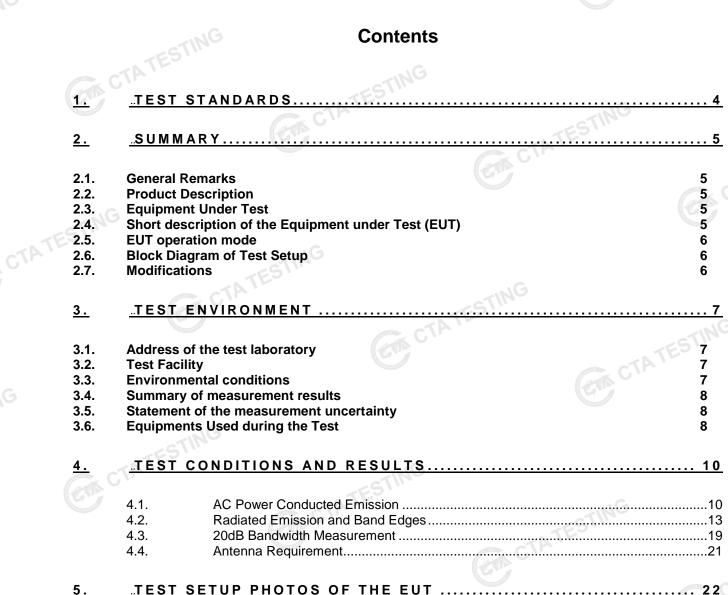
Shenzhen CTA Testing Technology Co., Ltd.



Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

E CTATESTING	TEST REPORT CC Rules and Regulations Part PART 15.249	
Report Reference No	: CTA24032500601	
FCC ID	:: 2BFKC-M29	
Compiled by (position+printed name+sig	nature File administrators Zoey Cao	CT ST
Supervised by (position+printed name+sig	nature Project Engineer Amy Wen	Con Ltd
Approved by	approved	
(position+printed name+sig	inature RF Manager Eric Wang	
Date of issue	Mar. 30, 2024	
Testing Laboratory Name	Shenzhen CTA Testing Technology Co., Ltd.	TING
Address	Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Commu Fuhai Street, Bao'an District, Shenzhen, China	inity,
	ShenZhen HIPPO Digital Co., Ltd	
Address	7th Floor, Building A, Shanghe Industrial Park, Nanchang Road Sanwei Community, Hangcheng Street, Bao'an District, ShenZh China 518126	
Standard	FCC Rules and Regulations PART 15.249	
	chnology Co., Ltd. All rights reserved.	
Shenzhen CTA Testing Tec material. Shenzhen CTA Te	roduced in whole or in part for non-commercial purposes as long as the chnology Co., Ltd. is acknowledged as copyright owner and source of the esting Technology Co., Ltd. takes no responsibility for and will not assum of from the reader's interpretation of the reproduced material due to its	
Test item description	Wireless Microphone	Contraction of the second
Trade Mark	N/A	
Manufacturer	ShenZhen HIPPO Digital Co., Ltd	
Model/Type reference	М29	
Listed Models	 M29HDC, M29DC, M28DC, M30DC, M31DC, M10D, M103&1, M10D3&1, M103IN1, M10D 3IN1, M15DC, M28, M30, M31, M1 	123,
Modulation		
Frequency		
katings	DC 3.7V From battery and DC 5.0V From external circuit	
Result		
10224	GACIF -ESTING	
	GA CIA	
		C V

Page 2 of 27 Report No.: CTA24032500601 TEST REPORT Equipment under Test Wireless Microphone M29 Model /Type M29HDC, M29DC, M28DC, M30DC, M31DC, M10D, M103&1, M10D3&1, M103IN1, M10D 3IN1, M15DC, M28, M30, M31, M10, M11, M12, M13, M14, M15, M16, M17, M18, M19, M20, M21, M22, Listed Models M23, M24, M25, M26, M27, M32, M33, M34, M35, M36, M37, M38, M39, M40, M41, M42, M43, M45, M46, M47, M48, M49, M50 ShenZhen HIPPO Digital Co., Ltd Applicant Address : 7th Floor, Building A, Shanghe Industrial Park, Nanchang Road, Sanwei Community, Hangcheng Street, Bao'an District, ShenZhen, China 518126 Manufacturer ShenZhen HIPPO Digital Co., Ltd 7th Floor, Building A, Shanghe Industrial Park, Nanchang Road, Sanwei Community, Hangcheng Street, Bao'an District, ShenZhen, Address China 518126 Test Result: PASS

> The test report merely corresponds to the test sample. It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Page 3 of 27

<u>5.</u>

TEST SETUP PHOTOS OF THE EUT 22

CTATES 6. ING

<u>- ri</u>

Report No.: CTA24032500601

1. <u>TEST STANDARDS</u>

The tests were performed according to following standards:

FCC Rules Part 15.249: Operation within the bands 902 - 928 MHz, 2400 - 2483.5 MHz, 5725 -5875 MHz, and 24.0 - 24.25 GHz.

ANSI C63.10:2013 : American National Standard for Testing Unlicensed Wireless Devices

Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40GHz Range of 9 kHz to 40GHz Americ Americ Range of 9 kHz to 40GHz CTA TESTING

2. SUMMARY

2.1. General Remarks

Date of receipt of test sample	:	Mar. 22, 2024	
	and the	C/r	· ~
Testing commenced on		Mar. 22, 2024	TES
	Contra and	(and the	CTA
Testing concluded on	:	Mar. 30, 2024	P:

Name of EUT	Wireless Microphone
Model Number	M29
Power Rating	DC 3.7V From battery and DC 5.0V From external circuit
Adapter information	Model: EP-TA20CBC
(Auxiliary test supplied by test	Input: AC 100-240V 50/60Hz
Lab):	Output: DC 5V 2A
Sample ID:	CTA240325006-1# (Engineer sample) CTA240325006-2# (Normal sample)
Operation frequency	2402-2480MHz
Modulation	GFSK
Antenna Type	Ceramic antenna
Antenna Gain	1.75 dBi

2.3. Equipment Under Test

Power supply system utilised

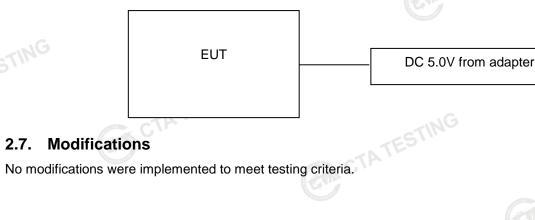
Power supply	y voltage	:	0	230V / 50 Hz	A Marca Color	Ο	120V / 60Hz	100 10
16			Ο	12 V DC		Ο	24 V DC	
STING				Other (specified in	blank belc	ow)		and and
CTATES	<u>DC 3.7V F</u>	rom	ba	ttery and DC 5.0V F	rom exter	na	<u>I circuit</u>	

2.4. Short description of the Equipment under Test (EUT)

This is a Wireless Microphone.

For more details, refer to the user's manual of the EUT.

2.5. EUT operation mode


The Applicant use Key to control the EUT for staying in continuous transmitting and receiving mode for testing .There is 79 channels provided to the EUT. Channel Low, Mid and High was selected to test.

	Operation Frequency:				
	Channel	Freq	quency (MHz)		
	00		2402		
	01	(CTA)	2403		TE
	:	Constant of the second s	:		;TA :
	38		2440	(CAR)	
	39		2441		
CTATE	40		2442		
.0.	ESTIN				
	-77	ING	2479		
	78		2480		
	er la	CTAVE		TESTING	3
	Test frequency:		CT CT	ATESTING	
-	Frequency	1			

Test frequency:

Channel	Frequency (MHz)	
Low	2402	
Mid	2441	1
High	2480	
C	CTATES CTATES	-

2.6. Block Diagram of Test Setup

3. TEST ENVIRONMENT

3.1. Address of the test laboratory

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

3.2. Test Facility

The test facility is recognized, certified, or accredited by the following organizations: FCC-Registration No.: 517856 Designation Number: CN1318

Shenzhen CTA Testing Technology Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

Industry Canada Registration Number. Is: 27890 CAB identifier: CN0127 The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio TATEST equipment testing.

A2LA-Lab Cert. No.: 6534.01

Shenzhen CTA Testing Technology Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

3.3. Environmental conditions

During the measurement the environmental conditions were within the listed ranges: GTA CTATE

Radiated Emission:

Tamanaratura	23 ° C
Temperature:	23 0
Humidity:	48 %
NG	
Atmospheric pressure:	950-1050mbar

CTATES AC Main Conducted testing:

C Main Conducted testing:	
Temperature:	24 ° C
G	
Humidity:	45 %
and the second sec	C C
Atmospheric pressure:	950-1050mbar

Conducted testina:

o o na a o to o a no o a no o a no o	
Temperature:	24 ° C
Humidity:	45 %
STIN	
Atmospheric pressure:	950-1050mbar
C.	GIA CTATESTING

3.4. Summary of measurement results

FCC Part 15.249(a)	Field Strength of Fundamental	PASS
FCC Part 15.209	Spurious Emission	PASS
FCC Part 15.209	Band edge	PASS
FCC Part 15.215(c)	20dB bandwidth	PASS
FCC Part 15.207	Conducted Emission	PASS
FCC Part 15.203	Antenna Requirement	PASS

3.5. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the Shenzhen CTA Testing Technology Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device. Hereafter the best measurement capability for Shenzhen CTA Testing Technology Co., Ltd. :

Test	Range	Measurement Uncertainty	Notes
Radiated Emission	9KHz~30MHz	3.02 dB	(1)
Radiated Emission	30~1000MHz	4.06 dB	(1)
Radiated Emission	1~18GHz	5.14 dB	(1)
Radiated Emission	18-40GHz	5.38 dB	(1)
Conducted Disturbance	0.15~30MHz	2.14 dB	(1)
Output Peak power	30MHz~18GHz	0.55 dB	(1)
Power spectral density	1	0.57 dB	(1)
Spectrum bandwidth	/	1.1%	(1)
Radiated spurious emission (30MHz-1GHz)	30~1000MHz	4.10 dB	(1)
Radiated spurious emission (1GHz-18GHz)	1~18GHz	4.32 dB	(1)
Radiated spurious emission (18GHz-40GHz)	18-40GHz	65.54 dB	(1)

CTA TESTING (1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

3.6. Equipments Used during the Test

LISN EST	R&S	ENV216	No. CTA-308	Date 2023/08/02	Due Date 2024/08/0
LISN	R&S	ENV216	CTA-314	2023/08/02	2024/08/0
EMI Test Receiver	R&S	ESPI	CTA-307	2023/08/02	2024/08/0
EMI Test Receiver	R&S	ESCI	CTA-306	2023/08/02	2024/08/0
Spectrum Analyzer	Agilent	N9020A	CTA-301	2023/08/02	2024/08/0
STING					and the second second

RF Test Software

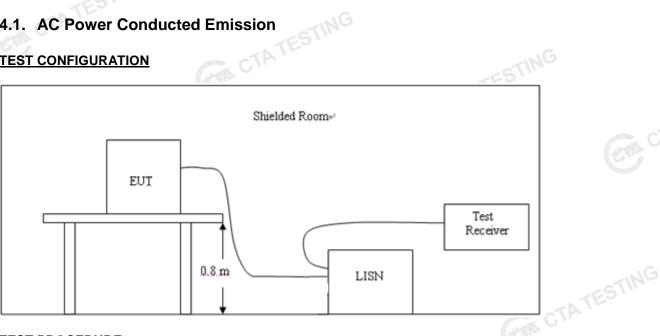
N/A

N/A

CA CTA

						ATES !!	
	Report No.: CTA2403	2500601		Page 9 of 27			
	Spectrum Analyzer	R&S	FSP	CTA-337	2023/08/02	2024/08/01	
Ī	Vector Signal generator	Agilent	N5182A	CTA-305	2023/08/02	2024/08/01	
	Analog Signal Generator	R&S	SML03	CTA-304	2023/08/02	2024/08/01	
	WIDEBAND RADIO COMMUNICATION TESTER	CMW500	R&S	CTA-302	2023/08/02	2024/08/01	
	Temperature and humidity meter	Chigo	ZG-7020	CTA-326	2023/08/02	2024/08/01	
	Ultra-Broadband Antenna	Schwarzbeck	VULB9163	CTA-310	2023/10/17	2024/10/16	
TE	Horn Antenna	Schwarzbeck	BBHA 9120D	CTA-309	2023/10/13	2024/10/12	
14;	Loop Antenna	Zhinan	ZN30900C	CTA-311	2023/10/17	2024/10/16	
	Horn Antenna	Beijing Hangwei Dayang	OBH100400	CTA-336	2021/08/07	2024/08/06	
	Amplifier	Schwarzbeck	BBV 9745	CTA-312	2023/08/02	2024/08/01	
	Amplifier	Taiwan chengyi	EMC051845B	CTA-313	2023/08/02	2024/08/01	
	Directional coupler	NARDA	4226-10	CTA-303	2023/08/02	2024/08/01	
	High-Pass Filter	XingBo	XBLBQ-GTA18	CTA-402	2023/08/02	2024/08/01	
	High-Pass Filter	XingBo	XBLBQ-GTA27	CTA-403	2023/08/02	2024/08/01	
	Automated filter bank	Tonscend	JS0806-F	CTA-404	2023/08/02	2024/08/01	
	Power Sensor	Agilent	U2021XA	CTA-405	2023/08/02	2024/08/01	
	Amplifier	Schwarzbeck	BBV9719	CTA-406	2023/08/02	2024/08/01	
Г		1	Π				
	Test Equipment	Manufacturer	Model No.	Version number	Calibration Date	Calibration Due Date	
ATE	EMI Test Software	Tonscend	TS®JS32-RE	5.0.0.2	N/A	N/A	
	EMI Test Software	Tonscend	TS®JS32-CE	5.0.0.1	N/A	N/A	
	RF Test Software	Tonscend	TS®JS1120-3	3.1.65	N/A	N/A	
L		1					

TS®JS1120


Tonscend

3.1.46

4. TEST CONDITIONS AND RESULTS

4.1. AC Power Conducted Emission

TEST CONFIGURATION

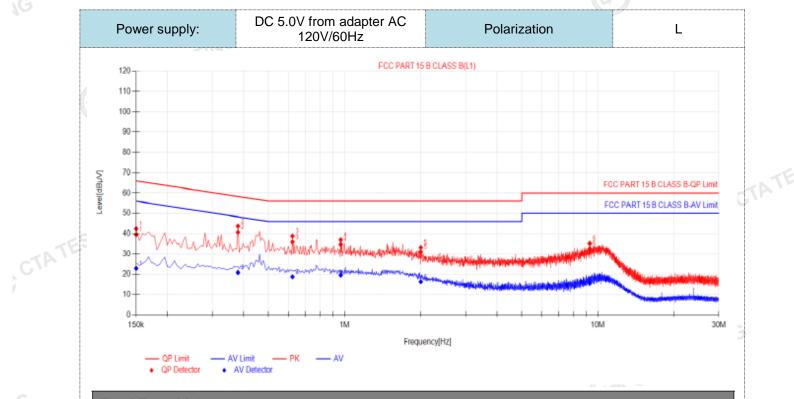
TEST PROCEDURE

- 1, The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10.
- 2, Support equipment, if needed, was placed as per ANSI C63.10.
- 3, All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10.
- 4. If a EUT received DC power from the USB Port of Notebook PC, the PC's adapter received power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5, All support equipments received AC power from a second LISN, if any.
- 6, The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7, Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.

AC Power Conducted Emission Limit

For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following :

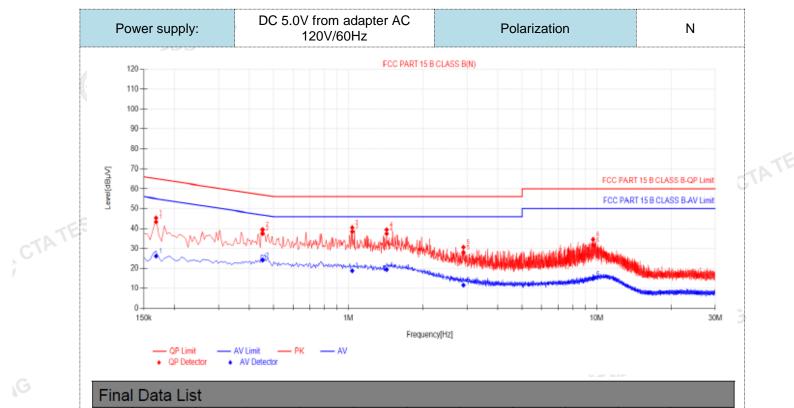
	Limit (dBuV)
Frequency range (MHz)	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50
* Decreases with the locarithm of the freque		and the second se


Decreases with the logarithm of the frequency.

TEST RESULTS

Remark:

- 1 All modes of GFSK were tested at Low, Middle, and High channel; only the worst result of GFSK CH19 was reported as below:
- Both 120 VAC, 50/60 Hz and 240 VAC, 50/60 Hz power supply have been tested, only the worst result 2. CTATE of 120 VAC, 60 Hz was reported as below:.

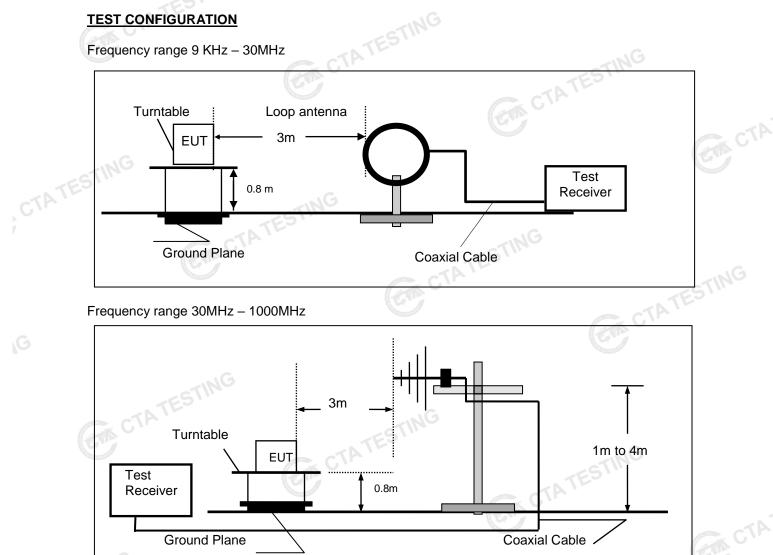

Einal Data Lie

	Гпа	Data Lis	o L										
	NO.	Freq. [MHz]	Factor [dB]	QP Reading[dB µV]	QP Value [dBµV]	QP Limit [dBµV]	QP Margin [dB]	AV Reading [dBµV]	AV Value [dBµV]	AV Limit [dBµV]	AV Margin [dB]	Verdict	
	1	0.15	9.87	29.64	39.51	66.00	26.49	13.00	22.87	56.00	33.13	PASS	
0	2	0.3795	9.87	30.88	40.75	58.29	17.54	11.02	20.89	48.29	27.40	PASS	
-	3	0.6225	10.01	25.87	35.88	56.00	20.12	8.78	18.79	46.00	27.21	PASS	
2	4	0.9645	9.95	24.78	34.73	56.00	21.27	9.65	19.60	46.00	26.40	PASS	
	5	1.9995	9.92	21.09	31.01	56.00	24.99	6.36	16.28	46.00	29.72	PASS	
	6	9.2805	10.26	22.49	32.75	60.00	27.25	5.39	15.65	50.00	34.35	PASS	
69.280510.2622.4932.7560.0027.255.3915.6550.0034.35PASSNote:1).QP Value (dB μ V)= QP Reading (dB μ V)+ Factor (dB)2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)3). QPMargin(dB) = QP Limit (dB μ V) - QP Value (dB μ V)4). AVMargin(dB) = AV Limit (dB μ V) - AV Value (dB μ V)													TATE
	· · · · · · ·	····· 3···(··=)		(/						

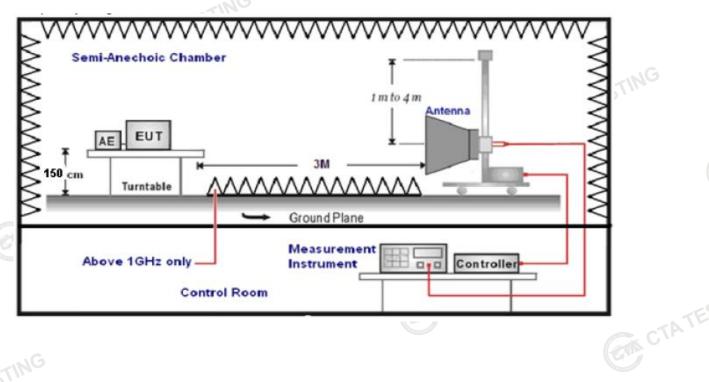
4). AVMargin(dB) = AV Limit (dB μ V) - AV Value (dB μ V) CTA TESTING

CTATE

Page 12 of 27


	Fina	i Data Lis	SL .										
	NO.	Freq. [MHz]	Factor [dB]	QP Reading[dB µV]	QP Value [dBµV]	QP Limit [dBµV]	QP Margin [dB]	AV Reading [dBµV]	AV Value [dBµV]	AV Limit [dBµV]	AV Margin [dB]	Verdict	
	1	0.168	10.08	33.22	43.30	65.06	21.76	16.16	26.24	55.06	28.82	PASS	
	2	0.4515	9.98	27.50	37.48	56.85	19.37	14.24	24.22	46.85	22.63	PASS	
	3	1.0365	10.13	28.35	38.48	56.00	17.52	8.71	18.84	46.00	27.16	PASS	
	4	1.4235	10.14	27.25	37.39	56.00	18.61	9.34	19.48	46.00	26.52	PASS	
	5	2.904	10.22	17.78	28.00	56.00	28.00	1.39	11.61	46.00	34.39	PASS	
	6	9.6675	10.40	21.28	31.68	60.00	28.32	4.59	14.99	50.00	35.01	PASS	
Note:1).QP Value $(dB\mu V)$ = QP Reading $(dB\mu V)$ + Factor (dB) 2). Factor (dB) =insertion loss of LISN (dB) + Cable loss (dB) 3). QPMargin (dB) = QP Limit $(dB\mu V)$ - QP Value $(dB\mu V)$ 4). AVMargin (dB) = AV Limit $(dB\mu V)$ - AV Value $(dB\mu V)$											TATE		

- 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)
- 3). QPMargin(dB) = QP Limit (dB μ V) QP Value (dB μ V)
- 4). AVMargin(dB) = AV Limit (dB μ V) AV Value (dB μ V) CTA TESTING


4.2. Radiated Emission and Band Edges

TEST CONFIGURATION

Frequency range 9 KHz – 30MHz

Frequency range above 1GHz-25GHz

TEST PROCEDURE

1. The EUT was placed on a turn table which is 0.8m above ground plane when testing frequency range 9 KHz -25GHz.

Page 14 of 27

- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0°C to 360°C to acquire the highest emissions from EUT.
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- Repeat above procedures until all frequency measurements have been completed. 4.
- The EUT minimum operation frequency was 26MHz and maximum operation frequency 5. was 1910MHz.so radiated emission test frequency band from 9KHz to 25GHz. 6.

. I ne distance between test a	antenna and EUT as following tabl	e states:
Test Frequency range	Test Antenna Type	Test Distance
9KHz-30MHz	Active Loop Antenna	3
30MHz-1GHz	Ultra-Broadband Antenna	3
1GHz-18GHz	Double Ridged Horn Antenna	3
18GHz-25GHz	Horn Anternna	1

Setting test receiver/spectrum as following table states: 7.

Test Frequency range	Test Receiver/Spectrum Setting	Detector
9KHz-150KHz	RBW=200Hz/VBW=3KHz,Sweep time=Auto	QP
150KHz-30MHz	RBW=9KHz/VBW=100KHz,Sweep time=Auto	QP
30MHz-1GHz	RBW=120KHz/VBW=1000KHz,Sweep time=Auto	QP
1GHz-40GHz	Peak Value: RBW=1MHz/VBW=3MHz, Sweep time=Auto Average Value: RBW=1MHz/VBW=10Hz, Sweep time=Auto	Peak

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

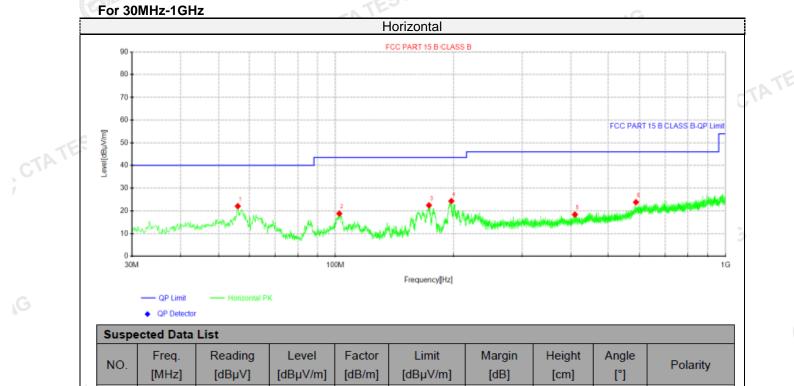
FS = RA + AF + CL - AG

Where FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)
RA = Reading Amplitude	AG = Amplifier Gain
AF = Antenna Factor	

Transd=AF +CL-AG

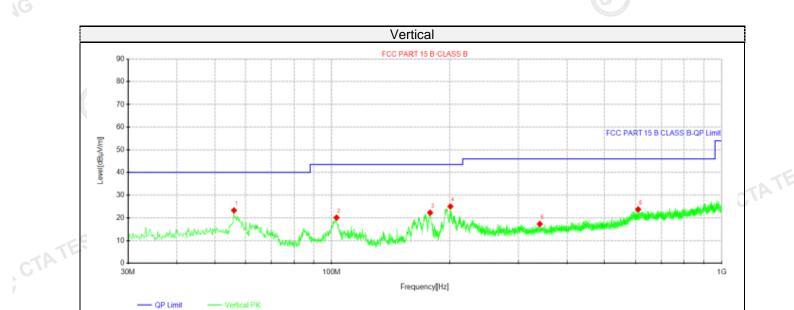
RADIATION LIMIT

According 15.249, the field strength of emissions from intentional radiators operated within 2400MHz-2483.5 MHz shall not exceed 94dBµV/m (50mV/m):


FCC PART 15.249(d) Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in §15.209, whichever is the lesser attenuation.

In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a)

	Rac	liated emission limits	
Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (µV/m)
0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)
0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)
1.705-30	3	20log(30)+ 40log(30/3)	30
30-88	3	40.0	100
88-216	3 614	43.5	150 NG
216-960	3	46.0	200
Above 960	3	54.0	500
TEST RESULTS Remark:			CA CTA


Remark: CTA TESTING

- 1. This test was performed with EUT in X, Y, Z position and the worse case was found when EUT in X position.
- 2. Both modes of GFSK were tested at Low, Middle, and High channel and recorded worst mode at GFSK
- 3. Radiated emission test from 9 KHz to 10th harmonic of fundamental was verified, and no emission found except system noise floor in 9 KHz to 30MHz and not recorded in this report.

	NO.	[MHz]	[dBµV]	[dBµV/m]	[dB/m]	[dBµV/m]	[dB]	[cm]	[°]	rolanty		
	1	56.0688	34.27	22.06	-12.21	40.00	17.94	100	0	Horizontal		
	2	102.386	32.12	18.74	-13.38	43.50	24.76	100	357	Horizontal		
	3	173.681	37.79	22.42	-15.37	43.50	21.08	100	199	Horizontal		
	4	197.325	37.81	24.33	-13.48	43.50	19.17	100	357	Horizontal		
	5	409.876	28.71	18.33	-10.38	46.00	27.67	100	60	Horizontal		
	6	587.871	29.91	23.82	-6.09	46.00	22.18	100	339	Horizontal	-NTE	
2	Note:1).Level (dBµV/m)= Reading (dBµV)+ Factor (dB/m) 2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB) 3). Margin(dB) = Limit (dBµV/m) - Level (dBµV/m)											

Note:1).Level (dBµV/m)= Reading (dBµV)+ Factor (dB/m) 2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB) 3). Margin(dB) = Limit (dBµV/m) - Level (dBµV/m)

Page 16 of 27

QP Detector

Suspected Data List											
NO.	Freq.	Reading	Level	Factor	Limit	Margin	Height	Angle	Polarity		
NO.	[MHz]	[dBµV]	[dBµV/m]	[dB/m]	[dBµV/m]	[dB]	[cm]	[°]	rolanty		
1	56.0688	35.51	23.30	-12.21	40.00	16.70	100	138	Vertical		
2	102.992	33.48	20.09	-13.39	43.50	23.41	100	360	Vertical		
3	178.895	37.40	22.27	-15.13	43.50	21.23	100	242	Vertical		
4	200.72	38.28	25.03	-13.25	43.50	18.47	100	335	Vertical		
5	340.885	28.57	17.24	-11.33	46.00	28.76	100	360	Vertical		
6	609.211	29.01	23.74	-5.27	46.00	22.26	100	33	Vertical		

Note:1).Level (dBµV/m)= Reading (dBµV)+ Factor (dB/m)

STING 2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB) 3). Margin(dB) = Limit (dBµV/m) - Level (dBµV/m) CTA CTA

Page 17 of 27

For 1GHz to 25GHz

				GFSK (abo	ve 1GHz)					
Freque	ency(MHz)):	24	02	Pola	arity:	HORIZONTAL			
Frequency (MHz)	Le	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
2402.00	98.86	PK	114.00	15.14	110.14	27.47	3.43	42.18	-11.28	
2402.00	80.55	AV	94.00	13.45	91.83	27.47	3.43	42.18	-11.28	
4804.00	49.05	PK	74.00	24.95	53.32	32.33	5.12	41.72	-4.27	
4804.00	39.87	AV	54.00	14.13	44.14	32.33	5.12	41.72	-4.27	
7206.00	50.45	PK	74.00	23.55	50.97	36.6	6.49	43.61	-0.52	
7206.00	37.94	AV	54.00	16.06	38.46	36.6	6.49	43.61	-0.52	
. C.		•		•			•			

Frequency(MHz):			24	02	Pola	arity:	VERTICAL			
Frequency (MHz)	(MHz) (dBuV/m)		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
2402.00	96.63	PK	114.00	17.37	107.91	27.47	3.43	42.18	-11.28	
2402.00	79.04	AV	94.00	14.96	90.32	27.47	3.43	42.18	-11.28	
4804.00	46.33	PK	74.00	27.67	50.60	32.33	5.12	41.72	-4.27	
4804.00	37.69	AV	54.00	16.31	41.96	32.33	5.12	41.72	-4.27	
7206.00	48.77	PK	74.00	25.23	49.29	36.6	6.49	43.61	-0.52	
7206.00	35.23	AV	54.00	18.77	35.75	36.6	6.49	43.61	-0.52	

Freque	Frequency(MHz): 2441			Pola	Polarity: HORIZONTAL				
Frequency (MHz)	Le	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2441.00	98.11	PK	114.00	15.89	109.36	27.52	3.45	42.22	-11.25
2441.00	80.79	AV	94.00	13.21	92.04	27.52	3.45	G 42.22	-11.25
4882.00	51.00	PK	74.00	23.00	54.88	32.6	5.34	41.82	-3.88
4882.00	45.91	AV	54.00	8.09	49.79	32.6	5.34	41.82	-3.88
7323.00	49.14	PK	74.00	24.86	49.25	36.8	6.81	43.72	-0.11
7323.00	40.14	AV	54.00	13.86	40.25	36.8	6.81	43.72	-0.11
					_				C V
Frequency(MHz):		24	41	Pola	arity:		VERTICAL	_	

Frequency(MHz):			2441		Polarity:		VERTICAL		
Frequency (MHz)	Emis Lev (dBu)		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2441.00	96.03	PK	114.00	17.97	107.28	27.52	3.45	42.22	-11.25
2441.00	78.83	AV	94.00	15.17	90.08	27.52	3.45	42.22	-11.25
4882.00	49.35	PK	74.00	24.65	53.23	32.6	5.34	41.82	-3.88
4882.00	43.33	AV	54.00	10.67	47.21	32.6	5.34	41.82	-3.88
7323.00	46.94	PK	74.00	27.06	47.05	36.8	6.81	43.72	-0.11
7323.00	38.46	AV	54.00	15.54	38.57	36.8	6.81	43.72	-0.11

	Frequency(MHz):		2480		Polarity:		HORIZONTAL		
Frequency (MHz)	Emis Le (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2480.00	97.64	PK	114.00	16.36	6107.75	27.7	4.47	42.28	-10.11
2480.00	82.23	AV	94.00	11.77	92.34	27.7	4.47	42.28	-10.11
4960.00	52.16	PK	74.00	21.84	55.24	32.73	5.66	~ 41.47	-3.08
4960.00	47.03	AV	54.00	6.97	50.11	32.73	5.66	41.47	-3.08
7440.00	52.38	PK	74.00	21.62	51.93	37.04	7.25	43.84	0.45
7440.00	40.84	AV	54.00	13.16	40.39	37.04	7.25	43.84	0.45

G

cTA

cTA

Page 18 of 27

Frequency(MHz):			24	80	Polarity:			VERTICAL		
Frequency (MHz)	Emis Le ^v (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
2480.00	95.51	PK	114.00	18.49	105.62	27.7	4.47	42.28	-10.11	
2480.00	79.87	AV	94.00	14.13	89.98	27.7	4.47	42.28	-10.11	
4960.00	49.96	PK	74.00	24.04	53.04	32.73	5.66	41.47	-3.08	
4960.00	45.14	AV	54.00	8.86	48.22	32.73	5.66	41.47	-3.08	
7440.00	50.58	PK	74.00	23.42	50.13	37.04	7.25	43.84	0.45	
7440.00	38.42	AV	54.00	15.58	37.97	37.04	7.25	43.84	0.45	
REMARKS: 1. 2. 3.	Correctior Margin va	n Factor (dB lue = Limit v	/m) =Raw Value (d /m) = Antenna Fac ralue- Emission lev	tor (dB/m)+Cable /el.	e Factor (dB)- P	re-amplifier			GTA CTA	

4. -- Mean the PK detector measured value is below average limit.

5. The other emission levels were very low against the limit.

CTATESTIN Results of Band Edges Test (Radiated)

	STORAGE A									
Frequency(MHz):			24	02	Pola	arity:	HORIZONTAL			
Frequency (MHz)	Emis Lev (dBu	vel	Limit (dBuV/m)	Margin (dB)	CRaw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
2390.00	61.03	PK	74	12.97	71.45	27.42	4.31	42.15	-10.42	
2390.00	43.88	AV	54	10.12	54.30	27.42	4.31	42.15	-10.42	
Freque	ncy(MHz)	:	2402		Polarity:		VERTICAL			
Frequency (MHz)	Emis Lev (dBu		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
2390.00	59.32	PK	74	14.68	69.74	27.42	4.31	42.15	-10.42	
2390.00	41.48	AV	54	12.52	51.90	27.42	4.31	942.15	-10.42	
Freque	ncy(MHz)	:	2480		Polarity:		HORIZONTAL			
Frequency (MHz)	Emis Lev (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
2483.50	60.54	PK	74	13.46	70.65	27.7	4.47	42.28	-10.11	
2483.50	43.84	AV	54	10.16	53.95	27.7	4.47	42.28	-10.11	
Freque	ncy(MHz)	:	24	80	Polarity:		VERTICAL			
Frequency (MHz)	Emis Lev (dBu		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
2483.50	58.87	PK	74	15.13	68.98	27.7	4.47	42.28	-10.11	
2483.50	41.58	AV	54	12.42	51.69	27.7	4.47	42.28	-10.11	
			= Meter Read ission level.	ling+ antenna	Factor+ ca	ble loss- pre	eamp factor.	CTATES	STING	

3) -- Mean the PK detector measured value is below average limit.

4) The other emission levels were very low against the limit.

RBW1MHz VBW3MHz Peak detector is for PK value; RBW 1MHz VBW10Hz Peak detector is for AV 5) GA CTATEST value.

4.3. 20dB Bandwidth Measurement

TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 30KHz RBW and 300KHz VBW.

The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus CTA TESTING 20dB.

TEST RESULTS

		CTAT		
N/A				CTATESTING
TEST RESULTS				CTA
Modulation	Channel	20dB bandwidth (MHz)	Result	
TEST	Low	1.105		
GFSK	Mid	1.103	PASS	
CT.	High	1.106		
Note: 1.The test res	sults including the c	able lose.	CTA TEST	

4.4. Antenna Requirement

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

And according to FCC 47 CFR Section 15.247 (c), if transmitting antennas of directional gain greater than GTA CTATE 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

The maximum gain of antenna was 1.75 dBi. Remark: The ant-Remark: The antenna gain is provided by the customer, if the data provided by the customer is not accurate, Shenzhen CTA Testing Technology Co., Ltd. does not assume any responsibility. CTATES

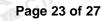
5. Test Setup Photos of the EUT CIA CTATES

6. Test Photos of the EUT CTATESTIN

ան անությունները անությունները անությունները անությունները անությունները անություններին անություններին անությու

Catalantin Bandaria Katalantin Bandaria Bandari Janar

01 • • • IS


2

(A)

GIA CTATESTIN

CTA TESTING

131

CTA TESTING

CTATESTING

TING

TING

(She

6 14 6 14 6 14 1 14 9 1 9 1 9 1 14 1 14 9 19 1 9 1 14 1 14 9 19 1 14 14 1 14 9 14 14 14 1 14 9 14 14 14 1 14 9 14 14 1 14 9 1

CTAT

S.I.I.I.I. 17.1.1 110 • • • • 1

2

9.....

110 • • • • 11

......

ო__

2-

0

2

0

CTA TESTIN

191

01

111 <u>'</u>

60 ZI

22

91

CTA TE

60

.......

3

2-

0

1 1 1

• •

2

2

2 7

- -

Ż

12 23

9/11 11 9/2 11 9/2 12 9/2 70

B

°% % 30

28 91 12 44

3

3|

11

68 21 69 21

C

51

P

<u>Е</u>

5

L 44

3/ LL 59

ee 11

69 LL

00 81

CTATESTING

CTATESTING

TING

9

928 21 00 81

45

Ő

13

19

1111

ST8 TI

CTATESTING

-00

R R

3

01

0

'/''**'**|

91 11 19/21 11 24 33

21

'/''**'**|''

CTA TE

9/91 11 9/81 11

21

21

EE 70 91

27

60

19 55 12 00

0

'|'||

21

21

11 54

91

2

12 31

2

12 23

9/11 9/9 172 67

23 21

28 21

CTA TESTIN

GM CTATESTIN

CTA TESTING

CTATESTING

CTA TESTING

TING

1,11,11

11

11 33 13 00 13 00

G

11 93 11 90

00 51

C

 $\left| \frac{\Delta}{l} \right|$

11 1/19

EE 11

69 LI

13

918

1/11

CTATESTING

C

194

1.1. [1.1.

5

Q7

15

16 87

99

7

44 TI

15 92

11

?/u % 30

18 9

44 71 15

99

110 • • • • 115 2 |||||||||||3

. 61 . .

-

0

11311

2

0111110

110 . . .

......

ال ال

and and a second second

CTA TESTING

2-12

0

CTA TE

10 22 12 00

2

110 • • • • 115 • • •

. 51 . . .

CTATESTING

CTATESTING

TING

1119

1116

1

CTATESTING

5

11 1/1° 11 3/2 5/2 3/0

28 91 111

1

3

3

אנכא אנג. דערב גע אוגריי

Ż

19 40

2

28 9 27 44

CTATESTIN

CTA TESTIN

CTA TESTING

110 • •

ŀ

•

• • 51

2-10

0

50530808 03 1X AS

.

A

*

۲

£002N

80 . (M

91/9

11 13/19 54 33

24

67 9

91

- CM 602025 3.7V + 250mRh 2401

.....End of Report.....

0

28

100

BT

CTATESTING

CTA TESTING

TING

TING

CTA TESTING