

Report No.: 18360WC40005001 FCC ID: 2BFF73600PRO Page 1 of 32

FCC Test Report

Applicant : Shenzhen SYD Network Technology Co .,Ltd

4F, Building NO.4, Lianchuang Science and

Address : Technology Park, 21st Bulan Rd, Nanwan Street,

Longgang District, Shenzhen, China

Product Name : Portable Power Station

Report Date : May 24, 2024

Shenzhen Anbotek Con Anbotek

ce Laboratory Limited

Report No.: 18360WC40005001 FCC ID: 2BFF73600PRO Page 2 of 32

Contents

1. General Information	Aur Chek	potek Aupo	y(
1.1. Client Information 1.2. Description of Device (EUT) 1.3. Auxiliary Equipment Used During Test 1.4. Operation channel list 1.5. Description of Test Modes 1.6. Measurement Uncertainty 1.7. Test Summary 1.8. Description of Test Facility 1.9. Disclaimer 1.10. Test Equipment List 2. Antenna requirement 2.1. Conclusion 3. Conducted Emission at AC power line 3.1. EUT Operation 3.2. Test Setup 3.3. Test Data 4. Occupied Bandwidth 4.1. EUT Operation 4.2. Test Setup 4.3. Test Data	abotek Antooten	And Lotek	'upatek '''
2. Antenna requirement			ek
2.1. Conclusion	upo kek jupojek	popore A	1
3. Conducted Emission at AC power line	Anbor Ar.	ek kopo _{ter}	
3.1. EUT Operation	Anborek And	1000 May 100	1; 1; 14
4. Occupied Bandwidth	Ker VUD	, Motek Anbo	10
4.1. EUT Operation4.2. Test Setup4.3. Test Data	toolek Village Williams		10 11
5. Maximum Conducted Output Power	Auporen Aup	ak "botek	Anbor
4.2. Test Setup		-10	
6. Power Spectral Density	otek Anbore	VII PO	potek 18
6. Power Spectral Density	200		18
7. Emissions in non-restricted frequency bands	Tapolek Vup,	o. k. Gotek	4!\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
7.1. EUT Operation 7.2. Test Setup 7.3. Test Data	r	PLI VILLE	19
7.3. Test Data	katek Anboten	And	hotek
8.1. EUT Operation 8.2. Test Setup 8.3. Test Data		rek pologis	20 2
9. Emissions in frequency bands (below 1GHz)	k botek At	hore Arr	
9.1. EUT Operation 9.2. Test Setup	olek Vuotek	Anbotek Anb	23

Report No.: 18360WC40005001	FCC ID: 2E	BFF73600PRO	Page 3	of 32
10. Emissions in frequency bands (above 1GHz)		Aupore Aur	otek Anbotel	27
10.1. EUT Operation	botek	Aupor Ar.	otek onbi	oten 27 Ani
10.2. Test Setup	VII	boter	'Upp.	28
10.3. Test Data	k Vupo,	· · · · · · · · · · · · · · · · · · ·	Cho _{te} . b	29
APPENDIX I TEST SETUP PHOTOGRAPH	atek kabote	yk Aupo	r. botek	32
APPENDIX II EXTERNAL PHOTOGRAPH		otek Aupor	W	32
APPENDIX III INTERNAL PHOTOGRAPH	spoter Pup	,	Anbor	32

Report No.: 18360WC40005001 FCC ID: 2BFF73600PRO Page 4 of 32

TEST REPORT

Applicant : Shenzhen SYD Network Technology Co .,Ltd Manufacturer : Shenzhen SYD Network Technology Co .,Ltd

Product Name : Portable Power Station

Test Model No. : 3600Pro

N051, N066, SYD3600Pro, SYD3600, EP3600, EP3600Pro, RED-E3840-A, GPS3800UE, F3600Pro, P3600Pro, 3840A, G3600Pro, AS3600-JP,

Reference Model No. : A, GPS38000E, F3600Pro, P3600Pro, S3600Pro, AS3600Pro, AS3600Pro,

X3600, PS3600pro

Trade Mark : N/A

Rating(s) : Please refer to the label on page 5

47 CFR Part 15.247

Test Standard(s) KDB 558074 D01 15.247 Meas Guidance v05r02

ANSI C63.10-2020

The device described above is tested by Shenzhen Anbotek Compliance Laboratory Limited to determine the maximum emission levels emanating from the device and the severe levels of the device can endure and its performance criterion. The measurement results are contained in this test report and Shenzhen Anbotek Compliance Laboratory Limited is assumed full of responsibility for the accuracy and completeness of these measurements. Also, this report shows that the EUT (Equipment Under Test) is technically compliant with above listed standard(s) requirements. This report applies to above tested sample only and shall not be reproduced in part without written approval of Shenzhen Anbotek Compliance Laboratory Limited.

Date of Receipt:	Apr. 11, 2024
Date of Test:	Apr. 12, 2024 to May 24, 2024
	Ella Liang
Prepared By:	ok hotek Anbotes And
	(Ella Liang)
	Idward pan
Approved & Authorized Signer:	And Antores And
	(Edward Pan)

Report No.: 18360WC40005001 FCC ID: 2BFF73600PRO Page 5 of 32

Revision History

	Report Version	Description	Issued Date		
	Anbore ROO pootek An	Original Issue.	May 24, 2024		
ξe.	Anbotek Anbotek	Anbotek Anbotek Anbotek	K Anbotek Anbotek Ant		
70	Potek Aupotek Aupoter	Anbotek Anbotek Anbot	otek Anbotek Anbotek		

Label:

Portable Power Station

Model:3600Pro

Battery Capacity:3840Wh(80Ah/48V)

AC Charge:1500W Max 100V-120VAC 50/60Hz

DC(XT90)Input:12V-160V-2000W Max

USB-A(×2)Output:5V-3A 9V-2A 12V-1.5A ,Total 36W

Type-C PD 20W(x3)Output:5V-3A, 9V-2.22A,12V-1.67A, Total 60W

Type-C PD 100W Output:(5V/9V/12V/15V)-3A 20V-5A, Total 100W

12V Output:12V-3A(×2)/10A/25A 372W Max

Extra Battery Port(×2):48V-4168W Max

LED:3W

Operating Temperature:-10~40°C

Charging Temperature:0~40°C

AC Output:100V-120VAC 50/60Hz

Off-grid Mode:Rated 3600W

Bypass Input:1650W Max

Total DC Output:568W

Total AC and DC Output:4168W

FCC ID:2BFF73600PRO

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions:

This device may not cause harmful interference, and This device must accept any interference received, including interference that may cause undesired operation.

△ CAUTION

This device is not intended for use in a commercial repair facility.Risk of Electric Shock. Refer replacement to qualified service personnel. Do not remove cover. Risk of Injury To Persons. Do not use this product if the power cord or the battery cables are damaged in any way.

⚠ WARNING

Risk of Electric Shock and Risk of Fire. This device is not to be stored in a vehicle. Do not overcharge the internal battery. See Instruction Manual. Do not smoke, strike a match, or cause a spark in the vicinity of the power pack. Only charge the internal battery in a well ventilated area.

ADANGER

This device is intended to be used indoors only. Do not use outdoors.

Made in China

Shenzhen Anbotek Compliance Laboratory Limited

Report No.: 18360WC40005001 FCC ID: 2BFF73600PRO Page 6 of 32

1. General Information

1.1. Client Information

Applicant	:	Shenzhen SYD Network Technology Co .,Ltd
Address	:	4F, Building NO.4, Lianchuang Science and Technology Park, 21st Bulan Rd, Nanwan Street, Longgang District, Shenzhen, China
Manufacturer	:	Shenzhen SYD Network Technology Co .,Ltd
Address	:	4F, Building NO.4, Lianchuang Science and Technology Park, 21st Bulan Rd, Nanwan Street, Longgang District, Shenzhen, China
Factory	:	Shenzhen SYD Network Technology Co .,Ltd
Address	:	4F, Building NO.4, Lianchuang Science and Technology Park, 21st Bulan Rd, Nanwan Street, Longgang District, Shenzhen, China

1.2. Description of Device (EUT)

Product Name	:	Portable Power Station
Test Model No.	:	3600Pro hotek Anborek Anborek Anborek Anborek
Reference Model No.	:	N051, N066, SYD3600Pro, SYD3600, EP3600, EP3600Pro, RED-E3840-A, GPS3800UE, F3600Pro, P3600Pro, 3840A, G3600Pro, AS3600-JP, HS3840A, T3600Pro, S3600Pro, GK-3600Pro, M3600Pro, AF-P330, X3600, PS3600pro (Note: All samples are the same except the model number and the sticker model and case, so we prepare "3600Pro" for test only.)
Trade Mark	:	N/A* Anbotes And Stek Anbotek Anbotek
Test Power Supply	:	AC 120V/60Hz
Test Sample No.	:	1-2-1(Normal Sample), 1-2-2(Engineering Sample)
Adapter	:	N/A Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek
RF Specification		
Operation Frequency		2402MHz to 2480MHz
Number of Channel		40 ofek Anbotek Anbotek Anbotek Anbotek
Modulation Type		GFSK-tek Anbotek Anbotek Anbotek Anbotek
Antenna Type	:	PCB Antenna
Antenna Gain(Peak)	:	4.16dBi Andrew Andrew Andrew Andrew Andrew Andrew

Remark:

- (1) All of the RF specification are provided by customer.
- (2) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

Report No.: 18360WC40005001 FCC ID: 2BFF73600PRO Page 7 of 32

1.3. Auxiliary Equipment Used During Test

Title	Manufacturer	Model No.	Serial No.	
Apple Computer	Apple	A1466	C02HXB48DRVC	

1.4. Operation channel list

Operation Band:

Juliu.		20. P.	0.0	- VID. VUL		- Va.
Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
2402	10 ¹	2422	20	2442	30,04	2462
2404	13otek	2424	21 otek	2444	31	2464
2406	12 _{nb} ote	2426	22	2446	32	2466
2408	tek 13 Ant	2428	23	2448	33	2468
2410	14	2430	24	2450	34	2470
2412	15	2432	25	2452	Anh 35	2472
2414	16	2434	26	2454	36	2474
2416	17 000	2436	27	2456	37	2476
2418	18	2438	28	2458	38 🗥	2478
2420 And	19	2440	29	2460	oo ^{tek} 39 M	2480
	Frequency (MHz) 2402 2404 2406 2408 2410 2412 2414 2416 2418	Frequency (MHz) Channel 2402 10 2404 11 2406 12 2408 13 2410 14 2412 15 2414 16 2416 17 2418 18	Frequency (MHz) Channel Frequency (MHz) 2402 10 2422 2404 11 2424 2406 12 2426 2408 13 2428 2410 14 2430 2412 15 2432 2414 16 2434 2416 17 2436 2418 18 2438	Frequency (MHz) Channel Frequency (MHz) Channel 2402 10 2422 20 2404 11 2424 21 2406 12 2426 22 2408 13 2428 23 2410 14 2430 24 2412 15 2432 25 2414 16 2434 26 2416 17 2436 27 2418 18 2438 28	Frequency (MHz) Channel Frequency (MHz) Channel Frequency (MHz) 2402 10 2422 20 2442 2404 11 2424 21 2444 2406 12 2426 22 2446 2408 13 2428 23 2448 2410 14 2430 24 2450 2412 15 2432 25 2452 2414 16 2434 26 2454 2416 17 2436 27 2456 2418 18 2438 28 2458	Frequency (MHz) Channel Frequency (MHz) Channel Frequency (MHz) Channel 2402 10 2422 20 2442 30 2404 11 2424 21 2444 31 2406 12 2426 22 2446 32 2408 13 2428 23 2448 33 2410 14 2430 24 2450 34 2412 15 2432 25 2452 35 2414 16 2434 26 2454 36 2416 17 2436 27 2456 37 2418 18 2438 28 2458 38

1.5. Description of Test Modes

Pretest Modes	Descriptions
Anborek TM1Anbo otek	Keep the EUT works in continuously transmitting mode (BLE 1M)
ek Anbore TM2 Anborrek	Keep the EUT works in continuously transmitting mode (BLE 2M)

Report No.: 18360WC40005001 FCC ID: 2BFF73600PRO Page 8 of 32

1.6. Measurement Uncertainty

Parameter	Uncertainty
Conducted emissions (AMN 150kHz~30MHz)	3.8dB Anborek Anborek
Occupied Bandwidth	925Hz
Conducted Output Power	0.76dB
Power Spectral Density	0.76dB
Conducted Spurious Emission	1.24dB
Radiated spurious emissions (above 1GHz)	1G-6GHz: 4.78dB; 6G-18GHz: 4.88dB 18G-40GHz: 5.68dB
Radiated emissions (Below 30MHz)	3.53dB
Radiated spurious emissions (30MHz~1GHz)	Horizontal: 3.92dB; Vertical: 4.52dB

The measurement uncertainty and decision risk evaluated according to AB/WI-RF-F-032. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

1.7. Test Summary

Test Items	Test Modes	Status
Antenna requirement	tek noblek Anbo	PAR
Conducted Emission at AC power line	Mode1,2	P
Occupied Bandwidth	Mode1,2	Aupo P. ek
Maximum Conducted Output Power	Mode1,2	AUDO.
Power Spectral Density	Mode1,2	Problem
Emissions in non-restricted frequency bands	Mode1,2	P Anb
Band edge emissions (Radiated)	Mode1,2	P P
Emissions in frequency bands (below 1GHz)	Mode1,2	Anbor P
Emissions in frequency bands (above 1GHz)	Mode1,2	Anboro
Note: P: Pass N: N/A, not applicable	Anbotek Anbotek	k Anbore

Report No.: 18360WC40005001 FCC ID: 2BFF73600PRO Page 9 of 32

1.8. Description of Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.:434132

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No. 434132.

ISED-Registration No.: 8058A

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registered and fully described in a report filed with the (ISED) Innovation, Science and Economic Development Canada. The acceptance letter from the ISED is maintained in our files. Registration 8058A.

Test Location

Shenzhen Anbotek Compliance Laboratory Limited.

1/F, Building D, Sogood Science and Technology Park, Sanwei community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China.

1.9. Disclaimer

- The test report is invalid if not marked with the signatures of the persons responsible for preparing and approving the test report.
- 2. The test report is invalid if there is any evidence and/or falsification.
- 3. The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein.
- 4. This document may not be altered or revised in any way unless done so by Anbotek and all revisions are duly noted in the revisions section.
- Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.
- 6. The authenticity of the information provided by the customer is the responsibility of the customer and the laboratory is not responsible for its authenticity.

The laboratory is only responsible for the data released by the laboratory, except for the part provided by the applicant.

Report No.: 18360WC40005001 FCC ID: 2BFF73600PRO Page 10 of 32

1.10. Test Equipment List

Cond	ucted Emission at A	C power line				
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due Date
1	L.I.S.N. Artificial Mains Network	Rohde & Schwarz	ENV216	100055	2024-01-18	2025-01-17
otek 2	Three Phase V- type Artificial Power Network	CYBERTEK	EM5040DT	E215040D T001	2024-01-17	2025-01-16
3	EMI Test Receiver	Rohde & Schwarz	ESCI	100627	2024-01-17	2025-01-16
4	Software Name EZ-EMC	Farad Technology	ANB-03A	N/A	tek /Anbotek	ek abotek

Occupied Bandwidth

Maximum Conducted Output Power

Power Spectral Density
Emissions in non-restrict

Emissions in non-restricted frequency bands

Emis	sions in non-restricte	a trequency bands	, rek	700,0	- K	- voise	
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due Date	
1 _{An} l	Constant Temperature Humidity Chamber	ZHONGJIAN	ZJ- KHWS80B	N/A	2023-10-16	2024-10-15	
2	DC Power Supply	IVYTECH	IV3605	1804D360 510	2023-10-20	2024-10-19	
3	Spectrum Analyzer	Rohde & Schwarz	FSV40-N	101792	2023-05-26	2024-05-25	
An4ore	MXA Spectrum Analysis	KEYSIGHT	N9020A	MY505318 23	2024-02-22	2025-02-21	
5nb	Oscilloscope	Tektronix	MDO3012	C020298	2023-10-12	2024-10-11	
6	MXG RF Vector Signal Generator	Agilent	N5182A	MY474206 47	2024-02-04	2025-02-03	

Report No.: 18360WC40005001 FCC ID: 2BFF73600PRO Page 11 of 32

ote.	And	stek rupo.	N. Ok	pote.	AUS	iek
	edge emissions (Ra sions in frequency ba		Anbore	Anboick	Aupotek	Anbotek
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due Date
1 00	EMI Test Receiver	Rohde & Schwarz	ESR26	101481	2024-01-23	2025-01-22
2	EMI Preamplifier	SKET Electronic	LNPA- 0118G-45	SKET-PA- 002	2024-01-17	2025-01-16
3	Double Ridged Horn Antenna	SCHWARZBECK	BBHA 9120D	02555	2022-10-16	2025-10-15
nboto. 4	EMI Test Software EZ-EMC	SHURPLE	N/A	N/A	Anbotek	Anborek
5	Horn Antenna	A-INFO	LB-180400- KF	J21106062 8	2023-10-12	2024-10-11
6	Spectrum Analyzer	Rohde & Schwarz	FSV40-N	101792	2023-05-26	2024-05-25
re ^k 7	Amplifier	Talent Microwave	TLLA18G40 G-50-30	23022802	2023-05-25	2024-05-24

Emiss	sions in frequency ba	ands (below 1GHz)				
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due Date
1	EMI Test Receiver	Rohde & Schwarz	ESR26	101481	2024-01-23	2025-01-22
. 2	Pre-amplifier	SONOMA	310N	186860	2024-01-17	2025-01-16
34	Bilog Broadband Antenna	Schwarzbeck	VULB9163	345	2022-10-23	2025-10-22
4ntel	Loop Antenna (9K- 30M)	Schwarzbeck	FMZB1519 B	00053	2023-10-12	2024-10-11
5,00	EMI Test Software EZ-EMC	SHURPLE	N/A	N/A, Noot	y Aupon	k Anbotek

Report No.: 18360WC40005001 FCC ID: 2BFF73600PRO Page 12 of 32

2. Antenna requirement

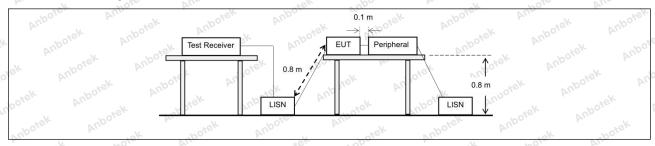
Test Requirement:

Refer to 47 CFR Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

2.1. Conclusion

The antenna is a PCB antenna which permanently attached, and the best case gain of the antenna is 4.16dBi. It complies with the standard requirement.

Report No.: 18360WC40005001 FCC ID: 2BFF73600PRO Page 13 of 32


3. Conducted Emission at AC power line

Test Requirement:	Refer to 47 CFR 15.207(a), Except section, for an intentional radiator public utility (AC) power line, the result back onto the AC power line on are band 150 kHz to 30 MHz, shall no measured using a 50 µH/50 ohms (LISN).	that is designed to be con adio frequency voltage tha ny frequency or frequencie t exceed the limits in the f	nnected to the at is conducted es, within the following table, as	
shotek Anbore	Frequency of emission (MHz)	Conducted limit (dBµV)		
Ans sek abotek	Anbore Anbore	Quasi-peak	Average	
Anbore Arr.	0.15-0.5	66 to 56*	56 to 46*	
Test Limit:	0.5-5 tek nbote Am	56 Borel An	46	
Ant both	5-30 And State of Sta	60	50 reh	
k Wuporg Wu.	*Decreases with the logarithm of t	he frequency.	pr. Potek Aug	
Test Method:	ANSI C63.10-2020 section 6.2	Projek Auporen	Ans	
Procedure:	Refer to ANSI C63.10-2020 section line conducted emissions from un			

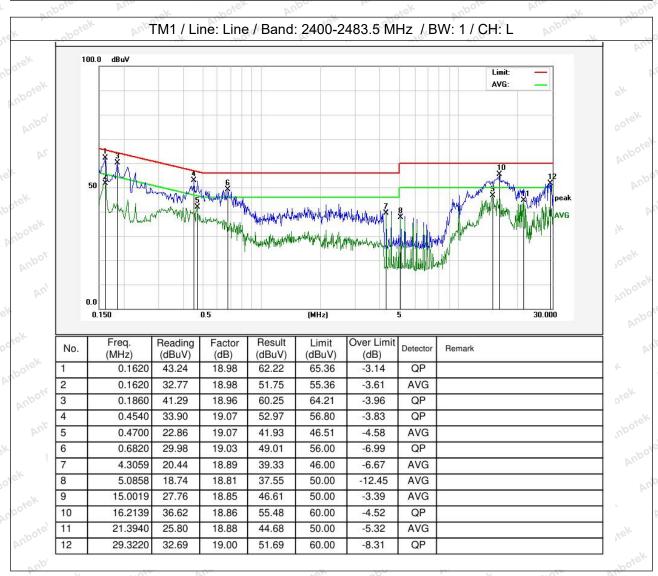
3.1. EUT Operation

Operating Envir	onment:	Aupo.	bi. poiek	Anbote.	Aug Clek	Anborek	Anbo.
Aups stek		e(BLE 1M):	Keep the EU	IT works in o	continuously tra	nsmitting mod	le (BLE
Test mode:	1M) 2: TX mod	e(BLE 2M):	Keep the EL	IT works in o	continuously tra	nsmitting mod	le (BLE
Vpotek Vupo,	2M)	otek Ar	pore, An		anbotek An	0, 0 by	hotek

3.2. Test Setup

Hotline

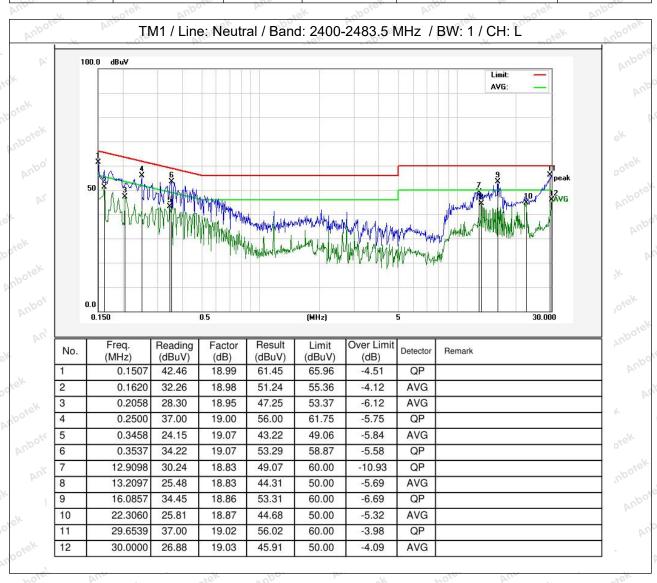
www.anbotek.com.cn


400-003-0500

FCC ID: 2BFF73600PRO Report No.: 18360WC40005001 Page 14 of 32

3.3. Test Data

Temperature:	23.7 °C	Humidity:	52.8 %	Atmospheric Pressure:	101 kPa
--------------	---------	-----------	--------	-----------------------	---------

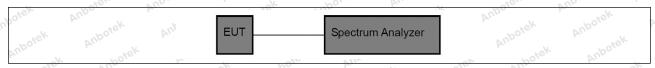


Report No.: 18360WC40005001 FCC ID: 2BFF73600PRO Page 15 of 32

Temperature: 23.7 °C Humidity: 52.8 % Atmospheric Pressure: 101 kPa

Note: Only record the worst data in the report.

Report No.: 18360WC40005001 FCC ID: 2BFF73600PRO Page 16 of 32


4. Occupied Bandwidth

Test Requirement:	47 CFR 15.247(a)(2)
Test Limit:	Refer to 47 CFR 15.247(a)(2), Systems using digital modulation techniques may operate in the 902-928 MHz, and 2400-2483.5 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.
Test Method:	ANSI C63.10-2020, section 11.8 KDB 558074 D01 15.247 Meas Guidance v05r02
Anbotek	11.8.1 Option 1 The steps for the first option are as follows: a) Set RBW = shall be in the range of 1% to 5% of the OBW but not less than 100 kHz. b) Set the VBW ≥ [3 × RBW]. c) Detector = peak. d) Trace mode = max-hold. e) Sweep = No faster than coupled (auto) time. f) Allow the trace to stabilize. g) Measure the maximum width of the emission by placing two markers, one at the lowest frequency and the other at the highest frequency of the envelope of the spectral display, such that each marker is at or slightly below the "-6 dB down amplitude". If a marker is below this "-6 dB down amplitude" value, then it shall be as close as possible to this value.
sek Aupotek Aupo	11.8.2 Option 2
potek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek	The automatic bandwidth measurement capability of an instrument may be employed using the X dB bandwidth mode with X set to 6 dB, if the functionality described in 11.8.1 (i.e., RBW = 100 kHz, VBW \geq 3 × RBW, and peak detector with maximum hold) is implemented by the instrumentation function. When using this capability, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the fundamental emission that might be \geq 6 dB.

4.1. EUT Operation

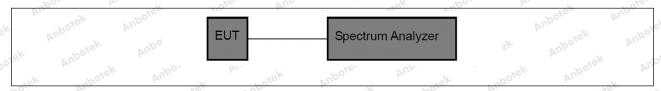
Operating Envi	ironment: Anbore	And	Anbote	Anb.	· ek	abořek	Aupore	\.
Test mode:	1: TX mode(BL 1M) 2: TX mode(BL	otek Anbo			abotek	Aupo	V	
Anboren	2M)	inbotek Ar	.ok	hotek	Anboie	ARTON	g mede (~upot

4.2. Test Setup

4.3. Test Data

Temperature:	25.5 °C	Hum	idity: 47 %	Atmosphe	eric Pressure:	101 kPa	

Report No.: 18360WC40005001 FCC ID: 2BFF73600PRO Page 17 of 32


5. Maximum Conducted Output Power

Test Requirement:	47 CFR 15.247(b)(3)
Anborek Anborek Anborek Anborek Anborek Anborek Anborek Anborek Anborek Anborek	Refer to 47 CFR 15.247(b)(3), For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.
Test Method:	ANSI C63.10-2020 section 11.9.1 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	ANSI C63.10-2020, section 11.9.1 Maximum peak conducted output power

5.1. EUT Operation

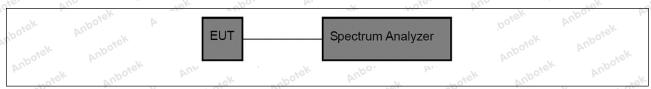
×	Operating Envir	onment:	abořek	Aupore	Vu., Polsk	Aupolek	Aupor	12.
,d	Test mode:	1M) , , bote	Anlos	"K NO	works in cont	bring	ek anboit	Sk. Vi

5.2. Test Setup

5.3. Test Data

Temperature: 25.5 °C	Humidity: 47 %	Atmospheric Pressure:	101 kPa
----------------------	----------------	-----------------------	---------

Report No.: 18360WC40005001 FCC ID: 2BFF73600PRO Page 18 of 32


6. Power Spectral Density

Test Requirement:	47 CFR 15.247(e)
Anbotek Anbotek Test Limit: Anbotek Anbotek Anbotek Anbotek	Refer to 47 CFR 15.247(e), For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.
Test Method:	ANSI C63.10-2020, section 11.10 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	ANSI C63.10-2020, section 11.10, Maximum power spectral density level in the fundamental emission

6.1. EUT Operation

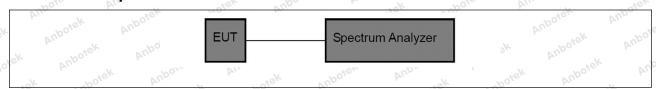
Operating Envir	onment:	Anbotek	Anbo	hotek	Aupore	r Purposek
Test mode:	1: TX mode(BLE 1M) 2: TX mode(BLE 2M)	DI.			- N	otek Anbore

6.2. Test Setup

6.3. Test Data

Temperature:	25.5 °C	Humidity:	47 %	Atmospheric Pressure:	101 kPa
10.	100	. No.	Part .	V()	10

Report No.: 18360WC40005001 FCC ID: 2BFF73600PRO Page 19 of 32


7. Emissions in non-restricted frequency bands

Test Requirement:	47 CFR 15.247(d), 15.209, 15.205
Anbotek	Refer to 47 CFR 15.247(d), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required.
Test Method:	ANSI C63.10-2020 section 11.11 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	ANSI C63.10-2020 Section 11.11.1, Section 11.11.2, Section 11.11.3

7.1. EUT Operation

Operating Envir	ronment:	p spotek	Aupoto	Vunn Vunn	k Anbore	k Vupo.	*ek *po
Test mode:	1M) 20016	e(BLE 1M): K e(BLE 2M): K	. W.		Jose Ame	*e\	Spojek, Ar

7.2. Test Setup

7.3. Test Data

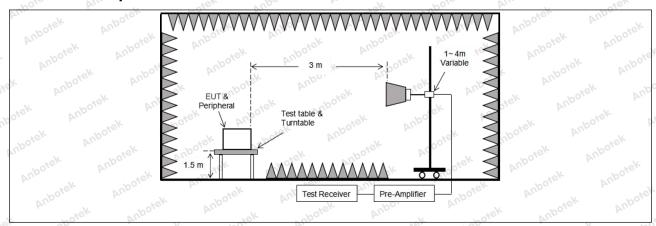
Temperature:	25.5 °C	Humidity: 47 %	Atmospheric Pressure:	101 kPa	

Report No.: 18360WC40005001 FCC ID: 2BFF73600PRO Page 20 of 32

8. Band edge emissions (Radiated)

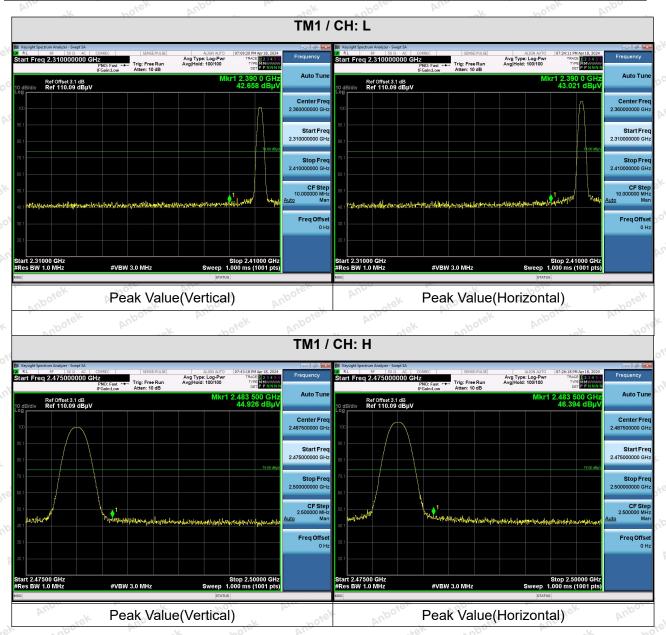
		- 10	
Test Requirement:	restricted bands, as defined	In addition, radiated emissions d in § 15.205(a), must also comp ecified in § 15.209(a)(see § 15.20	ly with the
k Aupotek Aupot	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
	0.009-0.490	2400/F(kHz)	300 000
botek Anbo	0.490-1.705	24000/F(kHz)	30 stell
	1.705-30.0	3000	30
	30-88	100 **	3.ek anbore
	88-216	150 **	3
	216-960	200 **	3 botel And
	Above 960	500	3 30%
	intentional radiators operatifrequency bands 54-72 MH However, operation within t sections of this part, e.g., § In the emission table above The emission limits shown	ragraph (g), fundamental emissing under this section shall not be z, 76-88 MHz, 174-216 MHz or 4 hese frequency bands is permitt § 15.231 and 15.241. In the tighter limit applies at the bein the above table are based on beak detector except for the frequency.	e located in the 470-806 MHz. ed under other and edges. measurements
	90 kHz, 110–490 kHz and a these three bands are base	above 1000 MHz. Radiated emised on measurements employing	sion limits in
tek ^{Vupotek} Yupo	90 kHz, 110–490 kHz and a these three bands are base detector.	above 1000 MHz. Radiated emised on measurements employing	sion limits in
Test Method:	90 kHz, 110–490 kHz and a these three bands are base	above 1000 MHz. Radiated emised on measurements employing 6.10	sion limits in

8.1. EUT Operation


o'l	Operating Envir	onment:	Aupolek	Aupo	ok N	-boiek	Anbore	Vien	otek vi
70	Test mode:	1: TX mode(BLE 1M) 2: TX mode(BLE 2M)	AND. Cal	٧			. bu.	ek .	anboise

Report No.: 18360WC40005001 FCC ID: 2BFF73600PRO Page 21 of 32

8.2. Test Setup



Report No.: 18360WC40005001 FCC ID: 2BFF73600PRO Page 22 of 32

8.3. Test Data

Temperature: 25.5 °C Humidity: 47 % Atmospheric Pressure: 101 kPa

Remark

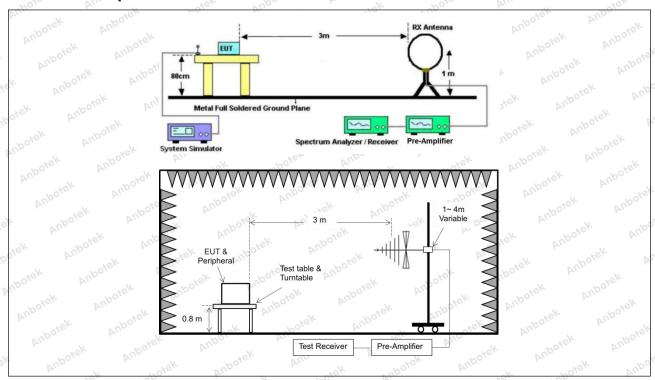
- 1. During the test, pre-scan all modes, the report only record the worse case mode.
- 2. When the PK measure result value is less than the AVG limit value, the AV measure result values test not applicable.

Report No.: 18360WC40005001 FCC ID: 2BFF73600PRO Page 23 of 32

9. Emissions in frequency bands (below 1GHz)

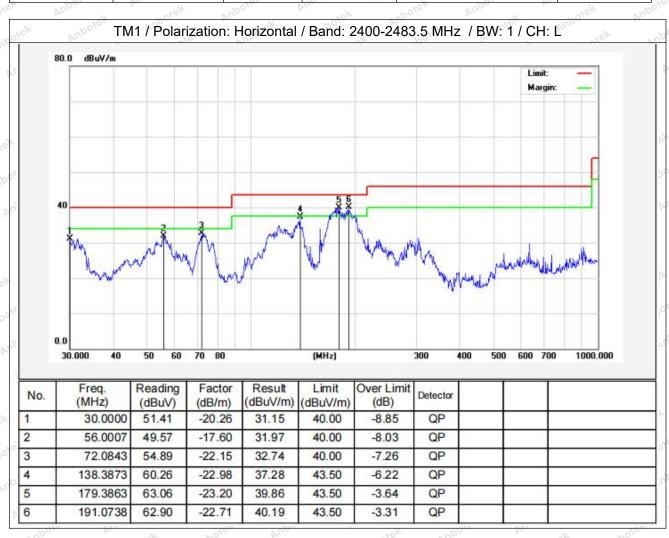
Test Requirement:	restricted bands, as defin radiated emission limits s	pecified in § 15.209(a)(see § 15	
ek Anbotek Anbo	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
	0.009-0.490	2400/F(kHz)	300 Mport
ofer Ande	0.490-1.705	24000/F(kHz)	30
	1.705-30.0	30° Ack	30
	30-88	100 **	3 ok noon
anboren Anbe	88-216	150 **	AT 3
	216-960	200 **	3 pore An
	Above 960	500 Solek Andrew	3
Test Limit: Arbotek Ar	intentional radiators opera frequency bands 54-72 M	paragraph (g), fundamental emis ating under this section shall not IHz, 76-88 MHz, 174-216 MHz o	be located in the or 470-806 MHz.
Test Limit; otek Anbotek	intentional radiators operafrequency bands 54-72 M However, operation within sections of this part, e.g., In the emission table abo The emission limits show employing a CISPR quas 90 kHz, 110–490 kHz and	ating under this section shall not IHz, 76-88 MHz, 174-216 MHz on these frequency bands is perm	t be located in the or 470-806 MHz. nitted under other band edges. on measurements equency bands 9-nission limits in
Test Limit: Anborek Anborek Anborek Anborek Anborek Anborek Anborek	intentional radiators operafrequency bands 54-72 M However, operation within sections of this part, e.g., In the emission table about the emission limits show employing a CISPR quas 90 kHz, 110–490 kHz and these three bands are bar	ating under this section shall not IHz, 76-88 MHz, 174-216 MHz on these frequency bands is perm §§ 15.231 and 15.241. IVE, the tighter limit applies at the in the above table are based of i-peak detector except for the fred above 1000 MHz. Radiated emsed on measurements employing in 6.6.4	t be located in the or 470-806 MHz. nitted under other band edges. on measurements equency bands 9-nission limits in

9.1. EUT Operation


oie	Operating Envir	onment:	Anbotek	Anbe	F	notek A	upore Ar	siek vi
o'n,	Test mode:	1: TX mode(BLE 1M)	1M): Keep	the EUT v	works in	continuousl	y transmitting	mode (BLE
9	inbounde.	2: TX mode(BLE 2M)	2M): Keep	the EUT v	works in	continuousl	y transmitting	mode (BLE

Report No.: 18360WC40005001 FCC ID: 2BFF73600PRO Page 24 of 32

9.2. Test Setup

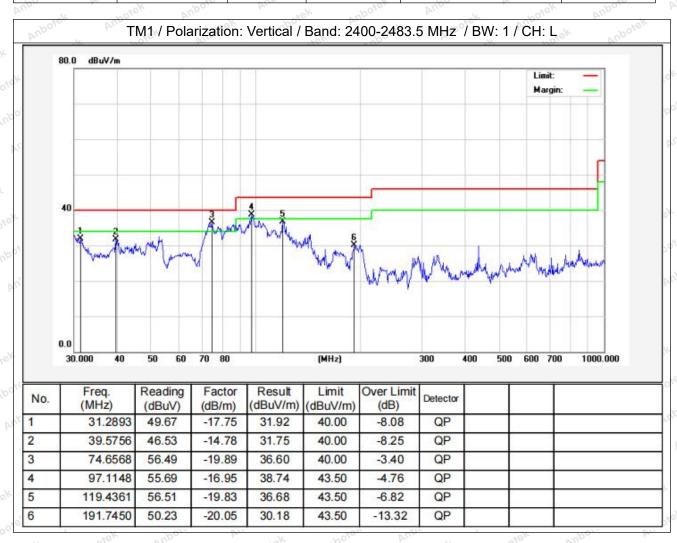


Report No.: 18360WC40005001 FCC ID: 2BFF73600PRO Page 25 of 32

9.3. Test Data

The test results of 9kHz-30MHz was attenuated more than 20dB below the permissible limits, so the results don't record in the report.

Temperature:	25.5 °C	AUL	Humidity:	47%	Atmospheric Pres	sure: 101 kPa
				70, 1	M. Lames Pinsins 1, 800	· • • · · · · · · · · · · · · · · · · ·



Report No.: 18360WC40005001 FCC ID: 2BFF73600PRO Page 26 of 32

Temperature: 25.5 °C Humidity: 47 % Atmospheric Pressure: 101 kPa

Note: Only record the worst data in the report.

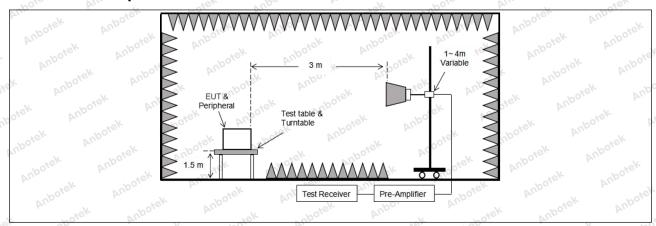
Report No.: 18360WC40005001 FCC ID: 2BFF73600PRO Page 27 of 32

10. Emissions in frequency bands (above 1GHz)

Test Requirement:	in § 15.209(a)(see § 15.2		on limits specified
ek Anbotek Anbo	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
	0.009-0.490	2400/F(kHz)	ek 300 mport
Joseph Ando	0.490-1.705	24000/F(kHz)	30 Lotek
	1.705-30.0	30	30
	30-88	100 **	3,ek nbo
anborek Anbe	88-216	150 **	AT 3
	216-960	200 **	3bote, bu
	Above 960	500 Marie Anibe	3
Test Limit: Andorek Andorek	intentional radiators oper frequency bands 54-72 M	paragraph (g), fundamental emis ating under this section shall not IHz, 76-88 MHz, 174-216 MHz o	be located in the array that the array to th
Anbotek	intentional radiators open frequency bands 54-72 M However, operation within sections of this part, e.g., In the emission table abo The emission limits show employing a CISPR quas 90 kHz, 110–490 kHz and	ating under this section shall not IHz, 76-88 MHz, 174-216 MHz on In these frequency bands is perm	be located in the or 470-806 MHz. nitted under other band edges. on measurements equency bands 9-nission limits in
potek Anbotek	intentional radiators open frequency bands 54-72 M However, operation within sections of this part, e.g., In the emission table abo The emission limits show employing a CISPR quas 90 kHz, 110–490 kHz and these three bands are ba	ating under this section shall not IHz, 76-88 MHz, 174-216 MHz on these frequency bands is permiss 15.231 and 15.241. It we, the tighter limit applies at the nin the above table are based of i-peak detector except for the frest above 1000 MHz. Radiated emsed on measurements employing 16.6.4	be located in the or 470-806 MHz. nitted under other band edges. on measurements equency bands 9-nission limits in

10.1. EUT Operation

Operating Envir	onment:	anbotek	Anbe	-hoi	k Anbor	All.	stek no
Test mode:	1: TX mode(BLE 1M)	And			, , , , , , , , , , , , , , , , , , ,	otek	Anbore.
Anbor Mode.	2: TX mode(BLE 2M)	2M): Keep	the EUT w	orks in cor	ntinuously tra	nsmitting m	ode (BLE



Hotline

Report No.: 18360WC40005001 FCC ID: 2BFF73600PRO Page 28 of 32

10.2. Test Setup

Report No.: 18360WC40005001 FCC ID: 2BFF73600PRO Page 29 of 32

10.3. Test Data

Temperature: 25.5 °C Humidity: 47 %	Atmospheric Pressure:	101 kPa
-------------------------------------	-----------------------	---------

Vu.	hotek Anb	, p.	rek nbor	AU.	r hotek	Anbo.
			TM1 / CH: L			
Peak value:						
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4804.00	28.49	15.27	43.76	74.00	-30.24	Vertical
7206.00	28.55	18.09	46.64	74.00	-27.36	Vertical
9608.00	29.41	23.76	53.17	74.00	-20.83	Vertical
12010.00	Aupote,* V	iek .	abotek Anb	74.00	otek Anbote	Vertical
14412.00	VUPO*SK	Aupo	Potek b	74.00	stek ont	Vertical
4804.00	28.15	15.27	43.42	74.00	-30.58	Horizontal
7206.00	29.09	18.09	47.18	74.00	-26.82	Horizontal
9608.00	28.13	23.76	51.89	74.00	-22.11	Horizontal
12010.00	otek * Aupo	-K 20	ick Aupole	74.00	. nbotek	Horizontal
14412.00	"oiek * An	DOJE VILL	tek ab	74.00	ak hotel	Horizontal
Average value: Frequency	Reading	Factor	Result	Limit	Over Limit	polarization
(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	polarization
4804.00	16.76	15.27	32.03	54.00	-21.97	Vertical
7206.00	17.60	18.09	35.69	54.00	-18.31	Vertical
9608.00	18.88	23.76	42.64	54.00	-11.36	Vertical
12010.00	~ote*	Aupole, Au	iek	54.00 pho		Vertical •
14412.00	Yur *	anbotek	Aupo, ok	54.00	ipose Ana	Vertical
4804.00	16.48	15.27	31.75	54.00	-22.25	Horizontal
7206.00	18.12	18.09	36.21	54.00	-17.79	Horizontal
9608.00	17.64	23.76	41.40	54.00	-12.60	Horizontal
12010.00	rek *	otek Aupo.	-K NO!	54.00	YU _D	Horizontal
14412.00	4 ×	otek ant	OTO AND	54.00	ek Aupo	Horizontal

Report No.: 18360WC40005001 FCC ID: 2BFF73600PRO Page 30 of 32

				hotek	Anbor	rek
			ГМ1 / СН: М			
Peak value:						
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4880.00	28.04	15.42	43.46	74.00	-30.54	Vertical
7320.00	28.52	18.02	46.54	74.00	-27.46	Vertical
9760.00	28.91	23.80	52.71	74.00	-21.29	Vertical
12200.00	ek * nbotek	Anbor	hotek	74.00	Ando	Vertical
14640.00	* *	ick Aupole	Pun Vie	74.00	Vupo	Vertical
4880.00	27.96	15.42	43.38	74.00	-30.62	Horizontal
7320.00	28.96	18.02	46.98	74.00	-27.02	Horizontal
9760.00	27.85	23.80	51.65	74.00	-22.35	Horizontal
12200.00	* otek	Anboie	And	74.00	YUpo, ok	Horizontal
14640.00	A.T. Otek	Anbotek	Aupo	74.00	Anbois	Horizontal
Average value:						
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	polarization
4880.00	16.85	15.42	32.27	54.00	-21.73	Vertical
7320.00	17.46	18.02	35.48	54.00	-18.52	Vertical
9760.00	18.73	23.80	42.53	54.00	-11.47	Vertical
12200.00	k ¥upor	N Diek	anboter	54.00	aboiek	Vertical
14640.00	otek * Anboti	And	sk spojek	54.00	k otek	Vertical
4880.00	16.59	15.42	32.01	54.00	-21.99	Horizontal
7320.00	18.47	18.02	36.49	54.00	-17.51	Horizontal
9760.00	17.94	23.80	41.74	54.00	12.26 And	Horizontal
12200.00	Anbotek	Aup. *ek	botek	54.00	wotek D	Horizontal
14640.00	* botek	Anbo	D. C. C.	54.00	And	Horizontal

Report No.: 18360WC40005001 FCC ID: 2BFF73600PRO Page 31 of 32

en Aug	rick	anbore	Dir.	hoter	AUD	atek.
		٦	ГМ1 / CH: H			
Peak value:						
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4960.00	28.17	15.58	43.75	74.00	-30.25 NO	Vertical
7440.00	28.68	17.93	46.61	74.00	-27.39	Vertical
9920.00	29.61	23.83	53.44	74.00	-20.56	Vertical
12400.00	* P*	anbore.	And	74.00	Aupo,	Vertical
14880.00	* Vup	iek upołek	Aupo.	74.00	Aupore	Vertical
4960.00	28.10	15.58	43.68	74.00	-30.32	Horizontal
7440.00	29.17	17.93	47.10	74.00	-26.90	Horizontal
9920.00	28.23	23.83	52.06	74.00	-21.94	Horizontal
12400.00	AUD * "SK	abotek	Aupo,	74.00	Aupote, Au	Horizontal
14880.00	V.Apo.	Notek Notek	Anbores	74.00	abotek	Horizontal
Average value:						
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	polarization
4960.00	17.97	15.58	33.55	54.00	-20.45	Vertical
7440.00	18.73	17.93	36.66	54.00	-17.34	Vertical
9920.00	19.38	23.83	43.21	54.00	-10.79	Vertical N
12400.00	k * spojek	Aupor	hotek	54.00	Aug	Vertical
14880.00	* * %01	sk Aupotor	Aug	54.00	Aupo	Vertical
4960.00	17.77	15.58	33.35	54.00	-20.65	Horizontal
7440.00	19.27	17.93	37.20 × 37.20	54.00	-16.80	Horizontal
9920.00	18.09	23.83	41.92	54.00 And	-12.08	Horizontal
12400.00	* tek	Anbores	Vur.	54.00	po, by	Horizontal
14880.00	An*	* Upotek	Aupo	54.00	Anbore	Horizontal

Remark:

- 1. Result =Reading + Factor
- 2. "*" means the test results were attenuated more than 20dB below the permissible limits, so the results don't record in the report.
- 3. Only the worst case is recorded in the report.

Report No.: 18360WC40005001 FCC ID: 2BFF73600PRO Page 32 of 32

APPENDIX I -- TEST SETUP PHOTOGRAPH

Please refer to separated files Appendix I -- Test Setup Photograph_RF

APPENDIX II -- EXTERNAL PHOTOGRAPH

Please refer to separated files Appendix II -- External Photograph

APPENDIX III -- INTERNAL PHOTOGRAPH

Please refer to separated files Appendix III -- Internal Photograph

----- End of Report -----

