	と 況 CHNOLOGY			
	TEST REPOR	Т		
FCC ID :	2BFEP-LBCAM60			
Test Report No:	TCT240322E020			
Date of issue:	Apr. 16, 2024			
Testing laboratory:	SHENZHEN TONGCE TESTING LAB			
Testing location/ address:	2101 & 2201, Zhenchang Factory Renshan Industrial Zone, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, 518103, People's Republic of China			
Applicant's name: :	CONVERGE BEAUTY LIMITED			
Address:	FLAT/RM C 22/F FORD GLORY STREET LAI CHI KOK KOWLOO			
Manufacturer's name :	Shenzhen Puge Electronics Co.,	Ltd.		
Address:	Lingxia Road, Fuyong Street, Ba			
Standard(s):	FCC CFR Title 47 Part 15 Subpart C Section 15.247 FCC KDB 558074 D01 15.247 Meas Guidance v05r02 ANSI C63.10:2013			
Product Name::	1080p Wi-Fi Light Bulb Security	Camera		
Trade Mark:	N/A			
Model/Type reference :	HT60, HT50, HT70, HT80, HT90 HT80 pro, HT90 pro, KT50, KT6(, HT50 pro, HT60 pro, HT70 pro,), KT70, KT80, KT90		
Rating(s):	AC 120V/ 60Hz			
Date of receipt of test item	Mar. 22, 2024			
Date (s) of performance of test:	Mar. 22, 2024 ~ Apr. 16, 2024			
Tested by (+signature) :	Ronaldo LUO	R-snald, the GCE THE		
Check by (+signature) :	Beryl ZHAO	Boyl 20 TCT		
Approved by (+signature):	Tomsin	Jomsm 10 84		
TONGCE TESTING LAB. TH		• •		

Table of Contents

TCT通测检测 TESTING CENTRE TECHNOLOGY

1.	General Pro	duct Info	mation.					3
	1.1. EUT desci	ription		<u>(6)</u>				3
	1.2. Model(s) I	ist						3
	1.3. Operation	Frequency	/					4
2.	Test Result	Summary	<u>, KO)</u>		<u>(6)</u>		<u>(6)</u>	5
3.	General Info	rmation						6
	3.1. Test envir	onment an	d mode					6
	3.2. Descriptio	on of Suppo	ort Units	\sim		\sim		7
4.	Facilities an							
	4.1. Facilities.							8
	4.2. Location .							8
	4.3. Measurem	ent Uncert	ainty					8
5.	Test Results	and Mea	suremer	nt Data				9
	5.1. Antenna r	equiremen	t					9
	5.2. Conducted							
	5.3. Maximum	Conducted	d (Average	e) Output	Power		<u>(0)</u>	11
	5.4. Emission	Bandwidth						15
	5.5. Power Spe	ectral Dens	sity					16
	5.6. Conducted	d Band Ed	ge and Sp	urious Em	nission M	easureme	nt	17
	5.7. Radiated	Spurious E	mission N	leasureme	ent			19
Aŗ	opendix A: Te	est Result	t of Conc	ducted T	est			
Ap	opendix B: Pl	hotograp	hs of Tes	st Setup				
A	opendix C: Pl	hotograp	hs of EU	Τ				
		$\left(\begin{array}{c} \\ \\ \\ \end{array} \right)$						

1. General Product Information

1.1. EUT description

Product Name:	1080p Wi-Fi Light Bulb Security Camera
Model/Type reference:	НТ60
Sample Number:	TCT240322E020-0101
Operation Frequency:	2412MHz~2462MHz (802.11b/802.11g/802.11n(HT20))
Channel Separation:	5MHz
Number of Channel:	11 for 802.11b/802.11g/802.11n(HT20)
Modulation Technology:	802.11b: Direct Sequence Spread Spectrum (DSSS) 802.11g/802.11n: Orthogonal Frequency Division Multiplexing(OFDM)
Data speed:	802.11b: 1Mbps, 2Mbps, 5.5Mbps, 11Mbps 802.11g: 6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps, 54Mbps 802.11n: Up to 150Mbps
Antenna Type:	PIFA Antenna
Antenna Gain:	1.73dBi
Rating(s):	AC 120V/ 60Hz

Note: The antenna gain listed in this report is provided by applicant, and the test laboratory is not responsible for this parameter.

1.2. Model(s) list

No.	Model No.	Tested with
1	HT60	\mathbb{X}
Other models	HT50, HT70, HT80, HT90, HT50 pro, HT60 pro, HT70 pro, HT80 pro, HT90 pro, KT50, KT60, KT70, KT80, KT90	\mathcal{D}

Note: HT60 is tested model, other models are derivative models. The models are identical in circuit and PCB layout, only different on the model names and appearance. So the test data of HT60 can represent the remaining models.

Page 3 of 86

Report No.: TCT240322E020

1.3. Operation Frequency

For 802.11b/g/n(HT20)

	Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
(1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
X	2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
	3	2422MHz	6	2437MHz	9	2452MHz		

Note:

In section 15.31(*m*), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

802.11b/802.11g/802.11n (HT20)

Channel	Frequency
The lowest channel	2412MHz
The middle channel	2437MHz
The Highest channel	2462MHz

Page 4 of 86

2. Test Result Summary

Requirement	CFR 47 Section	Result
Antenna requirement	§15.203/§15.247 (c)	PASS
AC Power Line Conducted Emission	§15.207	PASS
Conducted Output Power	§15.247 (b)(3)	PASS
6dB Emission Bandwidth	§15.247 (a)(2)	PASS
Power Spectral Density	§15.247 (e)	PASS
Band Edge	§15.247(d)	PASS
Spurious Emission	§15.205/§15.209	PASS

Note:

1. PASS: Test item meets the requirement.

2. Fail: Test item does not meet the requirement.

3. N/A: Test case does not apply to the test object.

4. The test result judgment is decided by the limit of test standard.

Page 5 of 86

3. General Information

3.1. Test environment and mode

Condition	Conducted Emission	Radiated Emission
Temperature:	20.3 °C	25.3 °C
Humidity:	44 % RH	45 % RH
Atmospheric Pressure:	1010 mbar	1010 mbar
Test Software:		
Software Information:	SecureCRTPortable	
Power Level:	43	
Test Mode:		
Engineer mode:	Keep the EUT in continuous channel	transmitting by select
oolarities were performed. the EUT continuously work axis (X, Y & Z) and co manipulating interconnectir from 1m to 4m in both	3m chamber. Measurements in During the test, each emission sing, investigated all operating nsidered typical configuration ng cables, rotating the turntan horizontal and vertical po wn in Test Results of the follow	n was maximized by: having modes, rotated about all 3 to obtain worst position, ble, varying antenna height larizations. The emissions
		3 3
were carried out with the El	uction and function in typical c JT in transmitting operation, w	
were carried out with the El report and defined as follow Per-scan all kind of data r	JT in transmitting operation, w	hich was shown in this test
were carried out with the El report and defined as follow	JT in transmitting operation, w	hich was shown in this test

802.11n(H	H20)	$\left(\mathcal{G}^{\prime}\right)$	6.5Mbps	(\mathbf{c})
802.11	g		6Mbps	
802.11	b		1Mbps	

3.2. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Equipment	Model No.	Serial No.	FCC ID	Trade Name
	1	1	/	

Note:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.
- 3. For conducted measurements (Output Power, 6dB Emission Bandwidth, Power Spectral Density, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

4. Facilities and Accreditations

4.1. Facilities

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 645098

SHENZHEN TONGCE TESTING LAB

Designation Number: CN1205

The testing lab has been registered and fully described in a report with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

- IC Registration No.: 10668A-1
 - SHENZHEN TONGCE TESTING LAB
 - CAB identifier: CN0031

The testing lab has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing.

4.2. Location

SHENZHEN TONGCE TESTING LAB

Address: 2101 & 2201, Zhenchang Factory Renshan Industrial Zone, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, 518103, People's Republic of China TEL: +86-755-27673339

4.3. Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

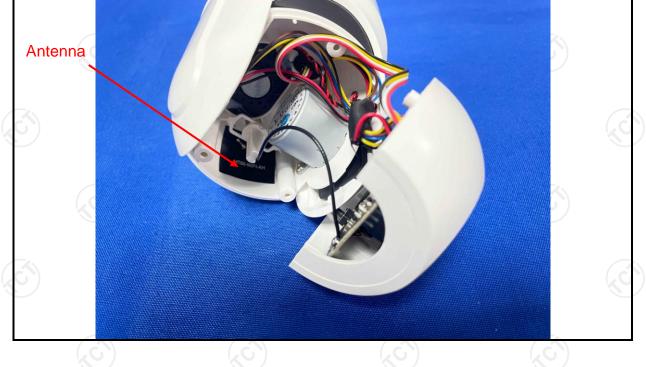
No.	Item	MU
1	Conducted Emission	± 3.10 dB
2	RF power, conducted	± 0.12 dB
3	Spurious emissions, conducted	± 0.11 dB
4	All emissions, radiated(<1 GHz)	± 4.56 dB
5	All emissions, radiated(1 GHz - 18 GHz)	± 4.22 dB
6	All emissions, radiated(18 GHz- 40 GHz)	± 4.36 dB

5. Test Results and Measurement Data

5.1. Antenna requirement

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:


An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The WIFI antenna is PIFA antenna which permanently attached, and the best case gain of the antenna is 1.73dBi.

5.2. Conducted Emission

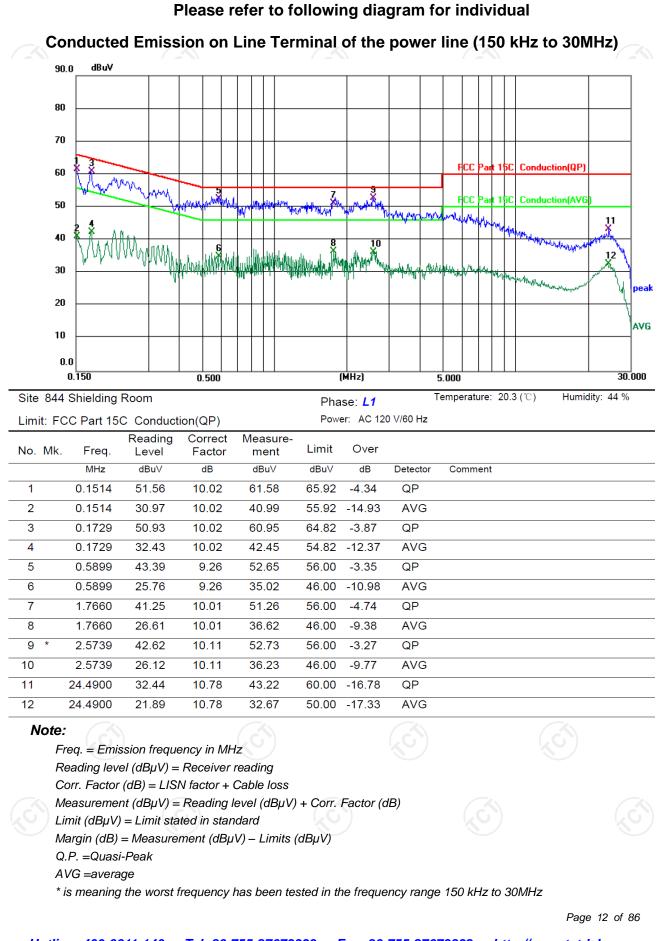
5.2.1. Test Specification

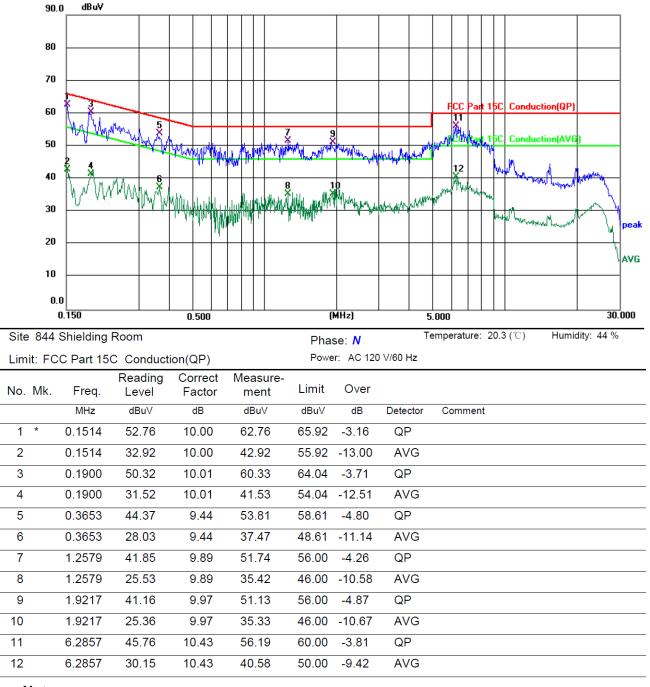
Test Requirement:	FCC Part15 C Section	15.207			
Test Method:	ANSI C63.10:2013	ANSI C63.10:2013			
Frequency Range:	150 kHz to 30 MHz	150 kHz to 30 MHz			
Receiver setup:	RBW=9 kHz, VBW=30 kHz, Sweep time=auto				
	Frequency range	Limit (Limit (dBuV)		
	(MHz)	Quasi-peak	Áverage		
Limits:	0.15-0.5	66 to 56*	56 to 46*		
	0.5-5	56	46		
	5-30	60	50		
	Referenc	e Plane			
Test Setup:	40cm 40cm E.U.T AC powe Test table/Insulation plane Remarkc E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Na Test table height=0.8m	EMI Receiver	r]— AC power		
Test Mode:	Charging		0		
Test Procedure:	 The E.U.T is connelline impedance stal provides a 500hm/8 measuring equipme The peripheral device power through a LI coupling impedance refer to the block photographs). Both sides of A.C. conducted interferent emission, the relative the interface cables ANSI C63.10:2013 of 	bilization network 50uH coupling im nt. ces are also conne SN that provides with 50ohm tern diagram of the line are checkence. In order to fir e positions of equ s must be chang	k (L.I.S.N.). This pedance for the ected to the main a 50ohm/50uh nination. (Please test setup and ed for maximun nd the maximun ipment and all o jed according to		
	7.1101 000.10.2010 0				

Page 10 of 86

5.2.2. Test Instruments

Conducted Emission Shielding Room Test Site (843)							
Equipment	Manufacturer	Model	Serial Number	Calibration Due			
EMI Test Receiver	R&S	ESCI3	100898	Jun. 29, 2024			
Line Impedance Stabilisation Newtork(LISN)	Schwarzbeck	NSLK 8126	8126453	Jan. 31, 2025			
Line-5	тст	CE-05	/	Jul. 03, 2024			
EMI Test Software	Shurple Technology	EZ-EMC		1			
\mathcal{D}	\mathcal{D}						


Page 11 of 86


Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

5.2.3. Test data

TCT 通测检测 TESTING CENTRE TECHNOLOGY

Conducted Emission on Neutral Terminal of the power line (150 kHz to 30MHz)

Note:

Freq. = Emission frequency in MHz Reading level $(dB\mu V)$ = Receiver reading Corr. Factor (dB) = LISN factor + Cable loss Measurement $(dB\mu V)$ = Reading level $(dB\mu V)$ + Corr. Factor (dB)Limit $(dB\mu V)$ = Limit stated in standard Margin (dB) = Measurement $(dB\mu V)$ – Limits $(dB\mu V)$ Q.P. =Quasi-Peak AVG =average

AVG =average

TCT 通测检测 TCT 通测检测

* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

5.3. Maximum Conducted (Average) Output Power

5.3.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)
Test Method:	KDB 558074 D01 v05r02
Limit:	30dBm
Test Setup:	
	Spectrum Analyzer EUT
Test Mode:	Transmitting mode with modulation
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Measure the conducted output power and record the results in the test report.
Test Result:	PASS
(\mathbf{C})	

5.3.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 28, 2024
Combiner Box	Ascentest	AT890-RFB		

Page 14 of 86

5.4. Emission Bandwidth

5.4.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a))(2)
Test Method:	KDB 558074 D01 v05r02	
Limit:	>500kHz	
Test Setup:		
	Spectrum Analyzer	EUT
Test Mode:	Transmitting mode with modulation	on
Test Procedure:	 Set to the maximum power set EUT transmit continuously. Make the measurement with th resolution bandwidth (RBW) = Video bandwidth (VBW) = 300 an accurate measurement. Th be greater than 500 kHz. Measure and record the results 	he spectrum analyzer's = 100 kHz. Set the 0 kHz. In order to make he 6dB bandwidth must
Test Result:	PASS	

5.4.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 28, 2024
Combiner Box	Ascentest	AT890-RFB	<u>د)</u> ۱	

5.5. Power Spectral Density

5.5.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (e)
Test Method:	KDB 558074
Limit:	The peak power spectral density shall not be greater than 8dBm in any 3kHz band at any time interval of continuous transmission.
Test Setup:	
	Spectrum Analyzer EUT
Test Mode:	Transmitting mode with modulation
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW): 3 kHz ≤ RBW ≤ 100 kHz. Video bandwidth VBW ≥ 3 x RBW. Set the span to at least 1.5 times the OBW. Detector = RMS, Sweep time = auto couple. Employ trace averaging (RMS) mode over a minimum of 100 traces. Use the peak marker function to determine the maximum power level. Measure and record the results in the test report.
Test Result:	PASS

5.5.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 28, 2024
Combiner Box	Ascentest	AT890-RFB	/	1

5.6. Conducted Band Edge and Spurious Emission Measurement

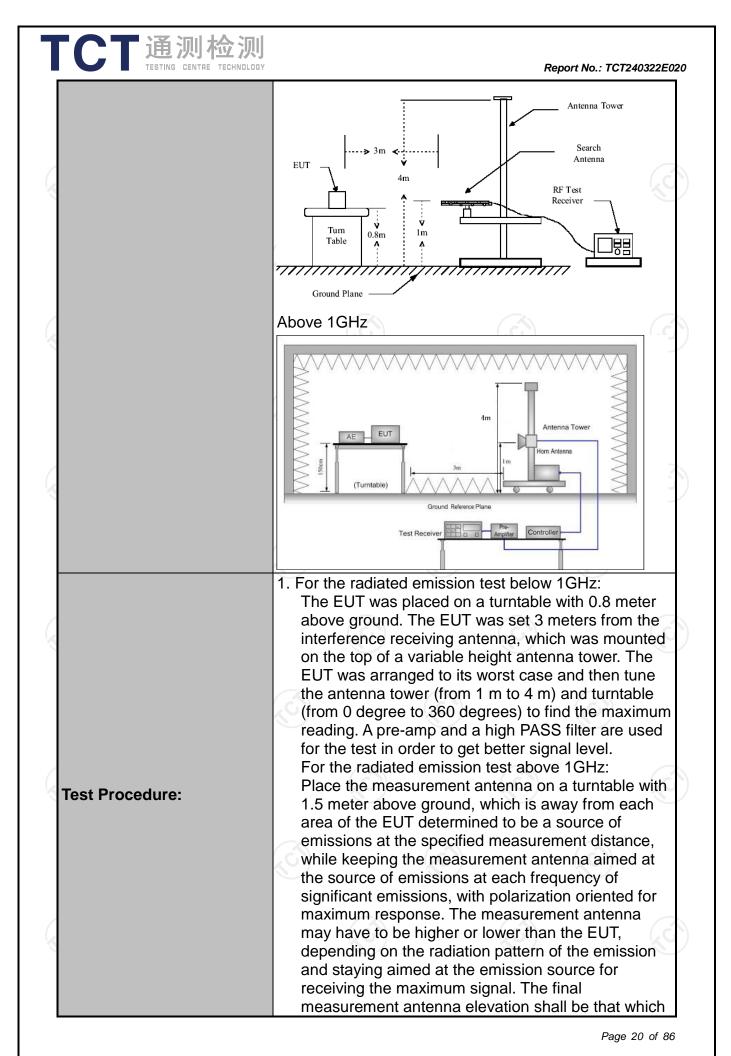
5.6.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	KDB558074
Limit:	In any 100 kHz bandwidth outside of the authorized frequency band, the emissions which fall in the non-restricted bands shall be attenuated at least 20 dB / 30dB relative to the maximum PSD level in 100 kHz by RF conducted measurement and radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).
Test Setup:	
	Spectrum Analyzer EUT
Test Mode:	Transmitting mode with modulation
	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz, VBW=300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when
Test Procedure:	 maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB per 15.247(d). 4. Measure and record the results in the test report. 5. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

Page 17 of 86

5.6.2. Test Instruments

	Name	Manufacturer	Model No.	Seria	al Number	Calibratio	on Due
Sp Ar	ectrum nalyzer	Agilent	N9020A	MY4	9100619	Jun. 28,	2024
	biner Box	Ascentest	AT890-RFB		1	/	
						Dogo	18 of 86
Hotlin	e: 400-6611-1	40 Tel: 86-755-2	7673330 Eav. 94	6-755-2767	73332 h+++	Page <u>)://www.tct-la</u>	



5.7. Radiated Spurious Emission Measurement

5.7.1. Test Specification

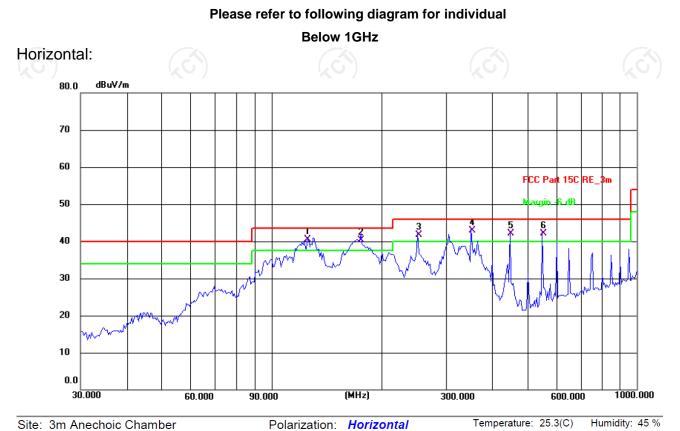
Test Requirement:	FCC Part15 C Section 15.209						
Test Method:	ANSI C63.10:2013						
Frequency Range:	9 kHz to 25 GHz						
Measurement Distance:	3 m		\mathcal{O}		1)	
Antenna Polarization:	Horizontal &	Vertical					
Operation mode:	Transmitting mode with modulation						
	Frequency	Detector	RBW	VBW		Remark	
	9kHz- 150kHz	Quasi-peal		1kHz		i-peak Value	
Receiver Setup:	150kHz- 30MHz	Quasi-peal				i-peak Value	
•	30MHz-1GHz	Quasi-peal	k 120KHz	300KHz	Quas	i-peak Value	
		Peak	1MHz	3MHz		eak Value	
	Above 1GHz	Peak	1MHz	10Hz	Ave	rage Value	
	Frequen	су	Field Stre (microvolts	-		asurement nce (meters)	
	0.009-0.4	190	2400/F(I		300		
	0.490-1.7		24000/F(KHz)		30		
	1.705-3	30	30		30		
	30-88		100		3		
	88-216		150		3		
Limit:	216-960		200			3	
	Above 960		500		3		
	Frequency Field Strength (microvolts/meter) Distant (meter) Above 1GHz 500 3			Measurer Distand (meter 3 3	се	Detector Average Peak	
	For radiated	emission: stance = 3m	s below 30		Comput		

Page 19 of 86

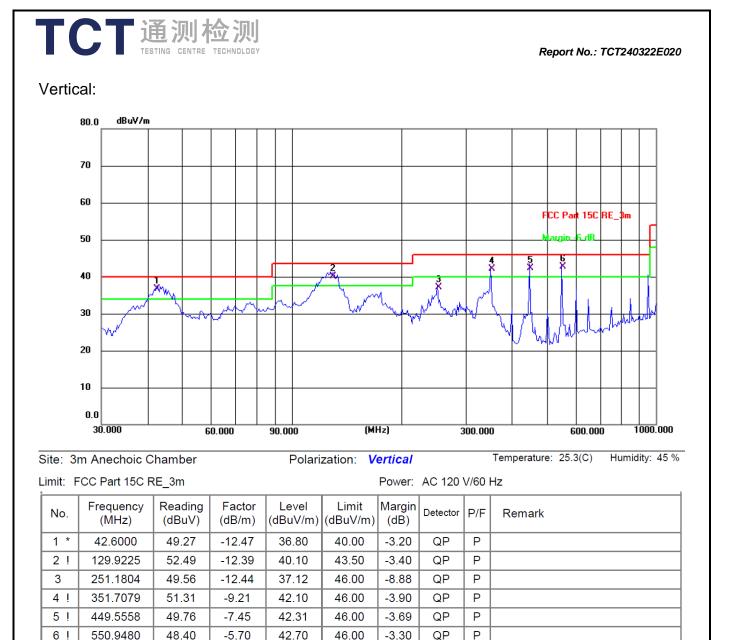
TC ⁻	通测检测	
	TESTING CENTRE TECHNOLOGY	Report No.: TCT240322E020
	TESTING CENTRE TECHNOLOGY	 Report No.: TCT240322E020 maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane. Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level For measurement below 1GHz, If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported. Use the following spectrum analyzer settings: Span shall wide enough to fully capture the emission being measured; Set RBW=120 kHz for f < 1 GHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold; Set RBW = 1 MHz, VBW= 3MHz for f >1 GHz for peak measurement. For average measurement: VBW = 10 Hz, when duty cycle is no less than 98 percent. VBW ≥ 1/T, when duty cycle is less than 98 percent where T is
		the minimum transmission duration over which the transmitter is on and is transmitting at its maximum
		power control level for the tested mode of operation.
Test res	sults:	PASS

Page 21 of 86

5.7.2. Test Instruments


	Radiated En	nission Test Site	e (966)	
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
EMI Test Receiver	R&S	ESIB7	100197	Jun. 29, 2024
Spectrum Analyzer	R&S	FSQ40	200061	Jun. 29, 2024
Pre-amplifier	SKET	LNPA_0118G- 45	SK2021012 102	Jan. 31, 2025
Pre-amplifier	SKET	LNPA_1840G- 50	SK2021092 03500	Jan. 31, 2025
Pre-amplifier	HP	8447D	2727A05017	Jun. 27, 2024
Loop antenna	Schwarzbeck	FMZB1519B	00191	Jul. 02, 2024
Broadband Antenna	Schwarzbeck	VULB9163	340	Jul. 01, 2024
Horn Antenna	Schwarzbeck	BBHA 9120D	631	Jul. 01, 2024
Horn Antenna	Schwarzbeck	BBHA 9170	00956	Feb. 02, 2025
Antenna Mast	Keleto	RE-AM	/	/
Coaxial cable	SKET	RC-18G-N-M	1	Jan. 31, 2025
Coaxial cable	SKET	RC_40G-K-M	/	Jan. 31, 2025
EMI Test Software	Shurple Technology	EZ-EMC		1

Page 22 of 86


5.7.3. Test Data

Limit: FCC Part 15C RE 3m

Limit:	FCC Part 15C F	RE_3m				Power: AC 120 V/60 Hz					
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark		
1 *	125.4457	53.38	-12.88	40.50	43.50	-3.00	QP	Ρ			
2 !	175.6516	52.46	-12.16	40.30	43.50	-3.20	QP	Ρ			
3 !	251.1804	54.14	-12.44	41.70	46.00	-4.30	QP	Ρ			
4 !	351.7079	52.11	-9.21	42.90	46.00	-3.10	QP	Ρ			
5 !	449.5558	49.49	-7.45	42.04	46.00	-3.96	QP	Ρ			
6!	550.9480	47.88	-5.70	42.18	46.00	-3.82	QP	Ρ			

Page 23 of 86

Note: 1. The low frequency, which started from 9KHz~30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported

2. Measurements were conducted in all three channels (high, middle, low) and all modulation(802.11b, 802.11g, 802.11n(HT20)), and the worst case Mode (Middle channel and 802.11g) was submitted only.

3. Freq. = Emission frequency in MHz

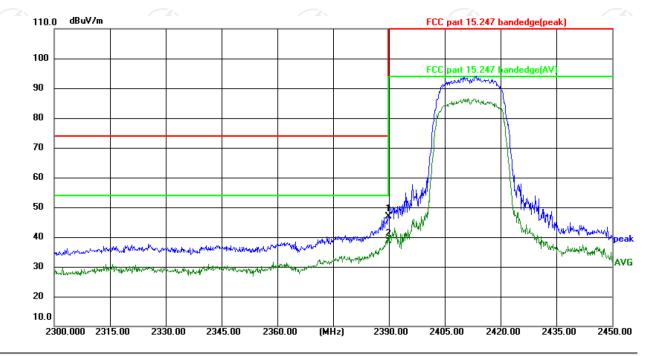
 $\textit{Measurement (dB\mu V/m) = Reading level (dB\mu V) + Corr. Factor (dB)}$

Correction Factor= Antenna Factor + Cable loss – Pre-amplifier

Limit $(dB\mu V/m) = Limit$ stated in standard

 $Margin (dB) = Measurement (dB\mu V/m) - Limits (dB\mu V/m)$

 * is meaning the worst frequency has been tested in the test frequency range.



Humidity: 42 %

Test Result of Radiated Spurious at Band edges

Lowest channel 2412:

Horizontal:

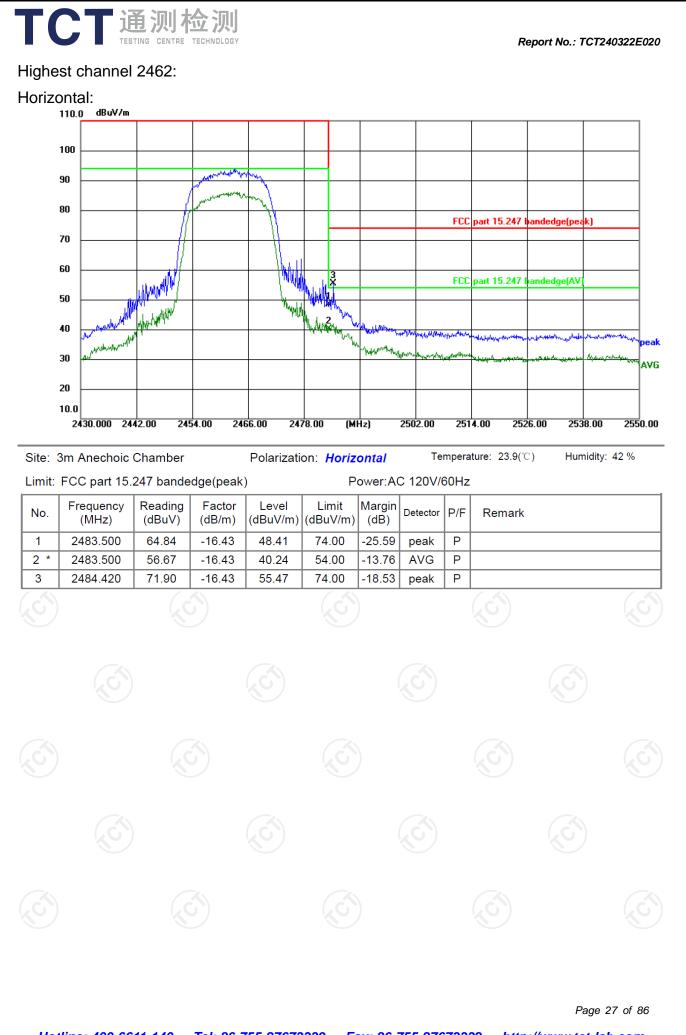
Site: 3m Anechoic Chamber Polarization: *Horizontal* Temperature: 23.9(℃)

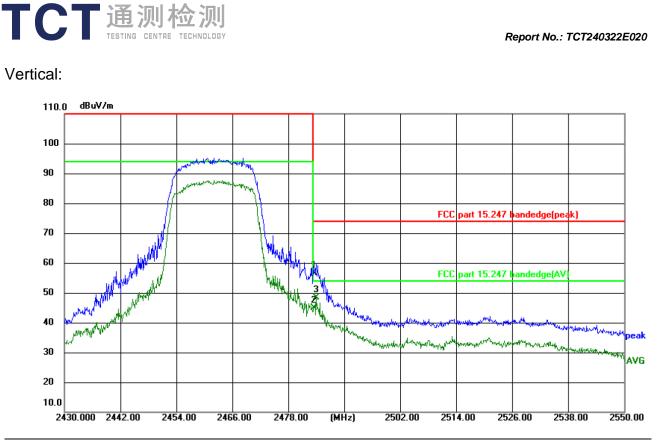
Limit: FCC part 15.247 bandedge(peak)

Power:AC 120V/60Hz

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	2390.000	63.32	-16.53	46.79	74.00	-27.21	peak	Ρ	
2 *	2390.000	55.19	-16.53	38.66	54.00	-15.34	AVG	Ρ	
						1			

Page 25 of 86


CT通测检测 TESTING CENTRE TECHNOLOGY Vertical: dBuV/m 110.0 FCC part 15.247 bandedge(peak) 100 FCC part 15.247 bandedge(AV 90 80 70 60 50 40 WWWWWWWWWWWWWWWWWW AVG 30 $\lambda \lambda$ 20 10.0 2300.000 2315.00 2420.00 2330.00 2345.00 2360.00 (MHz) 2390.00 2405.00 2435.00 2450.00 Temperature: 23.9(°C) Humidity: 42 % Site: 3m Anechoic Chamber Polarization: Vertical Limit: FCC part 15.247 bandedge(peak) Power: AC 120V/60Hz Reading Level Limit Frequency Factor Margin Detector P/F No. Remark (MHz) (dBuV) (dB/m) (dBuV/m) (dBuV/m) (dB) 2389.535 63.89 47.36 54.00 1 * -16.53 -6.64 AVG Ρ 74.00 2 2390.000 71.98 -16.53 55.45 -18.55 peak Ρ 3 2390.000 61.48 -16.53 44.95 54.00 -9.05 AVG Ρ Note: Measurements were conducted in all two channels (high, low) and all modulation (802.11b, 802.11g, 802.11n(HT20)), and the worst case Mode 802.11g was submitted only.


T(

Page 26 of 86

Report No.: TCT240322E020

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

Site: 3m Anechoic Chamber Polarization: Vertical Temperature: 23.9(°C) Humidity: 42 %

Limit: FCC part 15.247 bandedge(peak)

Power:AC 120V/60Hz

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F	Remark
1	2483.500	72.99	-16.43	56.56	74.00	-17.44	peak	Ρ	
2	2483.500	61.22	-16.43	44.79	54.00	-9.21	AVG	Ρ	
3 *	2484.150	64.92	-16.43	48.49	54.00	-5.51	AVG	Ρ	

Note:

- 1. Peak Final Emission Level=Peak Reading + Correction Factor;
- 2. Correction Factor= Antenna Factor + Cable loss Pre-amplifier
- 3. Measurements were conducted in all modulation(802.11b, 802.11g, 802.11n(HT20)), and the worst case Mode 802.11g was submitted only.

			Μ	odulation T	ype: 802.11	1b				
			L	ow channe	I: 2412 MH	Z				
Frequency (MHz)Ant. Pol. H/VPeak reading (dBµV)AV reading (dBuV)Correction Factor (dB/m)Emission Level Peak (dBµV/m)Peak limit (dBµV/m)AV limit (dBµV/m)Ma (dBµV/m)										
4824	Н	45.14		0.75	45.89		74	54	-8.11	
7236	Н	34.30		9.87	44.17		74	54	-9.83	
	Н									
4824	V	45.11		0.75	45.86		74	54	-8.14	
7236	V	35.68	(2G	9.87	45.55	G`)	74	54	-8.45	
	V				<					

Above 1GHz

	Middle channel: 2437 MHz												
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)				
4874	Н	46.51		0.97	47.48		74	54	-6.52				
7311	Н	36.71		9.83	46.54		74	54	-7.46				
	H				(
	KO)		KO.		X			KO)					
4874	V	45.02		0.97	45.99	·	74	54	-8.01				
7311	V	36.25		9.83	46.08		74	54	-7.92				
	V												

			H	ligh channe	el: 2462 MH	Z			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4924	H	43.92		1.18	45.10		74	54	-8.90
7386	E.	34.40		10.07	44.47		74	54	-9.53
	Н								
4924	V	44.08		1.18	45.26		74	54	-8.74
7386	V	34.47		10.07	44.54		74	54	-9.46
	V			0	/				

Note:

1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss - Pre-amplifier

2. Margin (dB) = Emission Level (Peak) ($dB\mu V/m$)-Average limit ($dB\mu V/m$)

3. The emission levels of other frequencies are very lower than the limit and not show in test report.

4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency. The highest test frequency is 25GHz.

5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

FCT通测检测 TESTING CENTRE TECHNOLOGY

6. All the restriction bands are compliance with the limit of 15.209.

	TESTI	NG CENTRE TEC	HNOLOGY				Repo	ort No.: TCT24	10322E020
			Μ	odulation T	ype: 802.11	lg			
			L	ow channe	I: 2412 MH	Z			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4824	Н	45.98		0.75	46.73		74	54	-7.27
7236	Н	35.65		9.87	45.52		74	54	-8.48
· · · · ·	Н			0	· · · ·		<u></u>		
4824	V	47.61		0.75	48.36		74	54	-5.64
7236	V	36.43	()	9.87	46.30		74	54	-7.70
	V			•)		G`}		(2G-)	
					7				

	Middle channel: 2437 MHz												
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)		Margin (dB)				
4874	Н	45.87		0.97	46.84		74	54	-7.16				
7311	Н	36.19		9.83	46.02		74	54	-7.98				
	Н												
				2	(
4874	V	44.27	<u> </u>	0.97	45.24		74	54	-8.76				
7311	V	35.61	()	9.83	45.44		74	54	-8.56				
	V												

			H	ligh channe	el: 2462 MH	Z			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4924	H	44.45		1.18	45.63		74	54	-8.37
7386	H	34.20		10.07	44.27	<u> </u>	74	54	-9.73
	H			/)			
						1			
4924	V	46.22		1.18	47.40		74	54	-6.60
7386	V	34.31		10.07	44.38		74	54	-9.62
	V	(2 0)		(20)		\sim		
All a day									

Note:

1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss - Pre-amplifier

2. Margin (dB) = Emission Level (Peak) (dB μ V/m)-Average limit (dB μ V/m)

3. The emission levels of other frequencies are very lower than the limit and not show in test report.

4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency. The highest test frequency is 25GHz.

5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

6. All the restriction bands are compliance with the limit of 15.209.

○T 通测检测

TC		的人的					Repo	ort No.: TCT24	40322E020
			Modu	lation Type	: 802.11n (l	HT20)			
			L	ow channe.	l: 2412 MH	z			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4824	Н	46.02		0.75	46.77		74	54	-7.23
7236	Н	36.39		9.87	46.26		74	54	-7.74
· · · ·	Н			()	· · · ·				
4824	V	47.14		0.75	47.89		74	54	-6.11
7236	N	36.86	(9.87	46.73		74	54	-7.27
	V		+20)		G '}		(2G-2)	

	Middle channel: 2437 MHz												
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)				
4874	Н	45.76		0.97	46.73		74	54	-7.27				
7311	Н	35.51		9.83	45.34		74	54	-8.66				
	Н												
				6	(
4874	V	45.30		0.97	46.27	<u> </u>	74	54	-7.73				
7311	V	34.91		9.83	44.74		74	54	-9.26				
	V												

(\mathbf{c})		()	F	ligh channe	el: 2462 MH	Z	(\mathbf{c})		(\mathbf{c})
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4924	H_	45.33		1.18	46.51		74	54	-7.49
7386	H	34.47		10.07	44.54	<u> </u>	74	54	-9.46
	Н			/	<	<u> </u>			
4924	V	45.23		1.18	46.41		74	54	-7.59
7386	V	34.31		10.07	44.38		74	54	-9.62
(.)	V	(J . t		(, ((C		\mathcal{S}^{2}		(
Madai			7						

Note:

1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss - Pre-amplifier

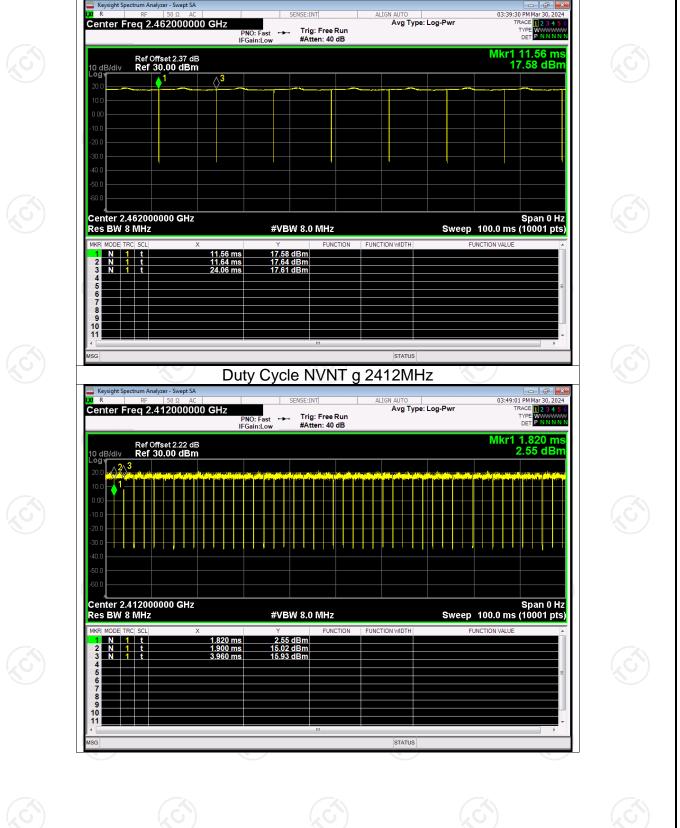
2. Margin (dB) = Emission Level (Peak) (dB μ V/m)-Average limit (dB μ V/m)

3. The emission levels of other frequencies are very lower than the limit and not show in test report.

4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency. The highest test frequency is 25GHz.

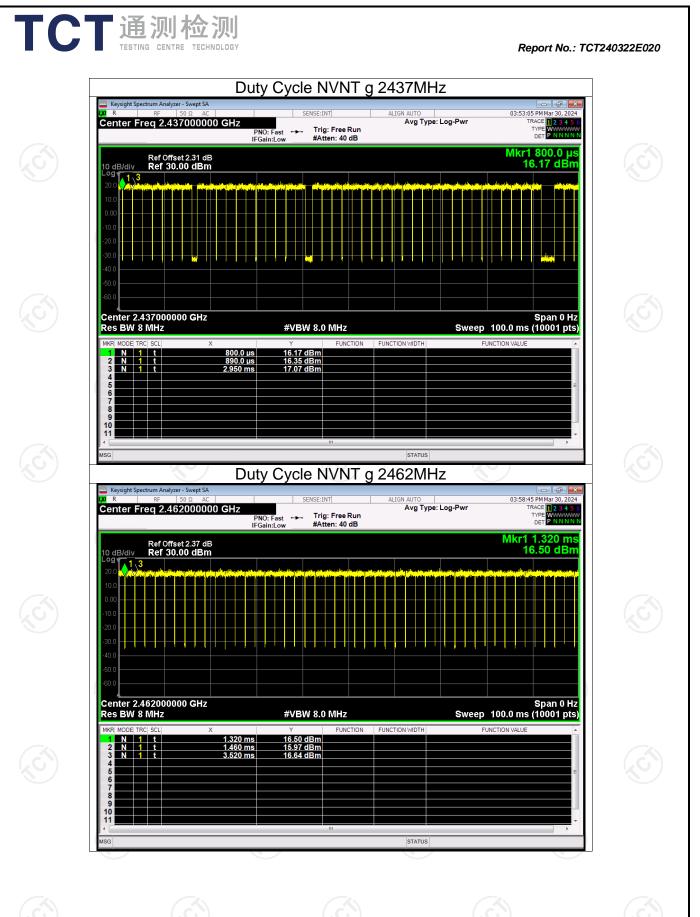
5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

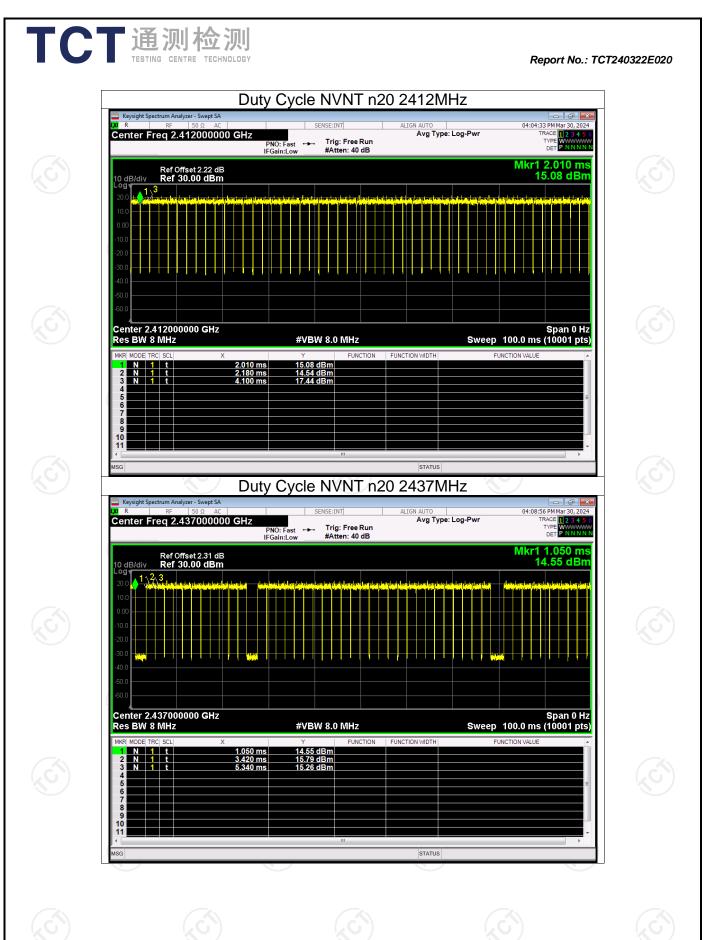
6. All the restriction bands are compliance with the limit of 15.209.



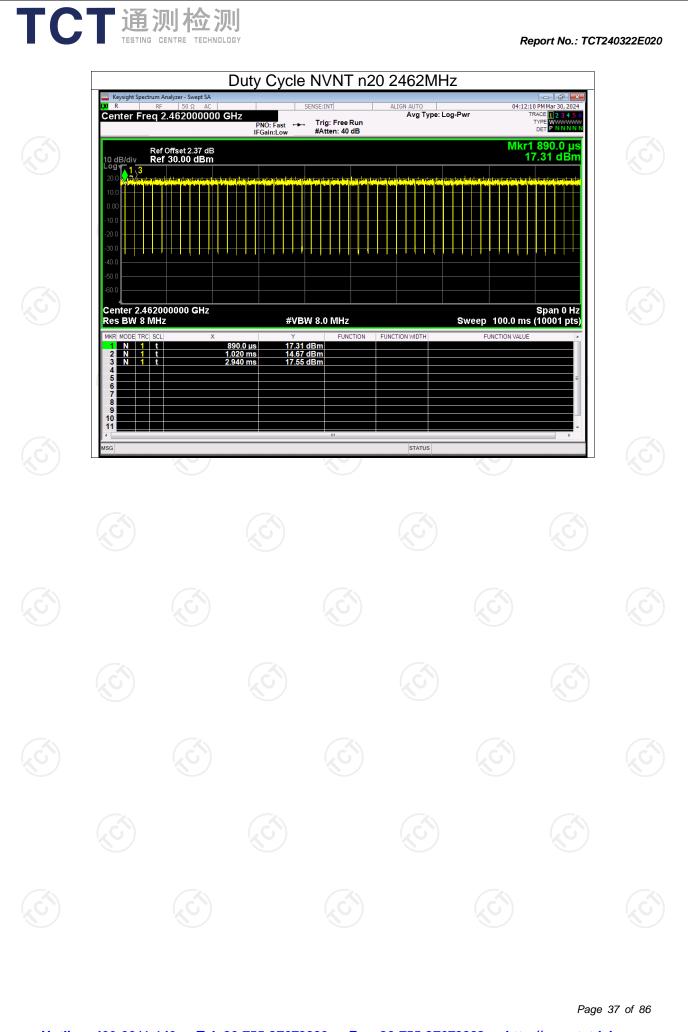
Appendix A: Test Result of Conducted Test

- A.	Duty Cycle								
C C	ondition	Mode	Frequency (MHz)	Du	ty Cycle (%)	Correction Factor (dB)			
	NVNT	b	2412	· ·	99.14		0		
	NVNT	b	2437		97.18		0.12		
	NVNT	b	2462		99.37		0		
	NVNT	g	2412	95.92		0.18			
	NVNT NVNT	g	2437 2462		91.01 95.61		0.41 0.19		
	NVNT	g n20	2402		94.98		0.19		
G)	NVNT	n20	2437		88.80		0.52		
	NVNT	n20	2462		95.31		0.21		





Duty Cycle NVNT b 2462MHz

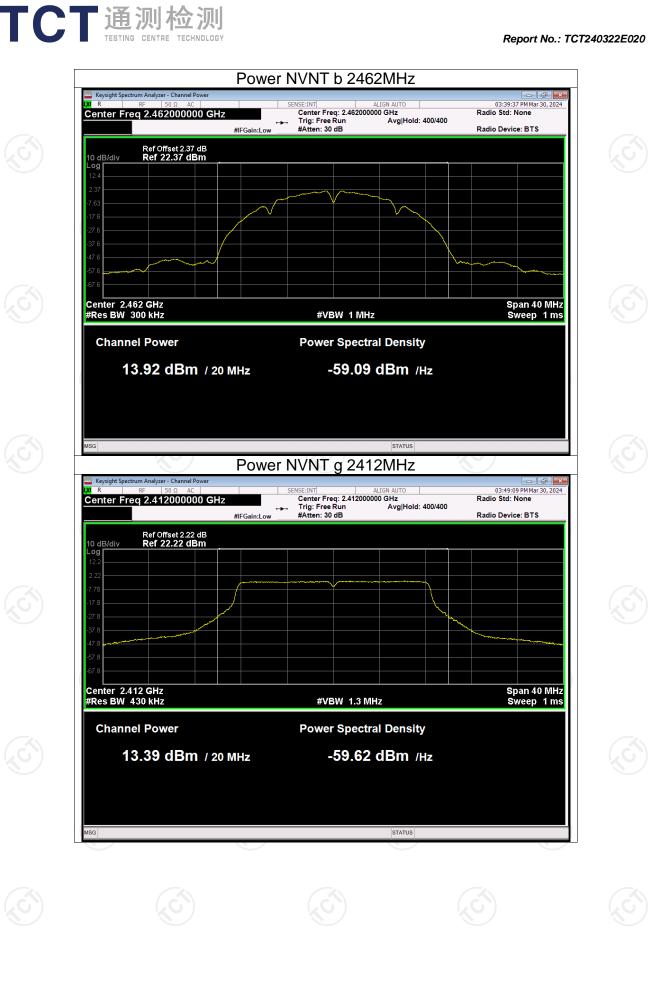

FCT通测检测 TESTING CENTRE TECHNOLOGY

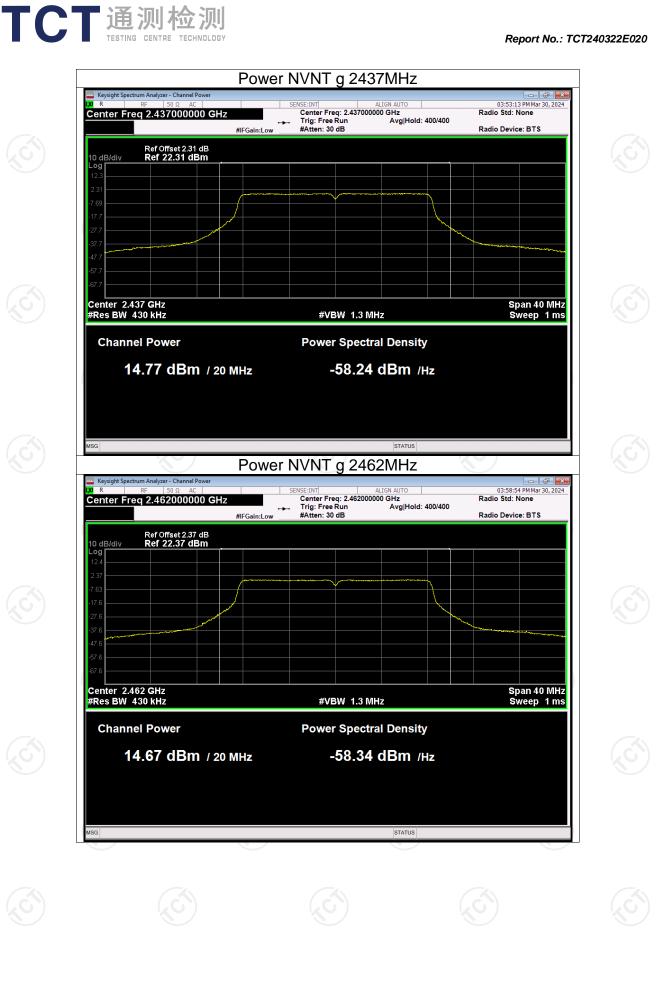
Report No.: TCT240322E020

Page 36 of 86

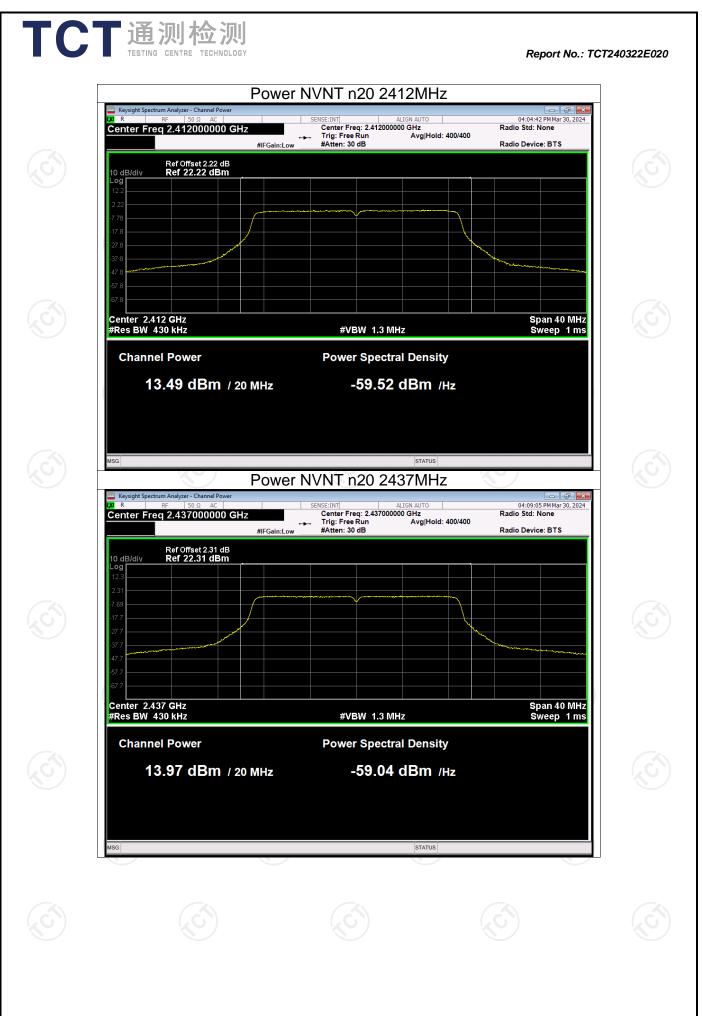
Report No.: TCT240322E020

Condition	Mode	Frequency (MHz)	Conducted Power (dBm)	Duty Factor (dB)	Total Power (dBm)	Limit (dBm)	Verdict
NVNT	b	2412	14.34	0	14.34	30	Pass
NVNT	b	2437	14.33	0.12	14.45	30	Pass
NVNT	b	2462	13.92	0	13.92	30	Pass
NVNT	g	2412	13.39	0.18	13.57	30	Pass
NVNT	g	2437	14.77	0.41	15.18	30	Pass
NVNT	g	2462	14.67	0.19	14.86	30	Pass
NVNT	n20	2412	13.49	0.22	13.71	30	Pass
NVNT	n20	2437	13.97	0.52	14.49	30	Pass
NVNT	n20	2462	13.70	0.21	13.91	30	Pass


Maximum Conducted Output Power



Page 39 of 86


Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

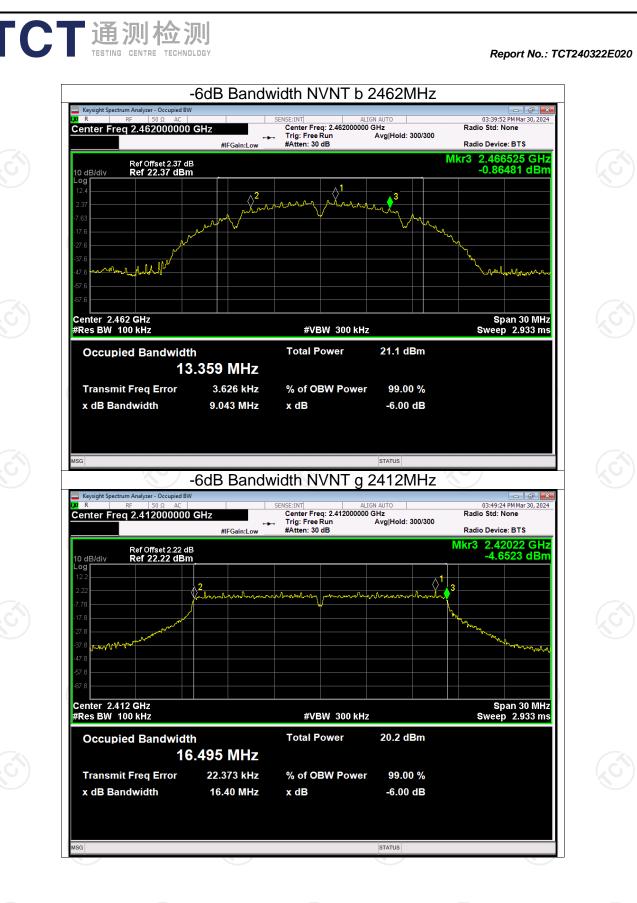
Page 40 of 86

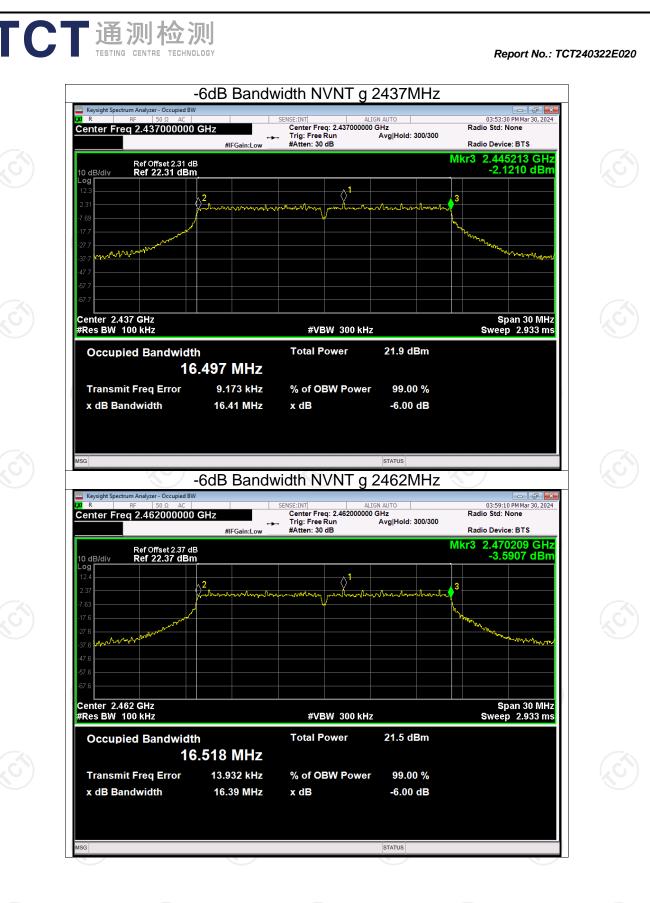
Page 41 of 86

Page 42 of 86

TC	通测检 TESTING CENTRE TECH	沨J Nology			Re	eport No.: TCT2	240322E020
	Keysight Spectrum Analyzer - Channel P Keysight R RF 50 Ω AC	ower	IVNT n20 2	ALIGN AUTO		11 PM Mar 30, 2024	
	Center Freq 2.46200000 Ref Offset 2.37 10 dB/div Ref 22.37 dB 12 4 2.37 7.63 3 .17.6 3 .27.6 3	#IFGain:Low	Center Freq: 2.4620 Trig: Free Run #Atten: 30 dB	00000 GHz Avg Hold: 400/40	Radio Std: I		
	37.6 47.6 57.6 67.5 Center 2.462 GHz #Res BW 430 kHz		#VBW 1.3 Power Spec		Si Si	pan 40 MHz weep 1 ms	
	13.70 dBm	/ 20 MHz		1 dBm /Hz			
	MSG		Ø	STATUS			
<u>Hotlin</u> e:	: 400-6611-140 Tel	: 86-755-27673	3 <u>339 Fax</u> :	86-755-27673	1 <u>332 htt</u> p:	Page :// www.tct-la	43 of 86 1 b.com

Page 44 of 86


Condition	Mode	Frequency (MHz)	-6 dB Bandwidth (MHz)	Limit -6 dB Bandwidth (MHz)	Verdict			
NVNT	b	2412	8.099	0.5	Pass			
NVNT	b	2437	8.589	0.5	Pass			
NVNT	b	2462	9.043	0.5	Pass			
NVNT	g	2412	16.396	0.5	Pass			
NVNT	g	2437	16.409	0.5	Pass			
NVNT	g	2462	16.391	0.5	Pass			
NVNT	n20	2412	17.607	0.5	Pass			
NVNT	n20	2437	17.602	0.5	Pass			
NVNT	n20	2462	17.599	0.5	Pass			
			KC)	S C	$\langle \mathcal{O} \rangle$			


-6dB Bandwidth

TCT 通测检测 TESTING CENTRE TECHNOLOGY

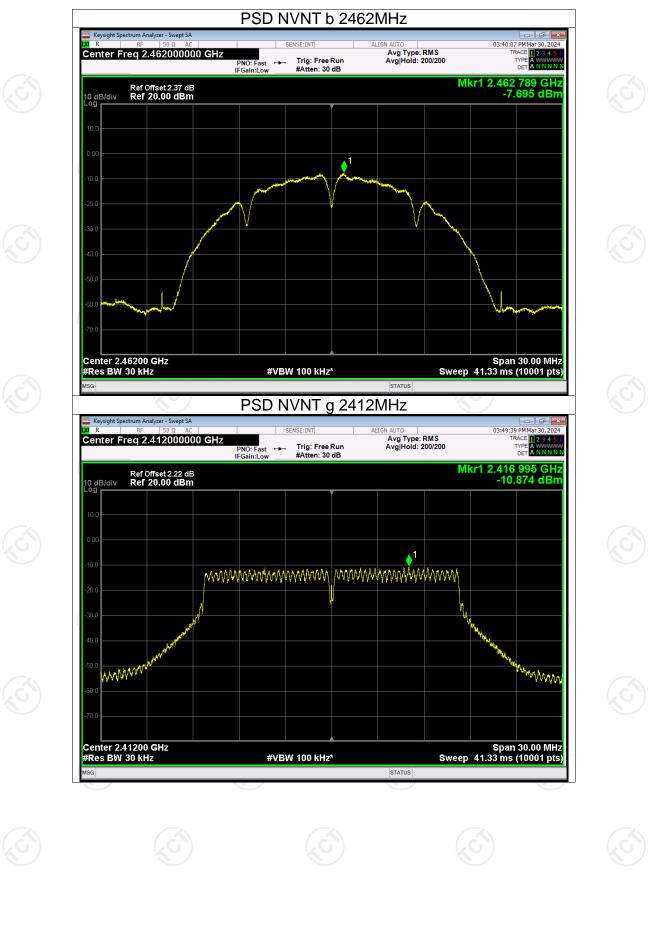
Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

Page 48 of 86

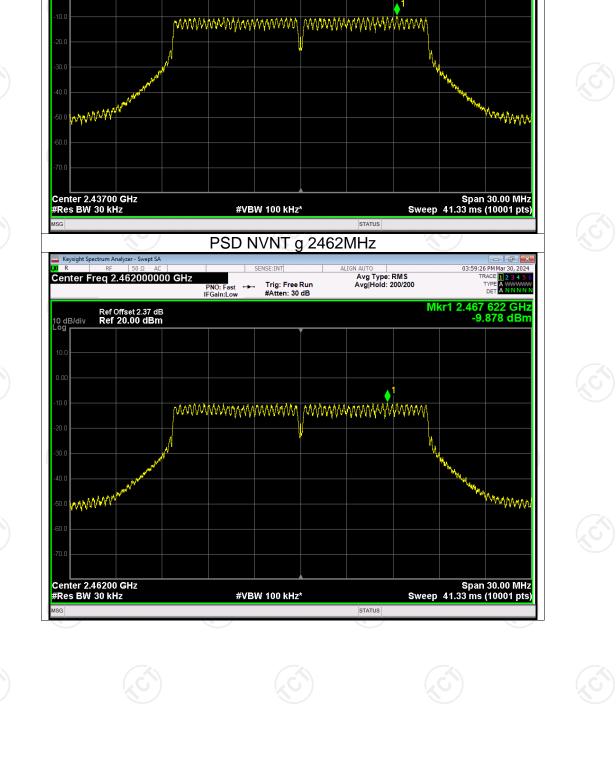
		2462MH	dth NVNT n20	dB Bandwi	n Analyzer - Occupied BW	
	04:12:4: Radio Std: N Radio Devic	GN AUTO GHz Avg Hold: 300/300	Center Freq: 2.462000000	Hz	RF 50 Ω AC 2.462000000 C	LXI R
	Mkr3 2.470		#Atten: 30 dB	#IFGain:Low	Ref Offset 2.37 dB Ref 22.37 dBm	10 dB/div
	3			- hor man hor hor		12.4
		syleen marken and	nahrontan portante		for the second s	-7.63
mmangan	- Vransharan				~ Wrate - water - wate	-27.6
						-47.6 -57.6
pan 30 MHz					2 GHz	-67.6 Center 2.46
p 2.933 ms	Sweep	20.6 dBm	#VBW 300 kHz Total Power		ed Bandwidth	#Res BW 1
		20.0 00		692 MHz		Occupit
		99.00 % -6.00 dB	% of OBW Power x dB	-3.647 kHz 17.60 MHz	Freq Error dwidth	Transmit x dB Bar
		STATUS				MSG

Report No.: TCT240322E020

Maximum Power Spectral Density Level

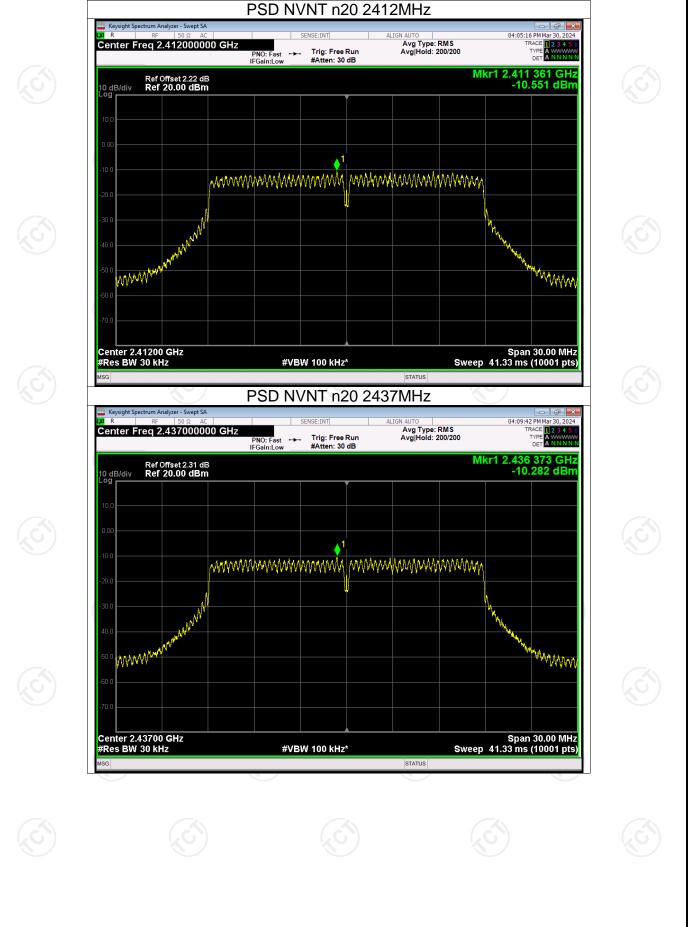

	Maximum r Ower Opectial Density Level									
Condition	Mode	Frequency (MHz)	Conducted PSD (dBm)	Duty Factor (dB)	Total PSD (dBm/30 kHz)	Total PSD (dBm/3 kHz)	Limit (dBm)	Verdict		
NVNT	b	2412	-7.49	0	-7.49	-17.49	8	Pass		
NVNT	b	2437	-7.58	0.12	-7.46	-17.46	8	Pass		
NVNT	b	2462	-7.70	0	-7.70	-17.70	8	Pass		
NVNT	g	2412	-10.87	0.18	-10.69	-20.69	8	Pass		
NVNT	g	2437	-9.68	0.41	-9.27	-19.27	8	Pass		
NVNT	g	2462	-9.88	0.19	-9.69	-19.69	8	Pass		
NVNT	n20	2412	-10.55	0.22	-10.33	-20.33	8	Pass		
NVNT	n20	2437	-10.28	0.52	-9.76	-19.76	8	Pass		
NVNT	n20	2462	-10.53	0.21	-10.32	-20.32	8	Pass		
Note: Tota		$ Bm/3 kHz\rangle =$	Total DSD (dB	m/30 kH	τ) $\pm 1000(3)$		7			

Note: Total PSD (dBm/3 kHz) = Total PSD (dBm/30 kHz) +10log(3kHz/30kHz)


Page 50 of 86

TCT通测检测 TESTING CENTRE TECHNOLOGY

03:53:46 PM Mar 30, 20 TRACE 1 2 3 4 TYPE A WWW DET A NNN 0 R Avg Type: RMS Avg|Hold: 200/200 Center Freg 2.437000000 GHz Trig: Free Run #Atten: 30 dB PNO: Fast ↔→ IFGain:Low Mkr1 2.443 225 GHz -9.676 dBm Ref Offset 2.31 dB Ref 20.00 dBm 10 dB/div ▲1


PSD NVNT g 2437MHz

TCT通测检测 TESTING CENTRE TECHNOLOGY

Keysight Spectrum Analyzer - Swept SA

Report No.: TCT240322E020

Page 53 of 86

Report No.: TCT240322E020

TCT通测检测 TESTING CENTRE TECHNOLOGY

LXI R	um Analyzer - Swept SA RF 50 Ω AC q 2.462000000 (GHz PNO: Fast ↔ IFGain:Low	SENSE:INT - Trig: Free Run #Atten: 30 dB	ALIGN AUTO Avg Type: RMS Avg Hold: 200/2	04:13 00	CO PM Mar 30, 2024 TRACE 123456 TYPE A WWWWW DET A NNNN	
10 dB/div F	Ref Offset 2.37 dB Ref 20.00 dBm	In Gain. Low			Mkr1 2.46	3 551 GHz 0.525 dBm	
0.00				1			
-10.0	Ŵ	MMMMMMMMM	www.www		www		
-30.0	- www.w				M Marine Marine		
-50.0 MMVW -60.0	why have a second se				Y	www.www.www	
-70.0							
Center 2.46 #Res BW 30	200 GHz) kHz	#VE	3W 100 kHz*	STATUS	Spa Sweep 41.33 m	in 30.00 MHz s (10001 pts)	

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

Band Edge								
Condition	Mode	Frequency (MHz)	Max Value (dBc)	Limit (dBc)	Verdict			
NVNT	b	2412	-57.22	-30	Pass			
NVNT	b	2462	-55.64	-30	Pass			
NVNT	g	2412	-45.86	-30	Pass			
ŃVNT	g	2462	-40.13	-30	Pass			
NVNT	n20	2412	-45.68	-30	Pass			
NVNT	n20	2462	-40.61	-30	Pass			
	5)	(₂ G*)	$(\mathcal{A}\mathcal{G}^{*})$	(\mathcal{S})				

TCT通测检测 TESTING CENTRE TECHNOLOGY

Page 56 of 86

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

Test Graphs Band Edge NVNT b 2412MHz Ref

PNO: Fast +++ Trig: Free Run IFGain:Low #Atten: 30 dB

10 dB/div _og

Keysight Spectrum Analyzer - Swept SA

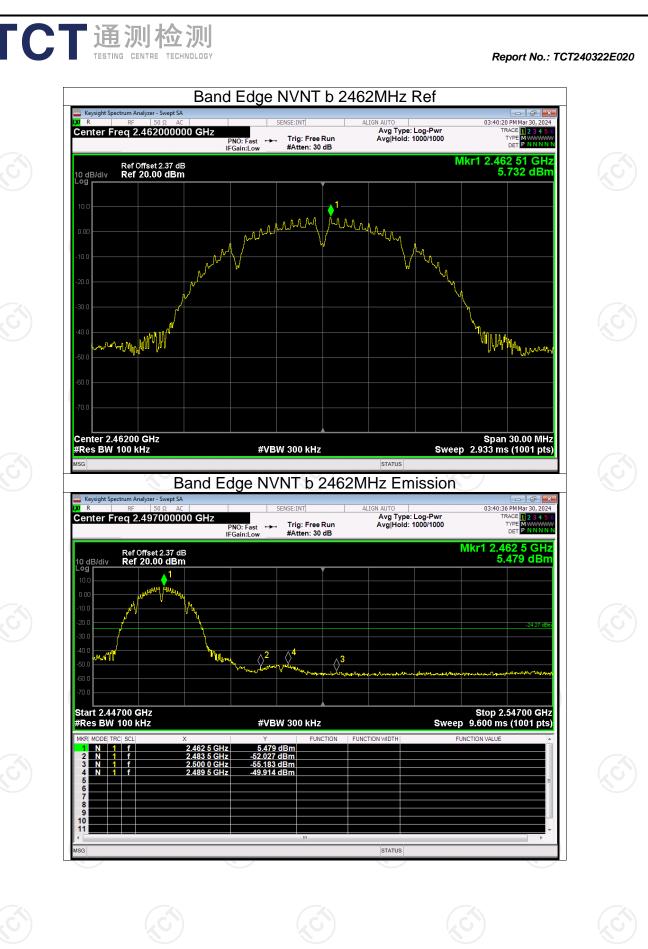
Center Freq 2.412000000 GHz

Ref Offset 2.22 dB Ref 20.00 dBm

mman mm MMA

Avg Type: Log-Pwr Avg|Hold: 2000/2000

Page 57 of 86


STATUS

Report No.: TCT240322E020

03:31:07 PM Mar 30, 2024

Mkr1 2.411 49 GHz 6.327 dBm

TRACE 1 2 3 4 5 TYPE MWWWW DET P N N N N

Page 58 of 86

:49:52 PM Mar 30, 20 TRACE 1 2 3 4 TYPE MWWW DET P N N N K/R Avg Type: Log-Pwr Avg|Hold: 1000/1000 Center Freg 2.412000000 GHz Trig: Free Run #Atten: 30 dB TYP PNO: Fast ↔→ IFGain:Low Mkr1 2.405 76 GHz 1.898 dBm Ref Offset 2.22 dB Ref 22.22 dBm 10 dB/div Loa man how have have have ment ment we have brend www WALLA Center 2.41200 GHz #Res BW 100 kHz Span 30.00 MHz Sweep 2.933 ms (1001 pts) #VBW 300 kHz STATUS Band Edge NVNT g 2412MHz Emission ım Analyzer - Swept SA Keysight Spe (I R 03:50:09 PM Mar Avg Type: Log-Pwr Avg|Hold: 1000/1000 Center Freq 2.377000000 GHz 12345 MWWWW PNNNN Trig: Free Run #Atten: 30 dB TYPE PNO: Fast ↔→→ IFGain:Low Mkr1 2.405 7 GHz 1.926 dBm Ref Offset 2.22 dB Ref 22.22 dBm 10 dB/div Log **r** ah balaka walakah h \Diamond Start 2.32700 GHz #Res BW 100 kHz Stop 2.42700 GHz Sweep 9.600 ms (1001 pts) #VBW 300 kHz FUNCTION WIDTH TION 1 f 1 f 1 f 1.926 dBm -35.270 dBm -46.789 dBm -43.969 dBm N 2.389 5 GH; 10 11 STATUS

Band Edge NVNT g 2412MHz Ref

FCT通测检测 TESTING CENTRE TECHNOLOGY

🔤 Keysight Sp

Report No.: TCT240322E020

Band Edge NVNT g 2462MHz Ref

Trig: Free Run #Atten: 30 dB

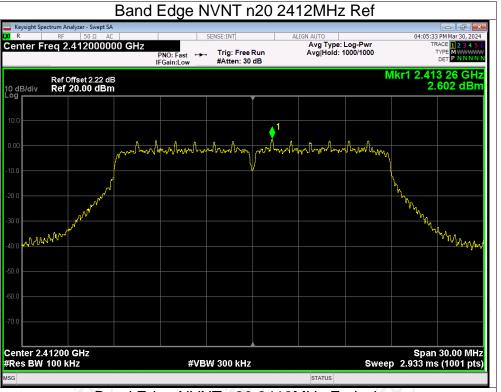
PNO: Fast ↔→ IFGain:Low

Avg Type: Log-Pwr Avg|Hold: 1000/1000

FCT通测检测 TESTING CENTRE TECHNOLOGY

Center Freg 2.462000000 GHz

🔤 Keysight Sp


K/R

Report No.: TCT240322E020

140 PM Mar 30, 20 TRACE 1 2 3 4 TYPE MWWW DET P N N N

TYP

Page 60 of 86

FCT通测检测 TESTING CENTRE TECHNOLOGY

Keysight Sp (I R

Center Freg 2.377000000 GHz

Band Edge NVNT n20 2412MHz Emission er - Swept SA

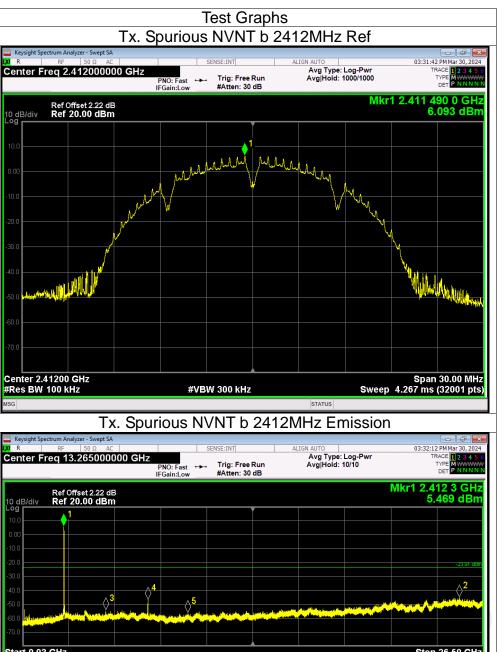
Page 61 of 86

Report No.: TCT240322E020

04:05:49 PM Mar

12345 MWWW PNNNN

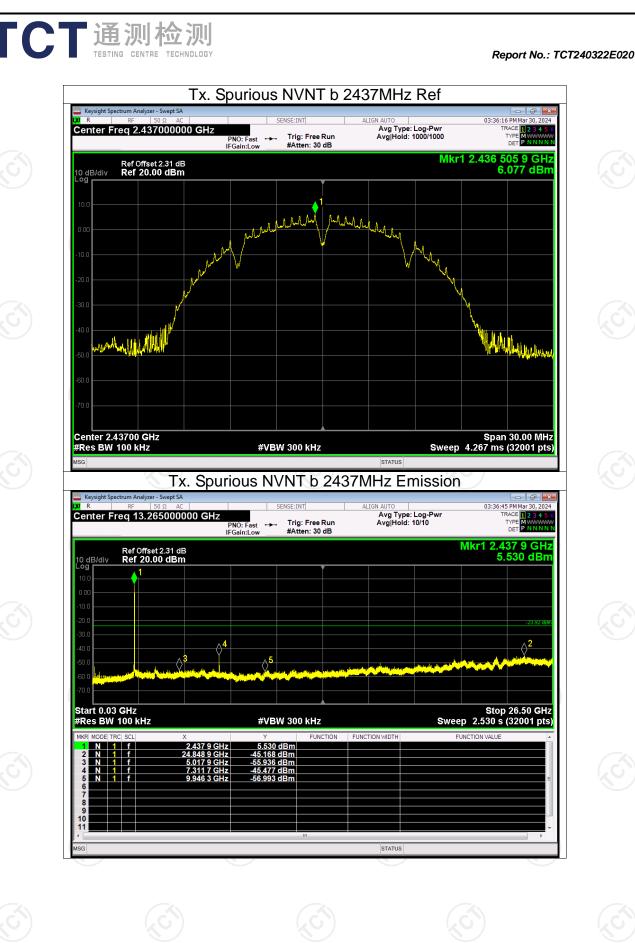
Avg Type: Log-Pwr Avg|Hold: 1000/1000

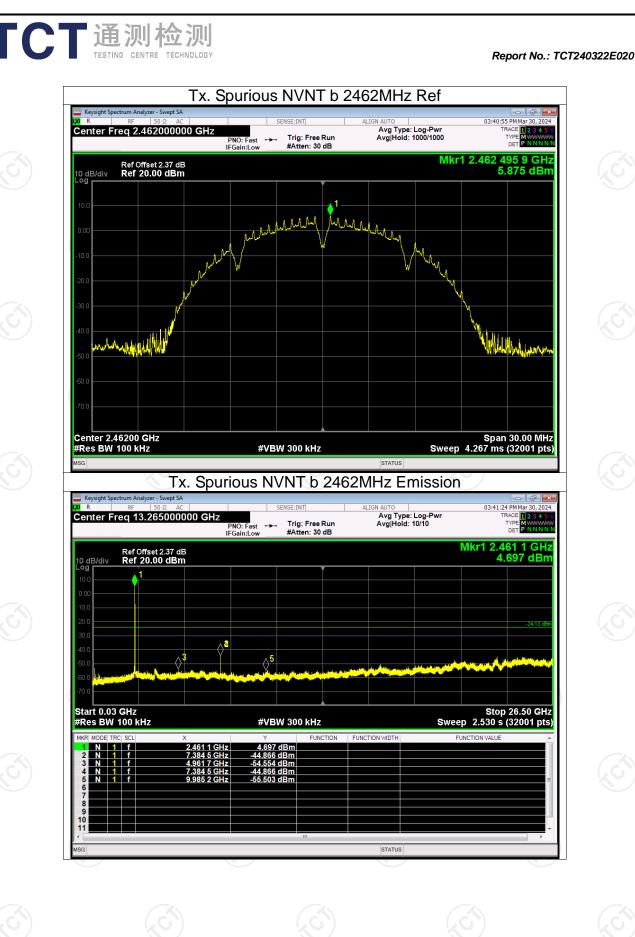

Page 62 of 86

TCT通测检测 TESTING CENTRE TECHNOLOGY

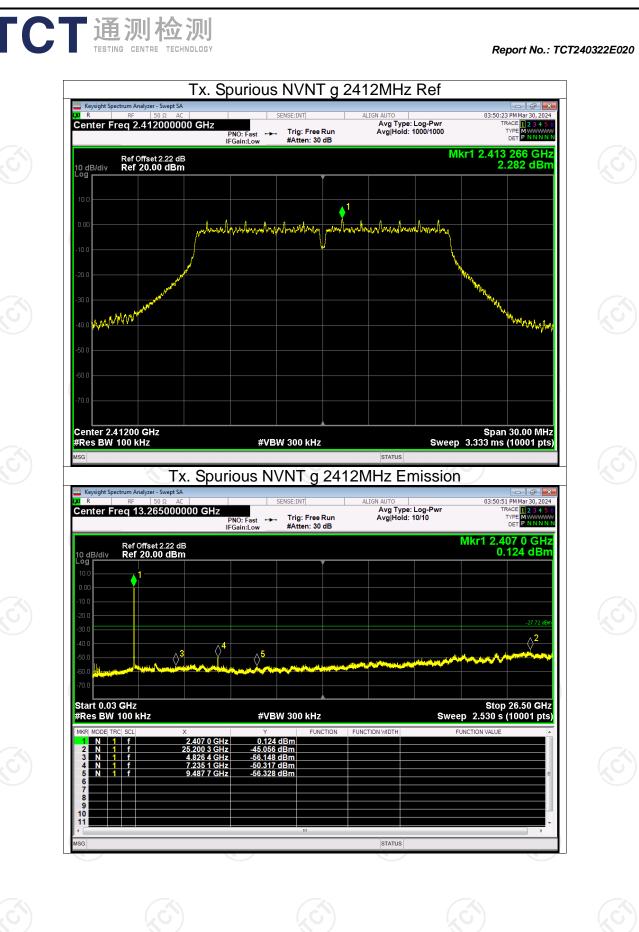
Conducted RF Spurious Emission

Condition	Mode	Frequency (MHz)	Max Value (dBc)	Limit (dBc)	Verdict					
NVNT	b	2412	-51.26	-30	Pass					
NVNT	b	2437	-51.24	-30	Pass					
NVNT	b	2462	-50.74	-30	Pass					
ŃVNT	g	2412	-47.33	-30	Pass					
NVNT	g	2437	-48.31	-30	Pass					
NVNT	g	2462	-48.87	-30	Pass					
NVNT 🔍	n20	2412	-47.76	-30	Pass					
NVNT	n20	2437	-48.20	-30	Pass					
NVNT	n20	2462	-46.01	-30	Pass					

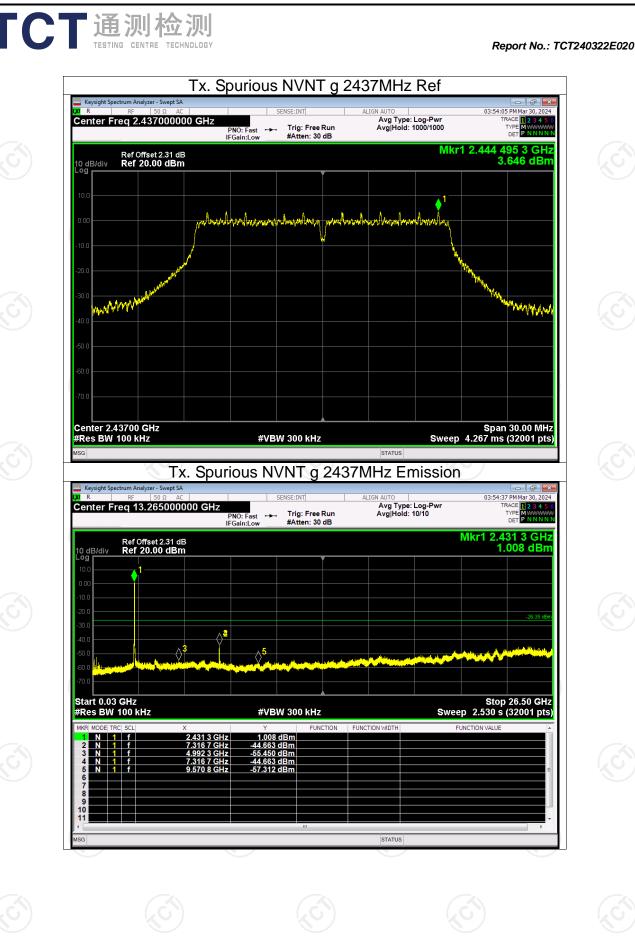

Page 63 of 86



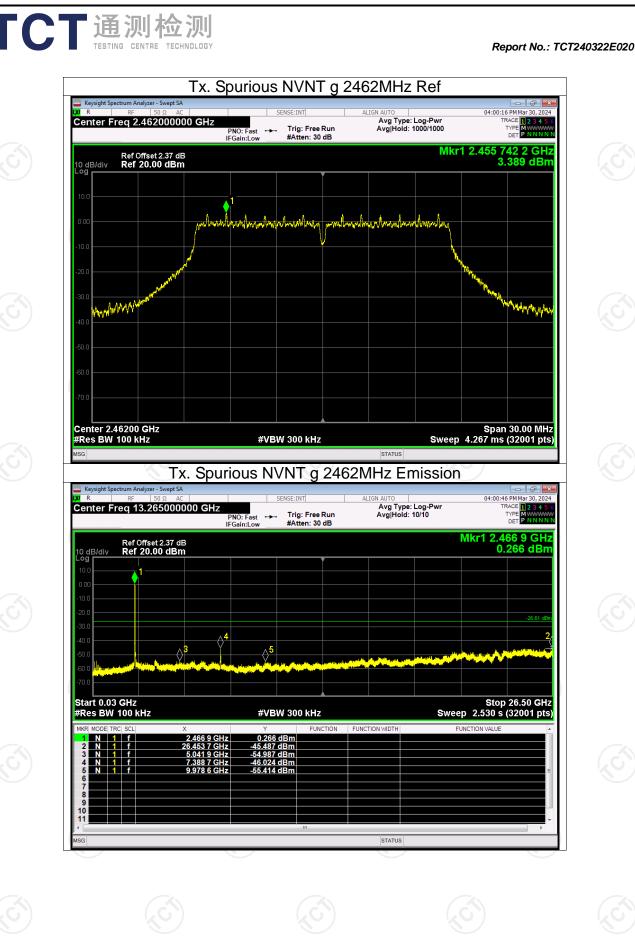
Report No.: TCT240322E020


Page 64 of 86

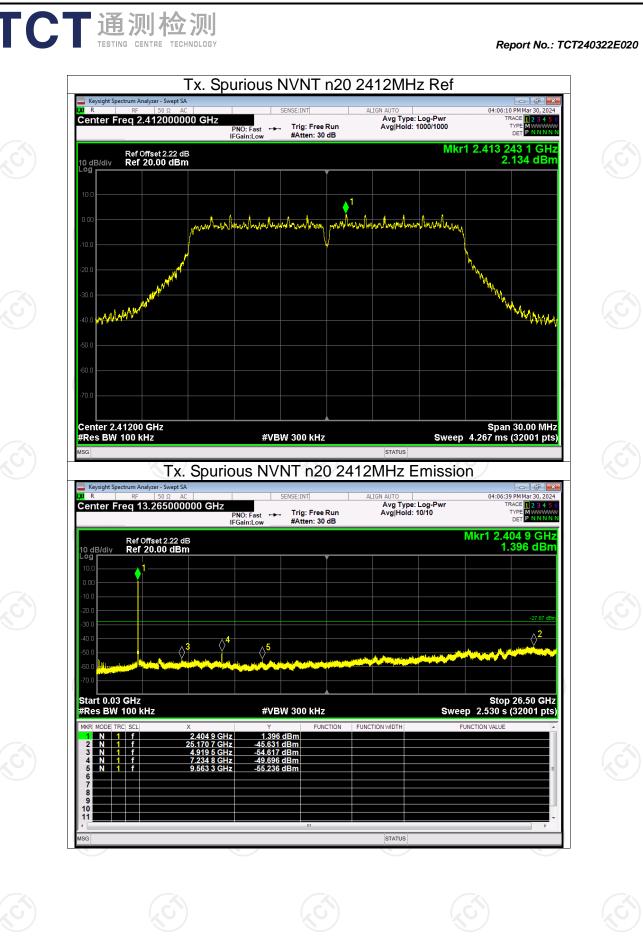
STATUS

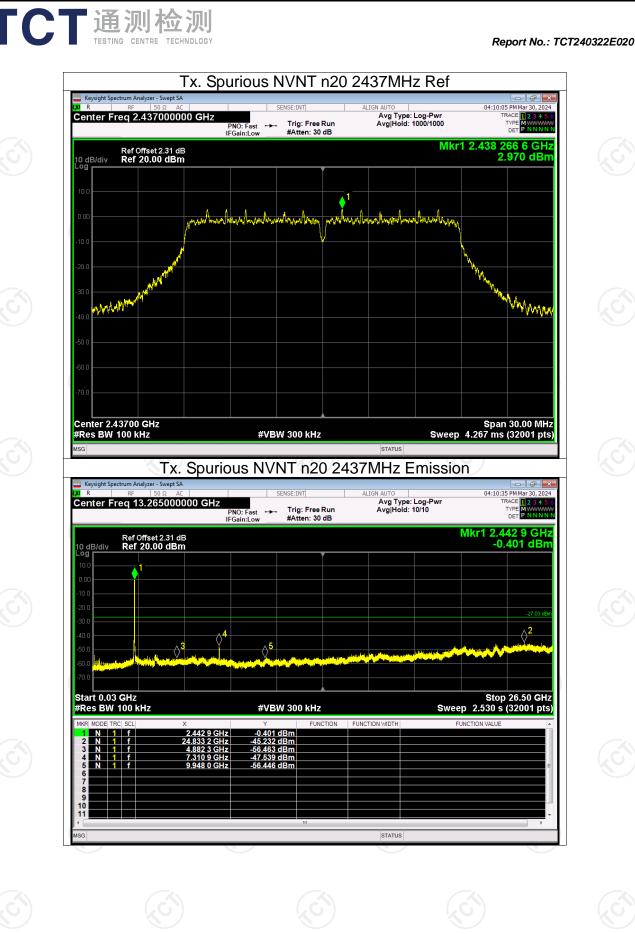


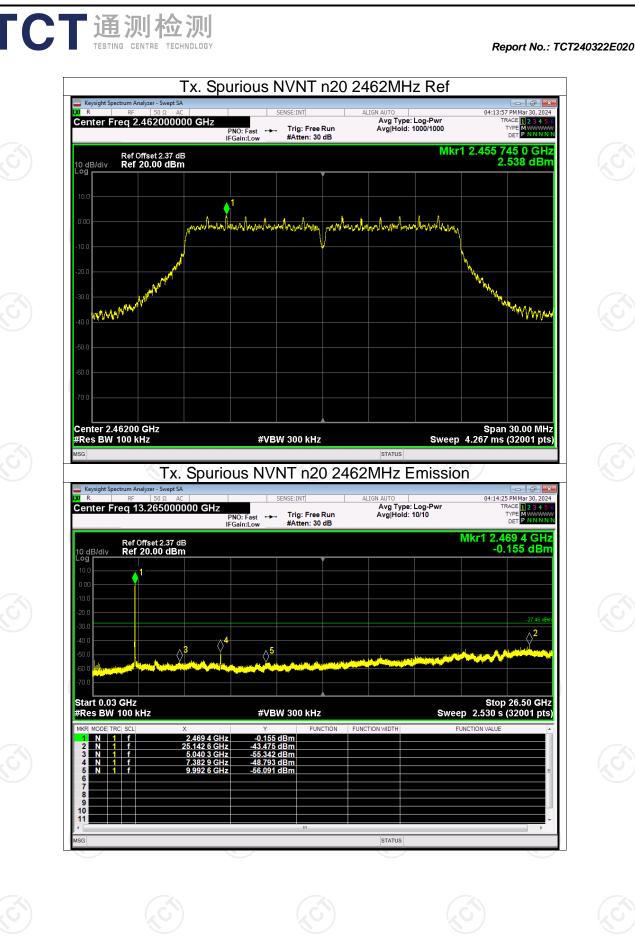
Page 66 of 86

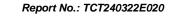


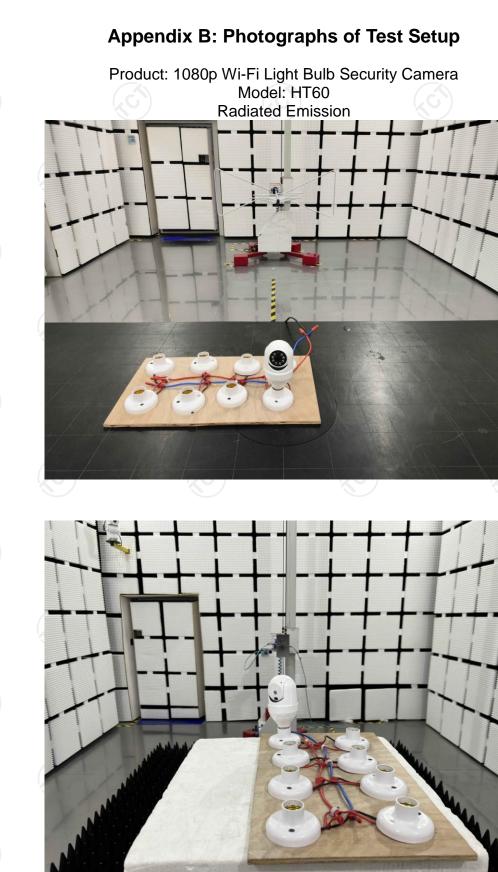
Page 67 of 86


Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com


Page 68 of 86




Page 69 of 86



Page 70 of 86

Page 73 of 86