		7326.000	36.35	9.43	45.78	74.00	-28.22	peak	
4	*	8332.000	39.48	10.19	49.67	74.00	-24.33	peak	
5		9768.000	35.93	12.22	48.15	74.00	-25.85	peak	
6		11293.00	36.96	12.70	49.66	74.00	-24.34	peak	
		~ ~							

*:Maximum	data	x:Over limit	!:over margin			Reference Only
Receiver:	ESR	_1		Spectrum Analyzer:	FSP40	
Antenna:	EZ 9	120D 1G-18G		Engineer Signature		
est Result	: Pas	S				


[TestMode: TX high channel]; [Polarity: Horizontal]

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4960.000	37.22	6.60	43.82	74.00	-30.18	peak	
2		7440.000	37.79	9.64	47.43	74.00	-26.57	peak	
3		8026.500	39.61	9.84	49.45	74.00	-24.55	peak	
4		9920.000	36.01	12.14	48.15	74.00	-25.85	peak	
5		11316.50	37.52	12.69	50.21	74.00	-23.79	peak	
6	*	12456.25	37.80	12.46	50.26	74.00	-23.74	peak	

*:Maximum	data	x:Over limit	!:over margin			(Reference Only
Receiver:	ESR	_1		Spectrum Analyzer:	FSP40	
Antenna:	EZ 9	120D 1G-18G		Engineer Signature		
est Result:	Pas	S				

[TestMode: TX high channel]; [Polarity: Vertical]

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		4960.000	37.39	6.60	43.99	74.00	-30.01	peak	
2		6769.250	38.93	7.70	46.63	74.00	-27.37	peak	
3		7440.000	37.87	9.64	47.51	74.00	-26.49	peak	
4		9048.750	37.53	12.12	49.65	74.00	-24.35	peak	
5		9920.000	34.82	12.14	46.96	74.00	-27.04	peak	
6	*	11398.75	37.58	12.61	50.19	74.00	-23.81	peak	
		^							

*:Maximum	data	x:Over limit	!:over margin			<pre> Reference Only</pre>
Receiver:	ESR	_1		Spectrum Analyzer:	FSP40	
Antenna:	EZ 9	120D 1G-18G		Engineer Signature		
t Result:	Pas	SS				

Report No.: BLA-EMC-202403-A8901 Page 29 of 82

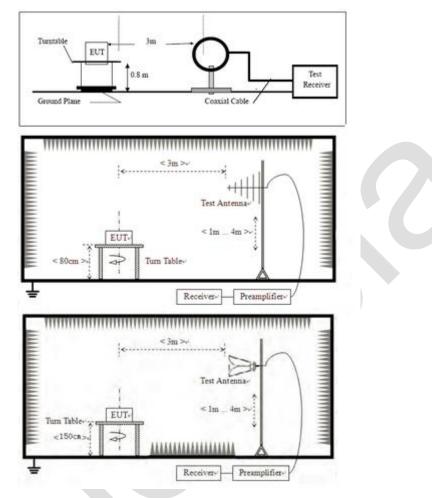
Remark:

- 1. Final Level =Receiver Read level + Correct factor
- 2. Correct factor = Antenna Factor + Cable Loss Preamplifier Factor
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.

BlueAsia of Technical Services(Shenzhen) Co.,Ltd. Tel: +86-755-23059481 Email: marketing@cblueasia.com www.cblueasia.com

14 RADIATED EMISSIONS WHICH FALL IN THE RESTRICTED BANDS

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	ANSI C63.10 (2013) Section 6.10.5
Test Mode (Pre-Scan)	ТХ
Test Mode (Final Test)	ТХ
Tester	Jozu
Temperature	25°C
Humidity	60%


14.1 LIMITS

Frequency(MHz)	Field strength(microvolts/meter)	Measurement distance(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

14.2 BLOCK DIAGRAM OF TEST SETUP

14.3 PROCEDURE

a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

c. The EUT was set 3 or 10 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

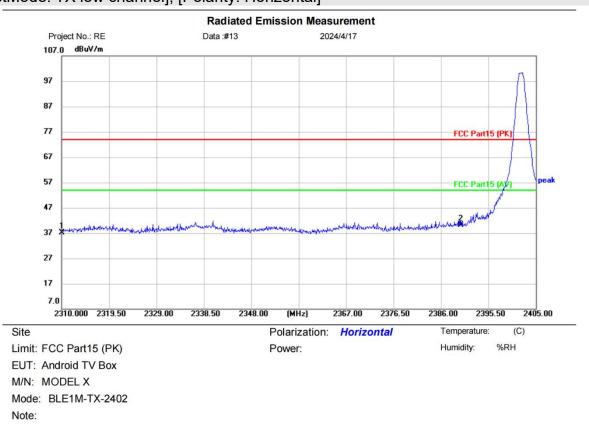
f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

h. Test the EUT in the lowest channel, the middle channel, the Highest channel.

i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.

j. Repeat above procedures until all frequencies measured was complete.


Remark 1: Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor

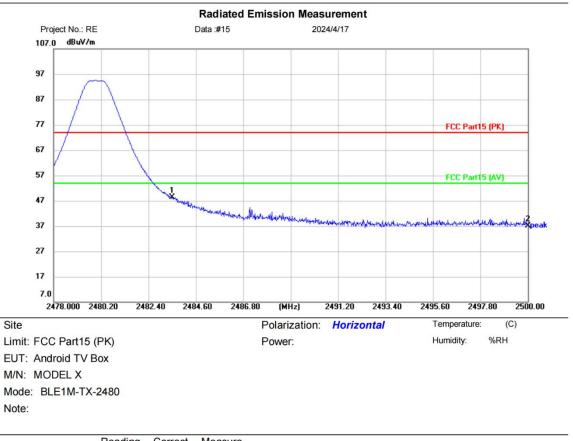
Remark 2: For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.

14.4 TEST DATA

Remark: During the test, pre-scan the BLE 1M, BLE 2M, and found the BLE 1M which it is worse case. [TestMode: TX low channel]; [Polarity: Horizontal]

No.	M	k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1		2310.000	40.06	-2.89	37.17	74.00	-36.83	peak	
2	*	2390.000	42.94	-2.70	40.24	74.00	-33.76	peak	

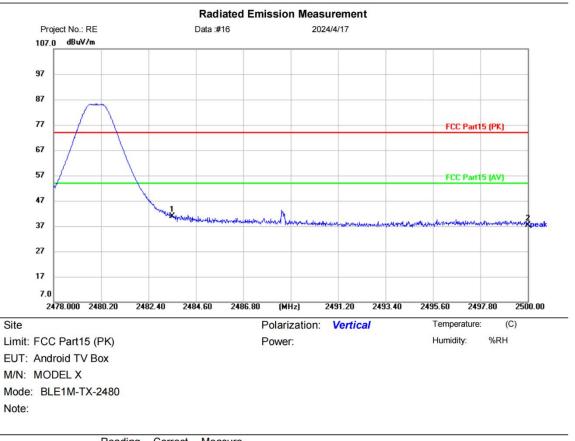
*:Maximum data	x:Over limit	!:over margin			(Reference Only
Receiver: ES	R_1		Spectrum Analyzer:	FSP40	
Antenna: EZ	9120D 1G-18G		Engineer Signature		
t Result: Pa	ss				


Radiated Emission Measurement Data :#14 2024/4/17 Project No.: RE 107.0 dBuV/m 97 87 77 FCC Part15 (PK 67 57 FCC Part15 (AV 47 Mr. 2 37 27 17 7.0 2310.000 2319.50 2329.00 2338.50 2348.00 (MHz) 2367.00 2376.50 2395.50 2405.00 2386.00 Site Polarization: Vertical Temperature: (C) Humidity: %RH Limit: FCC Part15 (PK) Power: EUT: Android TV Box M/N: MODEL X Mode: BLE1M-TX-2402 Note:

[TestMode: TX low channel]; [Polarity: Vertical]

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
1		2310.000	40.54	-2.89	37.65	74.00	-36.35	peak		
2	*	2390.000	41.41	-2.70	38.71	74.00	-35.29	peak		

*:Maximum	data	x:Over limit	!:over margin			<pre> Reference Only</pre>
Receiver:	ESR	_1		Spectrum Analyzer:	FSP40	
Antenna:	EZ 9	120D 1G-18G		Engineer Signature		
st Result:	Pas	S				



[TestMode: TX high channel]; [Polarity: Horizontal]

No.	M	k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment	
1	*	2483.500	51.28	-2.91	48.37	74.00	-25.63	peak		
2		2500.000	40.22	-3.00	37.22	74.00	-36.78	peak		

*:Maximum	data	x:Over limit	l:over margin			(Reference Only
Receiver:	ESR	_1		Spectrum Analyzer:	FSP40	
Antenna:	EZ 9	120D 1G-18G		Engineer Signature		
st Result:	Pas	S				

[TestMode: TX high channel]; [Polarity: Vertical]

No.	M	k. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	Comment
1	*	2483.500	43.87	-2.91	40.96	74.00	-33.04	peak	
2		2500.000	40.45	-3.00	37.45	74.00	-36.55	peak	

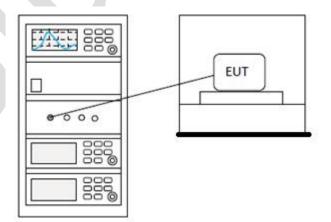
*:Maximum d	ata	x:Over limit	l:over margin			(Reference Only
Receiver:	ESR_1	1		Spectrum Analyzer:	FSP40	
Antenna:	EZ 912	20D 1G-18G		Engineer Signature		
st Result:	Pass	S				

Report No.: BLA-EMC-202403-A8901 Page 37 of 82

Remark:

- 1. Final Level =Receiver Read level + Correct factor
- 2. Correct factor = Antenna Factor + Cable Loss Preamplifier Factor
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.

BlueAsia of Technical Services(Shenzhen) Co.,Ltd. Tel: +86-755-23059481 Email: marketing@cblueasia.com www.cblueasia.com


15 CONDUCTED SPURIOUS EMISSIONS

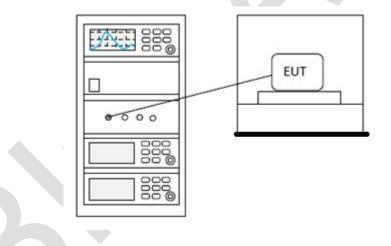
Test Standard	47 CFR Part 15, Subpart C 15.247				
Test Method	ANSI C63.10 (2013) Section 7.8.6 & Section 11.11				
Test Mode (Pre-Scan)	ТХ				
Test Mode (Final Test)	ТХ				
Tester	Jozu				
Temperature	25°C				
Humidity	60%				

15.1 LIMITS

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.209(a) (see §15.205(c)).

15.2 BLOCK DIAGRAM OF TEST SETUP

15.3 TEST DATA


16 POWER SPECTRUM DENSITY

Test Standard	47 CFR Part 15, Subpart C 15.247				
Test Method	ANSI C63.10 (2013) Section 11.10.2				
Test Mode (Pre-Scan)	ТХ				
Test Mode (Final Test)	ТХ				
Tester	Jozu				
Temperature	25 ℃				
Humidity	60%				

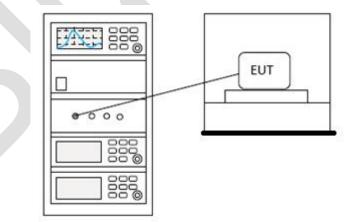
16.1 LIMITS

Limit: \leq 8dBm in any 3 kHz band during any time interval of continuous transmission

16.2 BLOCK DIAGRAM OF TEST SETUP

16.3 TEST DATA

NU


17 CONDUCTED PEAK OUTPUT POWER

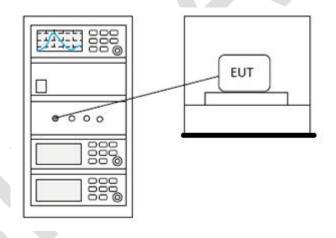
Test Standard	47 CFR Part 15, Subpart C 15.247				
Test Method	ANSI C63.10 (2013) Section 7.8.5				
Test Mode (Pre-Scan)	ТХ				
Test Mode (Final Test)	ТХ				
Tester	Jozu				
Temperature	25 ℃				
Humidity	60%				

17.1 LIMITS

Frequency range(MHz)	Output power of the intentional radiator(watt)				
	1 for \geq 50 hopping channels				
902-928	0.25 for $25 \le$ hopping channels < 50				
	1 for digital modulation				
	1 for ≥75 non-overlapping hopping channels0.125 for all other frequency hopping systems				
2400-2483.5					
	1 for digital modulation				
	1 for frequency hopping systems and digital				
5725-5850	modulation				

17.2 BLOCK DIAGRAM OF TEST SETUP

17.3 TEST DATA


18 MINIMUM 6DB BANDWIDTH

Test Standard	47 CFR Part 15, Subpart C 15.247				
Test Method	ANSI C63.10 (2013) Section 11.8.1				
Test Mode (Pre-Scan)	ТХ				
Test Mode (Final Test)	ТХ				
Tester	Jozu				
Temperature	25 ℃				
Humidity	60%				

18.1 LIMITS

Limit: $\geq 500 \text{ kHz}$

18.2 BLOCK DIAGRAM OF TEST SETUP

18.3 TEST DATA

19 ANTENNA REQUIREMENT

Test Standard	47 CFR Part 15, Subpart C 15.247
Test Method	N/A

19.1 CONCLUSION

Standard Requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit permanently attached antenna or of an so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

EUT Antenna:

The best case gain of the antenna is 5dBi.

20 APPENDIX1

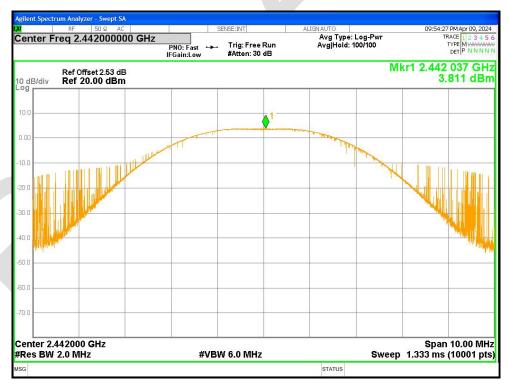
Maximum Conducted Output Power

Condition	Mode	Frequency	Antenna	Conducted	Limit	Verdict
		(MHz)		Power (dBm)	(dBm)	
NVNT	BLE 1M	2402	Ant1	3.215	30	Pass
NVNT	BLE 1M	2442	Ant1	3.899	30	Pass
NVNT	BLE 1M	2480	Ant1	3.578	30	Pass
NVNT	BLE 2M	2402	Ant1	3.091	30	Pass
NVNT	BLE 2M	2442	Ant1	3.811	30	Pass
NVNT	BLE 2M	2480	Ant1	3.513	30	Pass

Power NVNT BLE 1M 2402MHz Ant1

Power NVNT BLE 1M 2442MHz Ant1

Power NVNT BLE 1M 2480MHz Ant1



Power NVNT BLE 2M 2402MHz Ant1

Power NVNT BLE 2M 2442MHz Ant1

Power NVNT BLE 2M 2480MHz Ant1

-6dB Bandwidth

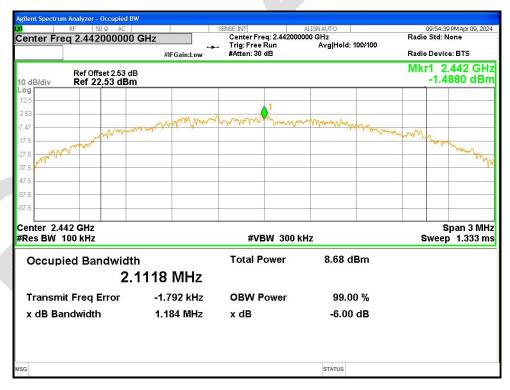
Condition	Mode	Frequency	Antenna	-6 dB Bandwidth	Limit -6 dB	Verdict
		(MHz)		(MHz)	Bandwidth (MHz)	
NVNT	BLE 1M	2402	Ant1	0.679	0.5	Pass
NVNT	BLE 1M	2442	Ant1	0.652	0.5	Pass
NVNT	BLE 1M	2480	Ant1	0.666	0.5	Pass
NVNT	BLE 2M	2402	Ant1	1.190	0.5	Pass
NVNT	BLE 2M	2442	Ant1	1.184	0.5	Pass
NVNT	BLE 2M	2480	Ant1	1.109	0.5	Pass

-6dB Bandwidth NVNT BLE 1M 2402MHz Ant1

-6dB Bandwidth NVNT BLE 1M 2442MHz Ant1

	trum Analyzer - Occupied BV								
Center I	RF 50 Ω AC Freq 2.442000000	GHz #IFGain:Low	SENSE:INT Center Frec → Trig: Free R #Atten: 30 d	: 2.44200000 un	LIGN AUTO 0 GHz Avg Hold: 10	10/100		09:37:53 PM dio Std: Non dio Device: I	
10 dB/div	Ref Offset 2.53 dB Ref 22.53 dBm						Mkr3	2.4423	21 GHz 4 dBm
Log									
12.5		\wedge^2			_3				
-7.47		manural	And Marine Marine	and and have been a series of the series of	mallin work have				
-17.5	n	Martin I.	-			a ranne	ma		
-27.5	an promotion front	8						m	
-37.5	Marw		-					1	marin
-47.5		2 2						2	
-57.5			-						
-67.5									
	2.442 GHz V 100 kHz		#VBI	N 300 kH	z			Spa Sweep	ın 2 MHz 1.333 ms
Οςςι	ipied Bandwidth	ı	Total Po	wer	9.21 dB	m			
	1.0	0769 MHz							
Trans	mit Freq Error	-5.226 kHz	OBW Po	ower	99.00	%			
x dB	Bandwidth	652.4 kHz	x dB		-6.00 c	зB			
MSG					STATUS				

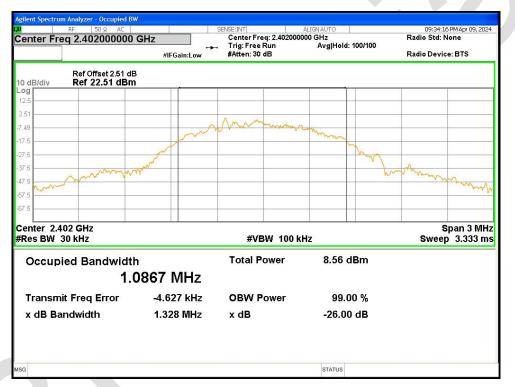
-6dB Bandwidth NVNT BLE 1M 2480MHz Ant1



-6dB Bandwidth NVNT BLE 2M 2402MHz Ant1

-6dB Bandwidth NVNT BLE 2M 2480MHz Ant1

RF 50 Ω AC	GHz	SENSE:INT Center Freg: 2.4800000	ALIGN AUTO	Rad	10:01:06 PM io Std: Non	1 Apr 09, 2024 e
	#IFGain:Low #Atten: 30 dB			Radio Device: BTS		
Ref Offset 2.58 dB B/div Ref 22.58 dBm				Mkr3	2.4805 -3.984	49 GHz 10 dBm
		<u>1</u>				
	2 Jone	1 man mann	3			
mm	months MP	a contraction	a start more some	mon	M	
and a man a share the					1 million Marine	0umm
Manana						why
nter 2.48 GHz es BW 100 kHz		#VBW 300 k	Hz		Sweep	an 3 MHz 1.333 ms
Occupied Bandwidth	r	Total Power	8.84 dBm			
2.0	0825 MHz					
ransmit Freq Error	-4.908 kHz	OBW Power	99.00 %			
dB Bandwidth	1.109 MHz	x dB	-6.00 dB			
			STATUS			


/1

Occupied Channel Bandwidth

Condition	Mode	Frequency (MHz)	Antenna	99% OBW (MHz)
NVNT	BLE 1M	2402	Ant1	1.086744441
NVNT	BLE 1M	2442	Ant1	1.072586923
NVNT	BLE 1M	2480	Ant1	1.058585197
NVNT	BLE 2M	2402	Ant1	2.109216429
NVNT	BLE 2M	2442	Ant1	2.125664707
NVNT	BLE 2M	2480	Ant1	2.111583596

OBW NVNT BLE 1M 2402MHz Ant1

OBW NVNT BLE 1M 2442MHz Ant1

OBW NVNT BLE 1M 2480MHz Ant1

OBW NVNT BLE 2M 2402MHz Ant1