Radio Test Report

Report No.:STS2407026W01

Issued for

Ulinktech

2580 N. First st, Suite 100, San Jose, CA 95131 USA

Product Name: Ophelia GIII Brand Name: N/A

Model Name: Ophelia GIII

Series Model(s): N/A

FCC ID: 2BFK6WFM620RSC1

Test Standards: FCC Part15.247

The test results presented in this report relate only to the object tested. This report shall not be reproduced, except in full, without the written approval of the Shenzhen STS Test Services Co., Ltd.

TEST REPORT

Applicant's Name:	Ulinktech
Address:	2580 N. First st, Suite 100, San Jose, CA 95131 USA
Manufacturer's Name:	Ulinktech
Address	2580 N. First st, Suite 100, San Jose, CA 95131 USA
Product Description	
Product Name:	Ophelia GIII
Brand Name:	N/A
Model Name	. Ophelia GIII
Series Model(s):	N/A
Test Standards	FCC Part15.247
Test Procedure:	ANSI C63.10-2020

This device described above has been tested by STS, the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

The test results presented in this report relate only to the object tested. This report shall not be reproduced, except in full, without the written approval of the Shenzhen STS Test Services Co., Ltd.

Date of Test	
Date of receipt of test item:	04 July 2024
Date (s) of performance of tests:	04 July 2024~ 19 July 2024
Date of Issue:	19 July 2024
Test Result	Pass

1

Testing Engineer

Aann 13u

(Aaron Bu)

Technical Manager

Authorized Signatory :

Ch

(Chris Chen)

TESTING APPROVAL

(Bovey Yang)

hour

Table of Contents

U		
	Table of Contents	
	SUMMARY OF TEST RESULTS 1.1 TEST FACTORY 1.2 MEASUREMENT UNCERTAINTY	6 7 7
	 GENERAL INFORMATION 2.1 GENERAL DESCRIPTION OF THE EUT 2.2 DESCRIPTION OF THE TEST MODES 2.3 TEST SOFTWARE AND POWER LEVEL 2.4 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED 2.5 DESCRIPTION OF NECESSARY ACCESSORIES AND SUPPORT UNITS 2.6 EQUIPMENTS LIST 	8 9 9 10 11
	ENCEMISSION TEST 3.1 CONDUCTED EMISSION MEASUREMENT 3.2 TEST PROCEDURE 3.3 TEST SETUP 3.4 EUT OPERATING CONDITIONS 3.5 TEST RESULTS	13 13 14 14 14 14 15
	A RADIATED EMISSION MEASUREMENT 4.1 RADIATED EMISSION LIMITS 4.2 TEST PROCEDURE 4.3 TEST SETUP 4.4 EUT OPERATING CONDITIONS 4.5 FIELD STRENGTH CALCULATION 4.6 TEST RESULTS	17 17 19 20 20 21 22
	CONDUCTED SPURIOUS & BAND EDGE EMISSION5.1 LIMIT5.2 TEST PROCEDURE5.3 TEST SETUP5.4 EUT OPERATION CONDITIONS5.5 TEST RESULTS	35 35 35 35 35 35
	A POWER SPECTRAL DENSITY TEST 6.1 LIMIT 6.2 TEST PROCEDURE 6.3 TEST SETUP	36 36 36 36

Table of Contents

Table of Contents	
6.4 EUT OPERATION CONDITIONS	36
6.5 TEST RESULTS	36
7. BANDWIDTH TEST	37
7.1 LIMIT	37
7.2 TEST PROCEDURE	37
7.3 TEST SETUP	37
7.4 EUT OPERATION CONDITIONS	37
7.5 TEST RESULTS	37
8. PEAK OUTPUT POWER TEST	38
8.1 LIMIT	38
8.2 TEST PROCEDURE	38
8.3 TEST SETUP	39
8.4 EUT OPERATION CONDITIONS	39
8.5 TEST RESULTS	39
9. ANTENNA REQUIREMENT	40
9.1 STANDARD REQUIREMENT	40
9.2 EUT ANTENNA	40
APPENDIX 1-TEST DATA	41
1. DUTY CYCLE	41
2. MAXIMUM AVERAGE CONDUCTED OUTPUT POWER	45
3. MAXIMUM PEAK CONDUCTED OUTPUT POWER	49
46DB BANDWIDTH	53
5. MAXIMUM POWER SPECTRAL DENSITY LEVEL	57
6. BAND EDGE	61
7. CONDUCTED RF SPURIOUS EMISSION	66
APPENDIX 2- EUT TEST PHOTO	73

Page 5 of 73

Report No.: STS2407026W01

Revision History

Rev.	Issue Date	Report No.	Effect Page	Contents
00	19 July 2024	STS2407026W01	ALL	Initial Issue
			9	9

1. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards: KDB 558074 D01 15.247 Meas Guidance v05r02.

FCC Part 15.247,Subpart C				
Standard Section	Judgment	Remark		
15.207	Conducted Emission	PASS		
15.247 (a)(2)	6dB Bandwidth	PASS		
15.247 (b)(3) Output Power PASS				
15.209	Radiated Spurious Emission	PASS		
15.247 (d)	Conducted Spurious & Band Edge Emission PASS			
15.247 (e)	Power Spectral Density PASS		-	
15.205 Restricted bands of operation PASS				
Part 15.247(d)/ Part 15.209(a) Band Edge Emission PASS				
15.203	Antenna Requirement	PASS		

NOTE:

- (1) 'N/A' denotes test is not applicable in this Test Report.
- (2) All tests are according to ANSI C63.10-2020.

1.1 TEST FACTORY

SHENZHEN STS TEST SERVICES CO., LTD Add. : 101, Building B, Zhuoke Science Park, No.190 Chongqing Road, ZhanChengShequ, Fuhai Sub-District, Bao'an District, Shenzhen, Guang Dong, China FCC test Firm Registration Number: 625569

Page 7 of 73

IC test Firm Registration Number: 12108A

A2LA Certificate No.: 4338.01

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $\mathbf{y} \pm \mathbf{U}$, where expended uncertainty \mathbf{U} is based on a standard uncertainty multiplied by a coverage factor of **k=2**, providing a level of confidence of approximately **95** %.

No.	Item	Uncertainty
1	RF output power, conducted	±0.755dB
2	Unwanted Emissions, conducted	±2.874dB
3	All emissions, radiated 9K-30MHz	±3.80dB
4	All emissions, radiated 30M-1GHz	±4.18dB
5	All emissions, radiated 1G-6GHz	±4.90dB
6	All emissions, radiated>6G	±5.24dB
7	Conducted Emission (9KHz-150KHz)	±2.19dB
8	Conducted Emission (150KHz-30MHz)	±2.53dB
9	Occupied Channel Bandwidth	±3.5%
10	Power Spectral Density, conducted	±1.245dB
11	Duty Cycle	±3.2%

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF THE EUT

Product Name	Ophelia GIII	KI - KI	
Brand Name	N/A		
Model Name	Ophelia GIII		
Series Model(s)	N/A		
Model Difference	N/A		
	The EUT is a Ophel	lia GIII	
	Operation Frequency:	2402~2480 MHz	
	Modulation Type:	GFSK	
	Radio Technology:	BLE	
Product Description	Bluetooth		
	Configuration:	LE(Support 1M PHY, 2M PHY)	
	Number Of Channel:	40	
	Antenna Type:	Linear polarization antenna	
	Antenna Gain (dBi) 5 dBi		
Channel List	Please refer to the Note 3.		
Rating	Input: DC 12V 1A		
Hardware version number	1.0.0		
Software version number	1.0.0		
Connecting I/O Port(s)	Please refer to the Note 1.		

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the User Manual.

2. The antenna information refer the manufacturer provide report, applicable only to the tested sample identified in the report. Due to the incorrect antenna information, a series of problems such as the accuracy of the test results will be borne by the customer.

	Channel List						
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequenc y (MHz)
00	2402	10	2422	20	2442	30	2462
01	2404	11	2424	21	2444	31	2464
02	2406	12	2426	22	2446	32	2466
03	2408	13	2428	23	2448	33	2468
04	2410	14	2430	24	2450	34	2470
05	2412	15	2432	25	2452	35	2472
06	2414	16	2434	26	2454	36	2474
07	2416	17	2436	27	2456	37	2476
08	2418	18	2438	28	2458	38	2478
09	2420	19	2440	29	2460	39	2480

2.2 DESCRIPTION OF THE TEST MODES

For conducted test items and radiated spurious emissions Each of these EUT operation mode(s) or test configuration mode(s) mentioned below was evaluated respectively.

Worst Mode	Description	Data/Modulation
Mode 1	TX CH00(2402MHz)	1M PHY /GFSK
Mode 2	TX CH19(2440MHz)	1M PHY /GFSK
Mode 3	TX CH39(2480MHz)	1M PHY /GFSK

Worst Mode	Description	Data/Modulation
Mode 4	TX CH00(2402MHz)	2M PHY /GFSK
Mode 5	TX CH19(2440MHz)	2M PHY /GFSK
Mode 6	TX CH39(2480MHz)	2M PHY /GFSK

Note:

(1) The measurements are performed at all Bit Rate of Transmitter, the worst data was reported.

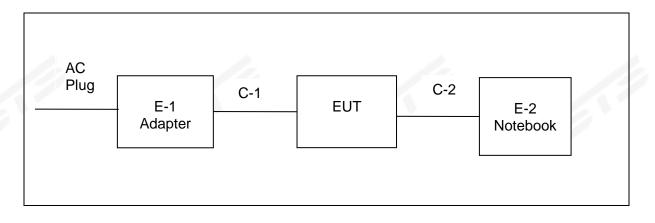
(2) We have be tested for all avaiable U.S. voltage and frequencies(For 120V,50/60Hz and 240V, 50/60Hz) for which the device is capable of operation, and the worst case of 120V/60Hz is shown in the report.

For AC Conducted Emission

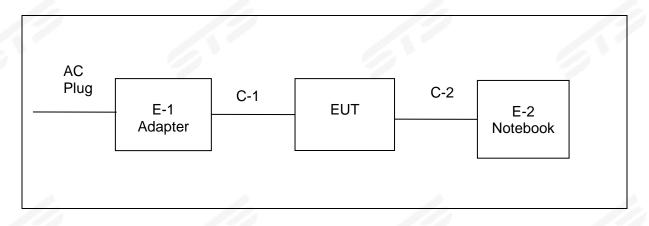
	Test Case
AC Conducted Emission	Mode 7 : Keeping BT TX

2.3 TEST SOFTWARE AND POWER LEVEL

During testing channel & power controlling software provided by the customer was used to control the



operating channel as well as the output power level.


•	RF Function	Туре	Mode Or Modulation type	ANT Gain(dBi)	Power Class	Software For Testing
	BLE(With 2M PHY)	BLE_1M PHY	GFSK	5	-7	SimplicityStudio
		BLE_2M PHY	GFSK	5	-7	SimplicityStudio

2.4 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

Radiated Spurious Emission Test

Conducted Emission Test

2.5 DESCRIPTION OF NECESSARY ACCESSORIES AND SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

		N	lecessary accessories	3	
ltem	Equipment	Mfr/Brand	Model/Type No.	Length	Note
N/A	N/A	N/A	N/A	N/A	N/A

		1.	Support units		
Item	Equipment	Mfr/Brand	Model/Type No.	Length	Note
E-1	Adapter	HUAWEI	HW-050450C00	N/A	N/A
E-2	Notebook	LENOVO	Think Pad E470	N/A	N/A
C-1	USB Cable	N/A	N/A	150cm	N/A

Note:

- (1) For detachable type I/O cable should be specified the length in cm in ^[] Length ^{_} column.
- (2) "YES" is means "with core"; "NO" is means "without core".

2.6 EQUIPMENTS LIST

	RF Radia	tion Test Equipme	nt		
Kind of Equipment	Manufacturer	Type No.	Serial No.	Last Calibration	Calibrated Until
Temperature & Humidity	SW-108	SuWei	N/A	2024.03.15	2025.03.14
Pre-Amplifier(0.1M-3GHz)	EM	EM330	060665	2024.02.23	2025.02.22
Pre-Amplifier(1G-18GHz)	SKET	LNPA-01018G-45	SK2018080901	2023.09.26	2024.09.25
Pre-Amplifier(18G-40GHz)	SKET	LNPA_1840-50	SK2018101801	2024.02.23	2025.02.22
Active loop Antenna	ZHINAN	ZN30900C	16035	2023.02.28	2025.02.27
Bilog Antenna	TESEQ	CBL6111D	34678	2022.09.30	2024.09.29
Horn Antenna	SCHWARZBECK	BBHA 9120D	02014	2023.09.24	2025.09.23
Horn Antenna	A-INFOMW	LB-180400-KF	J211020657	2023.10.10	2025.10.09
Positioning Controller	MF	MF-7802	MF-780208587	N/A	N/A
Signal Analyzer	R&S	FSV 40-N	101823	2023.09.26	2024.09.25
Switch Control Box	N/A	N/A	N/A	N/A	N/A
Filter Box	BALUN Technology	SU319E	BL-SZ1530051	N/A	N/A
Antenna Mast	MF	MFA-440H	N/A	N/A	N/A
Turn Table	MF	SC100_1	60531	N/A	N/A
AC Power Source	APC	KDF-11010G	F214050035	N/A	N/A
DC power supply	HONGSHENGFENG	DPS-305AF	17064939	2023.09.26	2024.09.25
Test SW	EZ-EMC		Ver.STSLAB-03	A1 RE	
	Conduct	ion Test equipme	nt	T	1
Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until
Test Receiver	R&S	ESCI	101427	2023.09.25	2024.09.24
Limtter	CYBERTEK	EM5010	N/A	2023.09.25	2024.09.24
LISN	R&S	ENV216	101242	2023.09.25	2024.09.24
LISN	EMCO	3810/2NM	23625	2023.09.25	2024.09.24
Temperature & Humidity	SW-108	SuWei	N/A	2024.03.15	2025.03.14
Test SW	EZ-EMC		Ver.STSLAB-03	A1 CE	
	RF C	connected Test			
Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until
Signal Analyzer	Agilent	N9020A	MY51510623	2024.02.23	2025.02.22
Power Sensor	Keysight	U2021XA	MY55520005	2023.09.26	2024.09.25
Temperature & Humidity	SW-108	SuWei	N/A	2024.03.15	2025.03.14
Test SW	MW		MTS 8310_2.0	0.0	77

3. EMC EMISSION TEST

3.1 CONDUCTED EMISSION MEASUREMENT

3.1.1 POWER LINE CONDUCTED EMISSION LIMITS

The radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table.

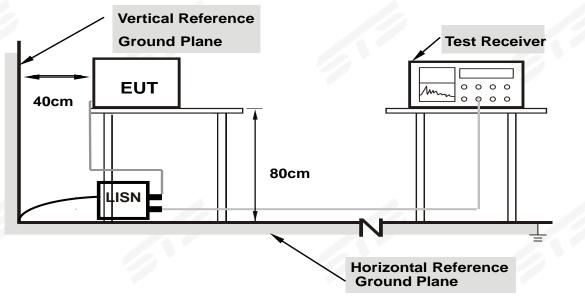
FREQUENCY (MHz)	Conducted Emiss	ion limit (dBuV)
	Quasi-peak	Average
0.15 -0.5	66 - 56 *	56 - 46 *
0.50 -5.0	56.00	46.00
5.0 -30.0	60.00	50.00

Note:

(1) The tighter limit applies at the band edges.

(2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

The following table is the setting of the receiver


Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz

3.2 TEST PROCEDURE

- a. The EUT is 0.8 m from the horizontal ground plane and 0.4 m from the vertical ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments are powered from additional LISN(s). The LISN provides 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN is at least 80 cm from the nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.

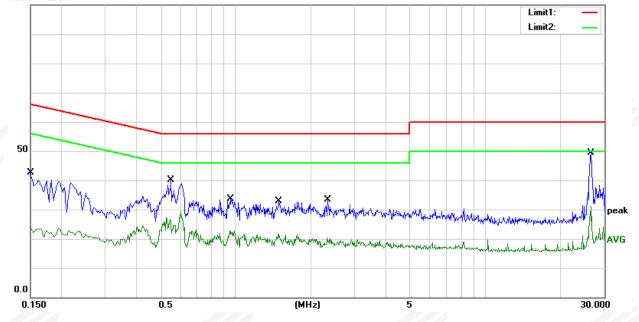
3.3 TEST SETUP

Note: 1. Support units were connected to second LISN.

2. Both of LISNs (AMN) are 80 cm from EUT and at least 80 cm from other units and other metal planes support units.

3.4 EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.


3.5 TEST RESULTS

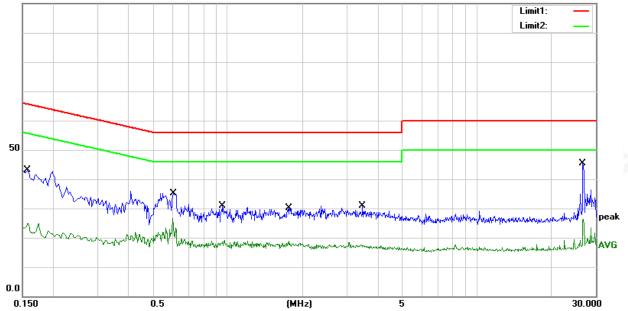
Temperature:	25.1(C)	Relative Humidity:	59%RH
Test Voltage:	AC 120V/60Hz	Phase:	L
Test Mode:	Mode 7	9	9

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(d B)	(dBuV)	(dBuV)	(dB)	
1	0.1500	22.91	19.78	42.69	66.00	-23.31	QP
2	0.1500	4.34	19.78	24.12	56.00	-31.88	AVG
3	0.5500	20.08	19.96	40.04	56.00	-15.96	QP
4	0.5500	9.29	19.96	29.25	46.00	-16.75	AVG
5	0.9540	13.91	19.78	33.69	56.00	-22.31	QP
6	0.9540	2.92	19.78	22.70	46.00	-23.30	AVG
7	1.4940	13.00	19.78	32.78	56.00	-23.22	QP
8	1.4940	1.90	19.78	21.68	46.00	-24.32	AVG
9	2.3340	13.54	19.81	33.35	56.00	-22.65	QP
10	2.3340	0.61	19.81	20.42	46.00	-25.58	AVG
11	26.6260	29.24	20.15	49.39	60.00	-10.61	QP
12	26.6260	10.97	20.15	31.12	50.00	-18.88	AVG

Remark:

All readings are Quasi-Peak and Average values
 Margin = Result (Result =Reading + Factor)–Limit
 Factor=LISN factor+Cable loss+Limiter (10dB)
 100.0 dBuV

Page 16 of 73


Report No.: STS2407026W01

Temperature:	25.1(C)	Relative Humidity:	59%RH
Test Voltage:	AC 120V/60Hz	Phase:	N
Test Mode:	Mode 7	1	12

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(d B)	(dBuV)	(dBuV)	(dB)	
1	0.1580	23.47	19.78	43.25	65.57	-22.32	QP
2	0.1580	5.22	19.78	25.00	55.57	-30.57	AVG
3	0.6060	15.12	19.91	35.03	56.00	-20.97	QP
4	0.6060	6.63	19.91	26.54	46.00	-19.46	AVG
5	0.9580	11.01	19.78	30.79	56.00	-25.21	QP
6	0.9580	-0.54	19.78	19.24	46.00	-26.76	AVG
7	1.7660	10.43	19.78	30.21	56.00	-25.79	QP
8	1.7660	-0.99	19.78	18.79	46.00	-27.21	AVG
9	3.4860	11.13	19.84	30.97	56.00	-25.03	QP
10	3.4860	-1.45	19.84	18.39	46.00	-27.61	AVG
11	26.6900	25.26	20.15	45.41	60.00	-14.59	QP
12	26.6900	6.24	20.15	26.39	50.00	-23.61	AVG

- All readings are Quasi-Peak and Average values
 Margin = Result (Result =Reading + Factor)–Limit
 Factor=LISN factor+Cable loss+Limiter (10dB)
 100.0 dBuV

4. RADIATED EMISSION MEASUREMENT

4.1 RADIATED EMISSION LIMITS

In any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the Restricted band specified on Part15.205(a)&209(a) limit in the table and according to ANSI C63.10-2020 below has to be followed.

LIMITS OF RADIATED EMISSION MEASUREMENT (Frequency Range 9kHz-1000MHz)

Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

	(dBuV/	m) (at 3M)	
FREQUENCY (MHz)	PEAK	AVERAGE	
Above 1000	74	54	
Notes:		/ /	1
(1) The limit for radiated te	est was performed according	to FCC PART 15C.	
(2) The tighter limit applies	s at the band edges.		

(2) The tighter limit applies at the band edges.

(3) Emission level (dBuV/m)=20log Emission level (uV/m).

LIMITS OF RESTRICTED FREQUENCY BANDS

FREQUENCY (MHz)	FREQUENCY (MHz)	FREQUENCY (MHz)	FREQUENCY (GHz)
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	Above 38.6
13.36-13.41			

For Radiated Emission

Spectrum Parameter	Setting
Attenuation	Auto
Detector	Peak/QP/AV
Start Frequency	9 KHz/150KHz(Peak/QP/AV)
Stop Frequency	150KHz/30MHz(Peak/QP/AV)
	200Hz (From 9kHz to 0.15MHz)/
RB / VB (emission in restricted	9KHz (From 0.15MHz to 30MHz);
band)	200Hz (From 9kHz to 0.15MHz)/
	9KHz (From 0.15MHz to 30MHz)

Spectrum Parameter	Setting	
Attenuation	Auto	
Detector	Peak/QP	
Start Frequency	30 MHz(Peak/QP)	
Stop Frequency	1000 MHz (Peak/QP)	
RB / VB (emission in restricted	120 KHz / 300 KHz	
band)	120 KHZ / 300 KHZ	

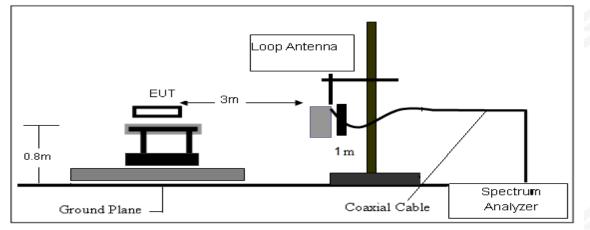
Spectrum Parameter	Setting
Attenuation	Auto
Detector	Peak/AV
Start Frequency	1000 MHz(Peak/AV)
Stop Frequency	10th carrier hamonic(Peak/AV)
RB / VB (emission in restricted	1 MHz / 3 MHz(Peak)
band)	1 MHz/1/T MHz(AVG)
or Destricted hand	

For Restricted band

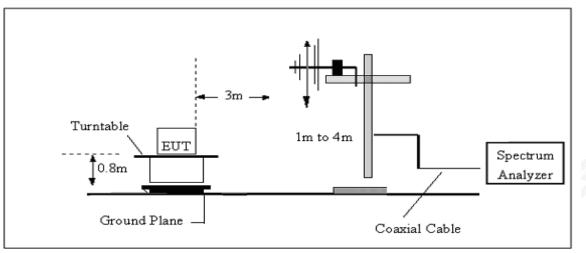
Spectrum Parameter	Setting	
Detector	Peak/AV	
	Lower Band Edge: 2310 to 2410 MHz	
Start/Stop Frequency	Upper Band Edge: 2475 to 2500 MHz	
	1 MHz / 3 MHz(Peak)	
RB / VB	1 MHz/1/T MHz(AVG)	

Receiver Parameter	Setting
Start ~ Stop Frequency	9kHz~90kHz / RB 200Hz for PK & AV
Start ~ Stop Frequency	90kHz~110kHz / RB 200Hz for QP
Start ~ Stop Frequency	110kHz~490kHz / RB 200Hz for PK & AV
Start ~ Stop Frequency	490kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

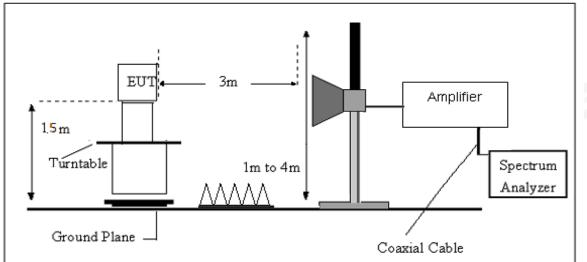
4.2 TEST PROCEDURE


- a. The measuring distance at 3 m shall be used for measurements at frequency 0.009MHz up to 1GHz, and above 1GHz.
- b. The EUT was placed on the top of a rotating table 0.8 m (above 1GHz is 1.5 m) above the ground at a 3 m anechoic chamber test site. The table was rotated 360 degree to determine the position of the highest radiation.
- c. The height of the equipment shall be 0.8 m (above 1GHz is 1.5 m); the height of the test antenna shall vary between 1 m to 4 m. Horizontal and vertical polarization of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and QuasiPeak detector mode will be re-measured.
- e. If the Peak Mode measured value is compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and no additional QP Mode measurement was performed.
- f. For the actual test configuration, please refer to the related Item –EUT Test Photos. Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported.



4.3 TEST SETUP


(A) Radiated Emission Test-Up Frequency Below 30MHz

(B) Radiated Emission Test-Up Frequency 30MHz~1GHz

(C) Radiated Emission Test-Up Frequency Above 1GHz

^{4.4} EUT OPERATING CONDITIONS Please refer to section 3.4 of this report.

4.5 FIELD STRENGTH CALCULATION

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor (if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AGWhere FS = Field Strength CL = Cable Attenuation Factor (Cable Loss) RA = Reading Amplitude

AG = Amplifier Gain

AF = Antenna Factor

For example

Frequency	FS	RA	AF	CL	AG	Factor
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(dB)	(dB)	(dB)
300	40	58.1	12.2	1.6	31.9	-18.1

Factor=AF+CL-AG

4.6 TEST RESULTS

(Between 9KHz – 30 MHz)

Temperature:	23.1(C)	Relative Humidtity:	60%RH
Test Voltage:	DC 12V	Polarization:	
Test Mode:	TX Mode	1	

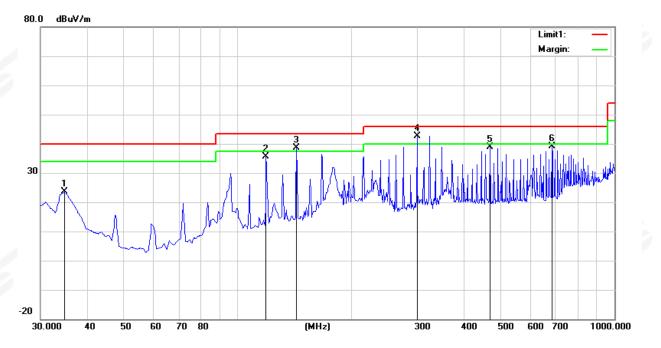
Freq.	Reading	Limit	Margin	State
(MHz)	(dBuV/m)	(dBuV/m)	(dB)	P/F
				PASS
				PASS

Note:

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Distance extrapolation factor =40 log (specific distance/test distance)(dB);

Limit line = specific limits(dBuv) + distance extrapolation factor.

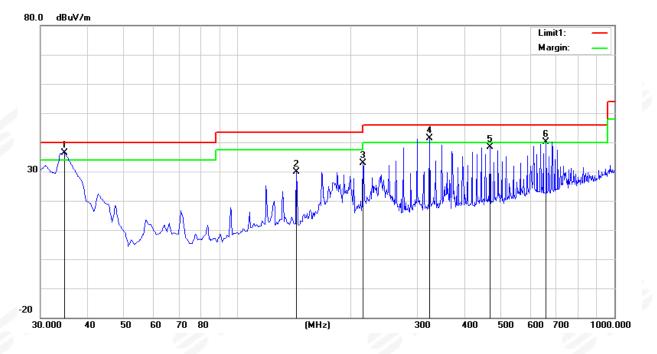

(30MHz -1000MHz)

1M PHY

Temperature:	23.1(C)	Relative Humidity:	60%RH
Test Voltage:	DC 12V	Phase:	Horizontal
Test Mode:	Mode 1/2/3 (Mode 3 worst mo	ode)	

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/ m)	(dBuV/m)	(dBuV/m)	(dB)	
1	34.8500	39.04	-15.34	23.70	40.00	-16.30	peak
2	119.2400	53.96	-18.38	35.58	43.50	-7.92	peak
3	143.4900	56.81	-18.23	38.58	43.50	-4.92	peak
4	299.6600	57.35	-14.82	42.53	46.00	-3.47	peak
5	468.4400	47.91	-9.07	38.84	46.00	-7.16	peak
6	683.7800	43.46	-4.31	39.15	46.00	-6.85	peak

- Margin = Result (Result =Reading + Factor)–Limit
 Factor= Antenna factor+Cable attenuation factor(cable loss)-Amplifier gain
- 3. All modes have been tested, only show the worst case.

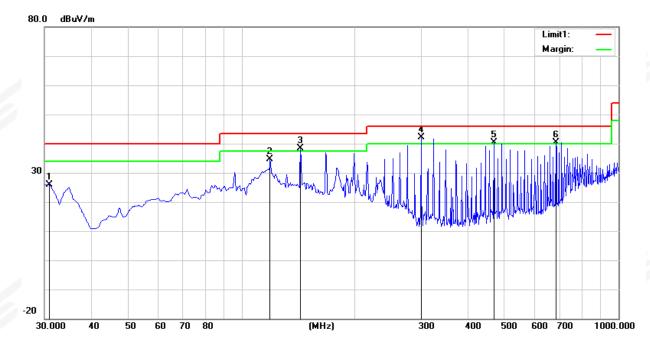


Report No.: STS2407026W01

Temperature:	23.1(C)	Relative Humidity:	60%RH	
Test Voltage:	DC 12V	Phase:	Vertical	
Test Mode:	Mode 1/2/3 (Mode 3 worst mode)			

				Sector Sect			
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/ m)	(dBuV/m)	(dBuV/m)	(dB)	
1	34.8500	51.80	-15.34	36.46	40.00	-3.54	peak
2	143.4900	48.05	-18.23	29.82	43.50	-13.68	peak
3	215.2700	52.99	-20.17	32.82	43.50	-10.68	peak
4	323.9100	55.20	-13.88	41.32	46.00	-4.68	peak
5	468.4400	47.36	-9.07	38.29	46.00	-7.71	peak
6	660.5000	44.90	-4.80	40.10	46.00	-5.90	peak

- Margin = Result (Result =Reading + Factor)–Limit
 Factor= Antenna factor+Cable attenuation factor(cable loss)-Amplifier gain 2.
- 3. All modes have been tested, only show the worst case.

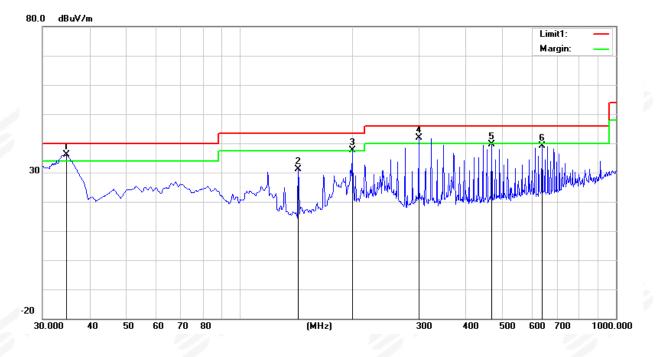


2M PHY

Temperature:	23.1(C)	Relative Humidity:	60%RH			
Test Voltage:	DC 12V	Phase:	Horizontal			
Test Mode:	t Mode: Mode 4/5/6 (Mode 6 worst mode)					

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/ m)	(dBuV/m)	(dBuV/m)	(dB)	
1	30.9700	39.24	-13.35	25.89	40.00	-14.11	peak
2	119.2400	52.98	-18.38	34.60	43.50	-8.90	peak
3	143.4900	56.69	-18.23	38.46	43.50	-5.04	peak
4	299.6600	56.97	-14.82	42.15	46.00	-3.85	peak
5	468.4400	49.52	-9.07	40.45	46.00	-5.55	peak
6	683.7800	44.76	-4.31	40.45	46.00	-5.55	peak

- Margin = Result (Result = Reading + Factor)–Limit
 Factor= Antenna factor+Cable attenuation factor(cable loss)-Amplifier gain
- 3. All modes have been tested, only show the worst case.



Report No.: STS2407026W01

Temperature:	23.1(C)	Relative Humidity:	60%RH
Test Voltage:	DC 12V	Phase:	Vertical
Test Mode:	Mode 4/5/6 (Mode 6 worst mo	ode)	1

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/ m)	(dBuV/m)	(dBuV/m)	(dB)	
1	34.8500	51.37	-15.34	36.03	40.00	-3.97	peak
2	143.4900	49.48	-18.23	31.25	43.50	-12.25	peak
3	199.7500	58.68	-21.11	37.57	43.50	-5.93	peak
4	299.6600	56.78	-14.82	41.96	46.00	-4.04	peak
5	468.4400	48.63	-9.07	39.56	46.00	-6.44	peak
6	636.2500	44.07	-4.92	39.15	46.00	-6.85	peak

- 1. Margin = Result (Result = Reading + Factor)–Limit
- 2. Factor= Antenna factor+Cable attenuation factor(cable loss)-Amplifier gain
- 3. All modes have been tested, only show the worst case.

(1GHz-25GHz) Spurious emission Requirements

1M PHY GFSK

				• • • • • • • • • • • • • • • • • • •						
Comment	Detector	Margin	Limits	Emission Level	Corrected Factor	Antenna Factor	Loss	Amplifier	Meter Reading	Frequency
	Туре	(dB)	(dBµV/m)	(dBµV/m)	(dB)	(dB/m)	(dB)	(dB)	(dBµV)	(MHz)
				2402 MHz)	nannel (GFSK/2	Low Ch				
Vertical	PK	-22.10	74.00	51.90	-9.80	28.20	6.70	44.70	61.70	3264.76
Vertical	AV	-13.58	54.00	40.42	-9.80	28.20	6.70	44.70	50.22	3264.76
Horizontal	PK	-22.65	74.00	51.35	-9.80	28.20	6.70	44.70	61.15	3264.69
Horizontal	AV	-13.76	54.00	40.24	-9.80	28.20	6.70	44.70	50.04	3264.69
Vertical	PK	-18.27	74.00	55.73	-3.56	31.60	9.04	44.20	59.29	4804.50
Vertical	AV	-7.45	54.00	46.55	-3.56	31.60	9.04	44.20	50.11	4804.50
Horizontal	PK	-18.88	74.00	55.12	-3.56	31.60	9.04	44.20	58.68	4804.38
Horizontal	AV	-6.98	54.00	47.02	-3.56	31.60	9.04	44.20	50.58	4804.38
Vertical	PK	-27.91	74.00	46.09	-2.34	32.00	9.86	44.20	48.43	5359.88
Vertical	AV	-17.15	54.00	36.85	-2.34	32.00	9.86	44.20	39.19	5359.88
Horizontal	PK	-27.79	74.00	46.21	-2.34	32.00	9.86	44.20	48.55	5359.85
Horizontal	AV	-17.42	54.00	36.58	-2.34	32.00	9.86	44.20	38.92	5359.85
Vertical	PK	-16.53	74.00	57.47	3.40	35.50	11.40	43.50	54.07	7205.73
Vertical	AV	-6.23	54.00	47.77	3.40	35.50	11.40	43.50	44.37	7205.73
Horizontal	PK	-15.82	74.00	58.18	3.40	35.50	11.40	43.50	54.78	7205.84
Horizontal	AV	-6.17	54.00	47.83	3.40	35.50	11.40	43.50	44.43	7205.84
				/2440 MHz)	hannel (GFSK	Middle C				
Vertical	PK	-22.00	74.00	52.00	-9.80	28.20	6.70	44.70	61.80	3263.13
Vertical	AV	-13.50	54.00	40.50	-9.80	28.20	6.70	44.70	50.30	3263.13
Horizontal	PK	-22.82	74.00	51.18	-9.80	28.20	6.70	44.70	60.98	3263.03
Horizontal	AV	-13.00	54.00	41.00	-9.80	28.20	6.70	44.70	50.80	3263.03
Vertical	PK	-18.34	74.00	55.66	-3.56	31.60	9.04	44.20	59.22	4879.95
Vertical	AV	-8.03	54.00	45.97	-3.56	31.60	9.04	44.20	49.53	4879.95
Horizontal	PK	-18.45	74.00	55.55	-3.56	31.60	9.04	44.20	59.11	4880.02
Horizontal	AV	-7.63	54.00	46.37	-3.56	31.60	9.04	44.20	49.93	4880.02
Vertical	PK	-27.09	74.00	46.91	-2.34	32.00	9.86	44.20	49.25	5357.12
Vertical	AV	-16.03	54.00	37.97	-2.34	32.00	9.86	44.20	40.31	5357.12
Horizontal	PK	-28.89	74.00	45.11	-2.34	32.00	9.86	44.20	47.45	5357.39
Horizontal	AV	-17.02	54.00	36.98	-2.34	32.00	9.86	44.20	39.32	5356.97
Vertical	PK	-16.81	74.00	57.19	3.40	35.50	11.40	43.50	53.79	7320.85
Vertical	AV	-6.47	54.00	47.53	3.40	35.50	11.40	43.50	44.13	7320.85
Horizontal	PK	-15.98	74.00	58.02	3.40	35.50	11.40	43.50	54.62	7320.50
Horizontal	AV	-6.13	54.00	47.87	3.40	35.50	11.40	43.50	44.47	7320.50

Report No.: STS2407026W01

				High Char	nnel (GFSK/	2480 MHz)				
3264.79	61.53	44.70	6.70	28.20	-9.80	51.73	74.00	-22.27	PK	Vertical
3264.79	51.70	44.70	6.70	28.20	-9.80	41.90	54.00	-12.10	AV	Vertical
3264.74	61.57	44.70	6.70	28.20	-9.80	51.77	74.00	-22.23	PK	Horizontal
3264.74	51.18	44.70	6.70	28.20	-9.80	41.38	54.00	-12.62	AV	Horizontal
4960.47	59.58	44.20	9.04	31.60	-3.56	56.02	74.00	-17.98	PK	Vertical
4960.47	49.56	44.20	9.04	31.60	-3.56	46.00	54.00	-8.00	AV	Vertical
4960.32	59.00	44.20	9.04	31.60	-3.56	55.44	74.00	-18.56	PK	Horizontal
4960.32	50.07	44.20	9.04	31.60	-3.56	46.51	54.00	-7.49	AV	Horizontal
5359.71	48.08	44.20	9.86	32.00	-2.34	45.74	74.00	-28.26	PK	Vertical
5359.71	39.41	44.20	9.86	32.00	-2.34	37.07	54.00	-16.93	AV	Vertical
5359.59	48.05	44.20	9.86	32.00	-2.34	45.71	74.00	-28.29	PK	Horizontal
5359.59	38.20	44.20	9.86	32.00	-2.34	35.86	54.00	-18.14	AV	Horizontal
7439.89	54.11	43.50	11.40	35.50	3.40	57.51	74.00	-16.49	PK	Vertical
7439.89	43.97	43.50	11.40	35.50	3.40	47.37	54.00	-6.63	AV	Vertical
7439.86	54.22	43.50	11.40	35.50	3.40	57.62	74.00	-16.38	PK	Horizontal
7439.86	44.84	43.50	11.40	35.50	3.40	48.24	54.00	-5.76	AV	Horizontal

Note:

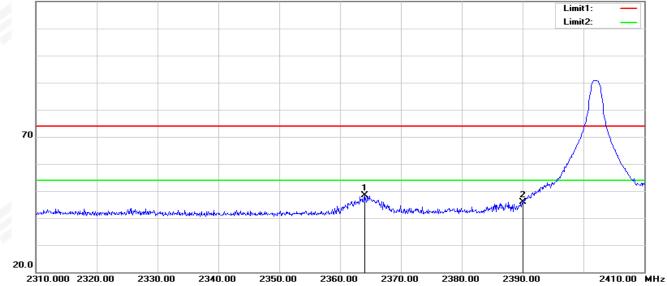
- 1) Factor = Antenna Factor + Cable Loss Pre-amplifier.
 - Emission Level = Reading + Factor.
- 2) The frequency emission of peak points that did not show above the forms are at least 20dB below the limit, the frequency emission is mainly from the environment noise.

2M PHY GFSK

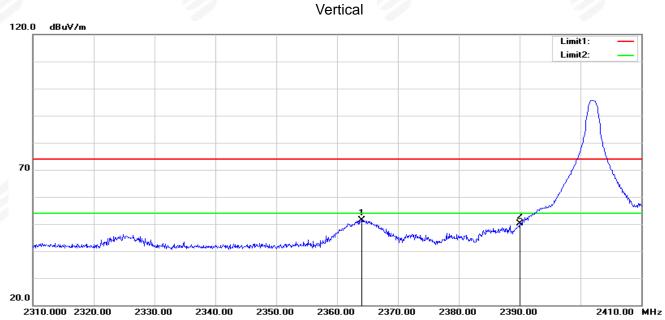
					GESK					
Frequency	Meter Reading	Amplifier	Loss	Antenna Factor	Corrected Factor	Emission Level	Limits	Margin	Detector	Comment
(MHz)	(dBµV)	(dB)	(dB)	(dB/m)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	
			1.00	Low Cl	hannel (GFSK/	2402 MHz)		•	all and	
3264.79	62.26	44.70	6.70	28.20	-9.80	52.46	74.00	-21.54	PK	Vertical
3264.79	50.71	44.70	6.70	28.20	-9.80	40.91	54.00	-13.09	AV	Vertical
3264.60	61.50	44.70	6.70	28.20	-9.80	51.70	74.00	-22.30	PK	Horizontal
3264.60	51.07	44.70	6.70	28.20	-9.80	41.27	54.00	-12.73	AV	Horizontal
4804.44	58.15	44.20	9.04	31.60	-3.56	54.59	74.00	-19.41	PK	Vertical
4804.44	50.05	44.20	9.04	31.60	-3.56	46.49	54.00	-7.51	AV	Vertical
4804.33	58.67	44.20	9.04	31.60	-3.56	55.11	74.00	-18.89	PK	Horizontal
4804.33	49.21	44.20	9.04	31.60	-3.56	45.65	54.00	-8.35	AV	Horizontal
5359.73	48.86	44.20	9.86	32.00	-2.34	46.52	74.00	-27.48	PK	Vertical
5359.73	39.40	44.20	9.86	32.00	-2.34	37.06	54.00	-16.94	AV	Vertical
5359.61	47.39	44.20	9.86	32.00	-2.34	45.05	74.00	-28.95	PK	Horizontal
5359.61	39.50	44.20	9.86	32.00	-2.34	37.16	54.00	-16.84	AV	Horizontal
7205.88	54.49	43.50	11.40	35.50	3.40	57.89	74.00	-16.11	PK	Vertical
7205.88	44.40	43.50	11.40	35.50	3.40	47.80	54.00	-6.20	AV	Vertical
7205.89	54.05	43.50	11.40	35.50	3.40	57.45	74.00	-16.55	PK	Horizontal
7205.89	43.78	43.50	11.40	35.50	3.40	47.18	54.00	-6.82	AV	Horizontal
		•		Middle 0	Channel (GFSK	(/2440 MHz)	•		•	
3262.99	61.95	44.70	6.70	28.20	-9.80	52.15	74.00	-21.85	PK	Vertical
3262.99	51.55	44.70	6.70	28.20	-9.80	41.75	54.00	-12.25	AV	Vertical
3263.21	61.75	44.70	6.70	28.20	-9.80	51.95	74.00	-22.05	PK	Horizonta
3263.21	51.28	44.70	6.70	28.20	-9.80	41.48	54.00	-12.52	AV	Horizonta
4879.98	58.15	44.20	9.04	31.60	-3.56	54.59	74.00	-19.41	PK	Vertical
4879.98	50.09	44.20	9.04	31.60	-3.56	46.53	54.00	-7.47	AV	Vertical
4880.17	58.79	44.20	9.04	31.60	-3.56	55.23	74.00	-18.77	PK	Horizontal
4880.17	49.42	44.20	9.04	31.60	-3.56	45.86	54.00	-8.14	AV	Horizonta
5357.26	49.35	44.20	9.86	32.00	-2.34	47.01	74.00	-26.99	PK	Vertical
5357.26	40.09	44.20	9.86	32.00	-2.34	37.75	54.00	-16.25	AV	Vertical
5357.39	48.01	44.20	9.86	32.00	-2.34	45.67	74.00	-28.33	PK	Horizonta
5357.14	38.27	44.20	9.86	32.00	-2.34	35.93	54.00	-18.07	AV	Horizontal
7320.85	53.97	43.50	11.40	35.50	3.40	57.37	74.00	-16.63	PK	Vertical
7320.85	43.57	43.50	11.40	35.50	3.40	46.97	54.00	-7.03	AV	Vertical
7320.47	53.86	43.50	11.40	35.50	3.40	57.26	74.00	-16.74	PK	Horizonta
7320.47	43.96	43.50	11.40	35.50	3.40	47.36	54.00	-6.64	AV	Horizontal

Report No.: STS2407026W01

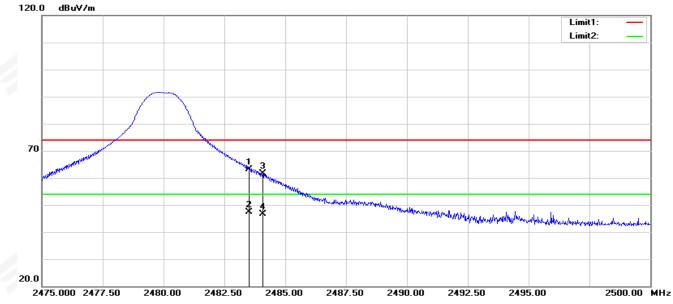
				High Char	nnel (GFSK/	2480 MHz)				
3264.65	62.13	44.70	6.70	28.20	-9.80	52.33	74.00	-21.67	PK	Vertical
3264.65	51.76	44.70	6.70	28.20	-9.80	41.96	54.00	-12.04	AV	Vertical
3264.67	61.23	44.70	6.70	28.20	-9.80	51.43	74.00	-22.57	PK	Horizontal
3264.67	51.28	44.70	6.70	28.20	-9.80	41.48	54.00	-12.52	AV	Horizontal
4960.30	58.23	44.20	9.04	31.60	-3.56	54.67	74.00	-19.33	PK	Vertical
4960.30	50.40	44.20	9.04	31.60	-3.56	46.84	54.00	-7.16	AV	Vertical
4960.58	58.34	44.20	9.04	31.60	-3.56	54.78	74.00	-19.22	PK	Horizontal
4960.58	49.66	44.20	9.04	31.60	-3.56	46.10	54.00	-7.90	AV	Horizontal
5359.63	49.23	44.20	9.86	32.00	-2.34	46.89	74.00	-27.11	PK	Vertical
5359.63	39.12	44.20	9.86	32.00	-2.34	36.78	54.00	-17.22	AV	Vertical
5359.80	48.15	44.20	9.86	32.00	-2.34	45.81	74.00	-28.19	PK	Horizontal
5359.80	38.36	44.20	9.86	32.00	-2.34	36.02	54.00	-17.98	AV	Horizontal
7439.98	54.23	43.50	11.40	35.50	3.40	57.63	74.00	-16.37	PK	Vertical
7439.98	44.35	43.50	11.40	35.50	3.40	47.75	54.00	-6.25	AV	Vertical
7439.87	54.94	43.50	11.40	35.50	3.40	58.34	74.00	-15.66	PK	Horizontal
7439.87	44.88	43.50	11.40	35.50	3.40	48.28	54.00	-5.72	AV	Horizontal

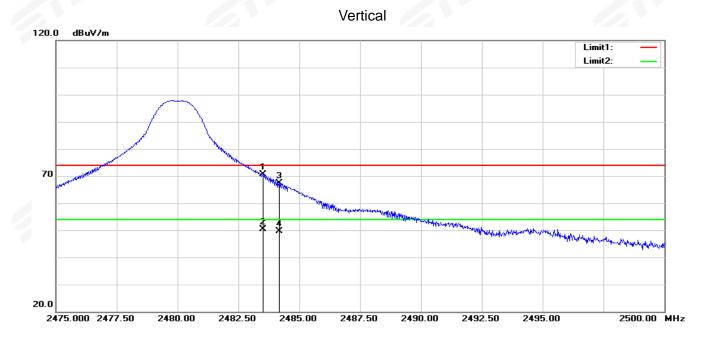

Note:

- 1) Factor = Antenna Factor + Cable Loss Pre-amplifier.
 - Emission Level = Reading + Factor.
- 2) The frequency emission of peak points that did not show above the forms are at least 20dB below the limit, the frequency emission is mainly from the environment noise.



No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2364.000	44.49	3.95	48.44	74.00	-25.56	peak
2	2390.000	41.59	4.34	45.93	74.00	-28.07	peak

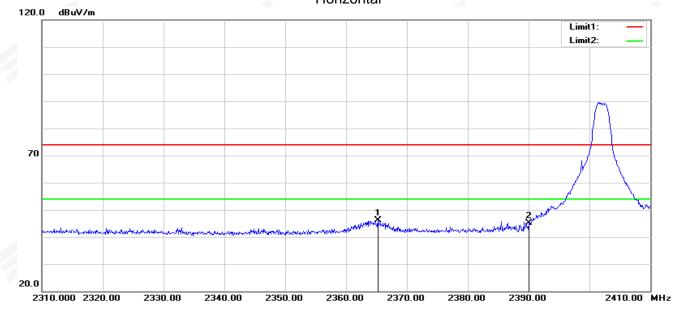

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2364.000	47.35	3.95	51.30	74.00	-22.70	peak
2	2390.000	45.82	4.34	50.16	74.00	-23.84	peak

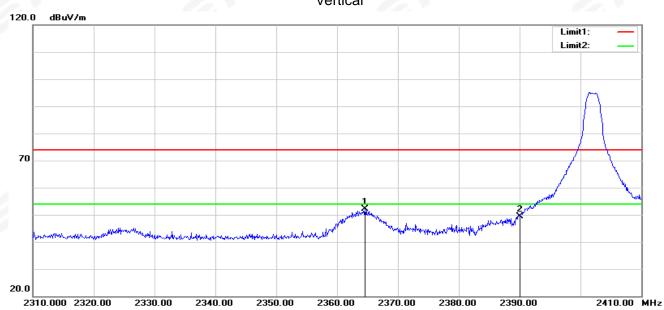


Page 32 of 73

GFSK-High Horizontal

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	58.49	4.60	63.09	74.00	-10.91	peak
2	2483.500	42.66	4.60	47.26	54.00	-6.74	AVG
3	2484.075	57.06	4.61	61.67	74.00	-12.33	peak
4	2484.075	41.95	4.61	46.56	54.00	-7.44	AVG

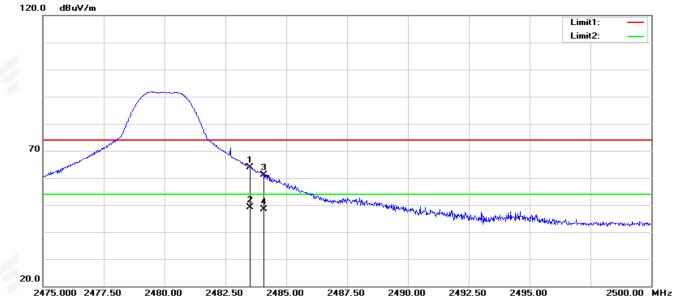

Ī	No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
		(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
	1	2483.500	66.13	4.60	70.73	74.00	-3.27	peak
i I	2	2483.500	45.74	4.60	50.34	54.00	-3.66	AVG
	3	2484.175	62.88	4.61	67.49	74.00	-6.51	peak
	4	2484.175	45.02	4.61	49.63	54.00	-4.37	AVG



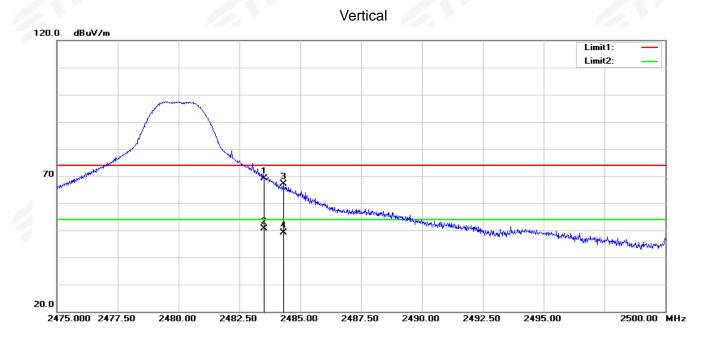
Page 33 of 73

2M PHY GFSK-Low Horizontal

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2365.200	42.25	3.97	46.22	74.00	-27.78	peak
2	2390.000	40.76	4.34	45.10	74.00	-28.90	peak


	No.	Frequency	Reading	Correct	Result Limit		Margin	Remark
		(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
	1	2364.600	48.05	3.96	52.01	74.00	-21.99	peak
2	2	2390.000	44.96	4.34	49.30	74.00	-24.70	peak

Vertical



Page 34 of 73

GFSK-High Horizontal

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	59.39	4.60	63.99	74.00	-10.01	peak
2	2483.500	44.41	4.60	49.01	54.00	-4.99	AVG
3	2484.075	56.64	4.61	61.25	74.00	-12.75	peak
4	2484.075	43.69	4.61	48.30	54.00	-5.70	AVG

	No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
		(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
	1	2483.500	64.47	4.60	69.07	74.00	-4.93	peak
i I	2	2483.500	46.07	4.60	50.67	54.00	-3.33	AVG
	3	2484.300	62.46	4.61	67.07	74.00	-6.93	peak
ſ	4	2484.300	44.51	4.61	49.12	54.00	-4.88	AVG

5. CONDUCTED SPURIOUS & BAND EDGE EMISSION

5.1 LIMIT

According to FCC section 15.247(d), in any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

5.2 TEST PROCEDURE

Spectrum Parameter	Setting		
Detector	Peak		
Start/Stop Frequency	30 MHz to 10th carrier harmonic		
RB / VB (emission in restricted band)	100 KHz/300 KHz		
Trace-Mode:	Max hold		

For Band edge

Spectrum Parameter	Setting		
Detector	Peak		
Stort/Ston Fraguency	Lower Band Edge: 2300 – 2407 MHz		
Start/Stop Frequency	Upper Band Edge: 2475 – 2500 MHz		
RB / VB (emission in restricted band)	100 KHz/300 KHz		
Trace-Mode:	Max hold		

5.3 TEST SETUP

The EUT is connected to the Spectrum Analyzer; the RF load attached to the EUT antenna termina is 50 Ohm; the path loss as the factor is calibrated to correct the reading. Make the measurement with the spectrum analyzer's resolution bandwidth(RBW) = 100 kHz. In order to make an accurate measurement, set the span greater than RBW.

5.4 EUT OPERATION CONDITIONS Please refer to section 3.4 of this report.

5.5 TEST RESULTS

Note: The test data please refer to APPENDIX 1.

6. POWER SPECTRAL DENSITY TEST

6.1 LIMIT

FCC Part 15.247,Subpart C									
Section	Test Item	Limit	Frequency Range (MHz)	Result					
15.247(e)	Power Spectral Density	≤8 dBm (RBW≥3KHz)	2400-2483.5	PASS					

6.2 TEST PROCEDURE

- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to 1.5 times the DTS channel bandwidth.
- 3. Set the RBW to: 100 kHz \ge RBW \ge 3 kHz.
- 4. Set the VBW \geq 3 x RBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

6.3 TEST SETUP

6.4 EUT OPERATION CONDITIONS Please refer to section 3.4 of this report.

6.5 TEST RESULTS

Note: The test data please refer to APPENDIX 1.

7. BANDWIDTH TEST

7.1 LIMIT

	F	CC Part 15.247,Subpa	irt C	
Section	Test Item	Limit	Frequency Range (MHz)	Result
15.247(a)(2)	Bandwidth	>= 500KHz (6dB bandwidth)	2400-2483.5	PASS

7.2 TEST PROCEDURE

The automatic bandwidth measurement capability of an instrument may be employed using the X dB bandwidth mode with X set to 6 dB, if the functionality described above (i.e., RBW = 100 kHz, VBW≥3RBW, peak detector with maximum hold) is implemented by the instrumentation function. When using this capability, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the fundamental emission that might be≥6 dB.

7.3 TEST SETUP

7.4 EUT OPERATION CONDITIONS Please refer to section 3.4 of this report.

7.5 TEST RESULTS

Note: The test data please refer to APPENDIX 1.

8. PEAK OUTPUT POWER TEST

8.1 LIMIT

_			Carlo Car		
		FC	CC Part 15.247,Subpa	rt C	
	Section	Test Item	Limit	Frequency Range (MHz)	Result
	15.247(b)(3)	Output Power	1 watt or 30dBm	2400-2483.5	PASS

8.2 TEST PROCEDURE

One of the following procedures may be used to determine the averaging conducted output powe r of a DTS EUT.

Method AVGSA-2 uses trace averaging across ON and OFF times of the EUT transmissions, foll owed by duty cycle correction. The procedure for this method is as follows:

a) Measure the duty cycle D of the transmitter output signal as described in 11.6.

b) Set span to at least 1.5 times the OBW.

c) Set RBW = 1% to 5% of the OBW, not to exceed 1 MHz.

d) Set VBW \geq [3 × RBW].

e) Number of points in sweep \geq [2 × span / RBW]. (This gives bin-to-bin spacing \leq RBW / 2, so th at narrowband signals are not lost between frequency bins.)

f) Sweep time = auto.

g) Detector = RMS (i.e., power averaging), if available. Otherwise, use the sample detector mode . h) Do not use sweep triggering. Allow the sweep to "free run."

i) Trace average at least 100 traces in power averaging (rms) mode; however, the number of trac es to be averaged shall be increased above 100 as needed such that the average accurately re presents the true average over the ON and OFF periods of the transmitter.

j) Compute power by integrating the spectrum across the OBW of the signal using the instrument 's band power measurement function with band limits set equal to the OBW band edges. If the in strument does not have a band power function, then sum the spectrum levels (in power units) at intervals equal to the RBW extending across the entire OBW of the spectrum.

k) Add [10 log (1 / D)], where D is the duty cycle, to the measured power to compute the average power during the actual transmission times (because the measurement represents an average o ver both the ON and OFF times of the transmission). For example, add [10 log (1/0.25)] = 6 dB if the duty cycle is 25%.

One of the following procedures may be used to determine the maximum peak conducted output power of a DTS EUT.

 $RBW \ge DTS$ bandwidth

The following procedure shall be used when an instrument with a resolution bandwidth that is greater than the DTS bandwidth is available to perform the measurement:

a) Set the RBW \geq DTS bandwidth.

b) Set VBW \geq [3 × RBW].

c) Set span \geq [3 × RBW].

d) Sweep time = auto couple.

e) Detector = peak.

f) Trace mode = max hold.

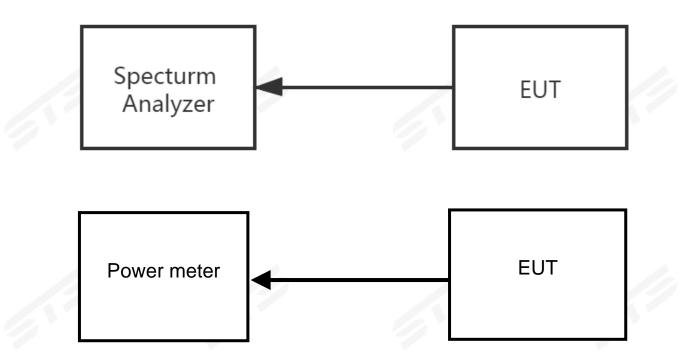
g) Allow trace to fully stabilize.

h) Use peak marker function to determine the peak amplitude level.

Integrated band power method:

The following procedure can be used when the maximum available RBW of the instrument is less than the

DTS bandwidth:


- a) Set the RBW = 1 MHz.
- b) Set the VBW \geq [3 × RBW].
- c) Set the span \geq [1.5 × DTS bandwidth].
- d) Detector = peak.
- e) Sweep time = auto couple.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.

h) Use the instrument's band/channel power measurement function with the band limits set equal to the DTS bandwidth edges (for some instruments, this may require a manual override to select the peak detector). If the instrument does not have a band power function, then sum the spectrum levels (in linear power units) at intervals equal to the RBW extending across the DTS channel bandwidth.

PKPM1 Peak power meter method:

The maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall use a fast-responding diode detector.

8.3 TEST SETUP

8.4 EUT OPERATION CONDITIONS Please refer to section 3.4 of this report.

8.5 TEST RESULTS

Note: The test data please refer to APPENDIX 1.

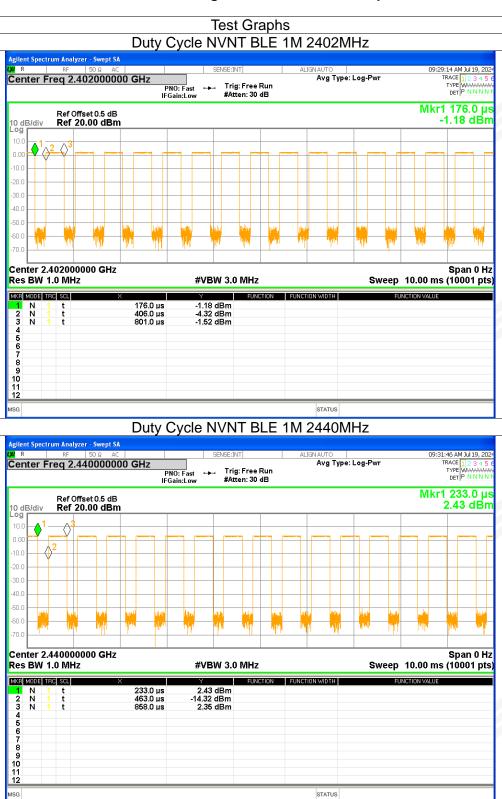
9. ANTENNA REQUIREMENT

9.1 STANDARD REQUIREMENT

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

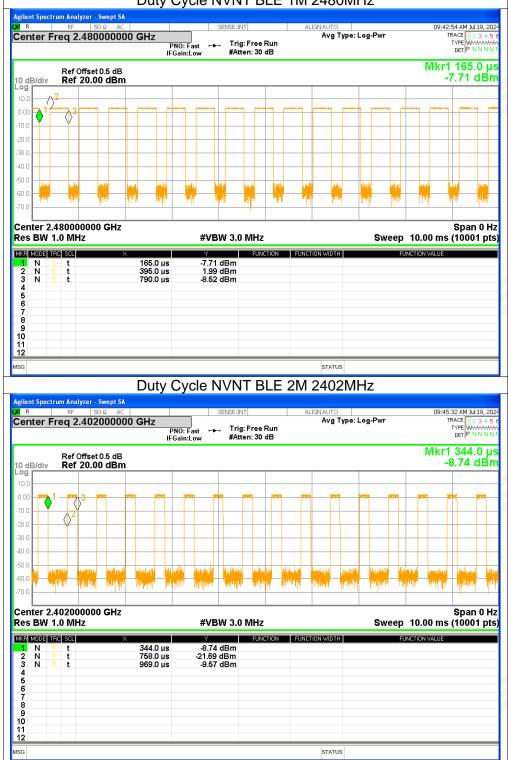
9.2 EUT ANTENNA

The EUT antenna is Linear polarization Antenna. It comply with the standard requirement.

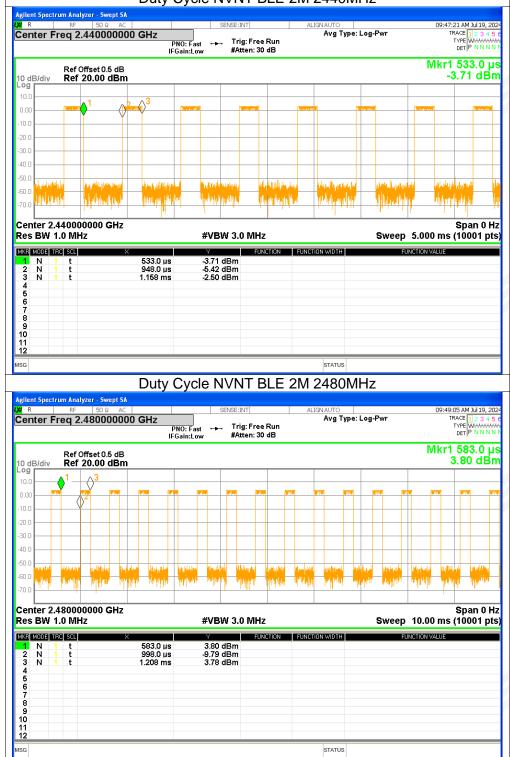


1. Duty Cycle

Condition	Mode	Frequency (MHz)	Duty Cycle (%)	Correction Factor (dB)	1/T (kHz)
NVNT	BLE 1M	2402	63.2	1.99	2.53
NVNT	BLE 1M	2440	63.2	1.99	2.53
NVNT	BLE 1M	2480	63.2	1.99	2.53
NVNT	BLE 2M	2402	33.76	4.72	4.74
NVNT	BLE 2M	2440	33.6	4.74	4.76
NVNT	BLE 2M	2480	33.6	4.74	4.76

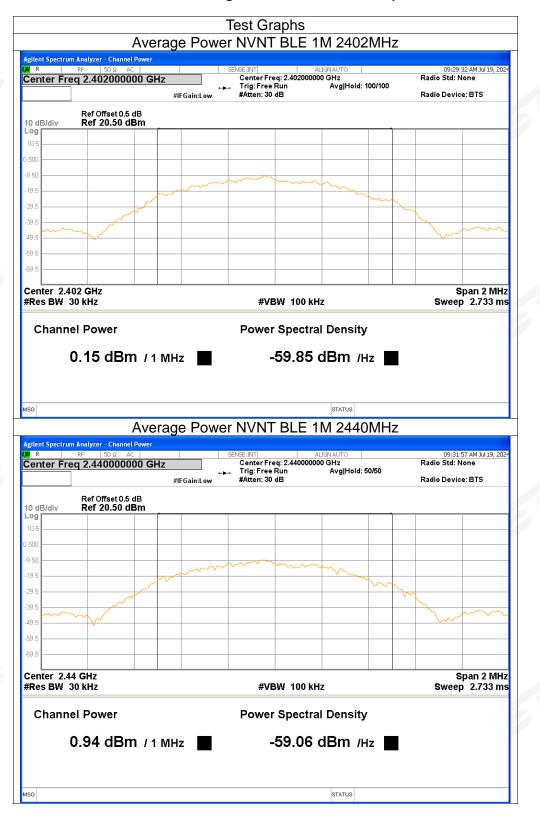


Page 42 of 73



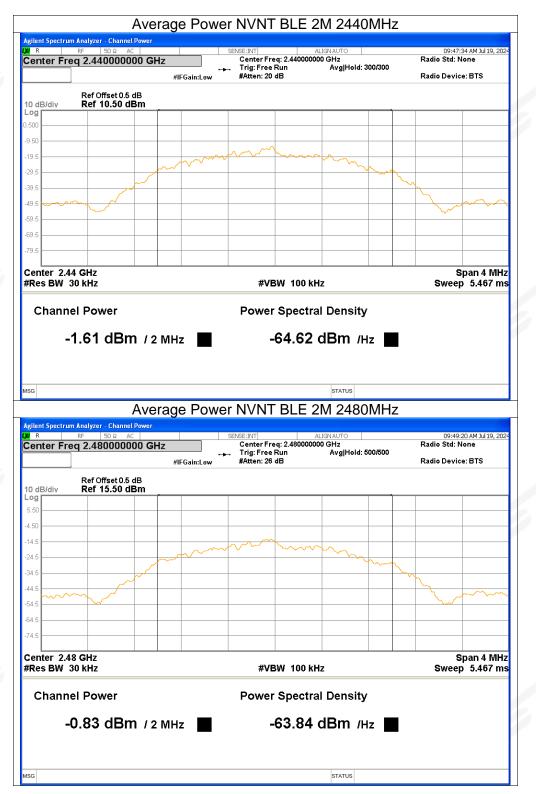
Duty Cycle NVNT BLE 1M 2480MHz

Duty Cycle NVNT BLE 2M 2440MHz



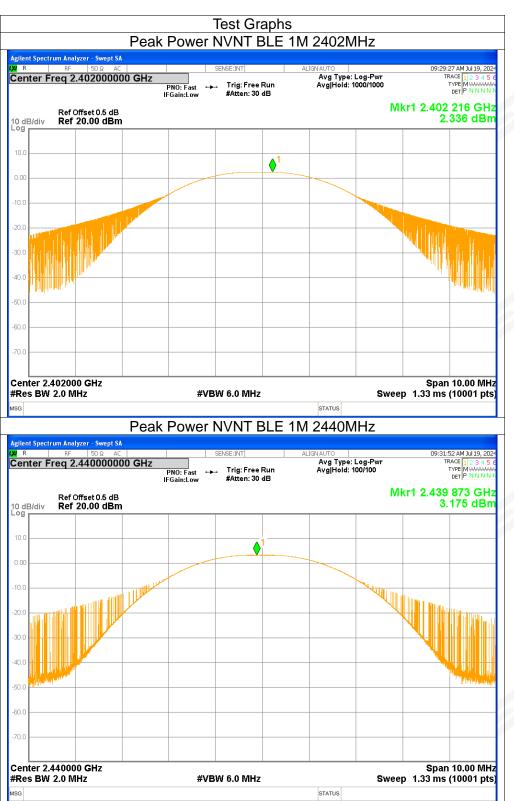
2. Maximum Average Conducted Output Power

Condition	Mode	Frequency (MHz)	Conducted Power (dBm)	Duty Factor (dB)	Total Power (dBm)	Limit (dBm)	Verdict
NVNT	BLE 1M	2402	0.15	1.99	2.14	<=30	Pass
NVNT	BLE 1M	2440	0.94	1.99	2.93	<=30	Pass
NVNT	BLE 1M	2480	1.43	1.99	3.42	<=30	Pass
NVNT	BLE 2M	2402	-2.41	4.72	2.31	<=30	Pass
NVNT	BLE 2M	2440	-1.61	4.74	3.13	<=30	Pass
NVNT	BLE 2M	2480	-0.83	4.74	3.91	<=30	Pass



3. Maximum Peak Conducted Output Power

Condition	Mode	Frequency (MHz)	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	BLE 1M	2402	2.34	<=30	Pass
NVNT	BLE 1M	2440	3.18	<=30	Pass
NVNT	BLE 1M	2480	3.74	<=30	Pass
NVNT	BLE 2M	2402	2.57	<=30	Pass
NVNT	BLE 2M	2440	3.43	<=30	Pass
NVNT	BLE 2M	2480	4.13	<=30	Pass



Page 50 of 73

/

Page 51 of 73

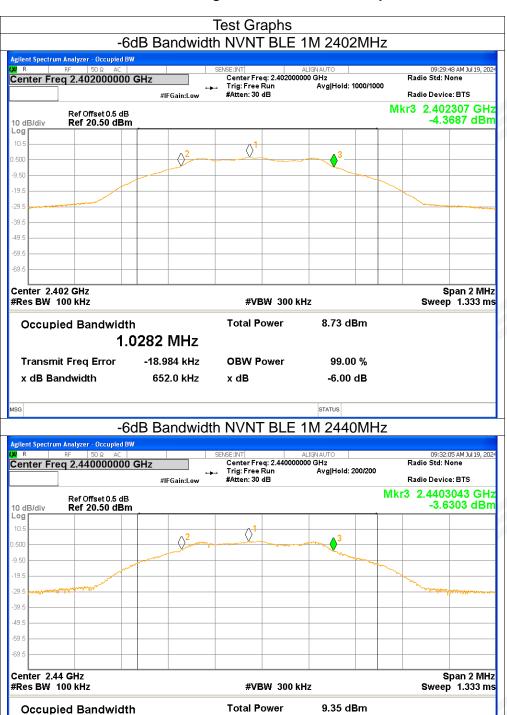
Peak Power NVNT BLE 1M 2480MHz nt Spectrum Analyzer - Swept SA 09:43:14 AM Jul 19, 202 TRACE 1 2 3 4 5 TYPE M WWWWW DET P N N N N R SENSE:INT Center Freq 2.480000000 GHz Avg Type: Log-Pwr Avg|Hold: 100/100 PNO: Fast +++ Trig: Free Run IFGain:Low #Atten: 30 dB Mkr1 2.480 161 GHz Ref Offset 0.5 dB Ref 20.00 dBm 3.736 dBm 10 dB/div Log 10.0 \diamond^1 0.00 -20.0 30.0 -40 r -50.0 -60.0 70 r Span 10.00 MHz #Sweep 150 ms (10001 pts) Center 2.480000 GHz #VBW 6.0 MHz #Res BW 2.0 MHz STATUS MSG Peak Power NVNT BLE 2M 2402MHz nt Spectrum Analyzer - Swept SA R 09:45:38 AM Jul 19, 202 TRACE 1 2 3 4 5 TYPE M WWWWW DET P N N N N Center Freq 2.402000000 GHz Avg Type: Log-Pwi Avg|Hold: 100/100 PNO: Fast +++ Trig: Free Run IFGain:Low #Atten: 30 dB Mkr1 2.402 145 GHz Ref Offset 0.5 dB Ref 20.00 dBm 2.571 dBm 10 dB/div Log 10.0 ♦ 0.0 -20.0 -301 -40.C -50.0 -60 | Center 2.402000 GHz Span 10.00 MHz #Res BW 3.0 MHz #VBW 8.0 MHz Sweep 1.33 ms (10001 pts) STATUS MSG

Page 52 of 73

Peak Power NVNT BLE 2M 2440MHz nt Spectrum Analyzer - Swept SA 09:47:27 AM Jul 19, 202 TRACE 1 2 3 4 5 TYPE M WWWWW DET P N N N N R SENSE:INT Center Freq 2.440000000 GHz Avg Type: Log-Pwr Avg|Hold: 100/100 PNO: Fast +++ Trig: Free Run IFGain:Low #Atten: 30 dB Mkr1 2.439 578 GHz Ref Offset 0.5 dB Ref 20.00 dBm 3.431 dBm 10 dB/div Log 10.0 0.00 -20.0 30. -40 r -50.0 -60.0 70 r Span 10.00 MHz Center 2.440000 GHz #VBW 8.0 MHz Sweep 1.33 ms (10001 pts) #Res BW 3.0 MHz STATUS MSG Peak Power NVNT BLE 2M 2480MHz nt Spectrum Analyzer - Swept SA R 09:49:11 AM Jul 19, 202 TRACE 1 2 3 4 5 TYPE M WWWW DET P N N N N Center Freq 2.480000000 GHz Avg Type: Log-Pwi Avg|Hold: 100/100 PNO: Fast +++ Trig: Free Run IFGain:Low #Atten: 30 dB Mkr1 2.479 697 GHz Ref Offset 0.5 dB Ref 20.00 dBm 4.132 dBm 10 dB/div Log 10.0 **** 0.0 -20.0 30. -40.C -50.0 -60 (Center 2.480000 GHz Span 10.00 MHz #Res BW 3.0 MHz #VBW 8.0 MHz Sweep 1.33 ms (10001 pts) STATUS MSG

4. -6dB Bandwidth

Condition	Mode	Frequency (MHz)	-6 dB Bandwidth (MHz)	Limit -6 dB Bandwidth (MHz)	Verdict
NVNT	BLE 1M	2402	0.652	>=0.5	Pass
NVNT	BLE 1M	2440	0.6472	>=0.5	Pass
NVNT	BLE 1M	2480	0.6513	>=0.5	Pass
NVNT	BLE 2M	2402	1.147	>=0.5	Pass
NVNT	BLE 2M	2440	1.1514	>=0.5	Pass
NVNT	BLE 2M	2480	1.1466	>=0.5	Pass



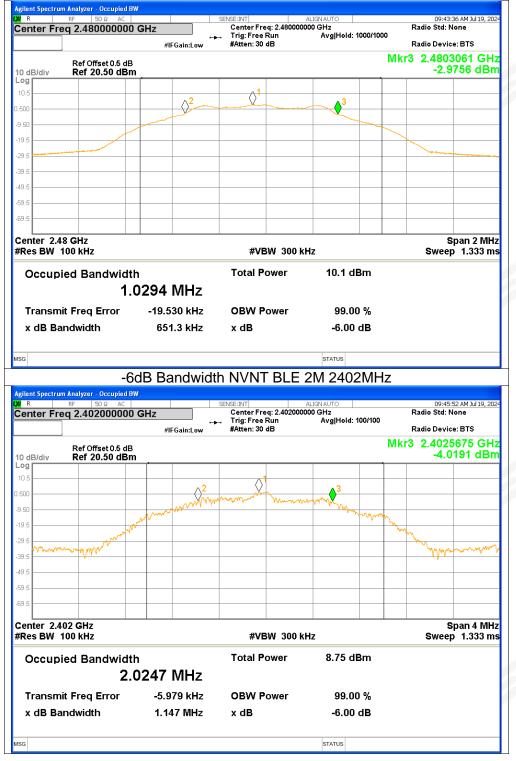
OBW Power

x dB

99.00 %

-6.00 dB

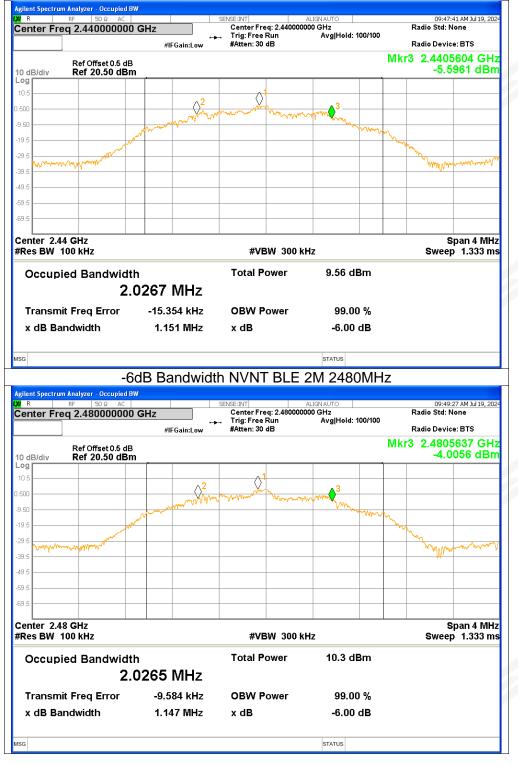
STATUS


1.0259 MHz

Transmit Freq Error x dB Bandwidth -19.331 kHz

647.2 kHz

-6dB Bandwidth NVNT BLE 1M 2480MHz



61

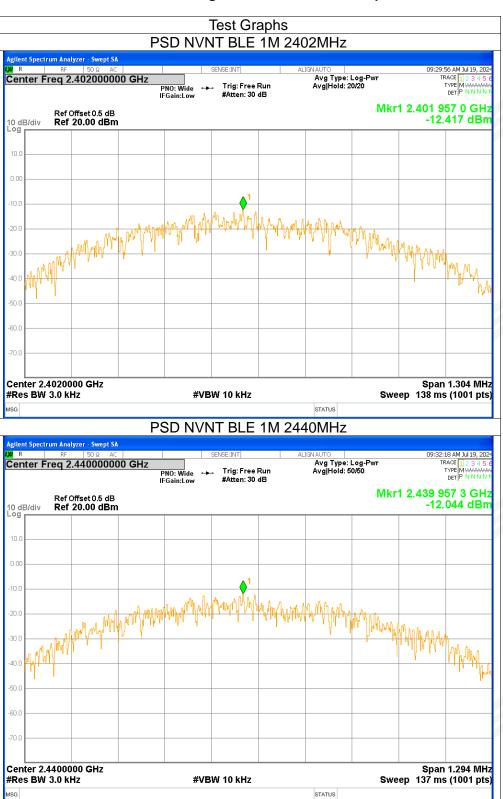
- Sr

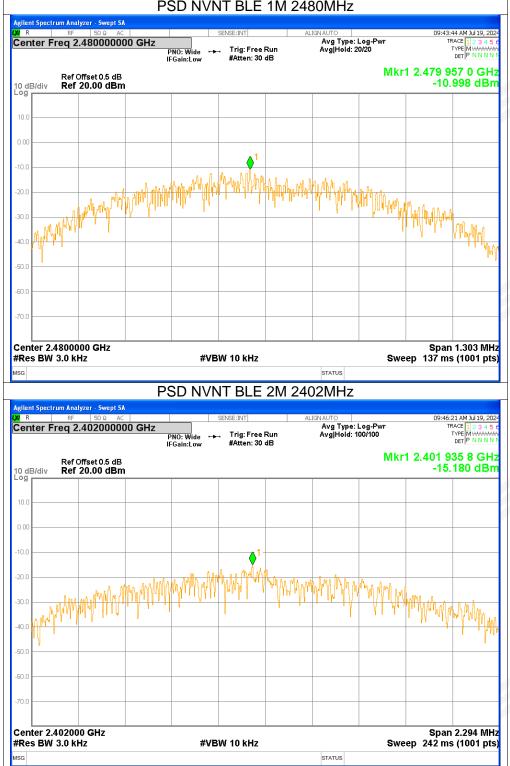
6

6

5. Maximum Power Spectral Density Level

Condition	Mode	Frequency (MHz)	PSD (dBm/3kHz)	Limit (dBm/3kHz)	Verdict
NVNT	BLE 1M	2402	-12.42	<=8	Pass
NVNT	BLE 1M	2440	-12.04	<=8	Pass
NVNT	BLE 1M	2480	-11	<=8	Pass
NVNT	BLE 2M	2402	-15.18	<=8	Pass
NVNT	BLE 2M	2440	-14.37	<=8	Pass
NVNT	BLE 2M	2480	-13.66	<=8	Pass




Page 58 of 73

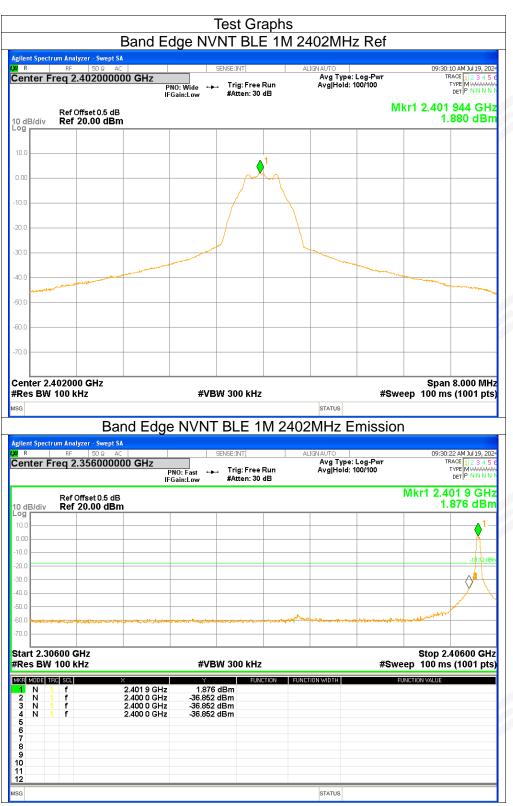
Page 59 of 73

Report No.: STS2407026W01

PSD NVNT BLE 1M 2480MHz

Page 60 of 73

PSD NVNT BLE 2M 2440MHz ectrum Analyzer - Swept SA 09:48:10 AM Jul 19, 202 TRACE 1 2 3 4 5 TYPE MWWWW DET P N N N N R SENSE:INT Center Freq 2.440000000 GHz Avg Type: Log-Pwr Avg|Hold: 100/100 Trig: Free Run #Atten: 30 dB PNO: Wide IFGain:Low Mkr1 2.439 935 5 GHz Ref Offset 0.5 dB Ref 20.00 dBm -14.370 dBm 10 dB/div Log 10. 0.00 -20.0 30. WIIP -40 r -50.0 -60.1 Span 2.303 MHz Sweep 243 ms (1001 pts) Center 2.440000 GHz #VBW 10 kHz #Res BW 3.0 kHz STATUS MSG PSD NVNT BLE 2M 2480MHz t Spectrum Analyzer - Swept SA 09:49:56 AM Jul 19, 20 TRACE 1 2 3 4 5 TYPE M WWWW DET P N N N N F Center Freq 2.480000000 GHz Avg Type: Log-Pwi Avg|Hold: 100/100 Trig: Free Run #Atten: 30 dB PNO: Wide IFGain:Low Mkr1 2.479 935 8 GHz Ref Offset 0.5 dB Ref 20.00 dBm -13.660 dBm 10 dB/div Log 10.0 0.0 20. 111.16 1999 - BANK YW P 30. WINN -40.C -50.0 -60 | Center 2.480000 GHz Span 2.293 MHz #Res BW 3.0 kHz #VBW 10 kHz Sweep 242 ms (1001 pts) STATUS MSG



6. Band Edge

Condition	Mode	Frequency (MHz)	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE 1M	2402	-38.73	<=-20	Pass
NVNT	BLE 1M	2480	-45.8	<=-20	Pass
NVNT	BLE 2M	2402	-33.33	<=-20	Pass
NVNT	BLE 2M	2480	-45.81	<=-20	Pass

Page 62 of 73

Page 63 of 73

nt Spectrum Analyzer - Swept SA 29:43:59 AM Jul 19, 202 TRACE 1 2 3 4 5 (TYPE M WWWW DET P N N N N R ENSE:INT Center Freq 2.480000000 GHz Avg Type: Log-Pwr Avg|Hold: 100/100 Trig: Free Run #Atten: 30 dB PNO: Wide IFGain:Low Mkr1 2.479 992 GHz Ref Offset 0.5 dB Ref 20.00 dBm 3.309 dBm 10 dB/div 10. 0.00 -20.0 30.0 -40 -50.0 -60.0 70 r Span 8.000 MHz #Sweep 100 ms (1001 pts) Center 2.480000 GHz #VBW 300 kHz #Res BW 100 kHz STATUS MSG Band Edge NVNT BLE 1M 2480MHz Emission t Spectrum Analyzer - Swept SA 09:44:10 AM Jul 19, 202 TRACE 1 2 3 4 5 TYPE MWAAAM DET P N N N N R Center Freq 2.526000000 GHz Avg Type: Log-Pwi Avg|Hold: 100/100 PNO: Fast +++ Trig: Free Run IFGain:Low #Atten: 30 dB Mkr1 2.480 0 GHz Ref Offset 0.5 dB Ref 20.00 dBm 3.319 dBm 10 dB/div Log 0.00 10.0 -16.69 di 20.0 30.0 $\langle \rangle$ 40.0 -50.0 $\langle \rangle^3$ -60.0 70.0 Start 2.47600 GHz #Res BW 100 kHz Stop 2.57600 GHz #VBW 300 kHz #Sweep 100 ms (1001 pts) MKR MODE TRC SCL FUNCTION FUNCTION WIDTH FUNCTION VALUE 2.480 0 GHz 2.483 5 GHz 2.500 0 GHz 2.483 6 GHz 3.319 dBm -42.715 dBm -59.013 dBm -42.495 dBm NNNN 2 3 4 5 6 7 8 9 10 11 12 f STATUS ISG

Band Edge NVNT BLE 1M 2480MHz Ref

Page 64 of 73

J9:46:25 AN TRACE 1 2 TYPE Mt DET P t Spectrum Analyzer - Swept SA R AM Jul 19, 20 Center Freq 2.402000000 GHz Avg Type: Log-Pwr Avg|Hold: 100/100 Trig: Free Run #Atten: 30 dB PNO: Wide IFGain:Low Mkr1 2.401 992 GHz Ref Offset 0.5 dB Ref 20.00 dBm 2.013 dBm 10 dB/div 10. 0.00 Mm 20. 30. 40.1 "Arman -50.0 -60.1 Span 8.000 MHz Center 2.402000 GHz #VBW 300 kHz Sweep 1.00 ms (1001 pts) #Res BW 100 kHz STATUS MSG Band Edge NVNT BLE 2M 2402MHz Emission t Spectrum Analyzer - Swept SA 09:46:28 AM Jul 19, 20 TRACE 1 2 3 4 5 TYPE M WWWW DET P N N N N R Center Freg 2.356000000 GHz Avg Type: Log-Pwi Avg|Hold: 100/100 PNO: Fast +++ Trig: Free Run IFGain:Low #Atten: 30 dB Mkr1 2.401 9 GHz Ref Offset 0.5 dB Ref 20.00 dBm 2.299 dBm 10 dB/div Log 0.00 10.0 -17.99 d 20.1 30.0 40.0 -50.0 -60.0 Start 2.30600 GHz #Res BW 100 kHz Stop 2.40600 GHz #VBW 300 kHz Sweep 9.60 ms (1001 pts) MKR MODE TRC SCL FUNCTION FUNCTION WIDTH UNCTION VALUE 2.401 9 GHz 2.400 0 GHz 2.400 0 GHz 2.400 0 GHz 2.299 dBm -31.322 dBm -31.322 dBm -31.322 dBm N N N 2 3 4 5 6 7 8 9 10 11 12 f STATUS ISG

Band Edge NVNT BLE 2M 2402MHz Ref

Page 65 of 73

nt Spectrum Analyzer - Swept SA 09:50:00 AM Jul 19, 202 TRACE 1 2 3 4 5 TYPE MWWWW DET P N N N N R ENSE:INT Center Freq 2.480000000 GHz Avg Type: Log-Pwr Avg|Hold: 100/100 Trig: Free Run #Atten: 30 dB PNO: Wide IFGain:Low Mkr1 2.479 936 GHz Ref Offset 0.5 dB Ref 20.00 dBm 3.712 dBm 10 dB/div 10. 0.00 JAYV. 20. 30. WY WYW 40.1 MAMAAN W -50.0 -60.1 Span 8.000 MHz Center 2.480000 GHz #VBW 300 kHz Sweep 1.00 ms (1001 pts) #Res BW 100 kHz STATUS MSG Band Edge NVNT BLE 2M 2480MHz Emission t Spectrum Analyzer - Swept SA 50:03 AM Jul 19, 202 TRACE 1 2 3 4 5 TYPE MWAAAAA DET P N N N N R Center Freq 2.526000000 GHz Avg Type: Log-Pwi Avg|Hold: 100/100 PNO: Fast +++ Trig: Free Run IFGain:Low #Atten: 30 dB Mkr1 2.479 9 GHz Ref Offset 0.5 dB Ref 20.00 dBm 3.728 dBm 10 dB/div Log 0.00 10.0 -16.29 di 20.0 30.0 $\langle \rangle^2$ 40.0 -50.0 -60.0 Start 2.47600 GHz #Res BW 100 kHz Stop 2.57600 GHz #VBW 300 kHz Sweep 9.60 ms (1001 pts) MKR MODE TRC SCL FUNCTION FUNCTION WIDTH UNCTION VALUE 2.479 9 GHz 2.483 5 GHz 2.500 0 GHz 2.483 5 GHz 3.728 dBm -42.100 dBm -60.091 dBm -42.100 dBm NNNN 2 3 4 5 6 7 8 9 10 11 12 f STATUS ISG

Band Edge NVNT BLE 2M 2480MHz Ref

7. Conducted RF Spurious Emission

Condition	Mode	Frequency (MHz)	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE 1M	2402	-39.31	<=-20	Pass
NVNT	BLE 1M	2440	-50.01	<=-20	Pass
NVNT	BLE 1M	2480	-50.97	<=-20	Pass
NVNT	BLE 2M	2402	-59.8	<=-20	Pass
NVNT	BLE 2M	2440	-59.1	<=-20	Pass
NVNT	BLE 2M	2480	-60.15	<=-20	Pass

Page 67 of 73

ent Spectrum Analyzer - R RF S nter Freq 2.440	0 Ω AC 0000000 GHz		ree Run :: 30 dB	Avg Type: Log Avg Hold: 100/	100	TR 1	23 AM Jul 19, 2024 ACE 1 2 3 4 5 6 YPE M WARKAN DET P N N N N N
Ref Offset B/div Ref 20.0					Mkr1		952 GHz 849 dBm
D			\mathbf{A}^1				
0							
]							
		/					
		- many at	m	m Mr			
0 - 00 ⁰⁰	M M M	WY I			monor	WU DA	
, <u>m m m</u>				<u> </u>			MMM
	۰. ۱			·		. ()I	
)							
nter 2.440000 Gl s BW 100 kHz	łz	#VBW 300 I	<h7< td=""><td></td><td>Sween</td><td></td><td>8.000 MHz (1001 pts)</td></h7<>		Sween		8.000 MHz (1001 pts)
				STATUS	P		(1001 pts)
		us NVNT BLI	E 1M 2440		-		(1001 pts)
	Swept SA Ο Ω AC	JS NVNT BLI			nission	09:32:5	i4 AM Jul 19, 2024
R RF 5	Swept SA 0 Ω AC 5000000 GHz	SENSE:INT)MHz En	nission	09:32:5 TR 1	34 AM Jul 19, 2024 ACE 12345 E YPE MWWWW DET PNNNN
	Swept SA 0 Ω AC 5000000 GHz 10.5 dB	SENSE:INT	ALIO		nission	09:32:5 TR 1 (r1 2.4 ;	34 AM Jul 19, 2024 ACE 1 2 3 4 5 6 YPE M
R RF S	Swept SA 0 Ω AC 5000000 GHz 10.5 dB	SENSE:INT	ALIG		nission	09:32:5 TR 1 (r1 2.4 ;	4 AM 3JI 19, 2024 ACE 1 2 3 4 5 6 YPE M WWWWW DET P N N N N 39 7 GHz
Ref Offsed	Swept SA 0 Ω AC 5000000 GHz 10.5 dB	SENSE:INT	ALIG		nission	09:32:5 TR 1 (r1 2.4 ;	4 AM 3JI 19, 2024 ACE 1 2 3 4 5 6 YPE M WWWWW DET P N N N N 39 7 GHz
Ref Offset	Swept SA 0 Ω AC 5000000 GHz 10.5 dB	SENSE:INT	ALIG		nission	09:32:5 TR 1 (r1 2.4 ;	4 AM 3JI 19, 2024 ACE 1 2 3 4 5 6 YPE M WWWWW DET P N N N N 39 7 GHz
Ref Offset B/div Ref 20.0	Swept SA 0 Ω AC 5000000 GHz 10.5 dB	SENSE:INT	ALIG		nission	09:32:5 TR 1 (r1 2.4 ;	4 AM Jul 19, 2024 ACE 112 3 4 5 6 YPE MWWWWW DET P N N N N 39 7 GHz 027 dBm
Ref Offset	Swept SA 0 Ω AC 5000000 GHz 10.5 dB	SENSE:INT	ALIG		nission	09:32:5 TR 1 (r1 2.4 ;	4 AM Jul 19, 2024 ACE 112 3 4 5 6 YPE MWWWWW DET P N N N N 39 7 GHz 027 dBm
Ref Offset	Swept SA 0 Ω AC 5000000 GHz 10.5 dB	SENSE:INT	ALIG		nission	09:32:5 TR 1 (r1 2.4 ;	4 AM Jul 19, 2024 ACE 112 3 4 5 6 YPE MWWWWW DET P N N N N 39 7 GHz 027 dBm
Ref Offset	Swept SA 0 Ω AC 5000000 GHz 10.5 dB	SENSE:INT	iree Run 2: 30 dB		nission g-Pwr Mk	09:32:5 r1 2.4 2.	4 AM Jul 19, 2024 ACE 112 3 4 5 6 YPE MWWWWW DET P N N N N 39 7 GHz 027 dBm
Ref Offsel	Swept SA □ Ω AC SO00000 GHz II II II II II II II II II I	SENSE:INT PNO: Fast → Trig: F Gain:Low → #Atten	iree Run 2: 30 dB	DMHz En	nission g-Pwr Mk	09:32:5 r1 2.4 2.	ACE 12 3 4 5 6 YPE M WAYNAW DET P N N N N 39 7 GHz 027 dBm -17.15 dBm -22. 26.50 GHz
Ref Offsel BE/div Ref 20.0 BB/div Ref 20.0 Comparison of the second seco	Swept 5A 0 2 AC 15000000 GHz 10.5 dB 0 dBm 0 dBm 2.439 7 GHz 2.439 7 GHz 2.439 7 GHz 2.439 7 GHz 7.436 3 GHz 7.436 3 GHz	SENSE:INT PNO: Fast → Trig: F Gain:Low → #Atten #Atten #VBW 300 F 2027 dBm 47.164 dBm -56.743 dBm -56.743 dBm	iree Run : 30 dB	DMHz En	nission g-Pwr Mk	09:32:5 IR 2. 2. Stop 2.53 s	ACE 12 3 4 5 6 YPE M WAYNAW DET P N N N N 39 7 GHz 027 dBm -17.15 dBm -22. 26.50 GHz
Ref Offset Ref Offset B/div Ref 20.0 1 1 1 1 1 1 1 1 1 1 1 1 1	Swept SA 0 2 AC 15000000 GHz 10.5 dB 0 dBm 0 dBm 4.397 GHz 25.7818 GHz 4.994 0 GHz	SENSE:INT PNO: Fast → Trig: F Gain:Low → #Atten #Atten #VBW 300 F 2027 dBm 47.164 dBm -56.743 dBm -56.743 dBm	iree Run : 30 dB	DMHz En	nission g-Pwr Mk	09:32:5 IR 2. 2. Stop 2.53 s	ACE 12 3 4 5 6 YPE M WAYNAW DET P N N N N 39 7 GHz 027 dBm -17.15 dBm -22. 26.50 GHz
Ref Offset B/div Ref 20.0 B/div Ref 20.0 1 1 1 1 1 1 1 1 1 1 1 1	Swept 5A 0 2 AC 15000000 GHz 10.5 dB 0 dBm 0 dBm 2.439 7 GHz 2.439 7 GHz 2.439 7 GHz 2.439 7 GHz 7.436 3 GHz 7.436 3 GHz	SENSE:INT PNO: Fast → Trig: F Gain:Low → #Atten #Atten #VBW 300 F 2027 dBm 47.164 dBm -56.743 dBm -56.743 dBm	iree Run : 30 dB	DMHz En	nission g-Pwr Mk	09:32:5 IR 2. 2. Stop 2.53 s	ACE 12 3 4 5 6 YPE M WAYNAW DET P N N N N 39 7 GHz 027 dBm -17.15 dBm -22. 26.50 GHz
Ref Offset B/div Ref 20.0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Swept 5A 0 2 AC 15000000 GHz 10.5 dB 0 dBm 0 dBm 2.439 7 GHz 2.439 7 GHz 2.439 7 GHz 2.439 7 GHz 7.436 3 GHz 7.436 3 GHz	SENSE:INT PNO: Fast → Trig: F Gain:Low → #Atten #Atten #VBW 300 F 2027 dBm 47.164 dBm -56.743 dBm -56.743 dBm	iree Run : 30 dB	DMHz En	nission g-Pwr Mk	09:32:5 IR 2. 2. Stop 2.53 s	ACE 12 3 4 5 6 YPE M WAYNAW DET P N N N N 39 7 GHz 027 dBm -17.15 dBm -22. 26.50 GHz

nt Spectrum Analyzer - RF 5 Iter Freq 2.480	000000 GHz		ग g: Free Run ten: 30 dB	ALIGN AUTO Avg Type: L Avg Hold: 10	10/100	-	15 AM Jul 19, 2024 IRACE 1 2 3 4 5 6 TYPE M MMMMM DET P N N N N
Ref Offset B/div Ref 20.0					М) 008 GHz .329 dBm
			•1				
			from which				
			·				
		/					
		ommer		ham			
	mont	1 mm		May Mary	mon		
ma arm Mari	┶┺┹┸╢╖╢╁╻╂╷┞			U.		mm	hma mwa
		<u>«</u>			r	1 .	
							74
ter 2.480000 GH s BW 100 kHz	Iz	#VBW 300	0 kHz		Swe		n 8.000 MHz s (1001 pts)
				STATUS			
		us NVNT BL	_E 1M 24		missic	n	
nt Spectrum Analyzer - RF 5	Swept SA DΩ AC	US NVNT BL		480MHz E		09:44	:46 AM Jul 19, 2024
it Spectrum Analyzer - RF 5	Swept SA D Q AC 5000000 GHz	SENSE:IN		480MHz E	.og-Pwr	09:44	::46 AM Jul 19, 2024 TRACE 1 2 3 4 5 6 TYPE M WWWWW DET P N N N N
t Spectrum Analyzer - RF S ter Freq 13.26 Ref Offset	Swept SA D Q AC 5000000 GHz II 0.5 dB	SENSE:IN PNO: Fast ⊶→ Trig	ता g: Free Run	480MHz E	.og-Pwr	09:44 Mkr1 2.4	
nt Spectrum Analyzer - RF 5 Nter Freq 13.26	Swept SA D Q AC 5000000 GHz II 0.5 dB	SENSE:IN PNO: Fast ⊶→ Trig	ता g: Free Run	480MHz E	.og-Pwr	09:44 Mkr1 2.4	TYPE MWWWWW DET PNNNN
nt Spectrum Analyzer - RF 5 Iter Freq 13.26 Ref Offset	Swept SA D Q AC 5000000 GHz II 0.5 dB	SENSE:IN PNO: Fast ⊶→ Trig	ता g: Free Run	480MHz E	.og-Pwr	09:44 Mkr1 2.4	
nt Spectrum Analyzer - RF 5 Iter Freq 13.26 Ref Offset	Swept SA D Q AC 5000000 GHz II 0.5 dB	SENSE:IN PNO: Fast ⊶→ Trig	ता g: Free Run	480MHz E	.og-Pwr	09:44 Mkr1 2.4	
nt Spectrum Analyzer - RF 5 Iter Freq 13.26 Ref Offset	Swept SA D Q AC 5000000 GHz II 0.5 dB	SENSE:IN PNO: Fast ⊶→ Trig	ता g: Free Run	480MHz E	.og-Pwr	09:44 Mkr1 2.4	
nt Spectrum Analyzer - RF 5 Iter Freq 13.26 Ref Offset	Swept SA D Q AC 5000000 GHz II 0.5 dB	FGain:Low #Att	ता g: Free Run	480MHz E	.og-Pwr	09:44 Mkr1 2.4	
nt Spectrum Analyzer - RF 5 Iter Freq 13.26 Ref Offset	Swept SA D Q AC 5000000 GHz II 0.5 dB	SENSE:IN PNO: Fast ⊶→ Trig	ता g: Free Run	480MHz E	.og-Pwr	09:44 Mkr1 2.4	
nt Spectrum Analyzer - RF 5 Iter Freq 13.26 Ref Offset	Swept SA D Q AC 5000000 GHz II 0.5 dB	FGain:Low #Att	ता g: Free Run	480MHz E	.og-Pwr	09:44 Mkr1 2.4	
It Spectrum Analyzer - RF Si Iter Freq 13.26 B/div Ref 20.0 1 1 1 1 1 1 1 1 1 1 1 1 1	Swept SA D Q AC 5000000 GHz II 0.5 dB	FGain:Low #Att	IT	ALIGN AUTO Avg Type: L Avg Hold: 10	og-Pwr I/10	09:44 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
It Spectrum Analyzer RF Si Iter Freq 13.26 B/div Ref Offset 1	Swept SA 2 AC 5000000 GHz 0 0 0 0 0 0 0 0 0 0 0 0 0	PNO: Fast FGain:Low → Trig FGain:Low → #Att 5 #VBW 300 2.219 dBm	IT	ALIGN AUTO Avg Type: L Avg Hold: 10	og-Pwr I/10	09:44	IRACE 23 4 5 6 TYPE 40 4 5 6 DET 12 3 4
It Spectrum Analyzer	Swept SA 2 AC 5000000 GHz 0.5 dB 0 dBm 0 dBm	SENSE:IN PNO: Fast FGain:Low → Trig FGain:Low #Att	IT	ALIGN AUTO Avg Type: L Avg Hold: 10	og-Pwr I/10	09:44 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	IRACE 23 4 5 6 TYPE 40 4 5 6 DET 12 3 4
It Spectrum Analyzer	Swept SA □ Ω AC 5000000 GHz 0.5 dB 0 dBm 0 dBm 0 dBm 4 2.480 2 GHz 25.277 1 GHz	SENSE:IN FGain:Low FGain:Low	IT	ALIGN AUTO Avg Type: L Avg Hold: 10	og-Pwr I/10	09:44 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	IRACE 23 4 5 6 TYPE 40 4 5 6 DET 12 3 4
It Spectrum Analyzer - RF Si Iter Freq 13.26 Ref Offset B/div Ref 20.0 1 1 1 1 1 1 1 1 1 1 1 1 1	Swept SA D Q AC 5000000 GHz 0.5 dB 0 dBm 0 dBm	SENSE:IN FGain:Low FGain:Low	IT	ALIGN AUTO Avg Type: L Avg Hold: 10	og-Pwr I/10	09:44 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	IRACE 23 4 5 6 TYPE 40 4 5 6 DET 12 3 4
Spectrum Analyzer - RF SS See Freq 13.26 Ref Offset Ref 20.0 	Swept SA D Q AC 5000000 GHz 0.5 dB 0 dBm 0 dBm	SENSE:IN FGain:Low FGain:Low	IT	ALIGN AUTO Avg Type: L Avg Hold: 10	og-Pwr I/10	09:44 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	IRACE 23 4 5 6 TYPE 40 4 5 6 DET 12 3 4

Tx Spurious NI/NT BLE 1M 2480MHz Ref

Page 70 of 73

nt Spectrum Analyzer - Swept SA 09:46:33 AM Jul 19, 202 TRACE 1 2 3 4 5 TYPE M WWWWW DET P N N N N R ENSE:INT Center Freq 2.402000000 GHz Avg Type: Log-Pwr Avg|Hold: 100/100 Trig: Free Run PNO: Wide IFGain:Low #Atten: 20 dB Mkr1 2.401 952 GHz Ref Offset 0.5 dB Ref 10.50 dBm 2.149 dBm 10 dB/div ۵ 0.500 N 29. hr 39. my mon MA M WM η<mark>ηγ</mark> -49 # -59. -69. Span 8.000 MHz Center 2.402000 GHz #VBW 300 kHz Sweep 1.00 ms (1001 pts) #Res BW 100 kHz STATUS MSG Tx. Spurious NVNT BLE 2M 2402MHz Emission t Spectrum Analyzer - Swept SA 09:46:50 AM Jul 19, 202 TRACE 1 2 3 4 5 TYPE M WWWWW DET P N N N N R Center Freq 13.265000000 GHz Avg Type: Log-Pwr Avg|Hold: 5/5 PNO: Fast +++ Trig: Free Run IFGain:Low #Atten: 20 dB Mkr1 2.400 8 GHz Ref Offset 0.5 dB -33.947 dBm 10 dB/div Log Ref 10.50 dBm .500 9.5 -17.85 dB 19.5 29 39.5 49.5 -59.5 $\langle \rangle^{5}$ $\langle \rangle^4$ $\langle \rangle$ -69.5 79.5 Start 30 MHz #Res BW 100 kHz Stop 26.50 GHz #VBW 300 kHz Sweep 2.53 s (30001 pts) UNCTION VALUE MKR MODE TRC SCL FUNCTION FUNCTION WIDTH 2.400 8 GHz 26.465 6 GHz 4.980 8 GHz 7.372 8 GHz 9.523 9 GHz -33.947 dBm -57.653 dBm -67.639 dBm -66.866 dBm -67.133 dBm N N N N N 2 3 4 5 6 7 8 9 10 11 12 f STATUS ISG

Tx. Spurious NVNT BLE 2M 2402MHz Ref

nt Spectrum Analyzer - Swept SA 09:48:15 AM Jul 19, 202 TRACE 1 2 3 4 5 TYPE M WWWWW DET P N N N N R ENSE:INT Center Freq 2.440000000 GHz Avg Type: Log-Pwr Avg|Hold: 100/100 Trig: Free Run PNO: Wide IFGain:Low #Atten: 20 dB Mkr1 2.439 944 GHz Ref Offset 0.5 dB Ref 10.50 dBm 2.918 dBm 10 dB/div Č 0.500 w 29. Wand mam -49 -59. -69. Span 8.000 MHz Center 2.440000 GHz #VBW 300 kHz Sweep 1.00 ms (1001 pts) #Res BW 100 kHz STATUS MSG Tx. Spurious NVNT BLE 2M 2440MHz Emission t Spectrum Analyzer - Swept SA 09:48:46 AM Jul 19, 202 TRACE 1 2 3 4 5 TYPE M WWWW DET P N N N N R Center Freg 13.265000000 GHz Avg Type: Log-Pwr Avg|Hold: 10/10 PNO: Fast +++ Trig: Free Run IFGain:Low #Atten: 20 dB Mkr1 2.440 5 GHz Ref Offset 0.5 dB -1.054 dBm 10 dB/div Log Ref 10.50 dBm .500 9.5 -17.08 dt 19.5 29 39.5 \Diamond^2 49.5 -**∕**5 -59.5 \bigcirc^4 \Diamond -69.5 79.5 Start 30 MHz #Res BW 100 kHz Stop 26.50 GHz #VBW 300 kHz Sweep 2.53 s (30001 pts) FUNCTION VALUE MKR MODE TRC SCL FUNCTION FUNCTION WIDTH 2.440 5 GHz 25.189 7 GHz 4.880 2 GHz 7.299 5 GHz 9.951 0 GHz -1.054 dBm -56.181 dBm -66.383 dBm -66.656 dBm -66.153 dBm N N N N N 2 3 4 5 6 7 8 9 10 11 12 f STATUS ISG

Tx. Spurious NVNT BLE 2M 2440MHz Ref

Page 72 of 73

nt Spectrum Analyzer - Swept SA 09:50:08 AM Jul 19, 202 TRACE 1 2 3 4 5 TYPE MWWWW DET P N N N N R ENSE:INT Center Freq 2.480000000 GHz Avg Type: Log-Pwr Avg|Hold: 100/100 Trig: Free Run #Atten: 20 dB PNO: Wide IFGain:Low Mkr1 2.480 000 GHz Ref Offset 0.5 dB Ref 10.50 dBm 3.536 dBm 10 dB/div 0.500 NW 29. m W MMW Willing -49 -59. -69. Span 8.000 MHz Center 2.480000 GHz #VBW 300 kHz Sweep 1.00 ms (1001 pts) #Res BW 100 kHz STATUS MSG Tx. Spurious NVNT BLE 2M 2480MHz Emission t Spectrum Analyzer - Swept SA 09:50:39 AM Jul 19, 202 TRACE 1 2 3 4 5 TYPE M WAAAAAA DET P N N N N R Center Freg 13.265000000 GHz Avg Type: Log-Pwr Avg|Hold: 10/10 PNO: Fast +++ Trig: Free Run IFGain:Low #Atten: 20 dB Mkr1 2.480 2 GHz Ref Offset 0.5 dB -0.541 dBm 10 dB/div Log Ref 10.50 dBm .500 9.5 -16.46 dB 19.5 29 39.5 (∕<mark>2</mark> 49.5 -59.5 \bigcirc^4 $\langle \rangle$ $\langle \rangle$ -69.5 79.5 Start 30 MHz #Res BW 100 kHz Stop 26.50 GHz #VBW 300 kHz Sweep 2.53 s (30001 pts) FUNCTION VALUE MKR MODE TRC SCL FUNCTION FUNCTION WIDTH 2.480 2 GHz 25.116 5 GHz 4.943 7 GHz 7.459 2 GHz 10.078 9 GHz -0.541 dBm -56.617 dBm -67.393 dBm -65.709 dBm -67.193 dBm N N N N N 2 3 4 5 6 7 8 9 10 11 12 f STATUS ISG

Tx. Spurious NVNT BLE 2M 2480MHz Ref

APPENDIX 2- EUT TEST PHOTO

Note: See test photos in setup photo document for the actual connections between Product and support equipment.
