POCE V1.0	Report No.: POCE240229001RF001
POCE Techanlugy	
POCE	
Shenzhen V	Veiwo Innovation Technology Co., Ltd.
Pro	duct Name: Neideso Dash Cam
	Test Model(s).: N700
Report Reference No.	: POCE240229001RF001
FCC ID	: 2BFJA-N700
Applicant's Name	: Shenzhen Weiwo Innovation Technology Co., Ltd.
Address	 Room 504, Building 4, Manjinghua Yiluan Building, N0.230 Xixiang Avenue, Longteng Community, Xixiang Street, Bao'an District, Shenzhen, P.R.China
Testing Laboratory	: Shenzhen POCE Technology Co., Ltd.
Address	 101-102 Building H5 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China
Test Specification Standard	47 CFR Part 15E KDB 789033 D02 General U-NII Test Procedures New Rules v02r01
Date of Receipt	: February 29, 2024
Date of Test	: February 29, 2024 to March 13, 2024
Data of Issue	: March 13, 2024
Result	: Pass
Technology Co., Ltd. This docun	produced except in full, without the written approval of Shenzhen POCE nent may be altered or revised by Shenzhen POCE Testing Technology Co., a noted in the revision section of the document. The test results in the report

Revision History Of Report

Version	Description	REPORT No.	Issue Date
V1.0	Original	POCE240229001RF001	March 13, 2024
	~		
	200		
	44		

NOTE1:

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

Keren Huang

Keren Huang / Test Engineer

Supervised by:

Stone Yin / Project Engineer

Approved by:

Tomchen

Tom Chen / Manager

101-102 Building H5 & 1/F., Building H,Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, ChinaWeb:http://www.poce-cert.comTel: 86-755-29113252E-mail: service@poce-cert.comPage 2 of 83

Techanitat

CONTENTS

1	TES	T SUMMARY	$\mathcal{O}\mathcal{O}$
•		TEST STANDARDS	
	1.1 1.2	TEST STANDARDS	
•			
2	GEN		
	2.1	CLIENT INFORMATION	
	2.2	DESCRIPTION OF DEVICE (EUT)	
	2.3 2.4	DESCRIPTION OF TEST MODES DESCRIPTION OF SUPPORT UNITS	
	2.4 2.5	EQUIPMENTS USED DURING THE TEST	
	2.6	STATEMENT OF THE MEASUREMENT UNCERTAINTY	
	2.7	AUTHORIZATIONS	
	2.8	ANNOUNCEMENT	9
3	RAD	IO SPECTRUM MATTER TEST RESULTS (RF)	10
	3.1	DUTY CYCLE	10
		3.1.1 E.U.T. Operation:	
		3.1.2 Test Setup Diagram:	
		3.1.3 Test Data:	
	3.2	MAXIMUM CONDUCTED OUTPUT POWER	
		3.2.1 E.U.T. Operation:	
		3.2.2 Test Setup Diagram:	
		3.2.3 Test Data:	
	3.3	POWER SPECTRAL DENSITY	
		3.3.1 E.U.T. Operation:	
		3.3.2 Test Setup Diagram:	
		3.3.3 Test Data:	
	3.4	EMISSION BANDWIDTH AND OCCUPIED BANDWIDTH	
	••••	3.4.1 E.U.T. Operation:	
		3.4.2 Test Setup Diagram:	
		3.4.3 Test Data:	
	3.5	BAND EDGE EMISSIONS (RADIATED)	
	0.0	3.5.1 E.U.T. Operation:	
		3.5.2 Test Setup Diagram:	
		3.5.3 Test Data:	
	3.6	UNDESIRABLE EMISSION LIMITS (BELOW 1GHZ)	
	5.0	3.6.1 E.U.T. Operation:	
		3.6.2 Test Data:	
	3.7	UNDESIRABLE EMISSION LIMITS (ABOVE 1GHz)	
	3.1		
		3.7.1 E.U.T. Operation:3.7.2 Test Setup Diagram:	
	6	3.7.3 Test Data:	
4			
5		TOS OF THE EUT	
APP			
	1.	-6DB EMISSION BANDWIDTH	
	2. 3.	-26DB AND 99% EMISSION BANDWIDTH	
101-1	02 Buildi	ing H5 & 1/F., Building H,Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong	g, China

Tel: 86-755-29113252

Web:http://www.poce-cert.com

E-mail: service@poce-cert.com

Page 3 of 83

4.	MAXIMUM CONDUCTED OUTPUT POWER	. 65
5.	Power Spectral Density	65
6.	BANDEDGE	.70
7.	SPURIOUS EMISSION	.74
8.	FREQUENCY STABILITY	. 79

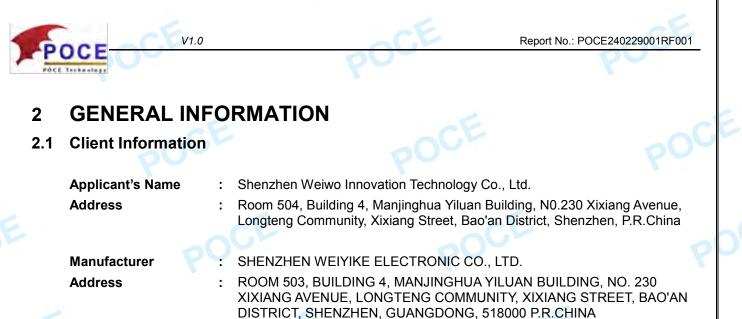
101-102 Building H5 & 1/F., Building H,Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, ChinaWeb:http://www.poce-cert.comTel: 86-755-29113252E-mail: service@poce-cert.comPage 4 of 83

TEST SUMMARY 1

1.1 **Test Standards**

The tests were performed according to following standards:

V1.0


47 CFR Part 15E: Unlicensed National Information Infrastructure Devices POC

1.2 Summary of Test Result

Item	Method	Requirement	Result
Duty Cycle	ANSI C63.10-2013 section 12.2 (b)	1	Pass
Maximum conducted output power	ANSI C63.10-2013, section 12.3	47 CFR Part 15.407(a)(3)(i)	Pass
Power spectral density	ANSI C63.10-2013, section 12.5	47 CFR Part 15.407(a)(3)(i)	Pass
Emission bandwidth and occupied bandwidth	ANSI C63.10-2013, section 6.9 & 12.4 KDB 789033 D02, Clause C.2	47 CFR Part 15.407(e)	Pass
Band edge emissions (Radiated)	ANSI C63.10-2013, section 12.7.4, 12.7.6, 12.7.7	47 CFR Part 15.407(b)(4) 47 CFR Part 15.407(b)(10)	Pass
Undesirable emission limits (below 1GHz)	ANSI C63.10-2013, section 12.7.4, 12.7.5	47 CFR Part 15.407(b)(9)	Pass
Undesirable emission limits (above 1GHz)	ANSI C63.10-2013, section 12.7.4, 12.7.6, 12.7.7	47 CFR Part 15.407(b)(4) 47 CFR Part 15.407(b)(10)	Pass

Note: 1.N/A -this device(EUT) is not applicable to this testing item 2. RF-conducted test results including cable loss.

101-102 Building H5 & 1/F., Building H,Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web:http://www.poce-cert.com Tel: 86-755-29113252 E-mail: service@poce-cert.com Page 5 of 83

2.2 Description of Device (EUT)

•			
Product Name:	Neideso Dash Cam		
Model/Type reference:	N700		
Series Model:	N100, N300, N500, N600, N900		
Model Difference:	The difference between models is that the built-in software version is different, and other hardware components are the same, such as PCB, BOM, and other electrical structures. Therefore, the test model is N700		
Trade Mark:	Neideso		
Product Description:	Neideso Dash Cam		
Power Supply:	DC5.0V from car-adapter(DC12V24V)		
Operation Frequency:	802.11a/n(HT20): U-NII Band 3: 5745MHz to 5825MHz; 802.11n(HT40): U-NII Band 3: 5755MHz to 5795MHz;		
Number of Channels:	802.11a/n(HT20): U-NII Band 3: 5; 802.11n(HT40): U-NII Band 3: 2;		
Modulation Type:	802.11a: OFDM(BPSK, QPSK, 16QAM, 64QAM); 802.11n: OFDM (BPSK, QPSK, 16QAM, 64QAM);		
Antenna Type:	PCB ANTENNA		
Antenna Gain"	2.27dBi		
Hardware Version:	V1.0		
Software Version:			

2.3 Description of Test Modes

No	Title	Description
TM1	802.11a mode	Keep the EUT in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report.
TM2	802.11n(HT20) mode	Keep the EUT in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS7 is the worst case. Only the data of worst case is recorded in the report.
TM3	802.11n(HT40) mode	Keep the EUT in continuously transmitting mode with 802.11n- 40MHz modulation type. All bandwidth and data rates has been
-		

101-102 Building H5 & 1/F., Building H,Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, ChinaWeb:http://www.poce-cert.comTel: 86-755-29113252E-mail: service@poce-cert.comPage 6 of 83

			an Orth
aF.	tested and found the data rate data of worst case is recorded	in the report.	ise. Oni
Description	204		5
 Special software is used. Through engineering command engineering command: *#*#364 Other method: 			
Special software:		005	
		F OCT	

2.4 Description of Support Units

Title	Manufacturer	Model No.	Serial No.
Car-adapter		DC12-24 to DC5V	1
Battery	CAMEL	DC12V	1

101-102 Building H5 & 1/F., Building H,Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web:http://www.poce-cert.com Tel: 86-755-29113252 Page 7 of 83 E-mail: service@poce-cert.com

2.5 Equipments Used During The Test

V1.0

Duty Cycle Maximum conducted output power Power spectral density

Emission bandwidth and occupied bandwidth

Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
RF Test Software	TACHOY	RTS-01	V2.0.0.0	/	/
Power divider	MIDEWEST	PWD-2533	SMA-79	2023-05-11	2026-05-10
DC power	HP	66311B	38444359	/	/
Power Meter	Keysight	E4416A	MY5303506	2022-12-10	2023-12-09
RF Sensor Unit	TACHOY	TR1029-2	000001		/
Vector signal generator	Keysight	N5181A	MY48180415	2023-11-09	2024-11-08
Signal generator	Keysight	N5182A	MY50143455	2023-11-09	2024-11-08
Spectrum Analyzer	Keysight	N9020A	MY53420323	2023-12-12	2024-12-11

Band edge emissions (Radiated) Undesirable emission limits (below 1GHz) Undesirable emission limits (above 1GHz)

Equipment	Manufacturer	Model No 🧲	Inventory No	Cal Date	Cal Due Date
EMI Test software	Farad	EZ -EMC	V1.1.42	1	
Positioning Controller	/	MF-7802	/	1	1
Amplifier(18-40G)	COM-POWER	AH-1840	10100008-1	2022-04-05	2025-04-04
Horn antenna	COM-POWER	AH-1840 (18-40G)	10100008	2023-04-05	2025-04-04
Loop antenna	ZHINAN	ZN30900C	ZN30900C	2021-07-05	2024-07-04
Cable(LF)#2	Schwarzbeck	/	/	2024-02-19	2025-02-18
Cable(LF)#1	Schwarzbeck	/	1	2024-02-19	2025-02-18
Cable(HF)#2	Schwarzbeck	AK9515E	96250	2024-02-19	2025-02-18
Cable(HF)#1	Schwarzbeck	SYV-50-3-1	DOY	2024-02-19	2025-02-18
Power amplifier(LF)	Schwarzbeck	BBV9743	9743-151	2023-06-13	2024-06-12
Power amplifier(HF)	Schwarzbeck	BBV9718	9718-282	2023-06-13	2024-06-12
Spectrum Analyzer	R&S	FSP30	1321.3008K40 -101729-jR	2023-06-14	2024-06-13
Horn Antenna	Sunol Sciences	DRH-118	A091114	2023-05-13	2025-05-12
Broadband Antenna	Sunol Sciences	JB6 Antenna	A090414	2023-05-21	2025-05-20
Test Receiver	R&S	ESCI	102109	2023-06-13	2024-06-12
CE	PC	CE	P	OCE	

101-102 Building H5 & 1/F., Building H,Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, ChinaWeb:http://www.poce-cert.comTel: 86-755-29113252E-mail: service@poce-cert.comPage 8 of 83

2.6 Statement Of The Measurement Uncertainty

11 0

Test Item	Measurement Uncertainty
Conducted Disturbance (0.15~30MHz)	±3.41dB
Occupied Bandwidth	±3.63%
RF conducted power	±0.733dB
Duty cycle	±3.1%
Conducted Spurious emissions	±1.98dB
Radiated Emission (Above 1GHz)	±5.46dB
Radiated Emission (Below 1GHz)	±5.79dB
Note: (1) This uncertainty represents an expanded us confidence level using a coverage factor of k=2.	uncertainty expressed at approximately the 95%

2.7 Authorizations

Company Name:	Shenzhen POCE Technology Co., Ltd.				
Address:	101-102 Building H5 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China				
Phone Number:	+86-13267178997				
Fax Number:	6-755-29113252				
Identification of the Responsib	le Testing Location				
Company Name:	Shenzhen POCE Technology Co., Ltd.				
Address:	101-102 Building H5 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China				
Phone Number:	+86-13267178997				
Fax Number:	86-755-29113252				
FCC Registration Number:	0032847402				
Designation Number:	CN1342				
Test Firm Registration No.:	778666				
A2LA Certificate Number:	6270.01				

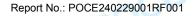
2.8 Announcement

(1) The test report reference to the report template version v1.0.

(2) The test report is invalid if not marked with the signatures of the persons responsible for preparing, reviewing and approving the test report.

(3) The test report is invalid if there is any evidence and/or falsification.

(4) This document may not be altered or revised in any way unless done so by POCE and all revisions are duly noted in the revisions section.


(5) Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.

(6) We hereby declare that the laboratory is only responsible for the data released by the laboratory, except for the part provided by the applicant. the laboratory is not responsible for the accuracy of

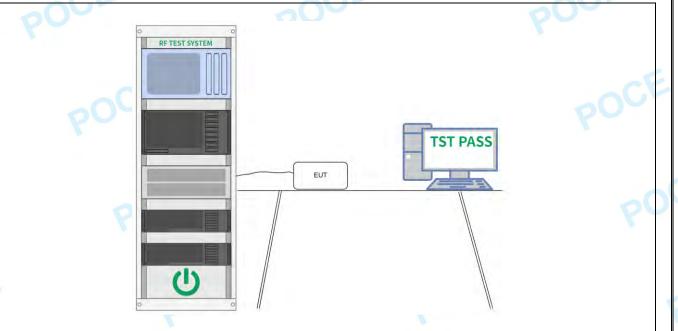
the information provided by the client. When the information provided by the customer may affect

the effectiveness of the results, the responsibility lies with the customer, and the laboratory does not assume any responsibility.

101-102 Building H5 & 1/F., Building H,Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, ChinaWeb:http://www.poce-cert.comTel: 86-755-29113252E-mail: service@poce-cert.comPage 9 of 83

3 Radio Spectrum Matter Test Results (RF)

V1.0


3.1 Duty Cycle

Test Requirement:	All measurements are to be performed with the EUT transmitting at 100% duty cycle at its maximum power control level; however, if 100% duty cycle cannot be achieved, measurements of duty cycle, x, and maximum-power transmission duration, T, are required for each tested mode of operation.			
Test Limit:	No limits, only for report use.			
Test Method:	ANSI C63.10-2013 section 12.2 (b)			
Procedure:	 i) Set the center frequency of the instrument to the center frequency of the transmission. ii) Set RBW >= EBW if possible; otherwise, set RBW to the largest available value. iii) Set VBW >= RBW. iv) Set detector = peak. v) The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T, where T is defined in item a1) of 12.2, and the number of sweep points across duration T exceeds 100. 			

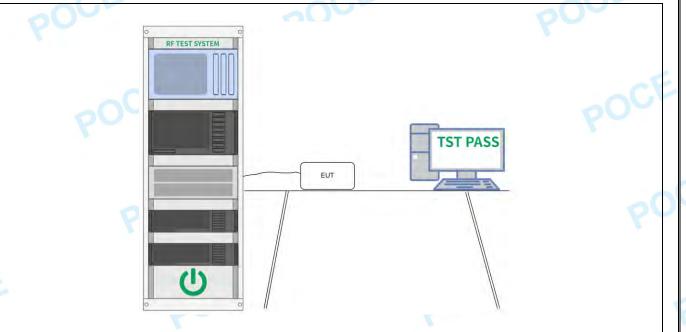
3.1.1 E.U.T. Operation:

Operating Enviro	onment:			all'		OLL
Temperature:	22.5 °C		Humidity:	49.3 %	Atmospheric Pressure:	101 kPa
Pretest mode:		TM1,	TM2, TM3			
Final test mode:		TM1,	TM2, TM3			
	<u>_</u>				G	

3.1.2 Test Setup Diagram:

3.1.3 Test Data:

Please Refer to Appendix for Details.


3.2 Maximum conducted output power

V1.0

Test Requirement:	47 CFR Part 15.407(a)(3)(i)
Test Limit:	For the band 5.725-5.850 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.
Test Method:	ANSI C63.10-2013, section 12.3
Procedure:	Refer to ANSI C63.10-2013 section 12.3
3.2.1 E.U.T. Operation:	le de

	Operating Environment:								
5	Temperature:	22.5 °C		Humidity:	49.3 %	Atmospheric Pressure:	101 kPa		
	Pretest mode:		TM1,	TM2, TM3					
	Final test mode:		TM1,	TM2, TM3					

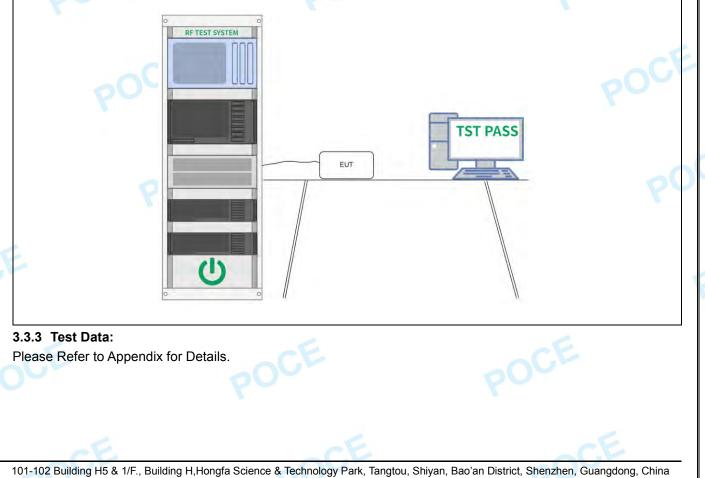
3.2.2 Test Setup Diagram:

3.2.3 Test Data:

Please Refer to Appendix for Details.

101-102 Building H5 & 1/F., Building H,Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, ChinaWeb:http://www.poce-cert.comTel: 86-755-29113252E-mail: service@poce-cert.comPage 11 of 83

3.3 Power spectral density


V1.0

Test Requirement:	47 CFR Part 15.407(a)(3)(i)
Test Limit:	For the band 5.725-5.850 GHz, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to- point operations.
Test Method:	ANSI C63.10-2013, section 12.5
Procedure:	Refer to ANSI C63.10-2013, section 12.5
3.3.1 E.U.T. Operation:	ACE ACE

3.3.1 E.U.T. Operation:

Operating Environment:			D	00	P	0
Temperature:	22.5 °C		Humidity:	49.3 %	Atmospheric Pressure:	101 kPa
Pretest mode:		TM1,	TM2, TM3			
Final test mode:	C	TM1,	TM2, TM3	-		CL.

3.3.2 Test Setup Diagram:

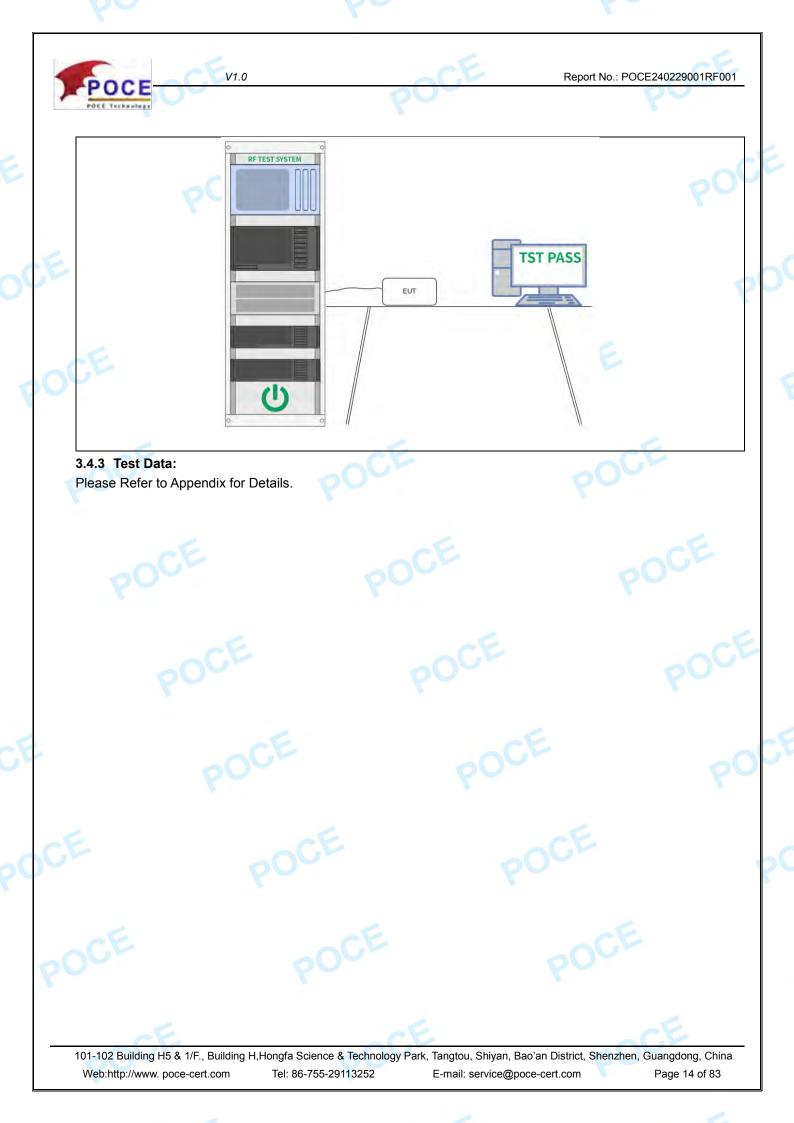
Tel: 86-755-29113252

Web:http://www.poce-cert.com

E-mail: service@poce-cert.com

3.4 Emission bandwidth and occupied bandwidth

V1.0


 the OBW, and VBW shall be approximately three times the RBW, unless otherwis specified by the applicable requirement. c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peal of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2. d) Step a) through step c) might require iteration to adjust within the specified range. e) Video averaging is not permitted. Where practical, a sample detection and sing sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used. f) Use the 99% power bandwidth function of the instrument (if available) and report the measured bandwidth. g) If the instrument does not have a 99% power bandwidth function, then the trace data points are recovered and directly summed in linear power terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in running sum until 0.5% of the total is reached; that frequency is recorded as the lower frequency. The process is repeated until 99.5% of the total is reached; that frequency is recorded as the upper frequency. The 99% power bandwidth is the difference between these two frequencies. h) The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may be reported in addition to the plot(s). 6 dB emission bandwidth: a) Set the video bandwidth (VBW) ≥ 3 >= RBW. 	Test Requirement:	U-NII 3, U-NII 4: 47 CFR Part 15.407(e)
KDB 789033 D02, Clause C.2 Procedure: Occupied bandwidth: a) The instrument center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be between 1.5 times and 5.0 times the OBW. b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW, and VBW shall be approximately three times the RBW, unless otherwis specified by the applicable requirement. c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peal of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.15.2. d) Step a) through step c) might require iteration to adjust within the specified range. e) Video averaging is not permitted. Where practical, a sample detection and sing sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used. f) Use the 99% power bandwidth function of the instrument (if available) and repor the measured bandwidth. g) If the instrument does not have a 99% power bandwidth function, then the trace data points are recovered and directly summed in linear power terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in running sum until 0.5% of the total is reached; that frequency is recorded as the lower frequency. The 99% power bandwidth is the difference between these two frequencies. h) The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument display; the plot axes and the scale units per division shall be	Test Limit:	
 a) The instrument center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be between 1.5 times and 5.0 times the OBW. b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW, and VBW shall be approximately three times the RBW, unless otherwis specified by the applicable requirement. c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peal of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2. d) Step a) through step c) might require iteration to adjust within the specified range. e) Video averaging is not permitted. Where practical, a sample detection and sing sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used. f) Use the 99% power bandwidth function of the instrument (if available) and report the measured bandwidth. g) If the instrument does not have a 99% power bandwidth function, then the trace data points are recovered and directly summed in linear power terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in running sum until 0.5% of the total is reached; that frequency is recorded as the upper frequency. The 99% power bandwidth is the difference between these two frequencies. h) The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may be reported in addition to the plot(s). 6 dB emission bandwidth: a) Set RBW = 100 kHz. b) Set the video bandwidth (VBW) ≥ 3 >= RBW. 	Test Method:	
 c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peal of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2. d) Step a) through step c) might require iteration to adjust within the specified range. e) Video averaging is not permitted. Where practical, a sample detection and sing sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used. f) Use the 99% power bandwidth function of the instrument (if available) and report the measured bandwidth. g) If the instrument does not have a 99% power bandwidth function, then the trace data points are recovered and directly summed in linear power terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in running sum until 0.5% of the total is reached; that frequency is recorded as the upper frequency. The 99% power bandwidth is the difference between these two frequencies. h) The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may be reported in addition to the plot(s). 6 dB emission bandwidth: a) Set RBW = 100 kHz. b) Set the video bandwidth (VBW) ≥ 3 >= RBW. 	Procedure:	 a) The instrument center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be between 1.5 times and 5.0 times the OBW. b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW, and VBW shall be approximately three times the RBW, unless otherwise
 e) Video averaging is not permitted. Where practical, a sample detection and sing sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used. f) Use the 99% power bandwidth function of the instrument (if available) and report the measured bandwidth. g) If the instrument does not have a 99% power bandwidth function, then the trace data points are recovered and directly summed in linear power terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in running sum until 0.5% of the total is reached; that frequency is recorded as the lower frequency. The process is repeated until 99.5% of the total is reached; that frequency is recorded as the upper frequency. The 99% power bandwidth is the difference between these two frequencies. h) The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may be reported in addition to the plot(s). 6 dB emission bandwidth: a) Set RBW = 100 kHz. b) Set the video bandwidth (VBW) ≥ 3 >= RBW. 		 c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2. d) Step a) through step c) might require iteration to adjust within the specified
 g) If the instrument does not have a 99% power bandwidth function, then the trace data points are recovered and directly summed in linear power terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in running sum until 0.5% of the total is reached; that frequency is recorded as the lower frequency. The process is repeated until 99.5% of the total is reached; that frequency is recorded as the upper frequency. The 99% power bandwidth is the difference between these two frequencies. h) The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may be reported in addition to the plot(s). 6 dB emission bandwidth: a) Set RBW = 100 kHz. b) Set the video bandwidth (VBW) ≥ 3 >= RBW. 		 e) Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used. f) Use the 99% power bandwidth function of the instrument (if available) and report
 h) The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may be reported in addition to the plot(s). 6 dB emission bandwidth: a) Set RBW = 100 kHz. b) Set the video bandwidth (VBW) ≥ 3 >= RBW. 		g) If the instrument does not have a 99% power bandwidth function, then the trace data points are recovered and directly summed in linear power terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached; that frequency is recorded as the lower frequency. The process is repeated until 99.5% of the total is reached; that frequency is recorded as the upper frequency. The 99% power bandwidth is the
a) Set RBW = 100 kHz. b) Set the video bandwidth (VBW) ≥ 3 >= RBW.		h) The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument display; the plot axes and the scale units per division shall be clearly
		a) Set RBW = 100 kHz.
 d) Trace mode = max hold. e) Sweep = auto couple. f) Allow the trace to stabilize. g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower 		 d) Trace mode = max hold. e) Sweep = auto couple. f) Allow the trace to stabilize.

3.4.1 E.U.T. Operation:

Operating Environment:							
Temperature: 22.5 °C Humidity			Humidity:	49.3 %	Atmospheric Pressure:	101 kPa	
Pretest mode:		TM1,	TM2, TM3		20		
Final test mode:		TM1,	TM2, TM3		PC PC		
			-				

3.4.2 Test Setup Diagram:

101-102 Building H5 & 1/F., Building H,Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, ChinaWeb:http://www.poce-cert.comTel: 86-755-29113252E-mail: service@poce-cert.comPage 13 of 83

3.5 Band edge emissions (Radiated)

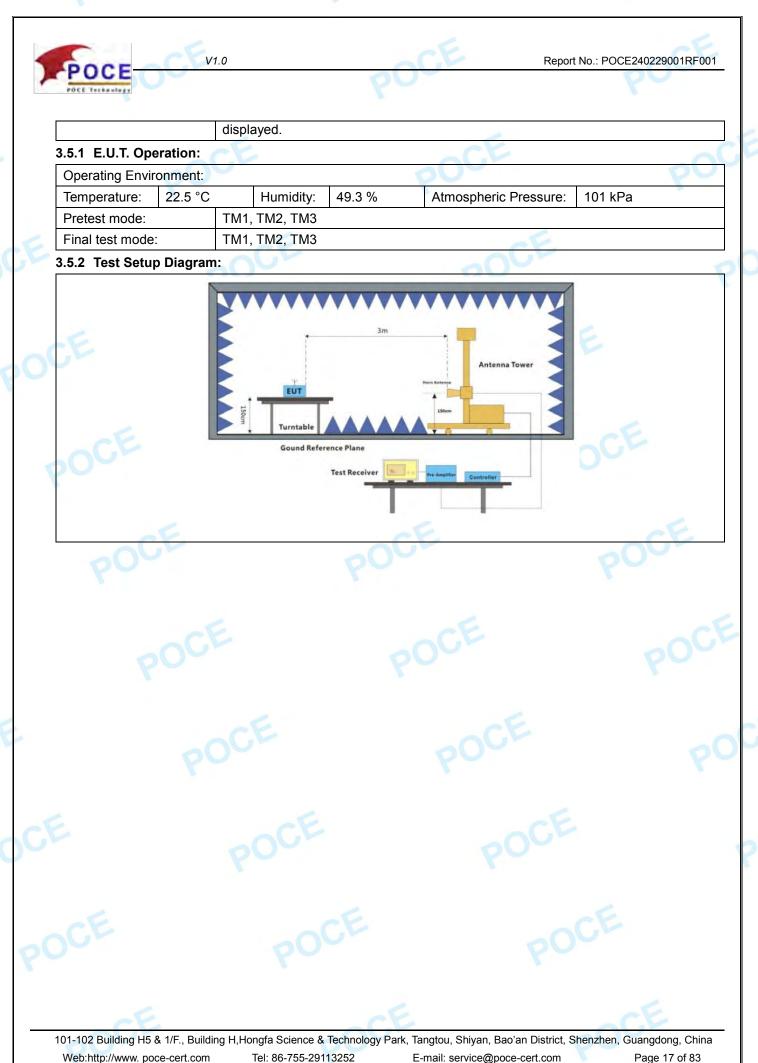
V1.0

Test Requirement:	47 CFR Part 15.407(b)(47 CFR Part 15.407(b)(p	5
Test Limit:	For transmitters operating All emissions shall be lind or below the band edge below the band edge, a linearly to a level of 15.6 from 5 MHz above or be dBm/MHz at the band edge	mited to a level of -27 increasing linearly to nd from 25 MHz above 6 dBm/MHz at 5 MHz a elow the band edge inc	dBm/MHz a 10 dBm/MH e or below th above or bel	It 75 MHz or more abo z at 25 MHz above or ne band edge increasi ow the band edge, an	ng
	MHz	MHz	MHz	GHz	
	0.090-0.110	16.42-16.423	399.9-410	4.5-5.15	
	¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46	
	2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75	
	4.125-4.128	25.5-25.67	1300-1427	8.025-8.5	
	4.17725-4.17775	37.5-38.25	1435-1626	6.5 9.0-9.2	
	4.20725-4.20775	73-74.6	1645.5- 1646.5	9.3-9.5	
	6.215-6.218	74.8-75.2	1660-1710	10.6-12.7	1
	6.26775-6.26825	108-121.94	1718.8- 1722.2	13.25-13.4	
	6.31175-6.31225	123-138	2200-2300	14.47-14.5	1
	8.291-8.294	149.9-150.05	2310-2390	15.35-16.2	1
	8.362-8.366	156.52475- 156.52525	2483.5-250	00 17.7-21.4	
	8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12	
	8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0	
	12.29-12.293	167.72-173.2	3332-3339	31.2-31.8	
	12.51975-12.52025	240-285	3345.8-33	58 36.43-36.5	
	12.57675-12.57725	322-335.4	3600-4400) (²)	
	13.36-13.41		1		
	¹ Until February 1, 1999, ² Above 38.6	this restricted band sl	nall be 0.490	0-0.510 MHz.	
	The field strength of em exceed the limits shown MHz, compliance with the measurement instrumen MHz, compliance with the on the average value of these measurements.	n in § 15.209. At freque he limits in § 15.209sh ntation employing a Cl he emission limits in § the measured emissio	encies equal all be demo SPR quasi-p 15.209shall ons. The pro	to or less than 1000 nstrated using beak detector. Above 7 be demonstrated bas ivisions in § 15.35appl	10 sec ly
	Except as provided else radiator shall not exceed	d the field strength lev		l in the following table:	
	Frequency (MHz)	Field strength (microvolts/mete	er)	Measurement distance (meters)	_
	0.009-0.490	2400/F(kHz)		300	

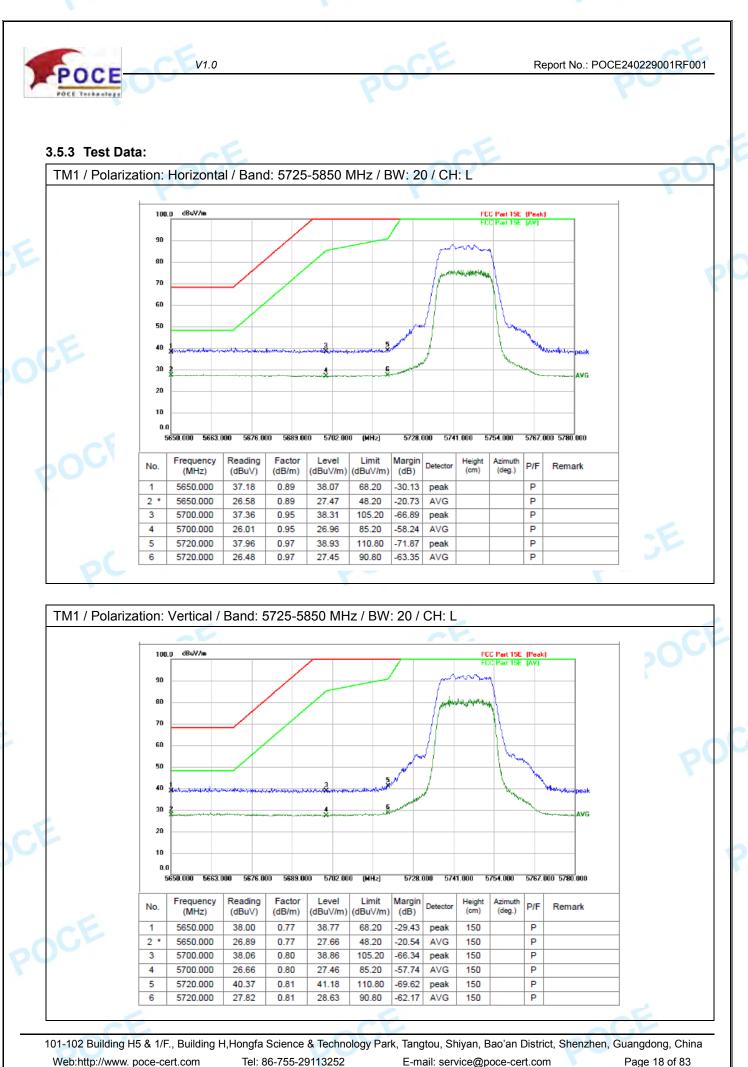
Web:http://www.poce-cert.com

E-mail: service@poce-cert.com

Tel: 86-755-29113252

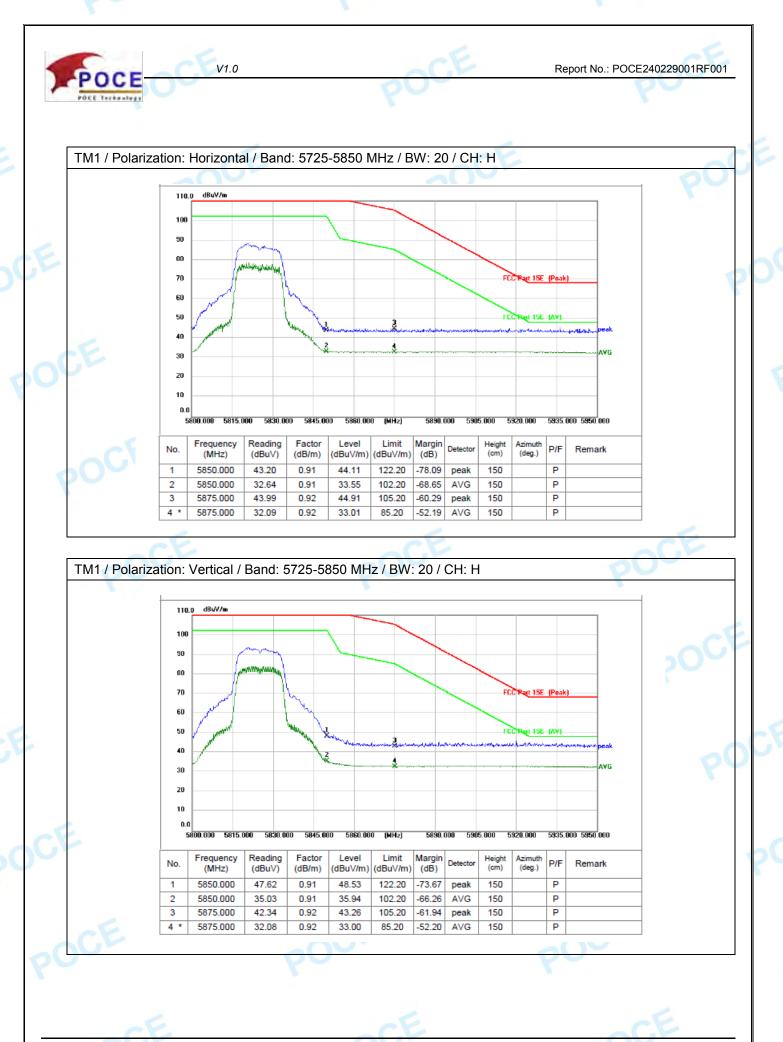

Page 15 of 83

	0.490-1.705	24000/F(kHz)	30
	1.705-30.0	30	30
5	30-88	100 **	3
Y	88-216	150 **	3
	216-960	200 **	3
	Above 960	500	S 3
		in paragraph (g), fundamental	
E	54-72 MHz, 76-88 MH these frequency bands and 15.241. In the emission table a The emission limits sh employing a CISPR qu 110–490 kHz and abo	der this section shall not be loc z, 174-216 MHz or 470-806 MI s is permitted under other secti above, the tighter limit applies a own in the above table are bas uasi-peak detector except for th ve 1000 MHz. Radiated emissi ements employing an average of	Hz. However, operation wit ons of this part, e.g., §§ 15 it the band edges. ed on measurements he frequency bands 9–90 k on limits in these three ban
Test Method:		ection 12.7.4, 12.7.6, 12.7.7	
Procedure:	Above 1GHz:		CE.
POCE	above the ground at a degrees to determine b. The EUT was set 3 was mounted on the to c. The antenna height determine the maximu polarizations of the an d. For each suspected the antenna was tuned below 30MHz, the ante was turned from 0 deg e. The test-receiver sy Bandwidth with Maxim f. If the emission level specified, then testing reported. Otherwise th tested one by one usin a data sheet.	e EUT was placed on the top of 3 meter fully-anechoic chamber the position of the highest radia meters away from the interfere op of a variable-height antenna is varied from one meter to four m value of the field strength. B tenna are set to make the mea emission, the EUT was arranged to heights from 1 meter to 4 m enna was tuned to heights 1 m prees to 360 degrees to find the stem was set to Peak Detect F hum Hold Mode. of the EUT in peak mode was could be stopped and the peak e emissions that did not have f and peak or average method as lowest channel, the middle cha	er. The table was rotated 36 ation. nce-receiving antenna, whi tower. In meters above the ground oth horizontal and vertical surement. Jed to its worst case and the neters (for the test frequence eter) and the rotatable table maximum reading. Unction and Specified 10dB lower than the limit is values of the EUT would be lodB margin would be re- specified and then reported
	h. The radiation measure Transmitting mode, an	urements are performed in X, Y	, Z axis positioning for
	Remark:	d found the X axis positioning dures until all frequencies mea	sured was complete.
	Remark: 1. Level= Read Level+ 2. Scan from 18GHz to points marked on above testing, so only above emissions from the rac	d found the X axis positioning	sured was complete. Preamp Factor e 18GHz was very low. The ons could be found when e amplitude of spurious
	Remark: 1. Level= Read Level+ 2. Scan from 18GHz to points marked on above testing, so only above emissions from the rac need not be reported.	d found the X axis positioning dures until all frequencies mea - Cable Loss+ Antenna Factor- o 40GHz, the disturbance abov ve plots are the highest emission points had been displayed. The	sured was complete. Preamp Factor e 18GHz was very low. The ons could be found when e amplitude of spurious re than 20dB below the limi
CE	Remark: 1. Level= Read Level+ 2. Scan from 18GHz to points marked on above testing, so only above emissions from the rac need not be reported. 3. As shown in this sec based on average limit exceed the maximum	d found the X axis positioning dures until all frequencies mea - Cable Loss+ Antenna Factor- o 40GHz, the disturbance abov ve plots are the highest emission points had been displayed. The diator which are attenuated mo	sured was complete. Preamp Factor e 18GHz was very low. The ons could be found when e amplitude of spurious re than 20dB below the limits Hz, the field strength limits ingth of any emission shall ied above by more than 20
CE	Remark: 1. Level= Read Level+ 2. Scan from 18GHz to points marked on above testing, so only above emissions from the rac need not be reported. 3. As shown in this sec based on average limit exceed the maximum under any condition of than the average limit,	d found the X axis positioning dures until all frequencies mea - Cable Loss+ Antenna Factor- o 40GHz, the disturbance abov ve plots are the highest emission points had been displayed. The diator which are attenuated mo ction, for frequencies above 1G ts. However, the peak field stree permitted average limits specif	sured was complete. Preamp Factor e 18GHz was very low. The ons could be found when e amplitude of spurious re than 20dB below the limi Hz, the field strength limits ngth of any emission shall n ied above by more than 20 whose peak level is lower shown in the report.


V1.0

POCE

101-102 Building H5 & 1/F., Building H,Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, ChinaWeb:http://www.poce-cert.comTel: 86-755-29113252E-mail: service@poce-cert.comPage 16 of 83



Web:http://www.poce-cert.com Tel: 86-755-29113252 E-mail: service@poce-cert.com

E-mail: service@poce-cert.com

Page 18 of 83

101-102 Building H5 & 1/F., Building H,Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, ChinaWeb:http://www.poce-cert.comTel: 86-755-29113252E-mail: service@poce-cert.comPage 19 of 83

Web:http://www.poce-cert.com

E-mail: service@poce-cert.com

Page 20 of 83

-

3.6 Undesirable emission limits (below 1GHz)

Test Requirement:	47 CFR Part 15.407(b)(9	,						
Test Limit:	Unwanted emissions bel set forth in § 15.209.	Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in § 15.209.						
		Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:						
	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)					
	0.009-0.490	2400/F(kHz)	300					
	0.490-1.705	24000/F(kHz)	30					
	1.705-30.0	30	30					
	30-88	100 **	3					
	88-216	150 **	3					
	216-960	200 **	3					
	Above 960	<i>5</i> 00	3					
			al emissions from intentional					
	and 15.241. In the emission table above, the tighter limit applies at the band edges. The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9–90 kHz, 110–490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an every set of the three bands							
Test Method:	are based on measurements employing an average detector.							
Procedure:	Below 1GHz:	ANSI C63.10-2013, section 12.7.4, 12.7.5						
	above the ground at a 3 degrees to determine the b. The EUT was set 3 or which was mounted on th c. The antenna height is determine the maximum polarizations of the anter d. For each suspected en the antenna was tuned to below 30MHz, the anten was turned from 0 degre e. The test-receiver syste Bandwidth with Maximur f. If the emission level of specified, then testing co reported. Otherwise the tested one by one using data sheet. g. Test the EUT in the low h. The radiation measure	meter semi-anechoic cham e position of the highest rac 10 meters away from the in he top of a variable-height varied from one meter to for value of the field strength. That are set to make the me mission, the EUT was arran o heights from 1 meter to 4 na was tuned to heights 1 meter to 360 degrees to find the em was set to Peak Detect in Hold Mode. the EUT in peak mode was puld be stopped and the pea- emissions that did not have quasi-peak method as spe west channel, the middle chements are performed in X,	nterference-receiving antenna, antenna tower. bur meters above the ground to Both horizontal and vertical easurement. nged to its worst case and then meters (for the test frequency meter) and the rotatable table he maximum reading. Function and Specified s 10dB lower than the limit ak values of the EUT would be a 10dB margin would be re- cified and then reported in a hannel, the Highest channel. Y, Z axis positioning for					
cE.	i. Repeat above procedu Remark:	res until all frequencies me						

101-102 Building H5 & 1/F., Building H,Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, ChinaWeb:http://www.poce-cert.comTel: 86-755-29113252E-mail: service@poce-cert.comPage 22 of 83

2. Scan from 9kHz to 30MHz, the disturbance below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

3. The disturbance below 1GHz was very low and the harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.

Above 1GHz:

a. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be retested one by one using peak or average method as specified and then reported in a data sheet.

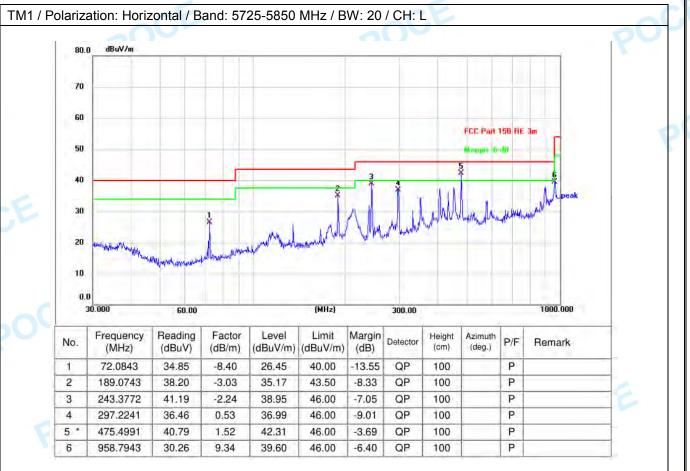
g. Test the EUT in the lowest channel, the middle channel, the Highest channel.
h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
i. Repeat above procedures until all frequencies measured was complete.
Remark:

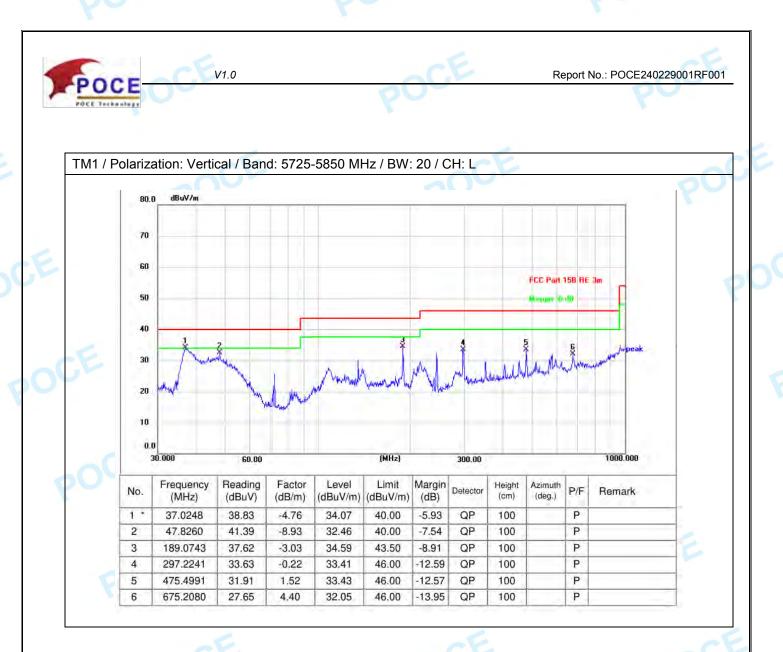
1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor 2. Scan from 18GHz to 40GHz, the disturbance above 18GHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.
 The disturbance above 18GHz were very low and the harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.

3.6.1 E.U.T. Operation:

	Operating Environment:								
	Temperature:	22.5 °C		Humidity:	49.3 %	At	tmospheric Pressure:	101 kPa	
C	Pretest mode:		TM1,	TM2, TM3	65		20		
	Final test mode: TM ²		TM1(M1(worse case)					


101-102 Building H5 & 1/F., Building H,Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, ChinaWeb:http://www.poce-cert.comTel: 86-755-29113252E-mail: service@poce-cert.comPage 23 of 83



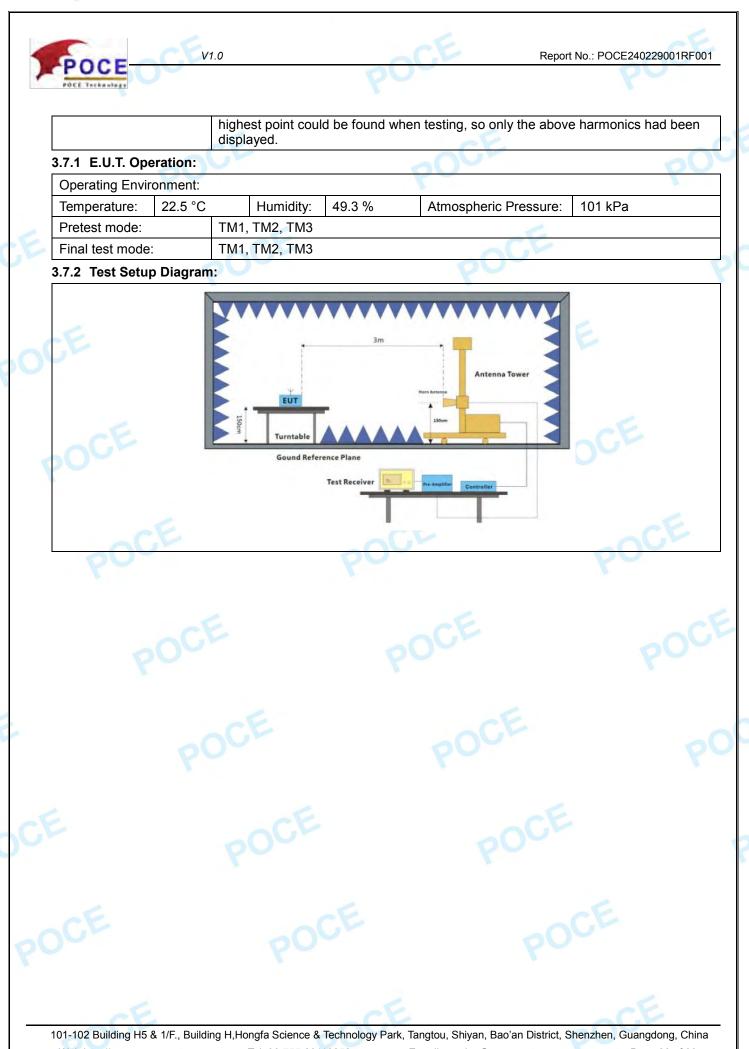
3.6.2 Test Data:

POCE

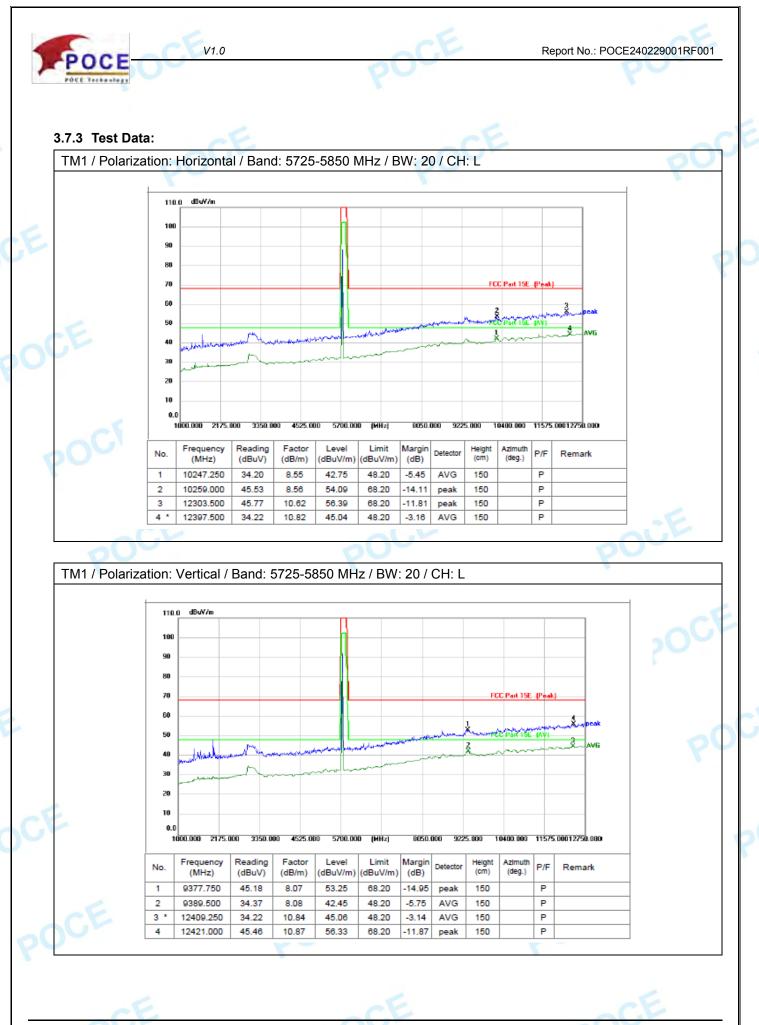
101-102 Building H5 & 1/F., Building H,Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, ChinaWeb:http://www.poce-cert.comTel: 86-755-29113252E-mail: service@poce-cert.comPage 24 of 83

101-102 Building H5 & 1/F., Building H,Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, ChinaWeb:http://www.poce-cert.comTel: 86-755-29113252E-mail: service@poce-cert.comPage 25 of 83

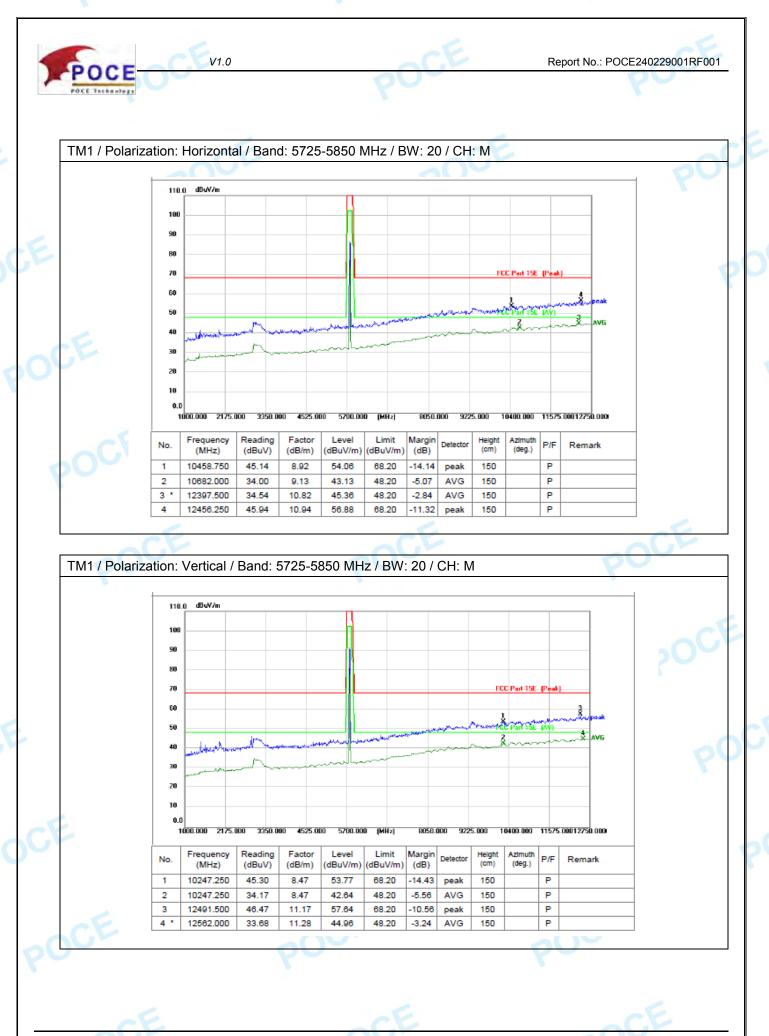
POCE

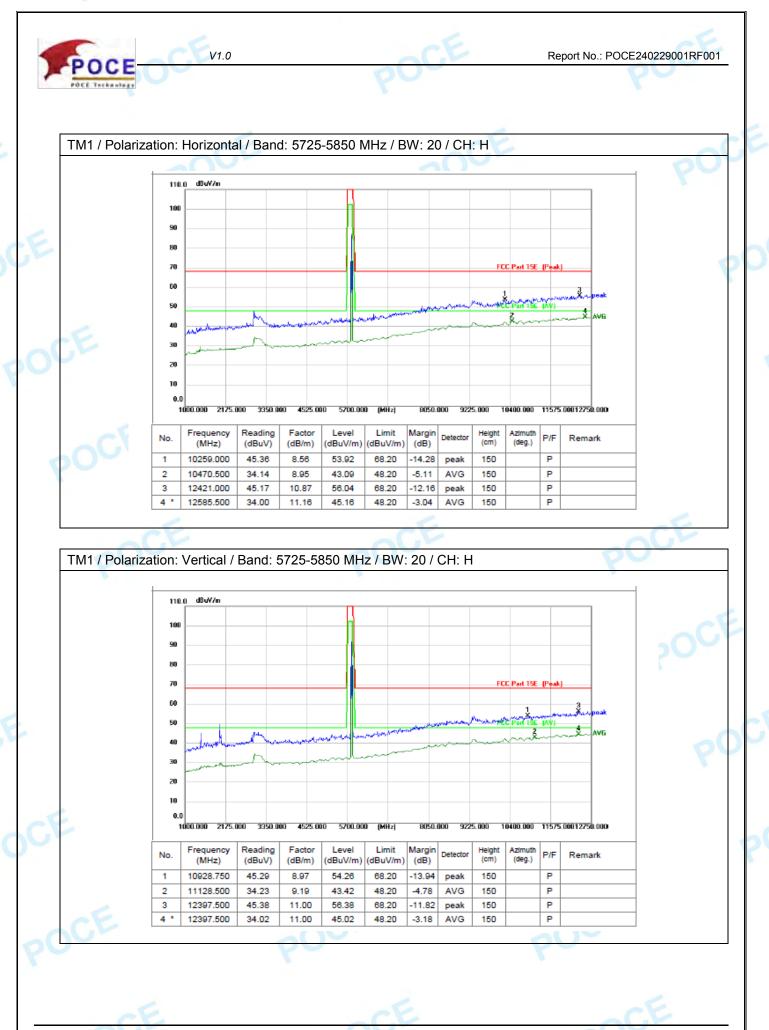

3.7 Undesirable emission limits (above 1GHz)

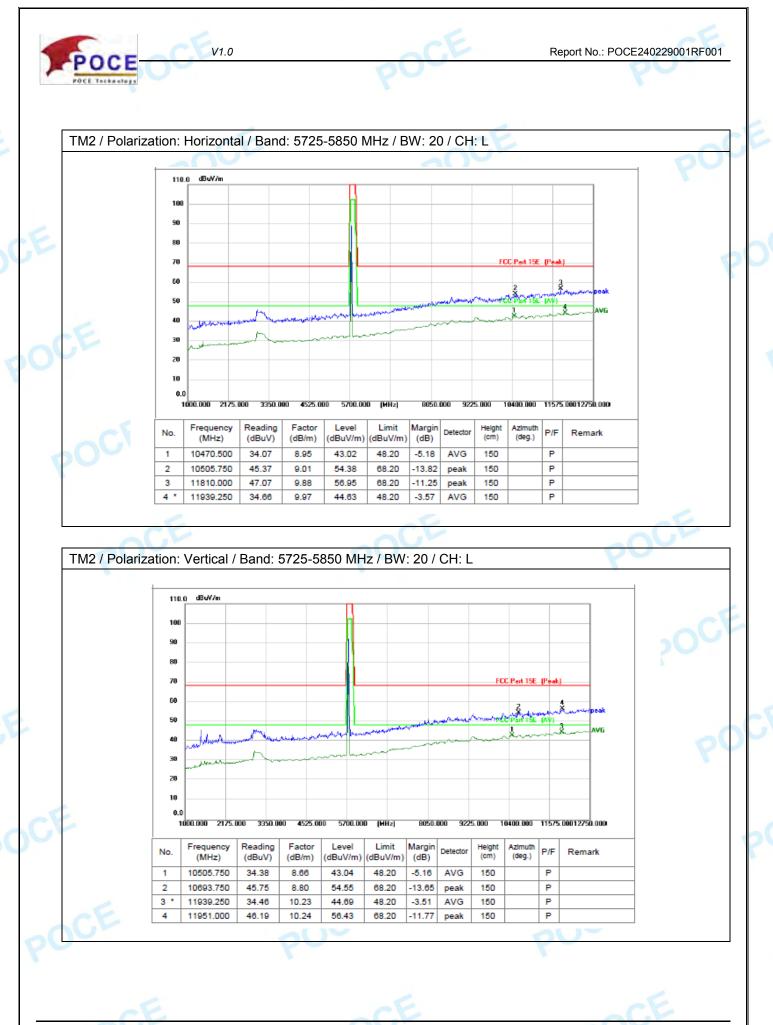
V1.0


est Requirement:	47 CFR Part 15.407(b) 47 CFR Part 15.407(b)			D			
ēst Limit:	For transmitters operating solely in the 5.725-5.850 GHz band: All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.						
	MHz	MHz	MHz	GHz			
	0.090-0.110	16.42-16.423	399.9-410	4.5-5.15			
	¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46			
	2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75			
	4.125-4.128	25.5-25.67	1300-1427	8.025-8.5			
	4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2			
	4.20725-4.20775	73-74.6	1645.5- 1646.5	9.3-9.5			
	6.215-6.218	74.8-75.2	1660-1710	10.6-12.7			
	6.26775-6.26825	108-121.94	1718.8- 1722.2	13.25-13.4			
	6.31175-6.31225	123-138	2200-2300	14.47-14.5			
	8.291-8.294	149.9-150.05	2310-2390	15.35-16.2			
	8.362-8.366	156.52475- 156.52525	2483.5-2500	17.7-21.4			
	8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12			
	8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0			
	12.29-12.293	167.72-173.2	3332-3339	31.2-31.8			
	12.51975-12.52025	240-285	3345.8-3358	36.43-36.5			
	12.57675-12.57725	322-335.4	3600-4400	(2)			
	13.36-13.41		6				
	¹ Until February 1, 1999 ² Above 38.6						
	The field strength of emissions appearing within these frequency bands shall not exceed the limits shown in § 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in § 15.209shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 10 MHz, compliance with the emission limits in § 15.209shall be demonstrated base on the average value of the measured emissions. The provisions in § 15.35apply these measurements.						
	Except as provided else radiator shall not excee						
	Frequency (MHz)	Field strength (microvolts/mete	er)	Measurement distance (meters)			
				C.V.			

POCE		202	Report No.: POCE240229001RF				
POCE Technelugy							
	0.009-0.490	2400/F(kHz)	300				
	0.490-1.705	24000/F(kHz)	30				
-	1.705-30.0	30	30				
K	30-88	100 **	3				
	88-216	150 **	3				
	216-960	200 **	3				
-	Above 960	500	3				
			-				
Œ	radiators operating ur 54-72 MHz, 76-88 MH these frequency band and 15.241.	** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation withit these frequency bands is permitted under other sections of this part, e.g., §§ 15.2 and 15.241.					
	The emission limits sh employing a CISPR q 110–490 kHz and abo	In the emission table above, the tighter limit applies at the band edges. The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9–90 kH 110–490 kHz and above 1000 MHz. Radiated emission limits in these three band are based on measurements employing an average detector.					
Test Method:	ANSI C63.10-2013, s	ection 12.7.4, 12.7.6, 12.7.7	AC.F				
Procedure:	Above 1GHz:						
POCE	degrees to determine b. The EUT was set 3 was mounted on the t c. The antenna height determine the maximum polarizations of the art d. For each suspected the antenna was tune below 30MHz, the ant was turned from 0 deg e. The test-receiver sy Bandwidth with Maxim f. If the emission level specified, then testing reported. Otherwise the	of the EUT in peak mode was 10 could be stopped and the peak ne emissions that did not have 10	ion. ce-receiving antenna, whic ower. meters above the ground to th horizontal and vertical urement. ed to its worst case and the eters (for the test frequency ter) and the rotatable table maximum reading. nction and Specified OdB lower than the limit values of the EUT would be 0dB margin would be re-				
,E	a data sheet. g. Test the EUT in the h. The radiation meas Transmitting mode, an i. Repeat above proce Remark: 1. Level= Read Level	ng peak or average method as sp lowest channel, the middle chan surements are performed in X, Y, and found the X axis positioning w edures until all frequencies measu + Cable Loss+ Antenna Factor- F	nel, the Highest channel. Z axis positioning for hich it is the worst case. ured was complete. Preamp Factor				
OCE	points marked on about testing, so only above emissions from the ranced not be reported. 3. As shown in this see based on average lime exceed the maximum under any condition or the second sec	to 40GHz, the disturbance above we plots are the highest emission points had been displayed. The diator which are attenuated more ection, for frequencies above 1GH its. However, the peak field stren permitted average limits specifie f modulation. For the emissions we c, only the peak measurement is s	as could be found when amplitude of spurious than 20dB below the limit Iz, the field strength limits a gth of any emission shall n d above by more than 20 d whose peak level is lower				

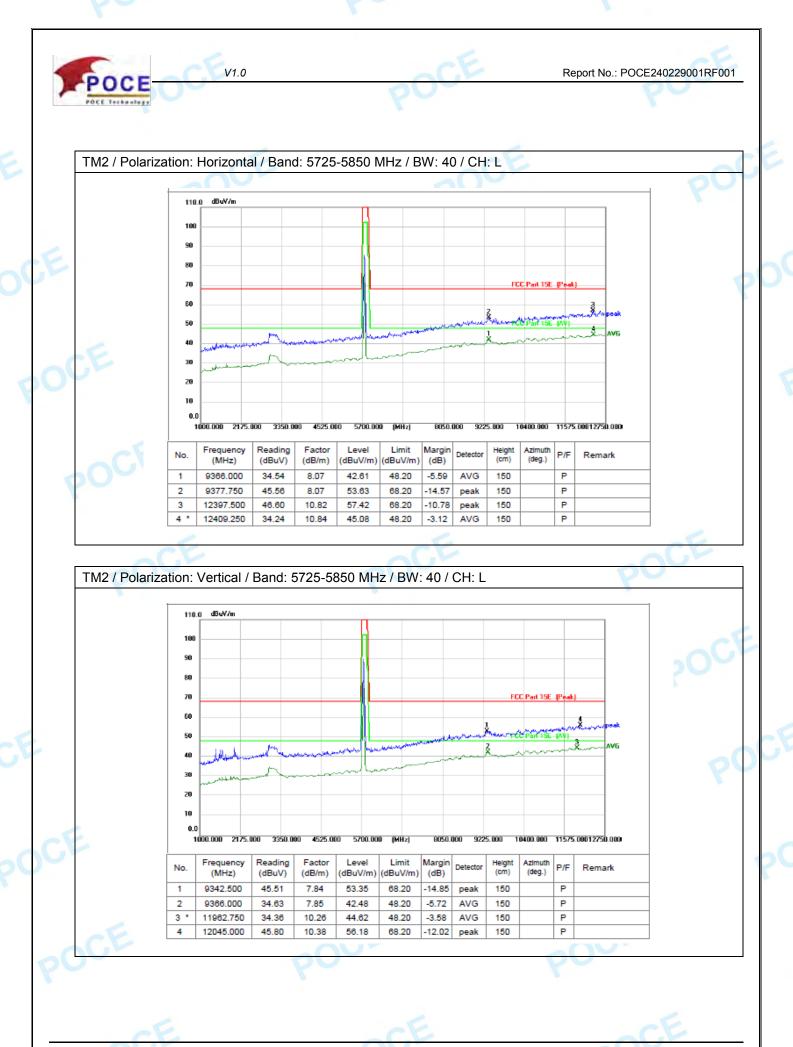

101-102 Building H5 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web:http://www.poce-cert.com Tel: 86-755-29113252 Page 27 of 83 E-mail: service@poce-cert.com

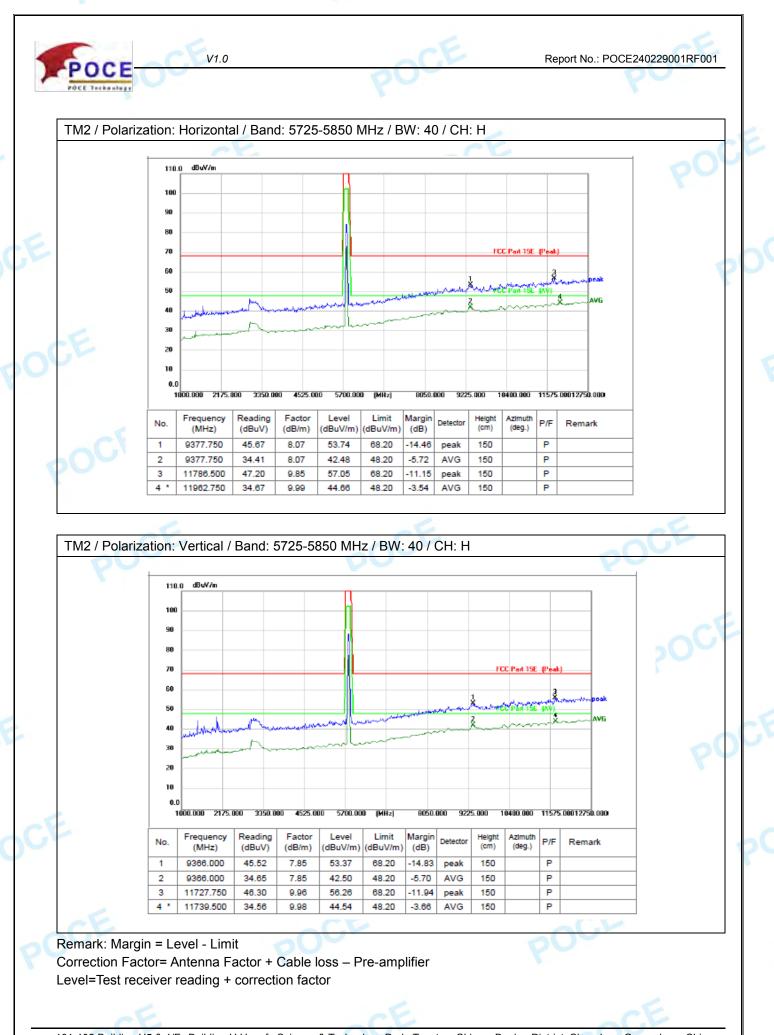

Web:http://www.poce-cert.com Tel: 86-755-29113252 E-mail: service@poce-cert.com Page 28 of 83


101-102 Building H5 & 1/F., Building H,Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, ChinaWeb:http://www.poce-cert.comTel: 86-755-29113252E-mail: service@poce-cert.comPage 29 of 83

101-102 Building H5 & 1/F., Building H,Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, ChinaWeb:http://www.poce-cert.comTel: 86-755-29113252E-mail: service@poce-cert.comPage 30 of 83


101-102 Building H5 & 1/F., Building H,Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, ChinaWeb:http://www.poce-cert.comTel: 86-755-29113252E-mail: service@poce-cert.comPage 31 of 83

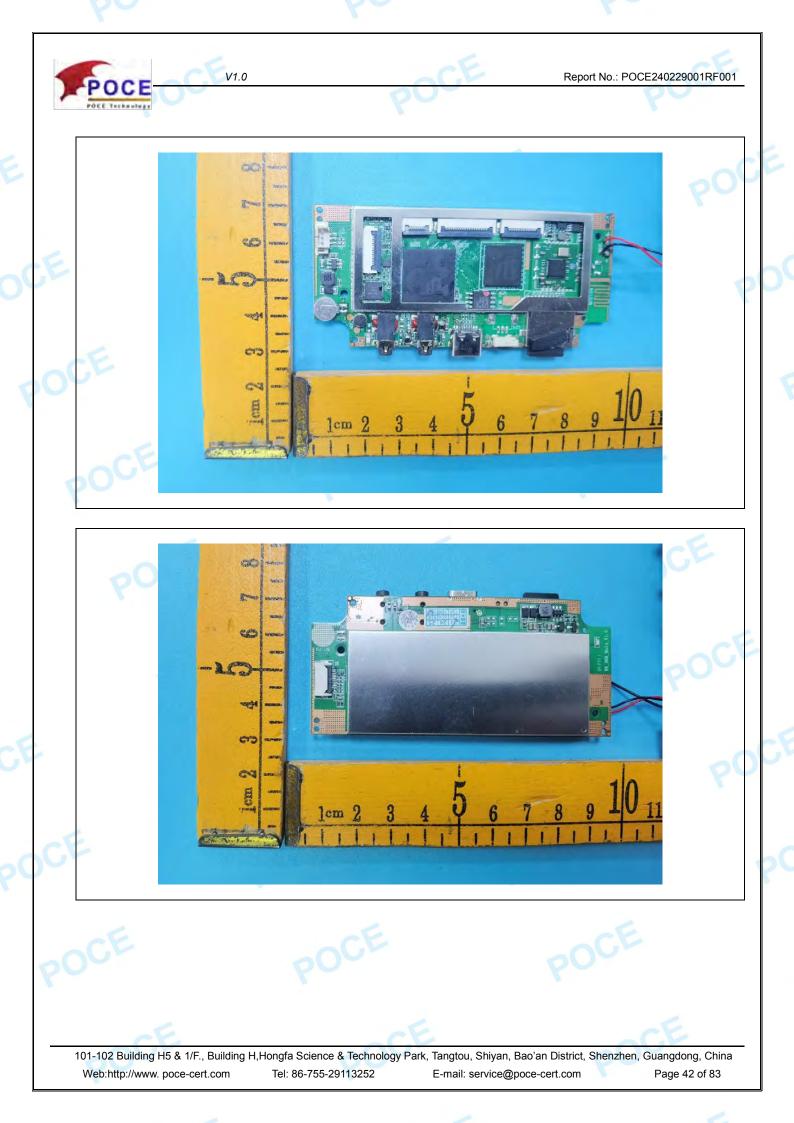

101-102 Building H5 & 1/F., Building H,Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, ChinaWeb:http://www.poce-cert.comTel: 86-755-29113252E-mail: service@poce-cert.comPage 32 of 83

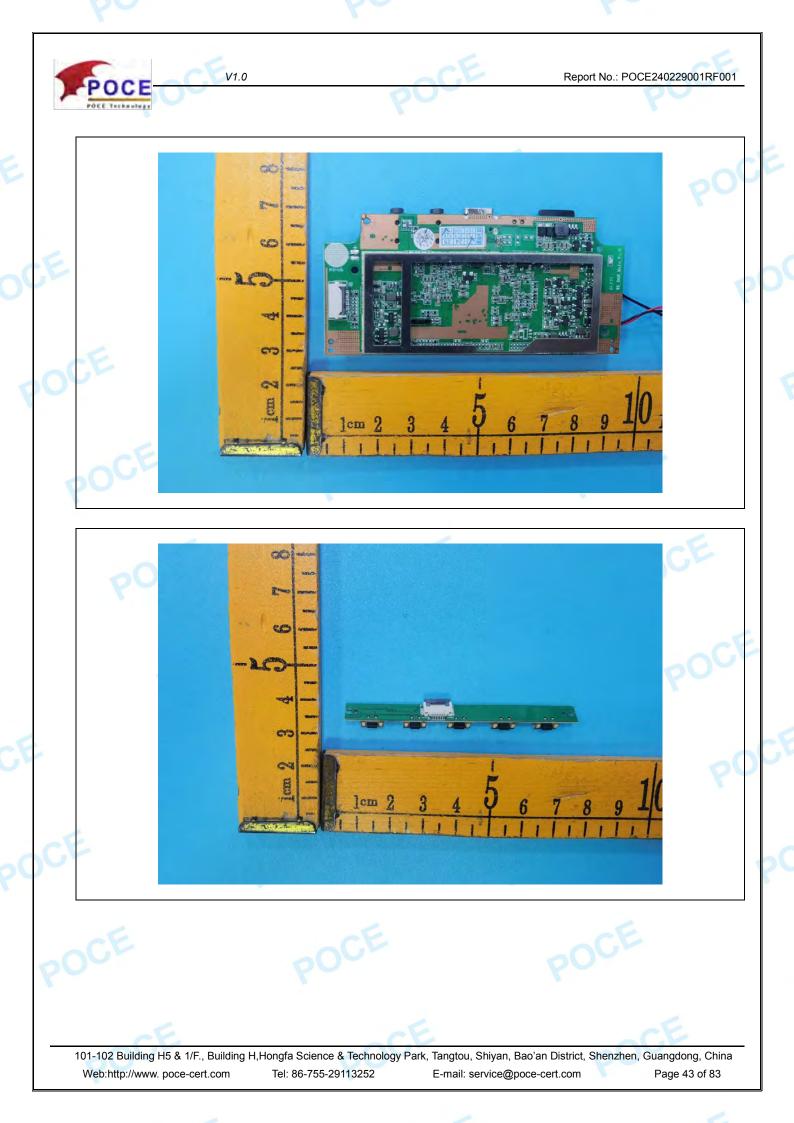

101-102 Building H5 & 1/F., Building H,Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, ChinaWeb:http://www.poce-cert.comTel: 86-755-29113252E-mail: service@poce-cert.comPage 33 of 83

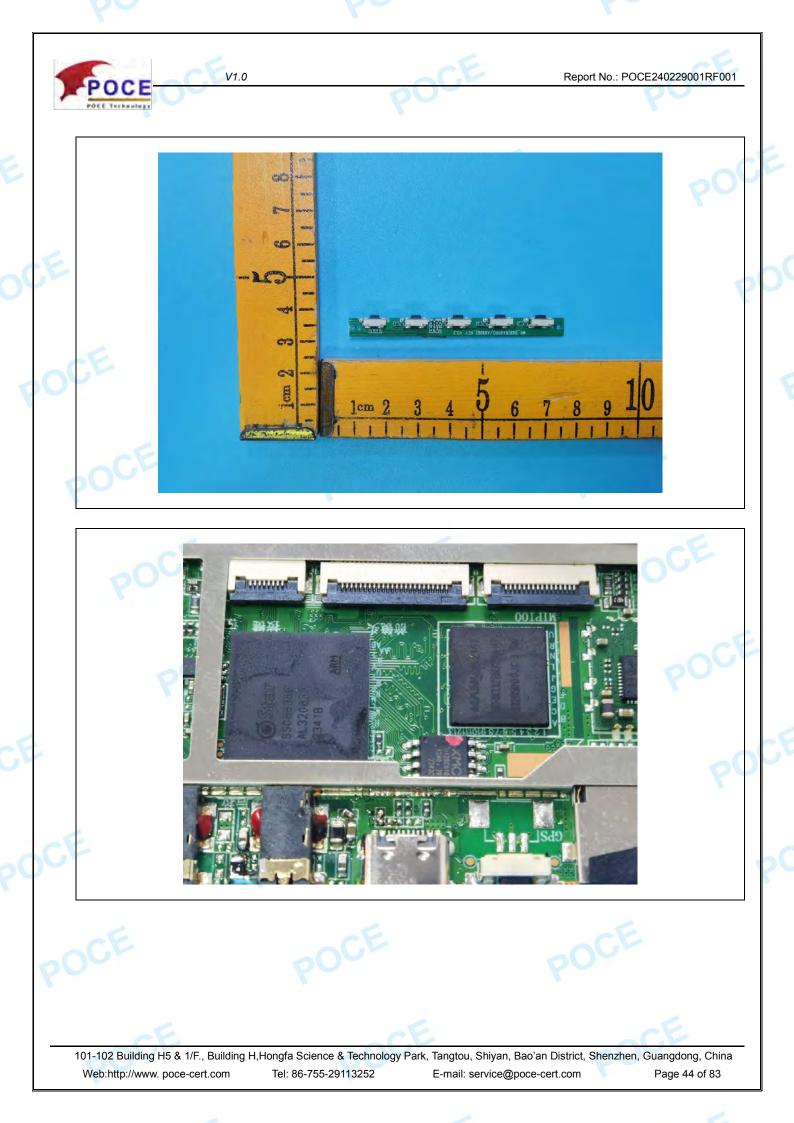
101-102 Building H5 & 1/F., Building H,Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, ChinaWeb:http://www.poce-cert.comTel: 86-755-29113252E-mail: service@poce-cert.comPage 34 of 83

101-102 Building H5 & 1/F., Building H,Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, ChinaWeb:http://www.poce-cert.comTel: 86-755-29113252E-mail: service@poce-cert.comPage 35 of 83

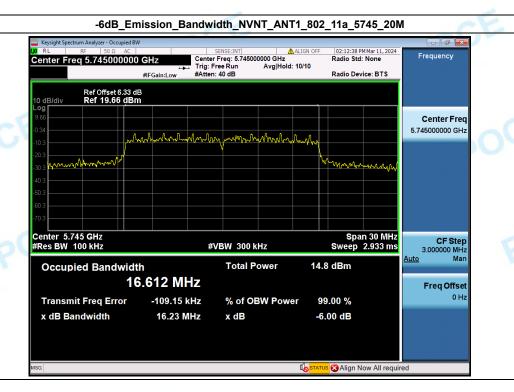
101-102 Building H5 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Tel: 86-755-29113252 E-mail: service@poce-cert.com Page 36 of 83 Web:http://www.poce-cert.com



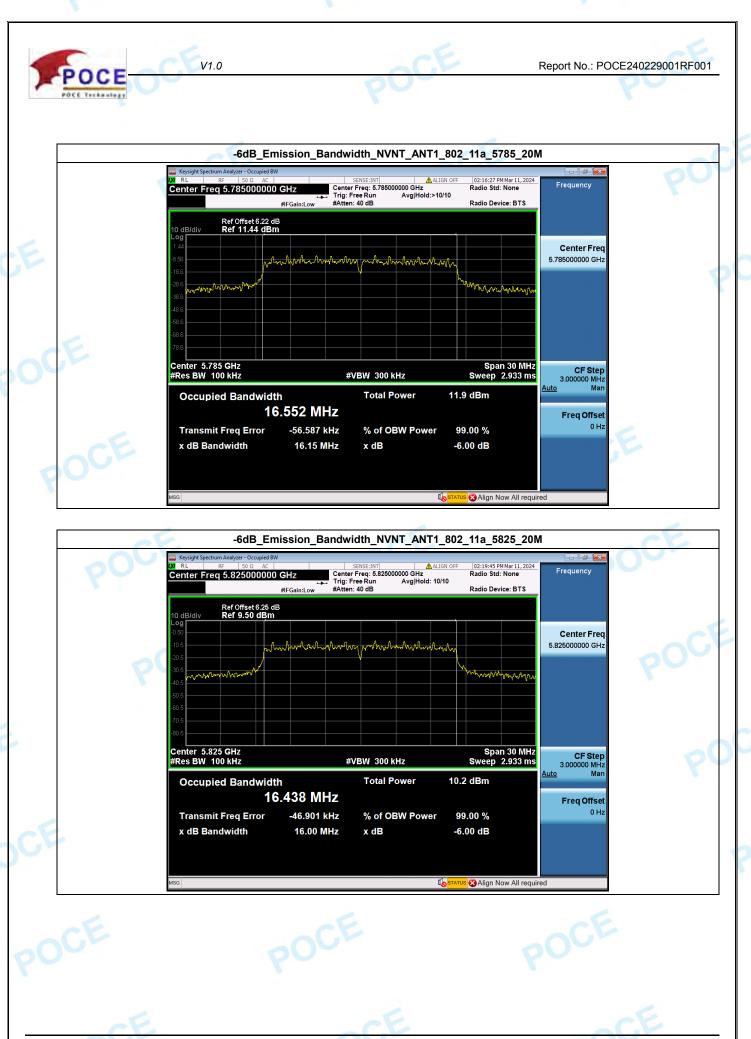




<page-header></page-header>	PC		
POCE POCE POCE POCE POCE POCE POCE POCE POCE POCE	POCE	POCE	Report No.: POCE240229001RF001
	POCE	POCE) CE POCE


Appendix

1. -6dB Emission Bandwidth


Technology

V1.0

Condition	Antenna	Mode	Frequency(MHz)	-6dB_Emission_Bandwidth (MHz)	Limit(MHz)	Result
NVNT	ANT1	LCH	5745.00	16.226	0.500	Pass
NVNT	ANT1	MCH	5785.00	16.155	0.500	Pass
NVNT	ANT1	HCH	5825.00	16.002	0.500	Pass
NVNT	ANT1	LCH	5745.00	16.287	0.500	Pass
NVNT	ANT1	MCH	5785.00	16.293	0.500	Pass
NVNT	ANT1	HCH	5825.00	15.480	0.500	Pass
NVNT	ANT1	LCH	5755.00	35.125	0.500	Pass
NVNT	ANT1	HCH	5795.00	35.144	0.500	Pass

101-102 Building H5 & 1/F., Building H,Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, ChinaWeb:http://www.poce-cert.comTel: 86-755-29113252E-mail: service@poce-cert.comPage 46 of 83

101-102 Building H5 & 1/F., Building H,Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, ChinaWeb:http://www.poce-cert.comTel: 86-755-29113252E-mail: service@poce-cert.comPage 47 of 83

11.9 dBm

99.00 %

-6.00 dB

🛿 Align Now All required

Ū,

Freq Offse

101-102 Building H5 & 1/F., Building H,Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, ChinaWeb:http://www. poce-cert.comTel: 86-755-29113252E-mail: service@poce-cert.comPage 48 of 83

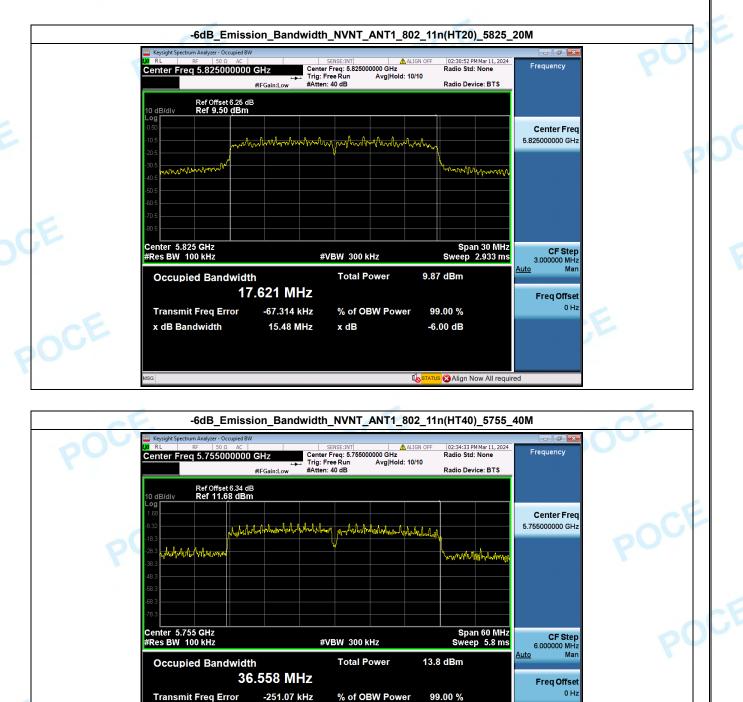
Total Power

x dB

% of OBW Power

Occupied Bandwidth

Transmit Freq Error


x dB Bandwidth

17.650 MHz

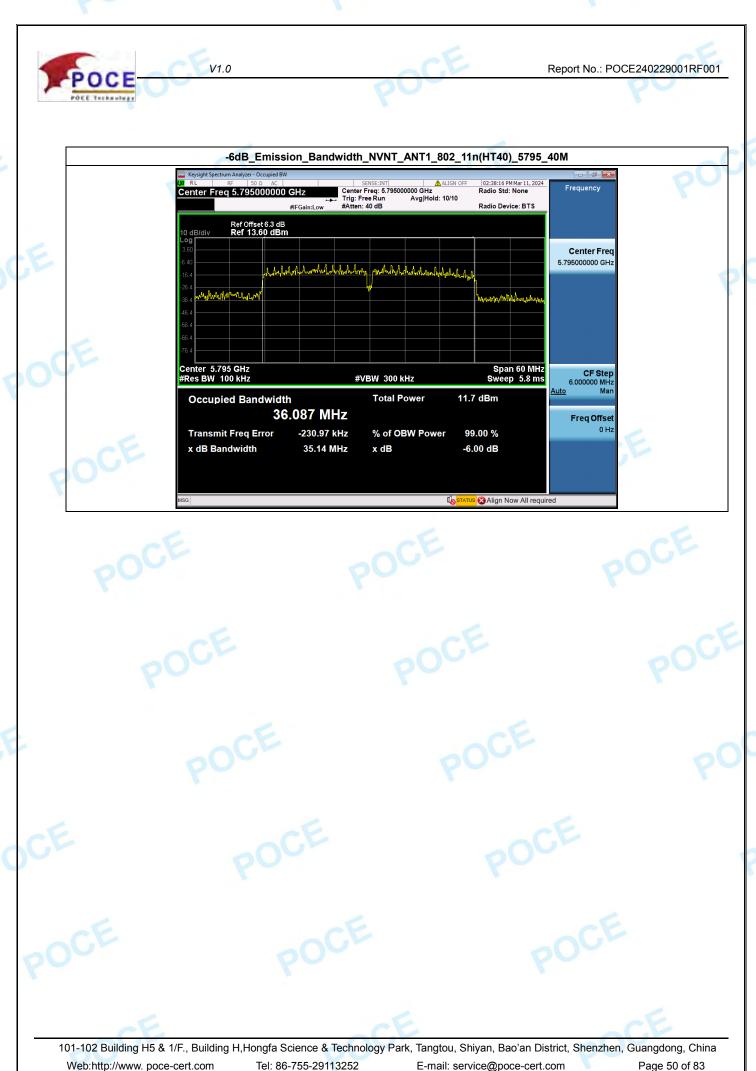
-70.747 kHz

16.29 MHz

PU-

35.13 MHz

x dB Bandwidth


101-102 Building H5 & 1/F., Building H,Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, ChinaWeb:http://www.poce-cert.comTel: 86-755-29113252E-mail: service@poce-cert.comPage 49 of 83

x dB

-6.00 dB

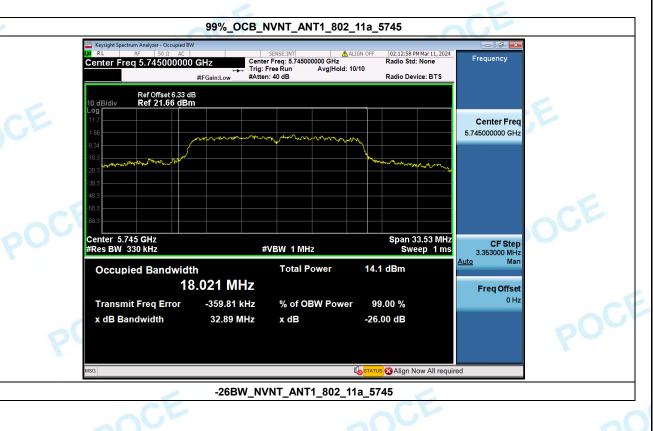
🛿 Align Now All required

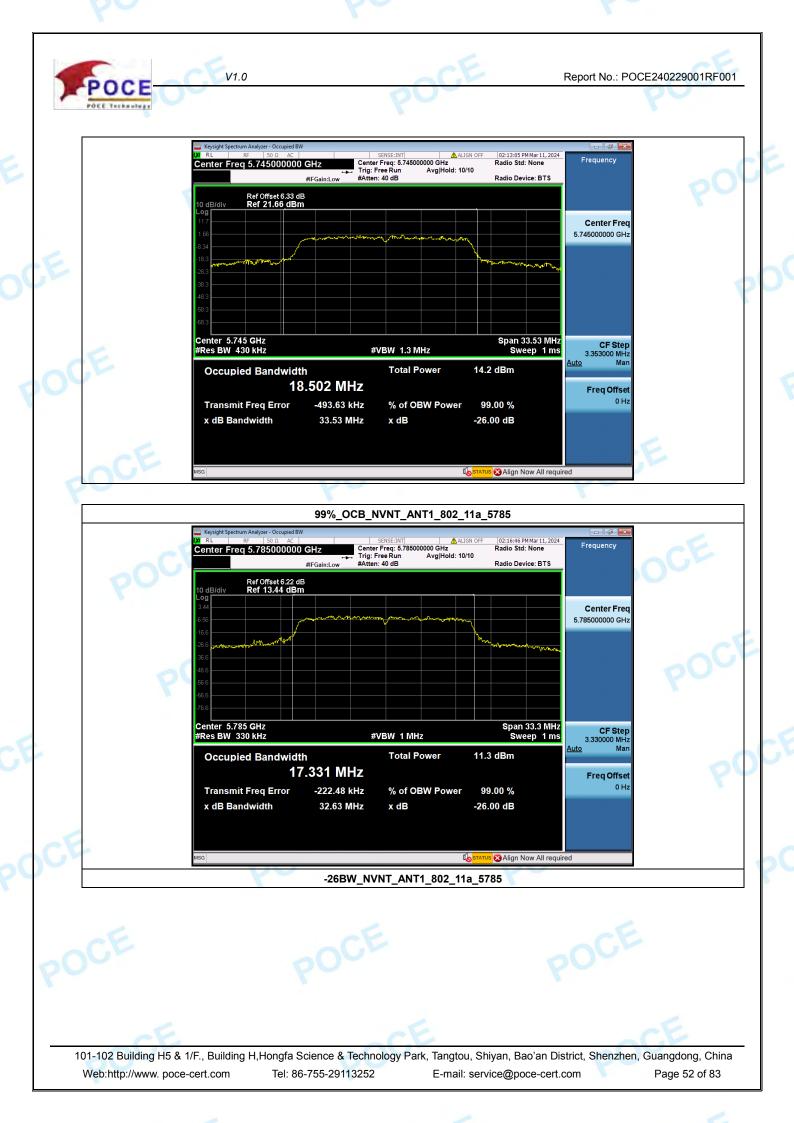
Ū,

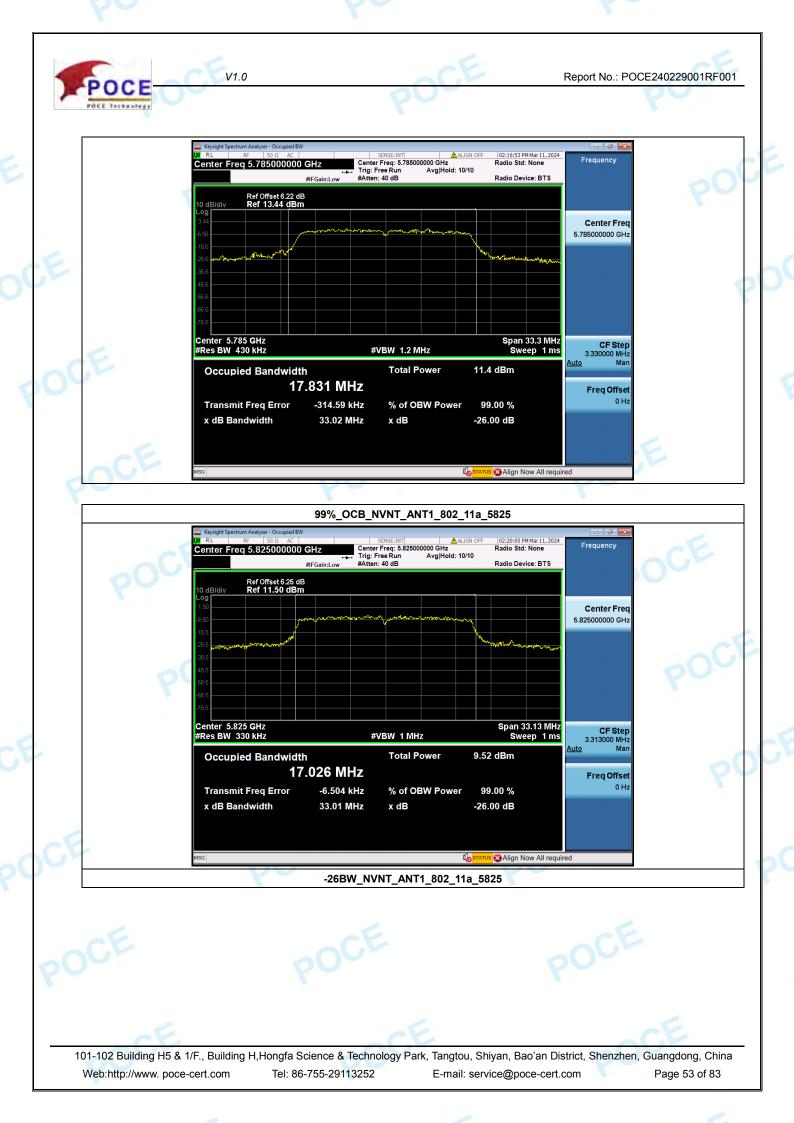
Web:http://www.poce-cert.com

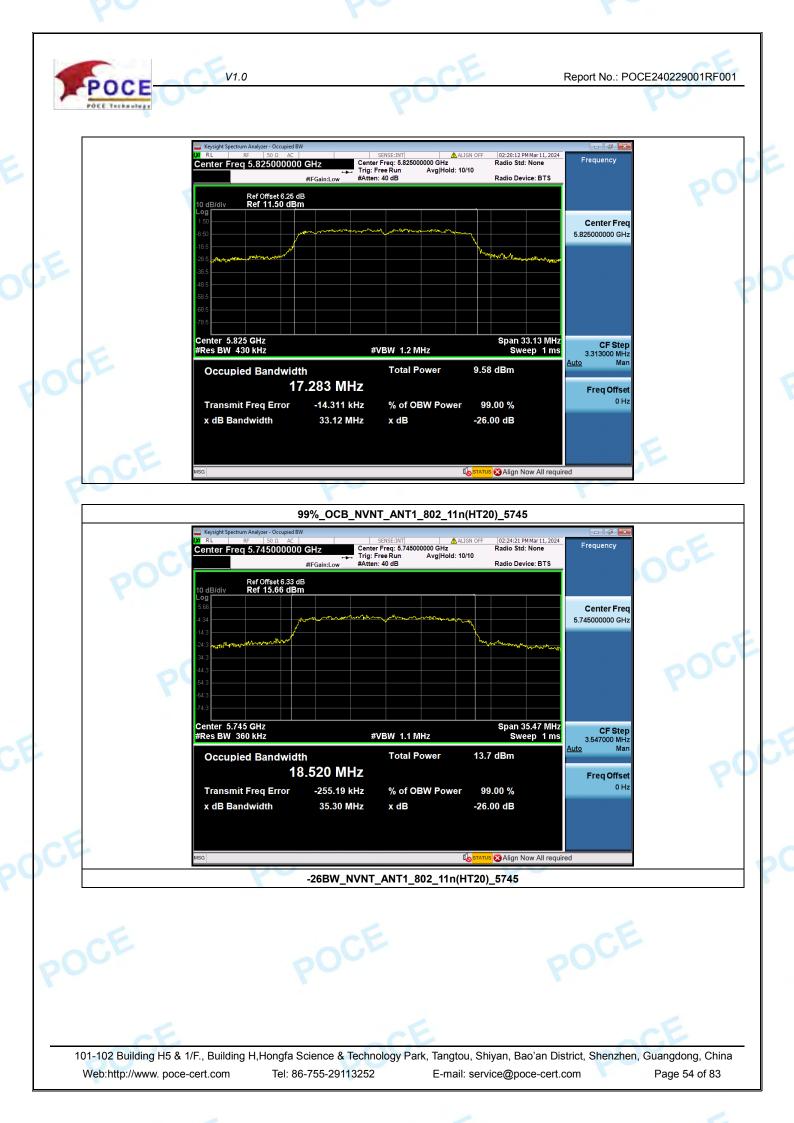
E-mail: service@poce-cert.com

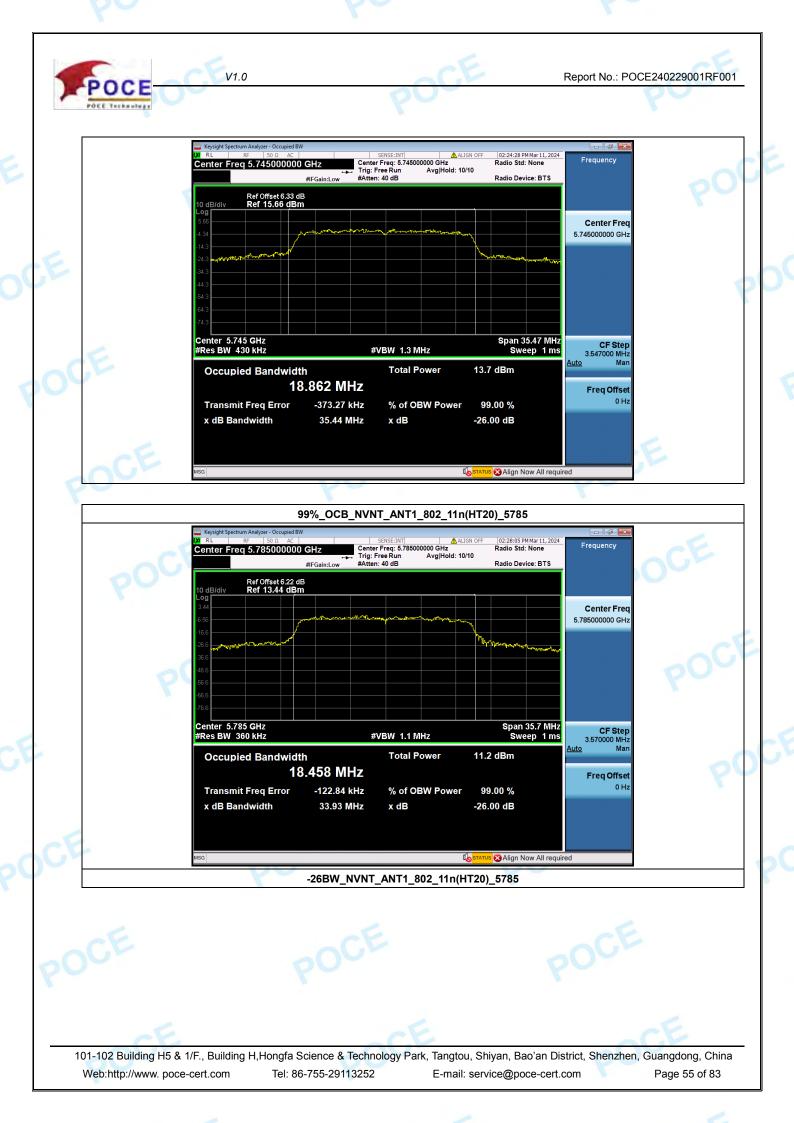
Page 50 of 83

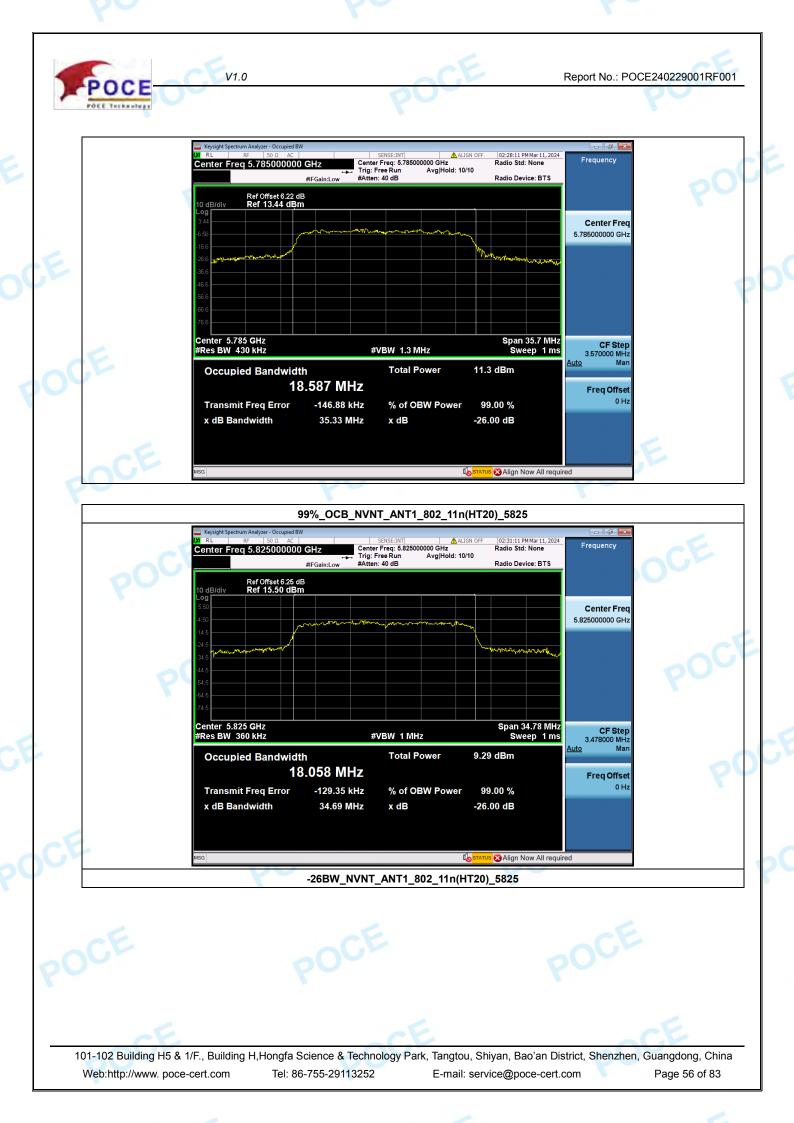


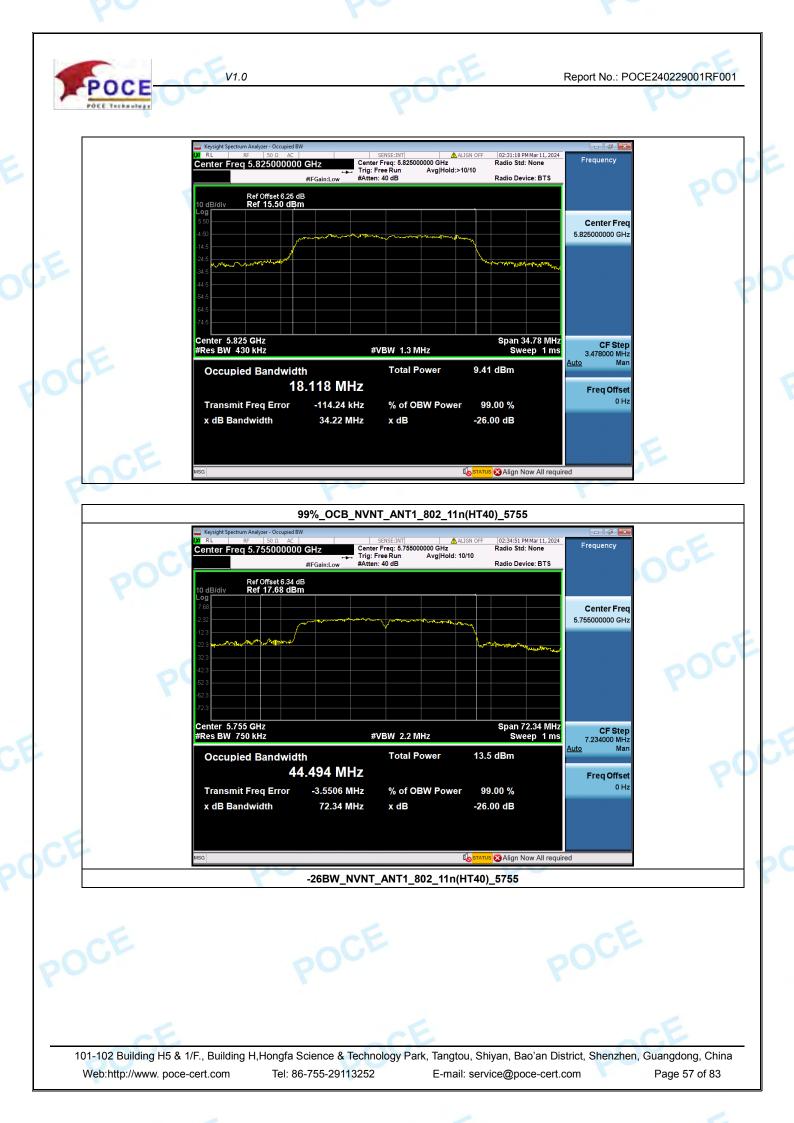

2. -26dB and 99% Emission Bandwidth


V1.0


Condition	Antenna	Modulation	Frequency(MHz)	- 26dB_Emission_Bandwidth(MHz)	Occupied Bandwidth(MHz)
NVNT	ANT1	802.11a	5745.00	33.53	18.02
NVNT	ANT1	802.11a	5785.00	33.02	17.33
NVNT	ANT1	802.11a	5825.00	33.12	17.03
NVNT	ANT1	802.11n(HT20)	5745.00	35.44	18.52
NVNT	ANT1	802.11n(HT20)	5785.00	35.33	18.46
NVNT	ANT1 💽	802.11n(HT20)	5825.00	34.22	18.06
NVNT	ANT1 📃	802.11n(HT40)	5755.00	72.32	44.49
NVNT	ANT1	802.11n(HT40)	5795.00	71.87	41.43

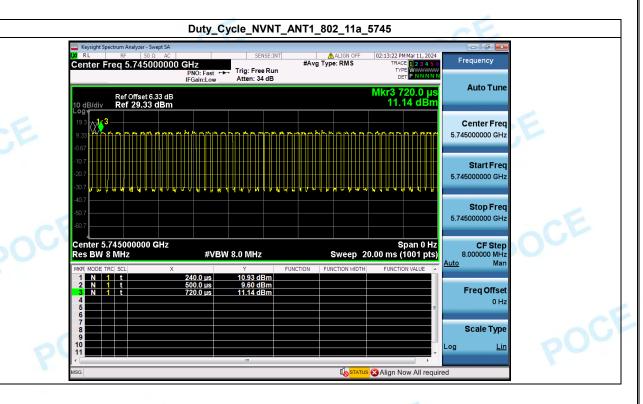



101-102 Building H5 & 1/F., Building H,Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, ChinaWeb:http://www.poce-cert.comTel: 86-755-29113252E-mail: service@poce-cert.comPage 51 of 83

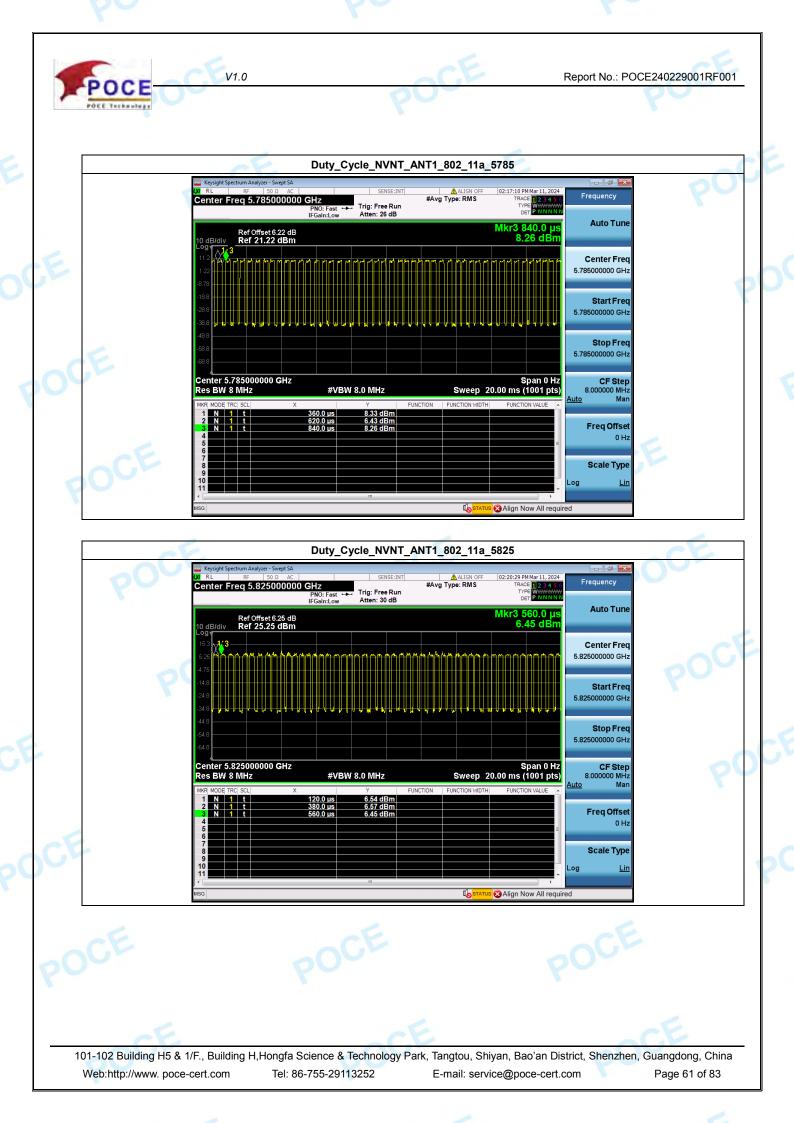


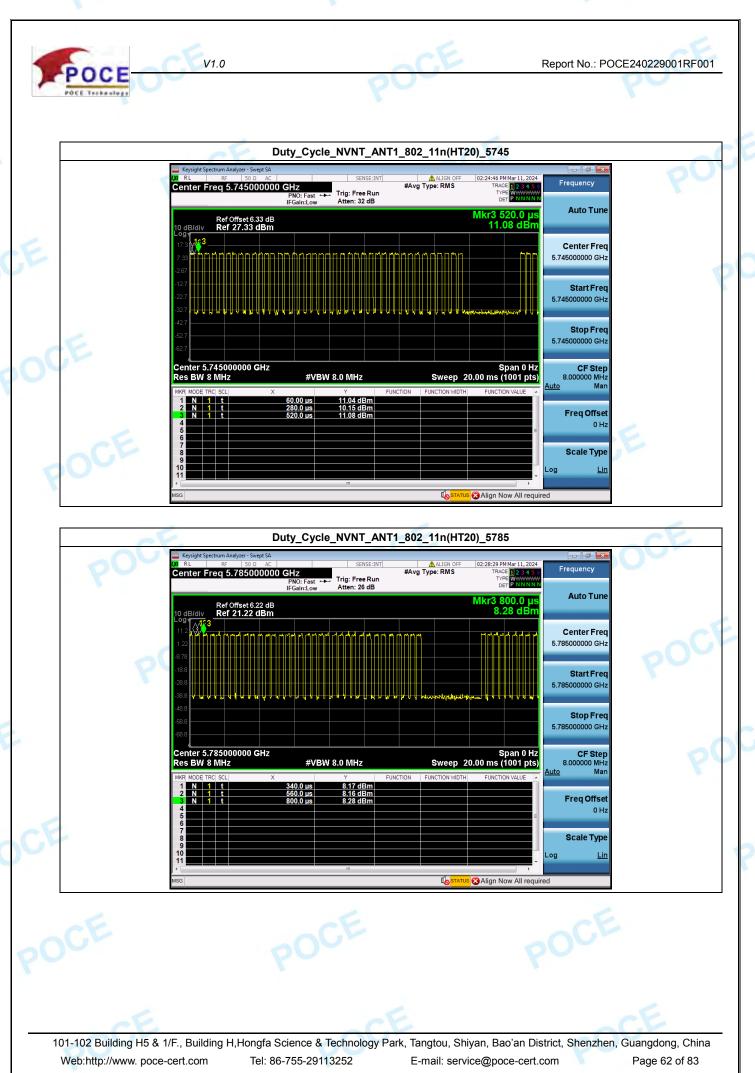
	Keysight Spectrum Analyzer - Occupied BW RL	SENSE:INT ▲ Center Freq: 5.795000000 GHz → Trig: Free Run Avg Hold:		Frequency
1	#IFGain:Lo	ow #Atten: 40 dB	Radio Device: BTS	PC PC
	-0.40 -10.4	and the second second	~ 5.	Center Freq 795000000 GHz
C 1	-20.4		mun marine man Marine	
	-40.4			
	-70.4			
1	Center 5.795 GHz #Res BW 910 kHz	#VBW 2.7 MHz	Span 71.88 MHz Sweep 1 ms	CF Step 7.188000 MHz
CE	Occupied Bandwidth 42.169	Total Power	11.6 dBm	
	Transmit Freq Error -2.81	01 MHz % of OBW Powe		Freq Offset 0 Hz
	x dB Bandwidth 71.	87 MHz x dB	-26.00 dB	-
OCE	MSG		I STATUS S Align Now All required	<u>,</u> E
PUS	The second se			

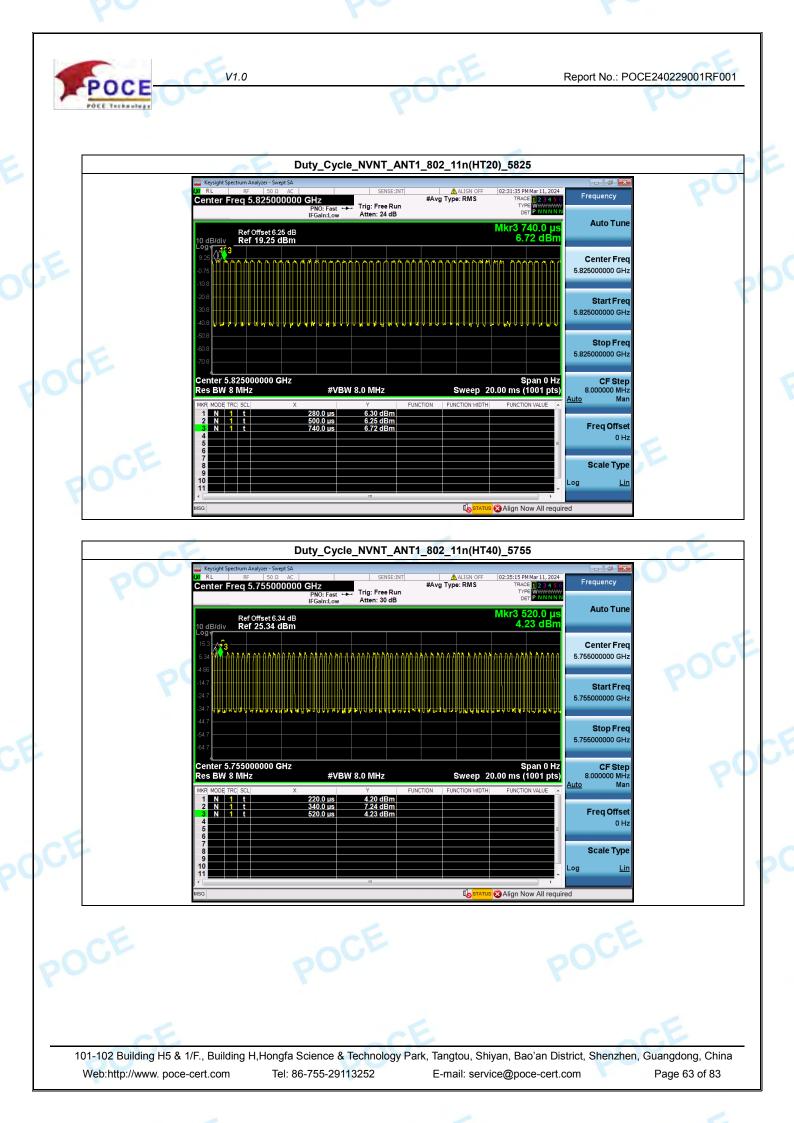
Page 59 of 83 Web:http://www.poce-cert.com Tel: 86-755-29113252 E-mail: service@poce-cert.com

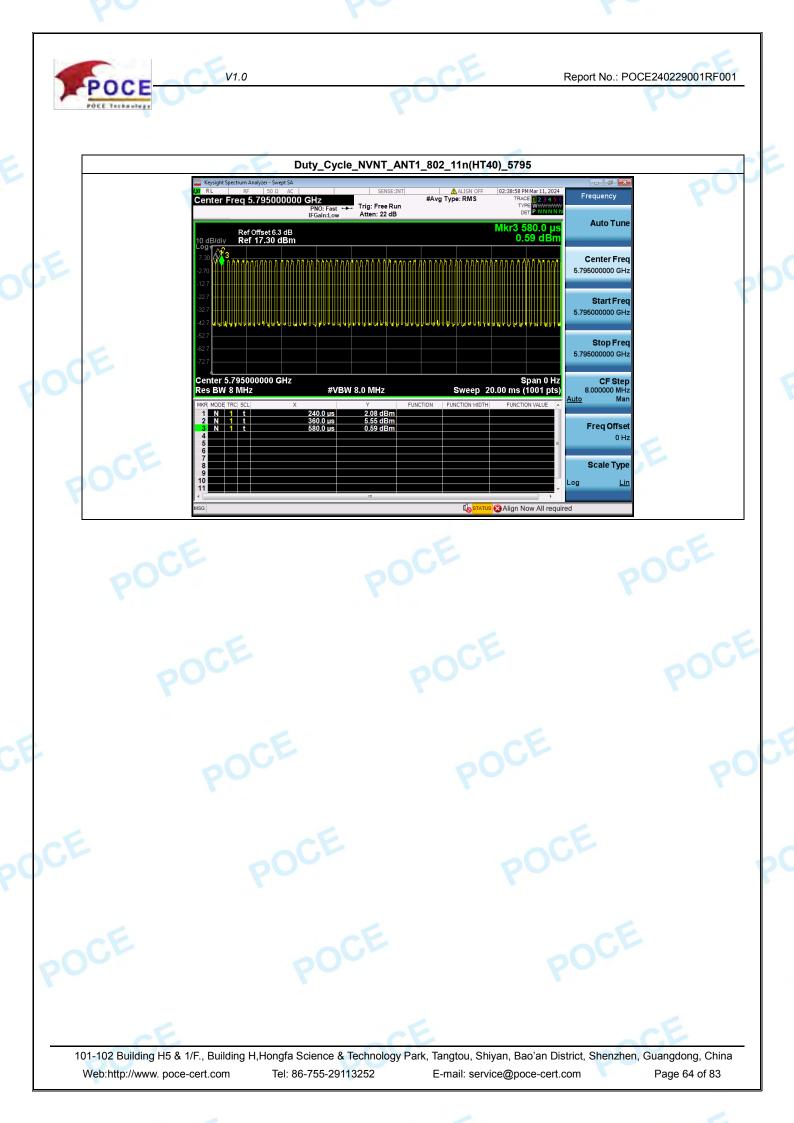

V1.0

Report No.: POCE240229001RF001


3. Duty Cycle


POCE


Condition	Antenna	Modulation	Frequency (MHz)	Duty cycle(%)	Duty_factor
NVNT	ANT1	802.11a	5745.00	54.17	2.66
NVNT	ANT1	802.11a	5785.00	54.17	2.66
NVNT	ANT1	802.11a	5825.00	59.09	2.28
NVNT	ANT1	802.11n(HT20)	5745.00	47.83	3.20
NVNT	ANT1	802.11n(HT20)	5785.00	47.83	3.20
NVNT	ANT1	802.11n(HT20)	5825.00	47.83	3.20
NVNT	ANT1	802.11n(HT40)	5755.00	40.00	3.98
NVNT	ANT1	802.11n(HT40)	5795.00	35.29	4.52



101-102 Building H5 & 1/F., Building H,Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, ChinaWeb:http://www.poce-cert.comTel: 86-755-29113252E-mail: service@poce-cert.comPage 60 of 83

Report No.: POCE240229001RF001

4. Maximum Conducted Output Power

V1.0

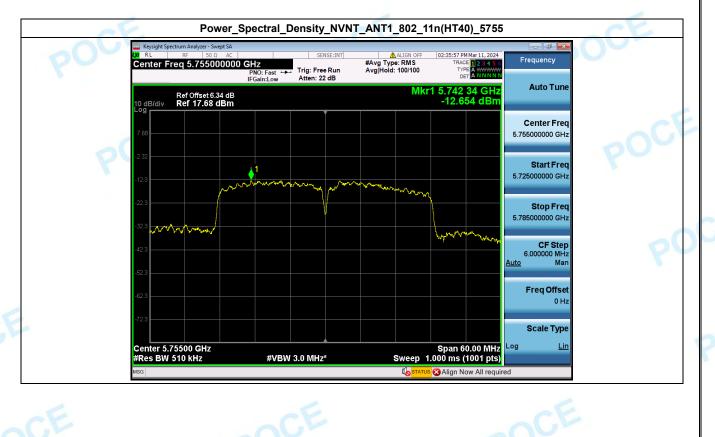
Condition	Antenna	Modulation	Frequency (MHz)	Conducted Power(dBm)	Duty factor(dB)	Total Power(dBm)	limit(dBm)	Result
NVNT	ANT1	802.11a	5745.00	5.20	2.66	7.86	30	Pass
NVNT	ANT1	802.11a	5785.00	2.42	2.66	5.08	30	Pass
NVNT	ANT1	802.11a	5825.00	0.76	2.28	3.04	30	Pass
NVNT	ANT1	802.11n(HT20)	5745.00	4.71	3.20	7.91	30	Pass
NVNT	ANT1	802.11n(HT20)	5785.00	2.18	3.20	5.38	30	Pass
NVNT	ANT1	802.11n(HT20)	5825.00	0.50	3.20	3.70	30	Pass
NVNT	ANT1	802.11n(HT40)	5755.00	3.03	3.98	7.01	30	Pass
NVNT	ANT1	802.11n(HT40)	5795.00	0.94	4.52	5.46	30	Pass

5. Power Spectral Density

Condition	Antenna	Modulation	Frequency (MHz)	PSD_SA (dBm/RBW)	Duty factor (dB)	RB factor (dB)	PSD (dBm/500kHz)	Limit (dBm/500kHz)	Result
NVNT	ANT1	802.11a	5745.00	-8.185	2.66	-0.086	-5.611	30	Pass
NVNT	ANT1	802.11a	5785.00	-10.409	2.66	-0.086	-7.835	30	Pass
NVNT	ANT1	802.11a	5825.00	-12.136	2.28	-0.086	-9.942	30	Pass
NVNT	ANT1	802.11n(HT20)	5745.00	-8.736	3.20	-0.086	-5.622	30	Pass
NVNT	ANT1	802.11n(HT20)	5785.00	-10.919	3.20	-0.086	-7.805	30	Pass
NVNT	ANT1	802.11n(HT20)	5825.00	-12.585	3.20	-0.086	-9.471	30	Pass
NVNT	ANT1	802.11n(HT40)	5755.00	-12.654	3.98	-0.086	-8.76	30	Pass
NVNT	ANT1	802.11n(HT40)	5795.00	-14.597	4.52	-0.086	-10.163	30	Pass

RB factor=10*log(500/510)=-0.086dB; PSD (dBm/500kHz)= PSD_SA + Duty factor + RB factor

101-102 Building H5 & 1/F., Building H,Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, ChinaWeb:http://www.poce-cert.comTel: 86-755-29113252E-mail: service@poce-cert.comPage 65 of 83


101-102 Building H5 & 1/F., Building H,Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, ChinaWeb:http://www.poce-cert.comTel: 86-755-29113252E-mail: service@poce-cert.comPage 66 of 83

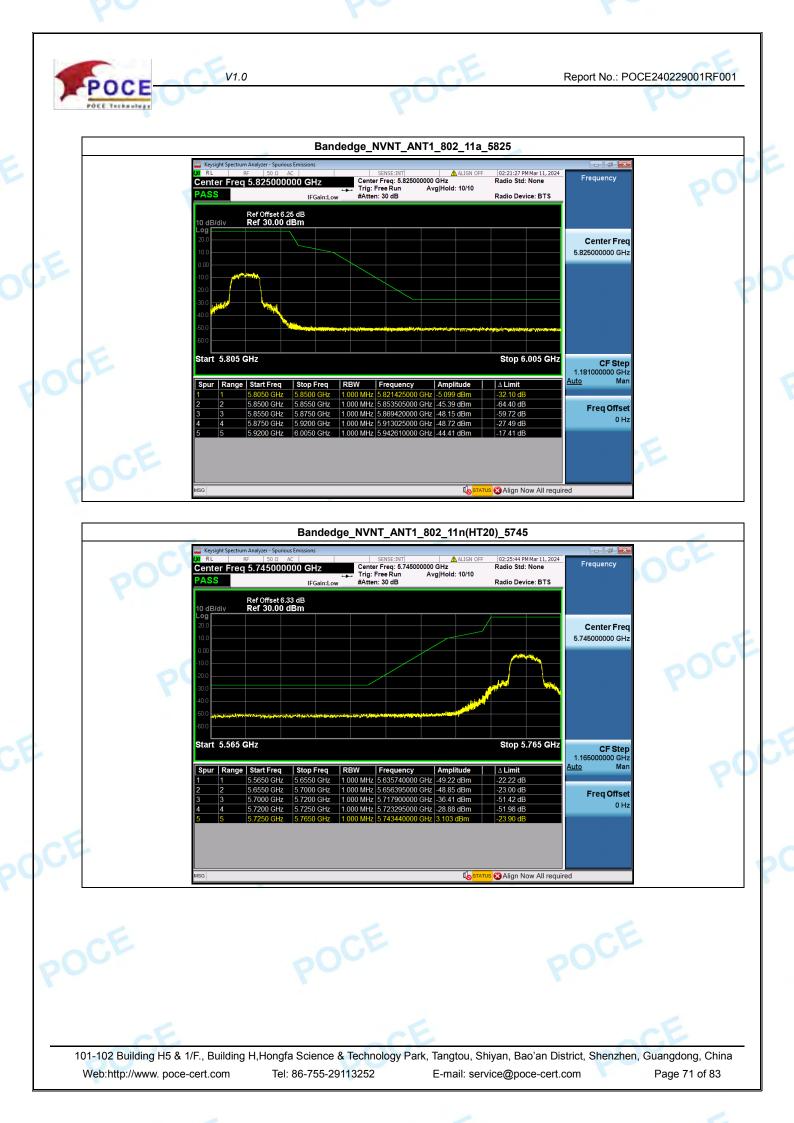
101-102 Building H5 & 1/F., Building H,Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, ChinaWeb:http://www.poce-cert.comTel: 86-755-29113252E-mail: service@poce-cert.comPage 67 of 83

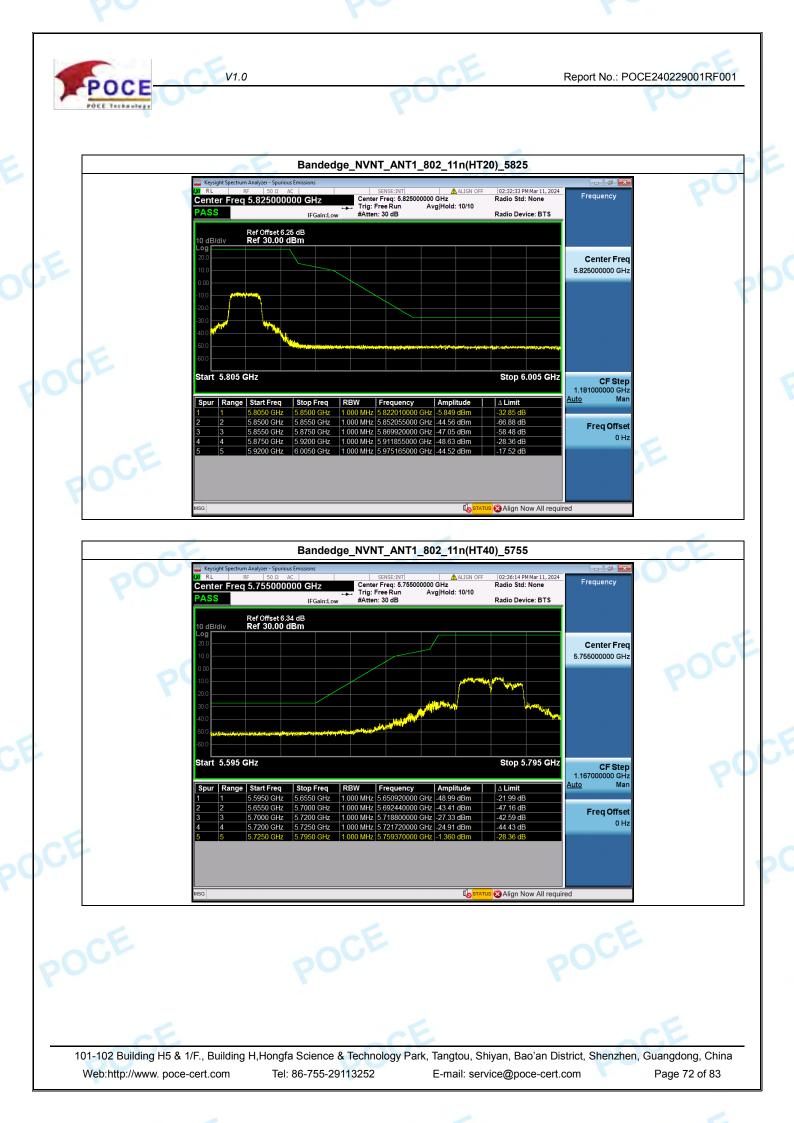
101-102 Building H5 & 1/F., Building H,Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, ChinaWeb:http://www.poce-cert.comTel: 86-755-29113252E-mail: service@poce-cert.comPage 68 of 83

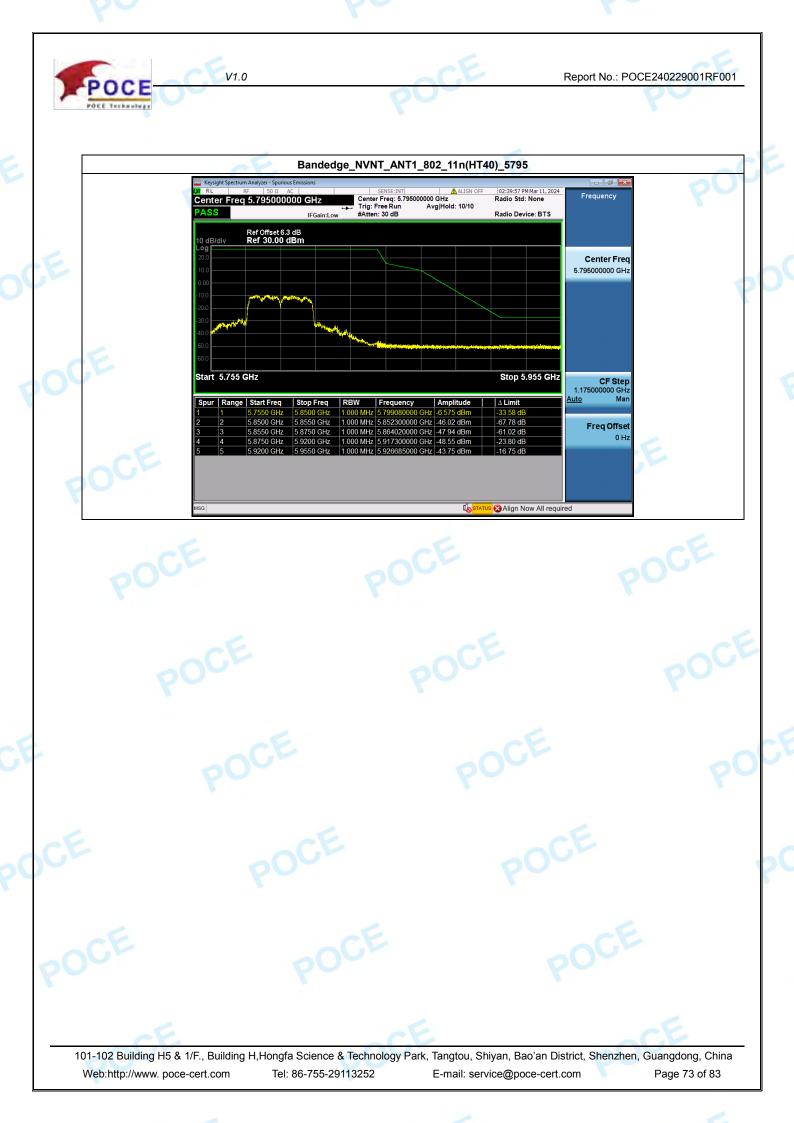
POCE Technology	V1.0	Pour		lo.: POCE240229001RF00
		ensity_NVNT_ANT1_802_1	l1n(HT40)_5795	_
	Keysight Spectrum Analyzer - Swept SA Kar RF 50Ω AC Center Freq 5.795000000 GHz PN0: Fast ↔	SENSE:INT ALIGN OFF #Avg Type: RMS Trig: Free Run Avg Hold: 100/100	02:39:41 PM Mar 11, 2024 TRACE 12:34 5 6 TYPE A DET A NINNNN	ncy
	IFGain:Low Ref Offset 6.3 dB	Atten: 16 dB		o Tune
	10 dB/div Ref 11.60 dBm		Cent	er Freq
	-8.40		5.795000	000 GHz
	-18.4	my man more more	5,765000	n t Freq D00 GHz
	-28.4		Sto	op Freq
CE	-38.4		5.825000	
	-48.4		6.000 Auto	SF Step Doo MHz Man
	-58.4		Free	Offset
POCE	-78.4			0 Hz le Type
0000	Center 5.79500 GHz		Span 60.00 MHz	Lin
X	#Res BW 510 kHz #VBW 3		1.000 ms (1001 pts) S Align Now All required	

Report No.: POCE240229001RF001

6. Bandedge


Techanitat

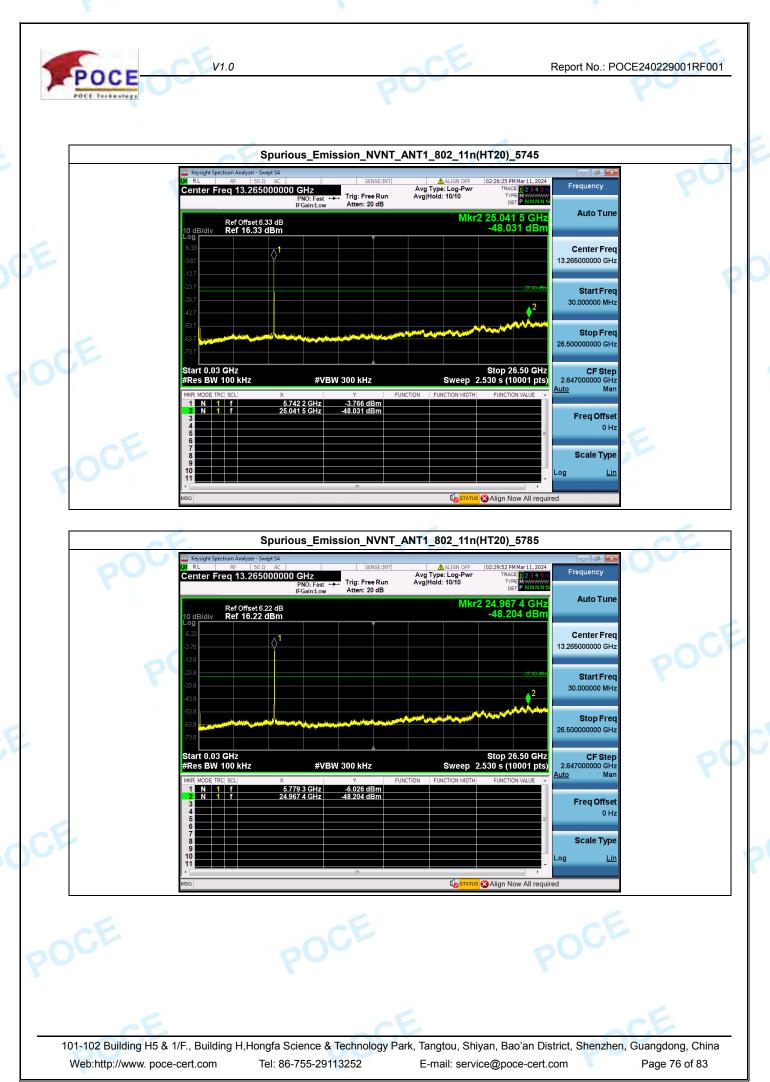

V1.0

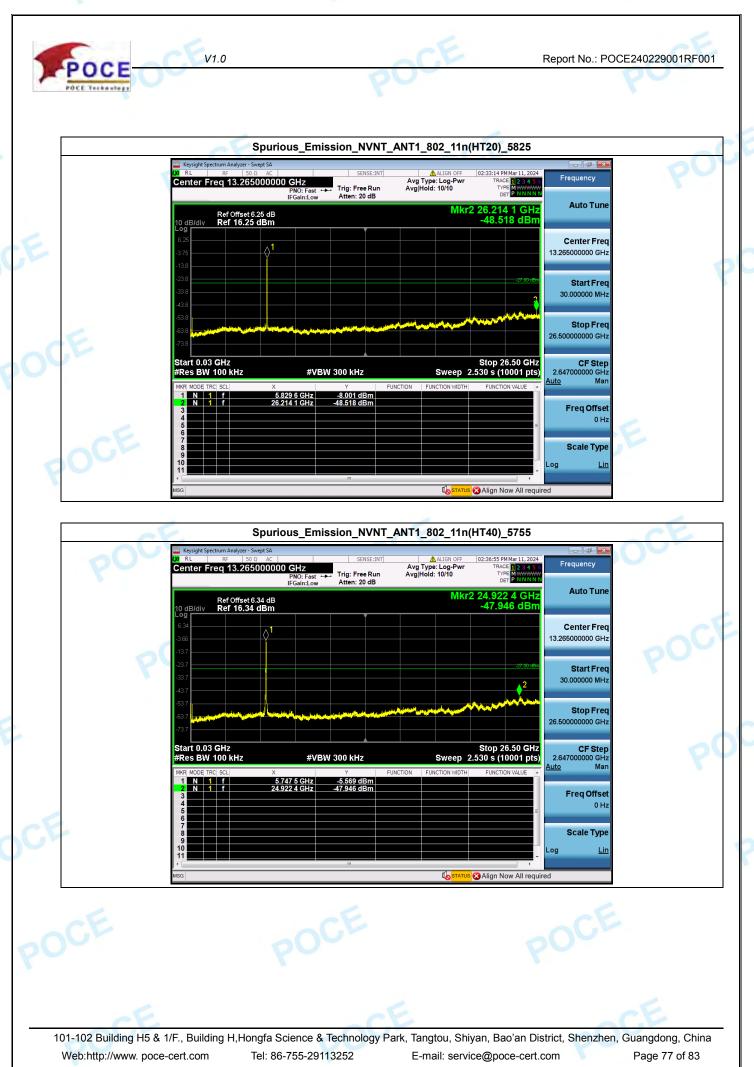

			1			r		
Condition	Antenna	Modulation	TX_Frequency (MHz)	Frequency Area(MHz)	Frequency(MHz)	Amplitude(dBm)	Limit(dBm)	Result
NVNT	ANT1	802.11a	LCH	5565-5655	5581.290	-49.09	-27.00	Pass
NVNT	ANT1	802.11a	LCH	5655-5700	5672.865	-48.74	-12.31	Pass
NVNT	ANT1	802.11a	LCH	5700-5720	5716.460	-36.85	14.61	Pass
NVNT	ANT1	802.11a	LCH	5720-5725	5724.700	-25.63	26.32	Pass
NVNT	ANT1	802.11a	НСН	5850-5855	5853.505	-45.39	19.01	Pass
NVNT	ANT1	802.11a	НСН	5855-5875	5869.420	-48.15	11.56	Pass
NVNT	ANT1	802.11a	НСН	5875-5920	5913.025	-48.72	-21.26	Pass
NVNT	ANT1	802.11a	НСН	5920-6005	5942.610	-44.41	-27.00	Pass
NVNT	ANT1	802.11n(HT20)	LCH 🥢	5565-5655	5635.740	-49.22	-27.00	Pass
NVNT	ANT1	802.11n(HT20)	LCH	5655-5700	5656.395	-48.85	-25.85	Pass
NVNT	ANT1	802.11n(HT20)	LCH	5700-5720	5717.900	-36.41	15.01	Pass
NVNT	ANT1	802.11n(HT20)	LCH	5720-5725	5723.295	-28.88	23.11	Pass
NVNT	ANT1	802.11n(HT20)	НСН	5850-5855	5852.055	-44.56	22.31	Pass
NVNT	ANT1	802.11n(HT20)	НСН	5855-5875	5869.920	-47.05	11.42	Pass
NVNT	ANT1	802.11n(HT20)	НСН	5875-5920	5911.855	-48.63	-20.30	Pass
NVNT	ANT1	802.11n(HT20)	НСН	5920-6005	5975.165	-44.52	-27.00	Pass
NVNT	ANT1	802.11n(HT40)	LCH	5595-5655	5650.920	-48.99	-27.00	Pass
NVNT	ANT1	802.11n(HT40)	LCH	5655-5700	5692.440	-43.41	3.78	Pass
NVNT	ANT1	802.11n(HT40)	LCH	5700-5720	5718.800	-27.33	15.26	Pass
NVNT	ANT1	802.11n(HT40)	LCH	5720-5725	5721.720	-24.91	19.52	Pass
NVNT	ANT1	802.11n(HT40)	НСН	5850-5855	5852.300	-46.02	21.76	Pass
NVNT	ANT1	802.11n(HT40)	НСН	5855-5875	5864.020	-47.94	13.07	Pass
NVNT	ANT1	802.11n(HT40)	НСН	5875-5920	5917.300	-48.55	-24.78	Pass
NVNT	ANT1	802.11n(HT40)	HCH	5920-5955	5926.685	-43.75	-27.00	Pass

Cen PAS	ter Freq	RF 50 Ω / 5.7450000		🛶 Trig:	SENSE:INT er Freq: 5.74500000 Free Run A en: 30 dB	ALIGN OFF 0 GHz vg Hold: 10/10	02:14:20 PM Mar 11, 20 Radio Std: None Radio Device: BTS	Frequency	
	3/div	Ref Offset 6.3 Ref 30.00 (33 dB d B m						
Log 20.0 10.0								Center Freq 5.745000000 GHz	
0.00 -10.0									
-20.0 -30.0							June Marine	w.	
-40.0									
-60.0		artan ing Kapatan ang K		an na standard and and	an stad a st				
Star	t 5.565 G	GHz					Stop 5.765 G	Cr Step	
	r Range	Start Freq	Stop Freq	RBW	Frequency	Amplitude	∆ Limit	1.165000000 GHz <u>Auto</u> Man	
Spu		5.5650 GHz	5.6550 GHz		5.581290000 GH		-22.09 dB		
Spu 1					5.672865000 GH	z 48 74 dBm	-36.41 dB	Ener Offerst	
Spu 1 2	2	5.6550 GHz	5.7000 GHz				51 46 dB	Freq Offset	
Spu 1 2 3 4	2 3	5.6550 GHz 5.7000 GHz	5.7200 GHz	1.000 MHz	5.716460000 GH	z -36.85 dBm	-51.46 dB -51.94 dB	0 Hz	
Spu 1 2 3 4 5	2 3	5.6550 GHz		1.000 MHz 1.000 MHz		z -36.85 dBm z -25.63 dBm	-51.46 dB -51.94 dB -22.86 dB		
Spu 1 2 3 4 5	2 3	5.6550 GHz 5.7000 GHz 5.7200 GHz	5.7200 GHz 5.7250 GHz	1.000 MHz 1.000 MHz	5.716460000 GH	z -36.85 dBm z -25.63 dBm	-51.94 dB		
Sput 1 2 3 4 5	2 3	5.6550 GHz 5.7000 GHz 5.7200 GHz	5.7200 GHz 5.7250 GHz	1.000 MHz 1.000 MHz	5.716460000 GH	z -36.85 dBm z -25.63 dBm	-51.94 dB		
Spu 1 2 3 4 5	2 3	5.6550 GHz 5.7000 GHz 5.7200 GHz	5.7200 GHz 5.7250 GHz	1.000 MHz 1.000 MHz	5.716460000 GH	z -36.85 dBm z -25.63 dBm	-51.94 dB		

101-102 Building H5 & 1/F., Building H,Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, ChinaWeb:http://www.poce-cert.comTel: 86-755-29113252E-mail: service@poce-cert.comPage 70 of 83

7. Spurious Emission


V1.0


Condition	Antenna	Modulation	TX_Frequency (MHz)	Max. Mark Frequency(MHz)	Spurious level(dBm)	limit(dBm)	Result
NVNT	ANT1	802.11a	5745.00	24943.56	-48.61	-27	Pass
NVNT	ANT1	802.11a	5785.00	25030.92	-48.16	-27	Pass
NVNT	ANT1	802.11a	5825.00	25639.72	-49.36	-27	Pass
NVNT	ANT1	802.11n(HT20)	5745.00	25041.50	-48.03	-27	Pass
NVNT	ANT1	802.11n(HT20)	5785.00	24967.39	-48.20	-27	Pass
NVNT	ANT1	802.11n(HT20)	5825.00	26214.12	-48.52	-27	Pass
NVNT	ANT1	802.11n(HT40)	5755.00	24922.39	-47.95	-27	Pass
NVNT	ANT1	802.11n(HT40)	5795.00	25607.96	-48.55	-27	Pass

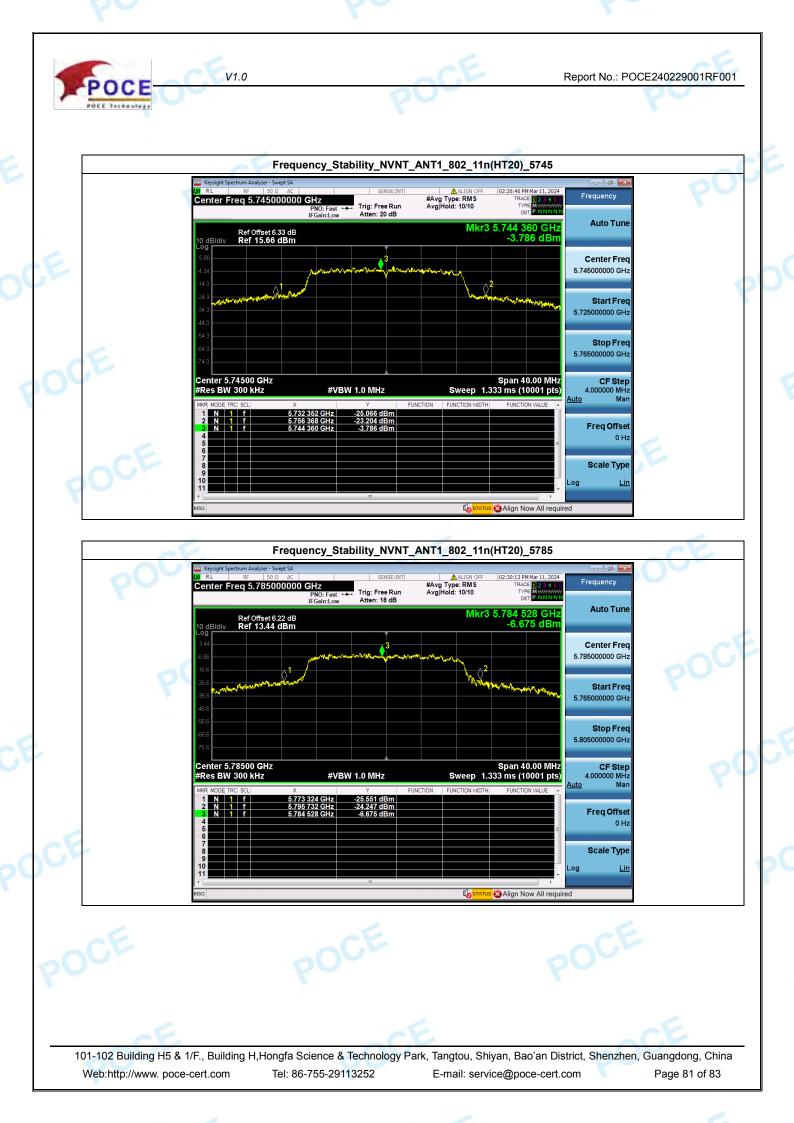
101-102 Building H5 & 1/F., Building H,Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, ChinaWeb:http://www.poce-cert.comTel: 86-755-29113252E-mail: service@poce-cert.comPage 74 of 83

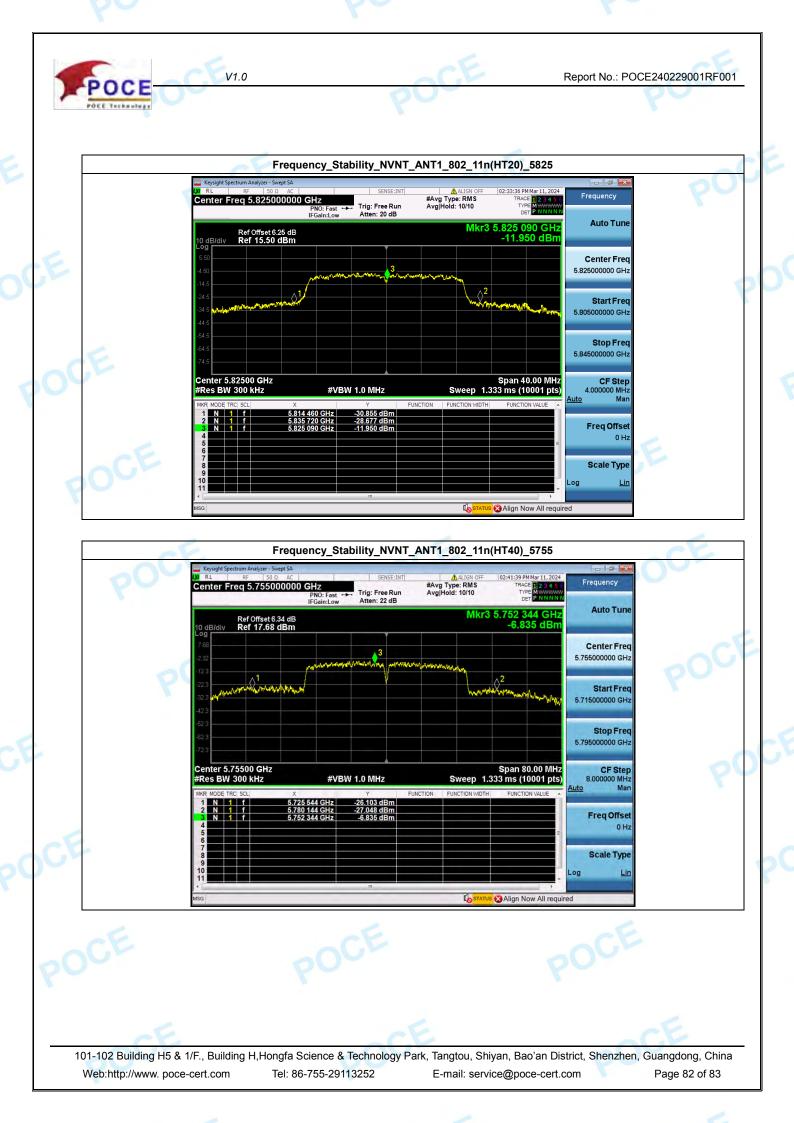
	Spuric	ous_Emission_NVNT_	ANT1_802_11n(HT4	0)_5795	-
	Keysight Spectrum Analyzer - Swept SA X RL RF 50 Ω AC Center Freq 13.265000000	PNO: Fast +++ Trig: Free Run	ALIGN OFF 02:4 Avg Type: Log-Pwr Avg Hold: 10/10	:38 PM Mar 11, 2024 Frequency TRACE 12.3 4 5 6 Type WWWWWW DET N NN NN	
	Ref Offset 6.3 dB 10 dB/div Ref 16.30 dBm Log	IFGain:Low Atten: 20 dB		608 0 GHz 8.547 dBm	
	6.30 -3.70 -13.7			Center Freq 13.265000000 GHz	
	-23.7			27.0000m Start Freq 30.000000 MHz	
6	-53.7 -63.7		and a second second	Stop Freq 26.50000000 GHz	
DCE	-73.7 Start 0.03 GHz #Res BW 100 kHz	#VBW 300 kHz	Sto Sweep 2.530		
	MKR MODE TRC SCL X 1 N 1 f 5.7 2 N 1 f 25.6 3	Y FU 87 2 GHz -7.932 dBm 08 0 GHz -48.547 dBm	INCTION FUNCTION WIDTH FI	INCTION VALUE Auto Man	
DOCE	4 5 6 7 8			□ 0 Hz	
POU	9 10 4 KSG	m		Log Lin	
					6

V1.0

. Frequency Stability								
Condition	Antenna	Modulation	Frequency (MHz)	Fc(MHz)	FI(MHz)	Fh(MHz)	Limit(MHz)	Result
NVNT	ANT1	802.11a	5745.00	5744.344	5732.172	5756.516	5725~5850	Pass
NVNT	ANT1	802.11a	5785.00	5784.420	5773.576	5795.264	5725~5850	Pass
NVNT	ANT1	802.11a	5825.00	5825.050	5814.844	5835.256	5725~5850	Pass
NVNT	ANT1	802.11n(HT20)	5745.00	5744.360	5732.352	5756.368	5725~5850	Pass
NVNT	ANT1	802.11n(HT20)	5785.00	5784.528	5773.324	5795.732	5725~5850	Pass
NVNT	ANT1	802.11n(HT20)	5825.00	5825.090	5814.460	5835.720	5725~5850	Pass
NVNT	ANT1	802.11n(HT40)	5755.00	5752.344	5725.544	5780.144	5725~5850	Pass
NVNT	ANT1	802.11n(HT40)	5795.00	5792.324	5766.952	5817.696	5725~5850	Pass




Web:http://www.poce-cert.com


Tel: 86-755-29113252

E-mail: service@poce-cert.com

Page 79 of 83

	Frequency_Stability_NVNT_ANT1	802 11p(HT40) 5795	
Keysight Spectrum	Analyzer - Swept SA - 50 Ω AC SENSE:INT	ALIGN OFF 02:41:00 PM Mar 11, 2024	ncy
Re	PNO: Fast →→ Trig: Free Run Avg H IFGain:Low Atten: 14 dB	India: 10/10 Type Minimum Det PNNNNN Mkr3 5.792 324 GHz Aut	o Tune
10 dB/div Re	f 9.60 dBm	-9.483 dBm Cent	er Freq 000 GHz
-20.4	and the second	Ste	ırt Freq
-50.4 -60.4		5.755000	op Freq
Center 5.7950		5.835000	DOO GHZ
#Res BW 300 MKR MODE TRC SC 1 N 1 f	KHZ #VBW 1.0 MHZ		SF Step 000 MHz Man
2 N 1 f 3 N 1 f 4 5 5 6	5.766 952 GHz -29.494 dBm 5.817 696 GHz -30.763 dBm 5.792 324 GHz -9.483 dBm	Free	l Offset 0 Hz
		Sca	le Type Lin
MSG	11	Kostatus CAlign Now All required	
	*********************** End of Repo	rt *******	