

Project No.: ZHT-240904015E Page 1 of 23

Report Number...... ZHT-240904015E

Date of Test....... Sept. 04, 2024 to Sept. 24, 2024

Date of issue...... Sept. 24, 2024

Test Result: PASS

Testing Laboratory...... Guangdong Zhonghan Testing Technology Co., Ltd.

Address Room 104, Building 1, Yibaolai Industrial Park, Qiaotou Community,

Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

Applicant's name: Rongyichuang (Shenzhen) Technology Co., Ltd

Address: longgangqu bantianjiedao wankechengshequ xintianxia bairuidadasha

A zuo 7F755 shenzhen guangdong

Manufacturer's name: Rongyichuang (Shenzhen) Technology Co., Ltd

Address: longgangqu bantianjiedao wankechengshequ xintianxia bairuidadasha

A zuo 7F755 shenzhen guangdong

Test specification:

Standard...... FCC CFR Title 47 Part 15 Subpart C

Test procedure....:: /

Non-standard test method: N/A

This device described above has been tested by ZHT, and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of ZHT, this document may be altered or revised by ZHT, personal only, and shall be noted in the revision of the document.

Product name.....: Wireless Car Charger

Trademark: Beser

Model/Type reference.....: A33

Ratings....: Input: 9 V == 2 A

Output: 15W MAX

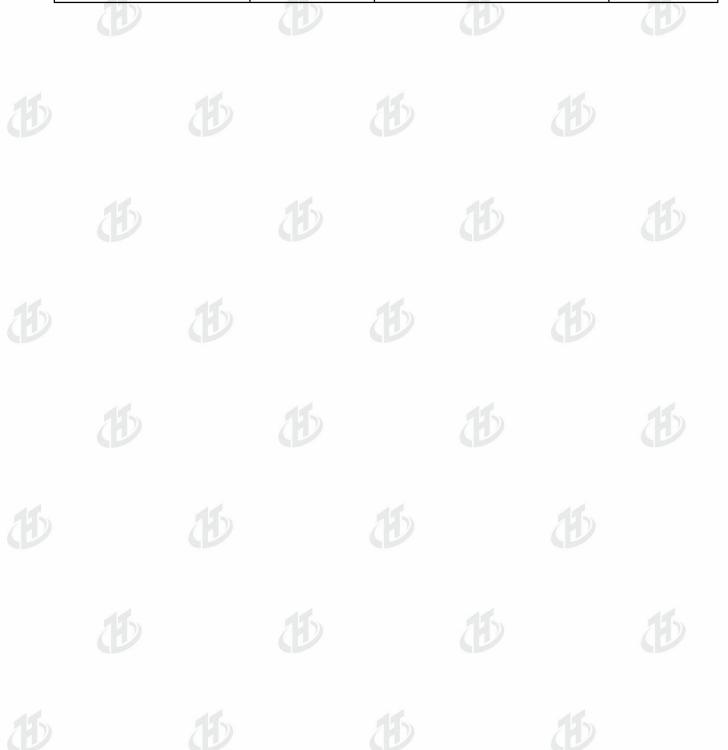
Project No.: ZHT-240904015E Page 2 of 23

Testing procedure and testing local	ation:			
Testing Laboratory	:	Guangdong Zh	onghan Testing Techno	ology Co., Ltd.
Address	B	Room 104, Building 1, Yibaolai Industrial Park, Qiaoto Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China		
Tested by (name + signature)	:	Leon Li	Le	on Li
Reviewer (name + signature)	B	Baret Wu	Bax	r.Wu
Approved (name + signature)	:	Levi Lee		Zila
15)				

Project No.: ZHT-240904015E Page 3 of 23

TABLE OF CONTENTS

1. VERSION		4
2. TEST SUMMARY		5
2.1 TEST FACILITY		6
2.2 MEASUREMENT UNCER	RTAINTY	6
3. GENERAL INFORMATIO	N	7
3.1 GENERAL DESCRIPTIO	N OF EUT	1.2
3.2 Test mode		7
3.3 Block Diagram of EUT Co	onfiguration	
3.4 Test Conditions		7
3.5 Description Of Support U	nits (Conducted Mode)	8
		g
		11
		11
		11
4.1.2 TEST PROCEDURE		11
4.1.3 DEVIATION FROM TES	SI STANDARD	11
4.1.4 TEST SETUP	IDITIONS	
		13
_		15
		15
5.1 Radiated Effission Limits	Setup Diagram	16
		17
6. BANDWIDTH TEST		20
		22
		23
		23
9. EUT CONSTRUCTIONAL	. DETAILS	



Project No.: ZHT-240904015E Page 4 of 23

1. VERSION

Report No.	Version	Description	Approved
ZHT-240904015E	Rev.01	Initial issue of report	Sept. 24, 2024
Salah Salah	24		

Project No.: ZHT-240904015E Page 5 of 23

2. TEST SUMMARY

Test Item	Section in CFR 47	Result
Antenna requirement	15.203	Pass
AC Power Line Conducted Emission	15.207	Pass
Spurious Emission	15.209(a)(f)	Pass
20dB Bandwidth	15.215	Pass

NOTE:

(1)" N/A" denotes test is not applicable in this Test Report

Project No.: ZHT-240904015E Page 6 of 23

2.1 TEST FACILITY

Guangdong Zhonghan Testing Technology Co., Ltd.

Add.: Room 104, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an Distric

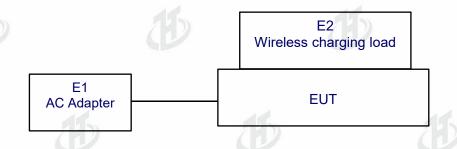
Shenzhen, Guangdong, China

FCC Registration Number:255941 Designation Number: CN0325 IC Registered No.: 29832 CAB identifier: CN0143

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %。

No.	Item	Uncertainty
1	Conducted Emission Test	±1.38dB
2	RF conducted power	±0.16dB
3	Conducted spurious emissions	±0.21dB
4	All radiated emissions (9k-30MHz)	±4.68dB
5	All radiated emissions (<1G)	±4.68dB
6	All radiated emissions (>1G)	±4.89dB
7	Temperature	±0.5°C
8	Humidity	±2%
9	Occupied Bandwidth	±4.96%

Project No.: ZHT-240904015E Page 7 of 23


3.1 GENERAL DESCRIPTION OF EUT

Product Name:	Wireless Car Charger			
Test Model No:	A33	15		150
Hardware version:	V1.0			
Software version:	V1.0			
Operation Frequency:	115-205KHz		44	
Modulation type:	ASK		(1)	
Antenna Type:	Loop coil antenna			
Antenna gain:	0dBi			
Ratings:	Input: 9 V=2 A Output: 15W MAX	1		(1)

3.2 Test mode

Test Mod	Test Modes:				
Mode 1	AC Adapter+Wireless charging mode(15W)				
Mode 2	AC Adapter+Wireless charging mode(10W)				
Mode 3	AC Adapter+Wireless charging mode(7.5W)				
Mode 4	AC Adapter+Wireless charging mode(5W)				
Note: All mode.	modes were tested, only the worst-case was recorded in the report. Mode 1(Phone coil) is the worst				

3.3 Block Diagram of EUT Configuration

3.4 Test Conditions

Temperature: 25.6℃

Relative Humidity: 54.3 %

Project No.: ZHT-240904015E Page 8 of 23

3.5 Description Of Support Units (Conducted Mode)

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	Series No.	Note
E-1	Adapter	N/A	HW-059200CHQ	1) /	AE
E-2	Wireless charging load	1	EESON	1	AE

Item	Shielded Type	Ferrite Core	Length	Note
				(P

Note:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2)For detachable type I/O cable should be specified the length in cm in <code>[Length]</code> column.
- "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core". (3)

Project No.: ZHT-240904015E Page 9 of 23

3.6 EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiation Test equipment

k <u>adiation</u>	rest equipment					
Item	Equipment	Manufacturer	Model	Last Cal.	Next Cal.	
1	Receiver	R&S	ESCI	May 10, 2024	May 09, 2025	
2	Loop antenna	EMCI	LAP600	May 10, 2024	May 09, 2025	
3	Amplifier	Schwarzbeck	BBV 9743 B	May 10, 2024	May 09, 2025	
4	Amplifier	Schwarzbeck	BBV 9718 B	May 10, 2024	May 09, 2025	
5	Bilog Antenna	Schwarzbeck	VULB9162	May 28, 2024	May 27, 2025	
6	Horn Antenna	Schwarzbeck	BBHA9120D	May 16, 2024	May 15, 2025	
7	Horn Antenna	A.H.SYSTEMS	SAS574	May 10, 2024	May 09, 2025	
8	Amplifier	AEROFLEX	100KHz-40GHz	May 10, 2024	May 09, 2025	
9	Spectrum Analyzer	R&S	FSV40	May 10, 2024	May 09, 2025	
10	966 Anechoic Chamber	EMToni	9m6m6m	May 10, 2024	May 09, 2025	
11	Spectrum Analyzer	KEYSIGHT	N9020A	May 10, 2024	May 09, 2025	
12	WIDBAND RADIO COMMUNICATI ON TESTER	R&S	CMW500	May 10, 2024	May 09, 2025	
13	Single Generator	Agilent	N5182A	May 10, 2024	May 09, 2025	
14	Power Sensor	MWRFtest	MW100-RFCB	May 10, 2024	May 09, 2025	
15	Audio analyzer	R&S	UPL	May 10, 2024	May 09, 2025	
16	Single Generator	R&S	SMB100A	May 10, 2024	May 09, 2025	
17	Power Amplifier Shielding Room	EMToni	2m3m3m	Nov. 25, 2021	Nov. 24, 2024	

Project No.: ZHT-240904015E Page 10 of 23

Conduction Test equipment

Equipment	Manufacturer	Model	Last Cal.	Next Cal.
Receiver	R&S	ESCI	May 10, 2024	May 09, 2025
LISN	R&S	ENV216	May 10, 2024	May 09, 2025
ISN CAT 6	Schwarzbeck	NTFM 8158	May 10, 2024	May 09, 2025
ISN CAT 5	Schwarzbeck	CAT5 8158	May 10, 2024	May 09, 2025
Capacitive Voltage Probe	Schwarzbeck	CVP 9222 C	May 10, 2024	May 09, 2025
Current Transformer Clamp	Schwarzbeck	SW 9605	May 10, 2024	May 09, 2025
CE Shielding Room	EMToni	9m4m3m	Nov. 25, 2021	Nov. 24, 2024

Project No.: ZHT-240904015E Page 11 of 23

4. CONDUCTED EMISSION TEST

4.1 CONDUCTED EMISSION MEASUREMENT

Test Requirement:	FCC Part15 C Section 15.207
Test Method:	ANSI C63.10:2013
Test Frequency Range:	150KHz to 30MHz
Receiver setup:	RBW=9KHz, VBW=30KHz, Sweep time=auto

4.1.1 POWER LINE CONDUCTED EMISSION Limits

FREQUENCY (MHz)	Limit (d	Standard	
PREQUENCY (MITZ)	QP	AVG	Staridard
0.15 -0.5	66 - 56 *	56 - 46 *	FCC
0.50 -5.0	56.00	46.00	FCC
5.0 -30.0	60.00	50.00	FCC

Note:

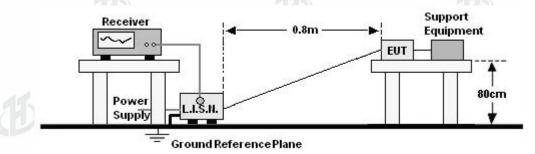
(1) *Decreases with the logarithm of the frequency.

4.1.2 TEST PROCEDURE

- a. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.

4.1.3 DEVIATION FROM TEST STANDARD

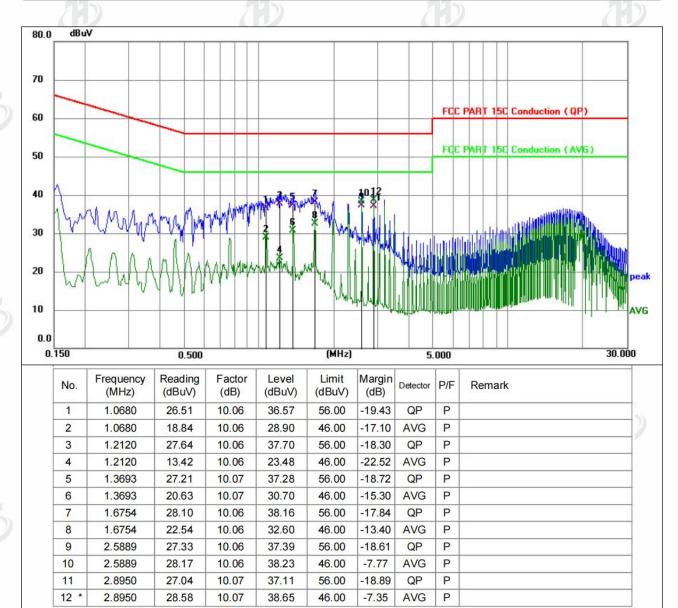
No deviation


□ admin@zht-lab.cn

4.1.4 TEST SETUP

4.1.5 EUT OPERATING CONDITIONS

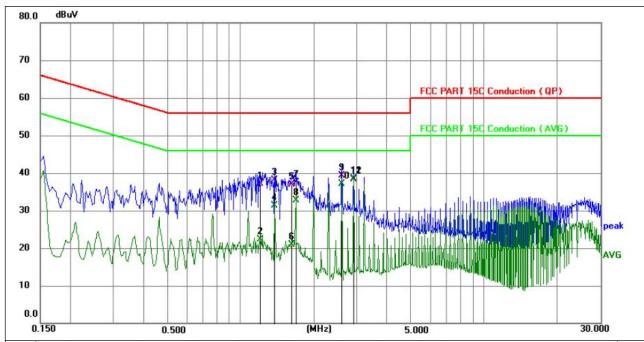
The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.



4.1.6 Test Result

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101kPa	Phase :	L
Test Voltage:	AC 120V/60Hz	Test Mode:	Mode 1

- 1.An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2.Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3.Mesurement Level = Reading level + Correct Factor
- 4. All of the coils were tested, and the test data only showed how the phone coils performed in the worst case



Project No.: ZHT-240904015E Page 14 of 23

Temperature:	26℃	Relative Humidity:	54%
Pressure:	101kPa	Phase :	N
Test Voltage:	AC 120V/60Hz	Test Mode:	Mode 1

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector	P/F	Remark	
1	1.2075	27.04	10.06	37.10	56.00	-18.90	QP	Р		
2	1.2075	12.26	10.06	22.32	46.00	-23.68	AVG	Р		
3	1.3785	28.12	10.07	38.19	56.00	-17.81	QP	Р		
4	1.3785	21.18	10.07	31.25	46.00	-14.75	AVG	Р		
5	1.6170	26.93	10.06	36.99	56.00	-19.01	QP	Р		
6	1.6170	10.77	10.06	20.83	46.00	-25.17	AVG	P		
7	1.6845	27.54	10.06	37.60	56.00	-18.40	QP	Р		
8	1.6845	22.66	10.06	32.72	46.00	-13.28	AVG	P		
9	2.6025	29.30	10.06	39.36	56.00	-16.64	QP	Р		
10	2.6025	27.02	10.06	37.08	46.00	-8.92	AVG	Р		
11	2.9085	28.31	10.07	38.38	56.00	-17.62	QP	Р		
12 *	2.9085	28.45	10.07	38.52	46.00	-7.48	AVG	Р		

- 1.An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3.Mesurement Level = Reading level + Correct Factor
- 4. All of the coils were tested, and the test data only showed how the phone coils performed in the worst case

Project No.: ZHT-240904015E

Page 15 of 23

5. RADIATED EMISSION MEASUREMENT

Test Requirement:	FCC Part15 C Sect	ion 15.209							
Test Method:	ANSI C63.10:2013								
Test Frequency Range:	9kHz to 1GHz		15		11				
Test site:	Measurement Dista	Measurement Distance: 3m							
Receiver setup:	Frequency	Detector	RBW	VBW	Value				
	9KHz-150KHz	Quasi-peak	200Hz	600Hz	Quasi-peak				
	150KHz-30MHz	Quasi-peak	9KHz	30KHz	Quasi-peak				
	30MHz-1GHz	Quasi-peak	100KHz	300KHz	Quasi-peak				
	Above 1GHz	Peak	1MHz	3MHz	Peak				
	7.0010 10112	Peak	1MHz	10Hz	Average				
	711)		440)		7(1)				

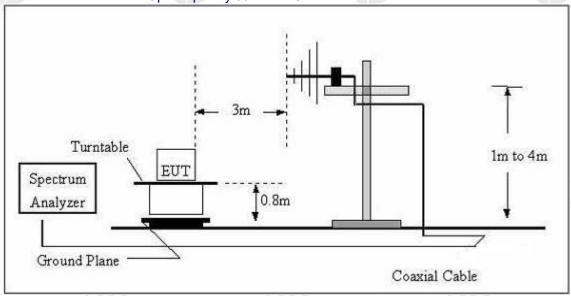
5.1 Radiated Emission Limits

Limits for frequency below 30MHz

Frequency	Limit (uV/m)	Measurement Distance(m)	Remark
0.009-0.490	2400/F(kHz)	300	Quasi-peak Value
0.490-1.705	24000/F(kHz)	30	Quasi-peak Value
1.705-30	30	30	Quasi-peak Value

Limits for frequency Above 30MHz

		A 11 11 27
Frequency	Limit (dBuV/m @3m)	Remark
30MHz-88MHz	40.00	Quasi-peak Value
88MHz-216MHz	43.50	Quasi-peak Value
216MHz-960MHz	46.00	Quasi-peak Value
960MHz-1GHz	54.00	Quasi-peak Value
Above 1CHz	54.00	Average Value
Above 1GHz	74.00	Peak Value



5.2 Anechoic Chamber Test Setup Diagram

(A) Radiated Emission Test-Up Frequency Below 30MHz

(B) Radiated Emission Test-Up Frequency 30MHz~1GHz

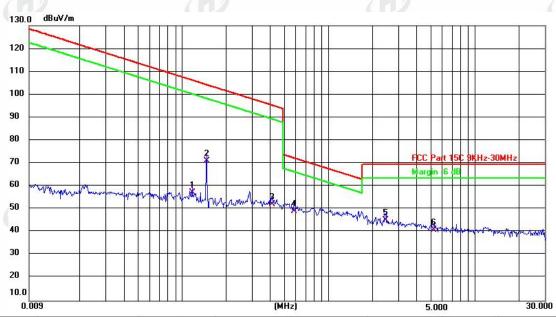
The radiated emission tests were performed in the 3 meters chamber test site, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC 15.209 and FCC 15.205 limits.

5.3 Test Procedure

The EUT is placed on a turn table which is 0.8 meter above ground. The turn table can rotate 360 degrees to determine the position of the maximum emission level. The EUT is set 3 meters away from the receiving antenna which is mounted on a antenna tower. The antenna can move up and down between 1 to 4 meters to find out the maximum emission level. Broadband antenna (calibrated by dipole antenna) are used as a receiving antenna. Both horizontal and vertical polarization of the antenna are set on measurement.

5.4 DEVIATION FROM TEST STANDARD

No deviation


Page 17 of 23

5.5 Test Result

Measurement data:

Note: Limit dBuV/m @3m = Limit dBuV/m @300m+ 80 Limit dBuV/m @3m = Limit dBuV/m @30m + 40

9 kHz~30 MHz

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	0.1168	57.04	0.16	57.20	106.26	-49.06	QP
2	0.1464	70.87	0.16	71.03	104.29	-33.26	QP
3	0.4106	51.11	0.93	52.04	95.34	-43.30	QP
4 *	0.5820	47.96	1.26	49.22	72.31	-23.09	QP
5	2.4663	40.23	5.12	45.35	69.54	-24.19	QP
6	5.2442	30.18	10.78	40.96	69.54	-28.58	QP

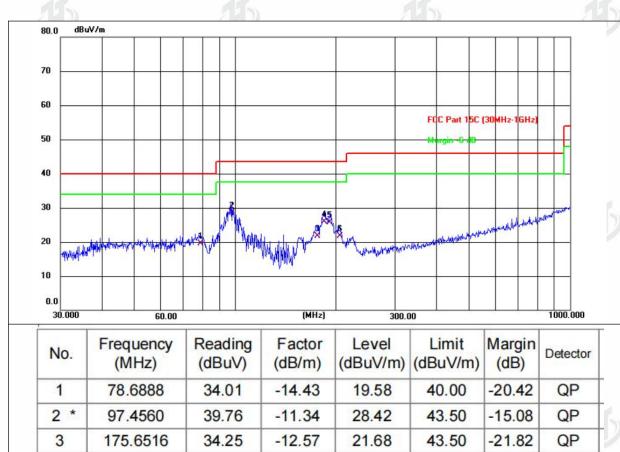
Pre-scan in the all of mode, the worst case in of was recorded.

Factor = antenna factor + cable loss – pre-amplifier.

Emission Level = Meter Reading - Factor

Margin = Emission Level- Limit.

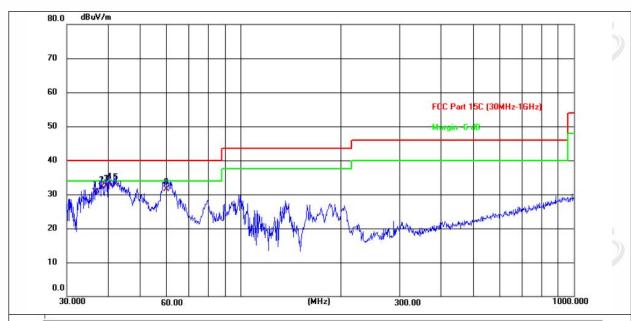
The amplitude of emissions which are attenuated by more than 20db below the permissible value has no need to be reported.



30MHz-1GHz

Temperature:	26℃	Relative Humidity:	54%
Pressure:	101 kPa	Polarization:	Horizontal
Test Voltage:	AC 120V/60Hz	Test Modes:	Mode 1

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	(dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	78.6888	34.01	-14.43	19.58	40.00	-20.42	QP
2 *	97.4560	39.76	-11.34	28.42	43.50	-15.08	QP
3	175.6516	34.25	-12.57	21.68	43.50	-21.82	QP
4	184.4898	37.83	-12.01	25.82	43.50	-17.68	QP
5	191.7450	37.18	-11.49	25.69	43.50	-17.81	QP
6	204.9551	32.32	-10.70	21.62	43.50	-21.88	QP



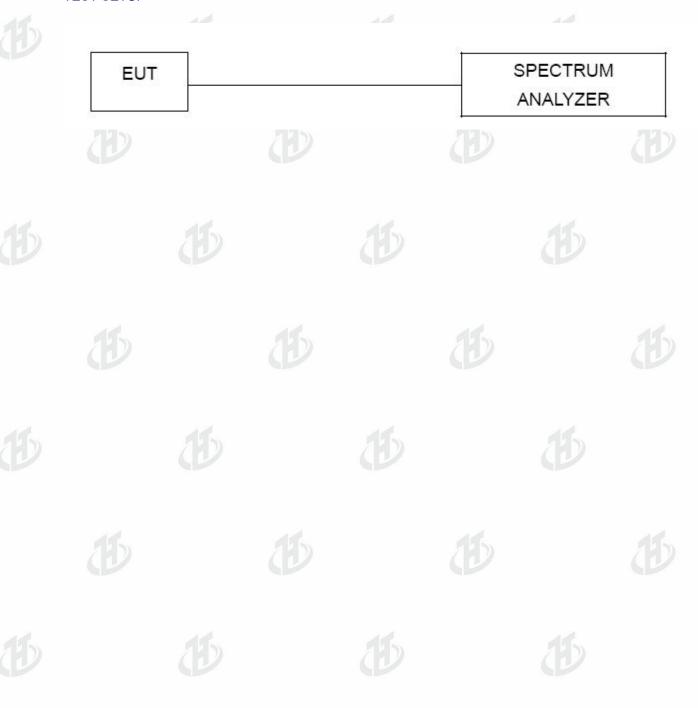
Project No.: ZHT-240904015E Page 19 of 23

Temperature:	26℃	Relative Humidity:	54%
Pressure:	101kPa	Polarization:	Vertical
Test Voltage:	AC 120V/60Hz	Test Modes:	Mode 1

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	36.6374	41.08	-10.29	30.79	40.00	-9.21	QP
2	38.0782	42.19	-10.03	32.16	40.00	-7.84	QP
3	39.4371	42.24	-9.79	32.45	40.00	-7.55	QP
4 *	40.2756	42.74	-9.67	33.07	40.00	-6.93	QP
5	42.1541	42.30	-9.48	32.82	40.00	-7.18	QP
6	59.8588	41.37	-9.82	31.55	40.00	-8.45	QP

Remarks:

- 1. Factor = Antenna Factor + Cable Loss Preamplifier Factor
- 2. Level = Reading + Factor
- 3. Margin = Emission Level- Limit.
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. All of the coils were tested, and the test data only showed how the phone coils performed in the worst case

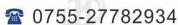


Project No.: ZHT-240904015E Page 20 of 23

6. BANDWIDTH TEST

- 1. Set RBW = 10 Hz.
- 2. Set the video bandwidth (VBW) ≥ 3 x RBW.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.
- 7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 20 dB relative to the maximum level measured in the fundamental emission.

TEST SETUP



Project No.: ZHT-240904015E Page 21 of 23

Temperature:	25.7 ℃	Relative Humidity:	55%
Pressure:	101kPa		

Frequency (KHz)	20dB bandwidth (KHz)	Result
0.145	0.130	Pass

Project No.: ZHT-240904015E Page 22 of 23

ANTENNA REQUIREMENT

Standard requirement:	FCC Part15 C Section 15.203
otariaara roquiromonti	

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

EUT Antenna:

The antenna is Loop coil antenna, the best case gain of the antennas is 0dBi, reference to the appendix II for details

7. TEST SETUP PHOTO

Reference to the appendix I for details.

8. EUT CONSTRUCTIONAL DETAILS

Reference to the appendix II for details.

