

Project No.: ZHT-240314018E Page 1 of 36

FCC TEST REPORT FCC ID:2BFDF-G50S

Report Number.....: ZHT-240314018E

Date of Test...... Mar. 14, 2024 to Mar. 28, 2024

Date of issue...... Mar. 28, 2024

Test Result PASS

Testing Laboratory.....: Guangdong Zhonghan Testing Technology Co., Ltd.

Address Room 104, Building 1, Yibaolai Industrial Park, Qiaotou Community,

Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

Applicant's name Qingdao Thunderobot Technology Co.,Ltd.(Shenzhen) Co.,Ltd

Address: No. 1, Haier Road, Laoshan District, Qingdao

Manufacturer's name: Qingdao Thunderobot Technology Co.,Ltd.(Shenzhen) Co.,Ltd

Address No. 1, Haier Road, Laoshan District, Qingdao

Test specification....::

Standard...... FCC CFR Title 47 Part 15 Subpart C Section 15.247

Test procedure.....: KDB558074 D01 15.247 Meas Guidance v05r02

ANSI C63.10:2013

Non-standard test method: N/A

This device described above has been tested by ZHT, and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of ZHT, this document may be altered or revised by ZHT, personal only, and shall be noted in the revision of the document.

Product name.....: Thunderobot gamepad

Trademark THUNDEROBOT

G50S SE WHITE

Model difference.....: G50S is tested model, other models are derivative models .The

models are identical in circuit, only different on the model names and color. So the test data of G50S can represent the remaining

models.

Ratings...... Input: DC 5 V by USB or DC 3.7 V by battery

Project No.: ZHT-240314018E Page 2 of 36

Testing procedure and testing loca	ition:			
Testing Laboratory	Gua	angdong Zhonghan	Testing Technology	Co., Ltd.
Address	Con		Yibaolai Industrial Pa eet, Bao'an District, Sl	
Tested by (name + signature)		n Li	Leon Li	
Reviewer (name + signature)	: <u>Bar</u>	et Wu	Baxt.l	Du D
Approved (name + signature)	: <u>Le</u> v	/i Lee) e i	Sæ
ED .				

Table of Contents

		Pag
1. VERSION		 5
2. TEST SUMMARY		 6
2.1 TEST FACILITY		 7
2.2 MEASUREMENT UNCERTA	INTY	 7
3. GENERAL INFORMATION		
3.1 GENERAL DESCRIPTION O	F EUT	 8
3.3 Support Equipment		
3.4 Test Mode		 10
3.5 EQUIPMENTS LIST FOR AL	L TEST ITEMS	 11
4. EMC EMISSION TEST		
4.1 Conducted emissions		
4.1.1 POWER LINE CONDUCTE		
4.1.2 TEST PROCEDURE		
4.1.3 DEVIATION FROM TEST S	STANDARD	 13
4.1.4 TEST SETUP		
4.1.5 EUT OPERATING CONDIT		
4.1.6 TEST RESULTS		
4.2 Radiated emissions		
4.2.1 Radiated Emission Limits .		
4.2.2 TEST PROCEDURE		
4.2.3 DEVIATION FROM TEST S		
4.2.4 TEST SETUP		
4.2.5 EUT OPERATING CONDIT	IONS	
4.2.6 TEST RESULTS		
5.1 Test Requirement:		
5.2 TEST PROCEDURE		
5.3 DEVIATION FROM TEST ST		
5.5 EUT OPERATING CONDITION		
6. CONDUCTED BAND EDGE A		
6.1 Limit		
6.2 Test Setup		
6.3 Test procedure		
6.4 DEVIATION FROM STANDA		
6.5 Test Result		
7. 20DB&99% BANDWIDTH		30
7.1 Test Setup		
7.2 Limit		
7.3 Test procedure		
7.4 DEVIATION FROM STANDA		
7.5 Test Result		
8. MAXIMUM PEAK OUTPUT P	OWER	 31
8 1 Block Diagram Of Test Setup		

8.2 Limit	31
8.3 Test procedure	31
8.4 DEVIATION FROM STANDARD	31
8.5 Test Result	
9. HOPPING CHANNEL SEPARATION	32
9.1 Test Setup	
9.2 Test procedure	
9.3 DEVIATION FROM STANDARD	
10. NUMBER OF HOPPING FREQUENCY	
10.1 Test Setup	
10.2 Test procedure	
10.3 DEVIATION FROM STANDARD	
10.4 Test Result	33
11. DWELL TIME	34
11.1 Test Setup	
11.2 Test procedure	34
11.3 DEVIATION FROM STANDARD	
11.4 Test Result	
12. ANTENNA REQUIREMENT	35
13.APPENDIX BT	
14. TEST SETUP PHOTO	
15. EUT CONSTRUCTIONAL DETAILS	

Report No.	Version	Description	Approved
ZHT-240314018E	Rev.01	Initial issue of report	Mar. 28, 2024

E	D	B	B	

Project No.: ZHT-240314018E Page 6 of 36

2. TEST SUMMARY

Test procedures according to the technical standards:

	FCC Part15 (15.247) , Subpart	С	
Standard Section	Test Item	Result	Remark
FCC part 15.203/15.247 (b)(4)	Antenna Requirement	PASS	
15.207	AC Power Line Conducted Emission	PASS	Page
15.247 (b)(1)	Conducted Peak Output Power	PASS	/
15.247 (a)(1)	20dB Occupied Bandwidth 99% OCB	PASS	
15.247 (a)(1)	Carrier Frequencies Separation	PASS	- 10
15.247 (a)(1)(iii)	Hopping Channel Number	PASS	(1)
15.247 (a)(1)(iii)	Dwell Time	PASS	
15.205/15.209	Radiated Emission and Restricted Band	PASS	
15.247(d)	Conducted Unwanted emissions and Band Edge	PASS)

NOTE:

(1)" N/A" denotes test is not applicable in this Test Report

□ admin@zht-lab.cn

mttp://www.zht-lab.cn

Project No.: ZHT-240314018E Page 7 of 36

2.1 TEST FACILITY

Guangdong Zhonghan Testing Technology Co., Ltd.

Add.: Room 104, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an Distric Shenzhen, Guangdong, China

FCC Registration Number: 255941 Designation Number: CN0325 IC Registered No.: 29832 CAB identifier: CN0143

2.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement y \pm U,where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2,providing a level of confidence of approximately 95 % $^{\circ}$

No.	Item	Uncertainty
1	Conducted Emission Test	±1.38dB
2	RF conducted power	±0.16dB
3	Conducted spurious emissions	±0.21dB
4	All radiated emissions (9k-30MHz)	±4.68dB
5	All radiated emissions (<1G)	±4.68dB
6	All radiated emissions (>1G)	±4.89dB
7	Temperature	±0.5°C
8	Humidity	±2%
9	Occupied Bandwidth	±4.96%

3. GENERAL INFORMATION

3.1 GENERAL DESCRIPTION OF EUT

Product Name:	Thunderobot gamepad	
Test Model No.:	G50S	
Hardware Version:	V1.0	
Software Version:	V1.0	
Sample(s) Status:	Engineer sample	
Channel numbers:	79	/10
Operation Frequency:	2402MHz-2480MHz	(I)
Modulation technology:	GFSK, π/4DQPSK, 8DPSK	
Antenna Type:	PCB Antenna	
Antenna gain:	1.33dBi	
Ratings :	Input: DC 5 V by USB or DC 3.7 V by battery	

Project No.: ZHT-240314018E Page 9 of 36

Operation	Frequency eac	h of channel	- /	H)		ZMD	
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	21	2422MHz	41	2442MHz	61	2462MHz
2	2403MHz	22	2423MHz	42	2443MHz	62	2463MHz
3	2404MHz	23	2424MHz	43	2444MHz	63	2464MHz
4	2405MHz	24	2425MHz	44	2445MHz	64	2465MHz
5	2406MHz	25	2426MHz	45	2446MHz	65	2466MHz
6	2407MHz	26	2427MHz	46	2447MHz	66	2467MHz
7	2408MHz	27	2428MHz	47	2448MHz	67	2468MHz
8	2409MHz	28	2429MHz	48	2449MHz	68	2469MHz
9	2410MHz	29	2430MHz	49	2450MHz	69	2470MHz
10	2411MHz	30	2431MHz	50	2451MHz	70	2471MHz
11	2412MHz	31	2432MHz	51	2452MHz	71	2472MHz
12	2413MHz	32	2433MHz	52	2453MHz	72	2473MHz
13	2414MHz	33	2434MHz	53	2454MHz	73	2474MHz
14	2415MHz	34	2435MHz	54	2455MHz	74	2475MHz
15	2416MHz	35	2436MHz	55	2456MHz	75	2476MHz
16	2417MHz	36	2437MHz	56	2457MHz	76	2477MHz
17	2418MHz	37	2438MHz	57	2458MHz	77	2478MHz
18	2419MHz	38	2439MHz	58	2459MHz	78	2479MHz
19	2420MHz	39	2440MHz	59	2460MHz	79	2480MHz
20	2421MHz	40	2441MHz	60	2461MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Test channel	Frequency
The lowest channel	2402MHz
The middle channel	2441MHz
The Highest channel	2480MHz

□ admin@zht-lab.cn

Page 10 of 36

3.2 Test Setup Configuration Radiated Emission

Adapter	EUT

Conducted Emission

Adapter EUT

3.3 Support Equipment

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	Series No.	Note
E-1	Adapter	HUAWEI	HW-059200CHQ	N/A	AE
1	4 0	- /1	5)	.110	110
6		4		CI.	(1)

		4.31	7 1 2 3	The state of the s
Item	Shielded Type	Ferrite Core	Length	Note
	_			

Note:

- The support equipment was authorized by Declaration of Confirmation. (1)
- (2) For detachable type I/O cable should be specified the length in cm in <code>"Length_"</code> column.

3.4 Test Mode

Transmitting mode	Keep the EUT in continuously transmitting mode.
•	, the test voltage was tuned from 85% to 115% of the nominal rated supply
voltage, and found that t	the worst case was under the nominal rated supply condition. So the report

Page 11 of 36

3.5 EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiation Test equipment

□ admin@zht-lab.cn

Project No.: ZHT-240314018E Page 12 of 36

Conduction Test equipment

ZHONGHAN

Equipment	Manufacturer	Model	Last Cal.	Next Cal.
Receiver	R&S	ESCI	May 12, 2023	May 11, 2024
LISN	R&S	ENV216	May 12, 2023	May 11, 2024
ISN CAT 6	Schwarzbeck	NTFM 8158	May 12, 2023	May 11, 2024
ISN CAT 5	Schwarzbeck	CAT5 8158	May 12, 2023	May 11, 2024
Capacitive Voltage Probe	Schwarzbeck	CVP 9222 C	May 12, 2023	May 11, 2024
Current Transformer Clamp	Schwarzbeck	SW 9605	May 12, 2023	May 11, 2024
CE Shielding Room	EMToni	9m4m3m	Nov. 25, 2021	Nov. 24, 2024

Page 13 of 36

4. EMC EMISSION TEST

4.1 Conducted emissions

Test Requirement:	FCC Part15 C Section 15.207
Test Method:	ANSI C63.10:2013
Test Frequency Range:	150KHz to 30MHz
Receiver setup:	RBW=9KHz, VBW=30KHz, Sweep time=auto

4.1.1 POWER LINE CONDUCTED EMISSION Limits

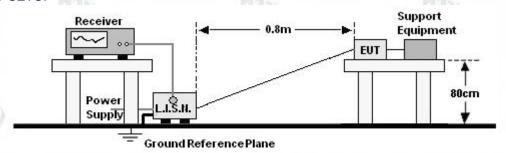
FREQUENCY (MHz)	Limit (Standard			
FREQUENCT (MITZ)	Quasi-peak	Average	Stariuaru		
0.15 -0.5	66 - 56 *	56 - 46 *	FCC		
0.50 -5.0	56.00	46.00	FCC		
5.0 -30.0	60.00	50.00	FCC		

Note:

(1) *Decreases with the logarithm of the frequency.

4.1.2 TEST PROCEDURE

- a. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.


4.1.3 DEVIATION FROM TEST STANDARD

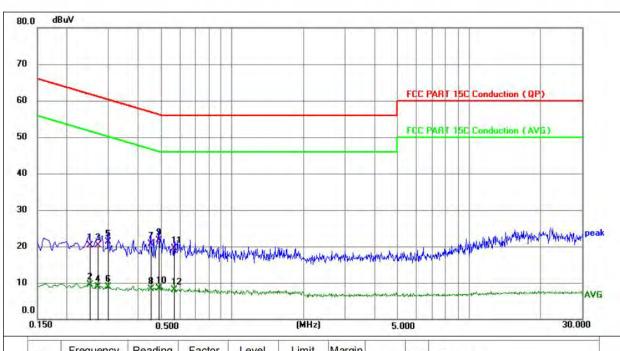
No deviation

4.1.4 TEST SETUP

4.1.5 EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

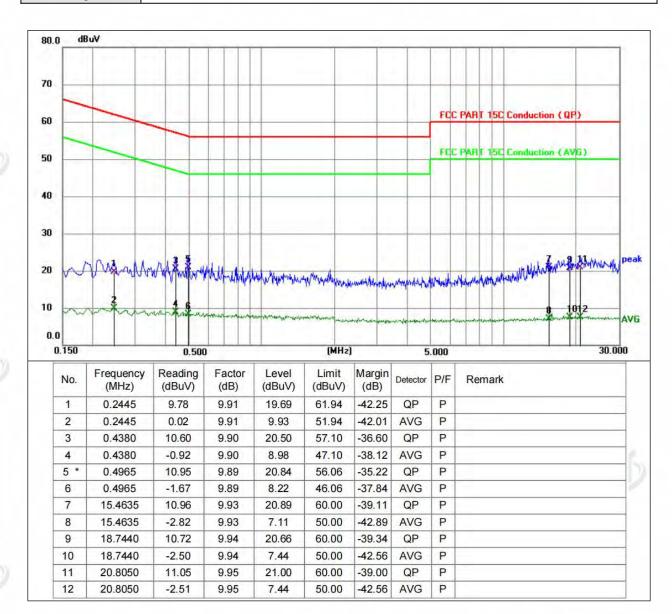
4.1.6 TEST RESULTS



Project No.: ZHT-240314018E Page 15 of 36

Temperature:	25.1℃	Relative Humidity:	51%
Pressure:	1010kPa	Polarization:	Live
Test Voltage:	AC120V		

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector	P/F	Remark	
1	0.2490	10.33	9.91	20.24	61.79	-41.55	QP	Р		
2	0.2490	-0.50	9.91	9.41	51.79	-42.38	AVG	Р		
3	0.2714	10.35	9.91	20.26	61.07	-40.81	QP	Р		
4	0.2714	-0.93	9.91	8.98	51.07	-42.09	AVG	Р		
5	0.2983	11.46	9.91	21.37	60.29	-38.92	QP	Р		
6	0.2983	-1.08	9.91	8.83	50.29	-41.46	AVG	Р		
7	0.4515	10.75	9.90	20.65	56.85	-36.20	QP	Р		
8	0.4515	-1.58	9.90	8.32	46.85	-38.53	AVG	Р		
9 *	0.4874	11.74	9.89	21.63	56.21	-34.58	QP	Р		
10	0.4874	-1.33	9.89	8.56	46.21	-37.65	AVG	Р		
11	0.5685	9.56	9.89	19.45	56.00	-36.55	QP	Р		
12	0.5685	-1.86	9.89	8.03	46.00	-37.97	AVG	Р		



Project No.: ZHT-240314018E Page 16 of 36

Temperature:	25.1℃	Relative Humidity:	51%
Pressure:	1010kPa	Polarization:	Neutral
Test Voltage:	AC120V		

Project No.: ZHT-240314018E Page 17 of 36

4.2 Radiated emissions

FCC Part15 C Section 15.209							
ANSI C63.10:2013	ANSI C63.10:2013						
9kHz to 25GHz		11.		del			
Measurement Dista	nce: 3m	D					
Frequency	Detector	RBW	VBW	Value			
9KHz-150KHz	Quasi-peak	200Hz	600Hz	Quasi-peak			
150KHz-30MHz	Quasi-peak	9KHz	30KHz	Quasi-peak			
30MHz-1GHz	Quasi-peak	100KHz	300KHz	Quasi-peak			
Above 4CH=	Peak	1MHz	3MHz	Peak			
Above 1GHz	Peak	1MHz	10Hz	Average			
	ANSI C63.10:2013 9kHz to 25GHz Measurement Dista Frequency 9KHz-150KHz 150KHz-30MHz 30MHz-1GHz	ANSI C63.10:2013 9kHz to 25GHz Measurement Distance: 3m Frequency Detector 9KHz-150KHz Quasi-peak 150KHz-30MHz Quasi-peak 30MHz-1GHz Quasi-peak Above 1GHz	ANSI C63.10:2013 9kHz to 25GHz Measurement Distance: 3m Frequency Detector RBW 9KHz-150KHz Quasi-peak 200Hz 150KHz-30MHz Quasi-peak 9KHz 30MHz-1GHz Quasi-peak 100KHz Above 1GHz	ANSI C63.10:2013 9kHz to 25GHz Measurement Distance: 3m Frequency Detector RBW VBW 9KHz-150KHz Quasi-peak 200Hz 600Hz 150KHz-30MHz Quasi-peak 9KHz 30KHz 30MHz-1GHz Quasi-peak 100KHz 300KHz Above 1GHz Peak 1MHz 3MHz			

4.2.1 Radiated Emission Limits

Frequencies (MHz)	Field Strength (micorvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

LIMITS OF RADIATED EMISSION MEASUREMENT

	Limit (dBuV/	m) (at 3M)
FREQUENCY (MHz)	PEAK	AVERAGE
Above 1000	74	54

Notes:

- (1) The limit for radiated test was performed according to FCC PART 15C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

4.2.2 TEST PROCEDURE

Below 1GHz test procedure as below:

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

□ admin@zht-lab.cn

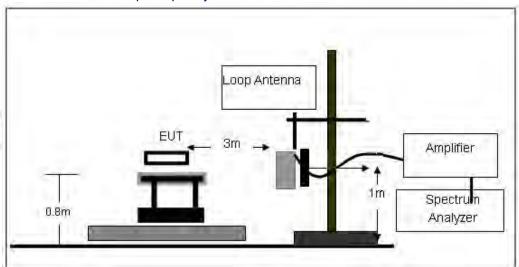
math http://www.zht-lab.cn

d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum

- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

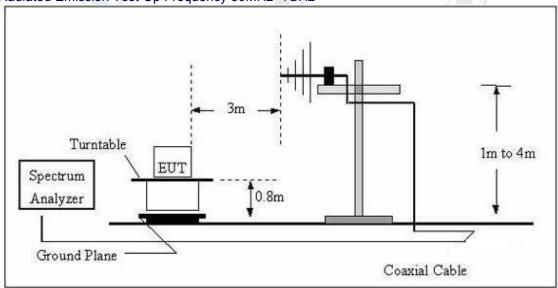
- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 metre to 1.5 metre(Above 18GHz the distance is 1 meter and table
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel Note:

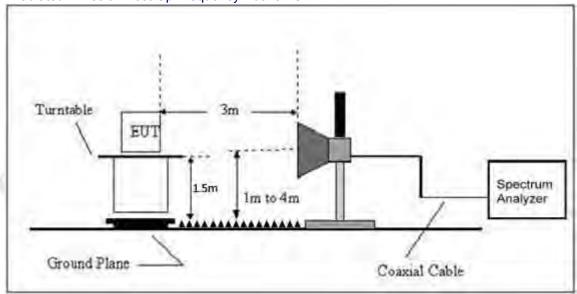

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

4.2.3 DEVIATION FROM TEST STANDARD

No deviation

4.2.4 TEST SETUP

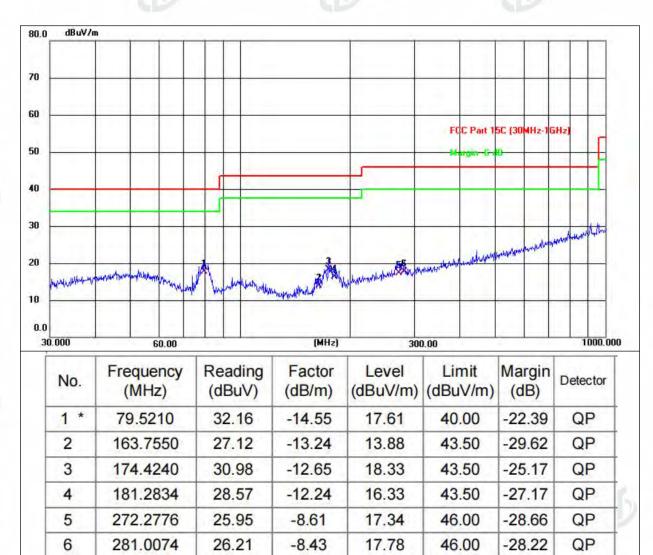

(A) Radiated Emission Test-Up Frequency Below 30MHz



(C) Radiated Emission Test-Up Frequency Above 1GHz

4.2.5 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

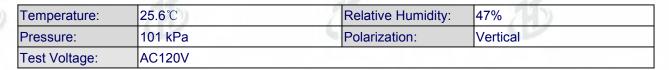

4.2.6 TEST RESULTS

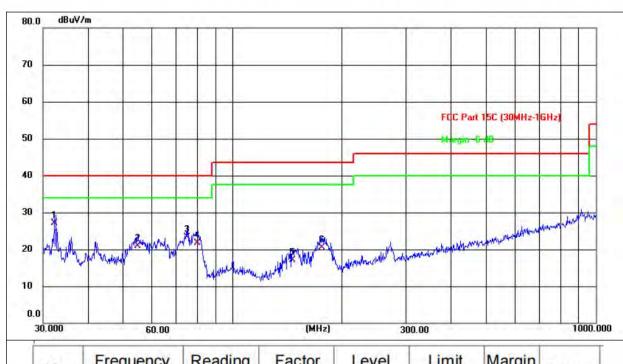
Between 9KHz - 30MHz

The emission from 9 kHz to 30MHz was pre-tested and found the result was 20dB lower than the limit, and according to 15.31(o), the test result no need to reported.

Between 30MHz - 1GHz

Temperature:	25.6℃	Relative Humidity:	47%
Pressure:	101 kPa	Polarization:	Horizontal
Test Voltage:	AC120V		7170


□ admin@zht-lab.cn



No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	32.2925	38.16	-11.05	27.11	40.00	-12.89	QP
2	54.6428	30.13	-9.25	20.88	40.00	-19.12	QP
3	74.6568	37.04	-13.78	23.26	40.00	-16.74	QP
4	79.8002	36.37	-14.60	21.77	40.00	-18.23	QP
5	145.8611	31.06	-13.87	17.19	43.50	-26.31	QP
6	175.6516	33.09	-12.57	20.52	43.50	-22.98	QP

2 0755-27782934

1GHz~25GHz

GFSK

23		2 145 73		<u> </u>	GFOR		- 2 Mil	7.0	
Polar	Frequency	Meter Reading	Pre-ampli fier	Cable Loss	Antenna Factor	Emission Level	Limits	Margin	Detector
(H/V)	(MHz)	(dBuV)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Туре
				Low Cha	nnel:2402M	Hz			
V	4804	58.64	30.55	5.77	24.66	58.52	74	-15.48	Pk
V	4804	41.38	30.55	5.77	24.66	41.26	54	-12.74	AV
V	7206	59.09	30.33	6.32	24.55	59.63	74	-14.37	Pk
V	7206	42.16	30.33	6.32	24.55	42.7	54	-11.3	AV
Н	4804	55.6	30.55	5.77	24.66	55.48	74	-18.52	Pk
Н	4804	44.56	30.55	5.77	24.66	44.44	54	-9.56	AV
Н	7206	55.51	30.33	6.32	24.55	56.05	74	-17.95	Pk
) H	7206	41.79	30.33	6.32	24.55	42.33	54	-11.67	AV
			N	liddle Ch	annel:2441	ИНz	40		
V	4882	56.47	30.55	5.77	24.66	56.35	74	-17.65	Pk
V	4882	41.67	30.55	5.77	24.66	41.55	54	-12.45	AV
V	7323	55.74	30.33	6.32	24.55	56.28	74	-17.72	Pk
V	7323	41.05	30.33	6.32	24.55	41.59	54	-12.41	AV
Н	4882	59.96	30.55	5.77	24.66	59.84	74	-14.16	Pk
Н	4882	41.2	30.55	5.77	24.66	41.08	54	-12.92	AV
Н	7323	59.32	30.33	6.32	24.55	59.86	74	-14.14	Pk
Н	7323	41.54	30.33	6.32	24.55	42.08	54	-11.92	AV
				High Cha	nnel:2480N	lHz			
V	4960	57.02	30.55	5.77	24.66	56.9	74	-17.1	Pk
V	4960	41.62	30.55	5.77	24.66	41.5	54	-12.5	AV
V	7440	59.29	30.33	6.32	24.55	59.83	74	-14.17	Pk
V	7440	42.57	30.33	6.32	24.55	43.11	54	-10.89	AV
Н	4960	58.62	30.55	5.77	24.66	58.5	74	-15.5	Pk
Н	4960	41.61	30.55	5.77	24.66	41.49	54	-12.51	AV
Н	7440	56.39	30.33	6.32	24.55	56.93	74	-17.07	Pk
Н	7440	41.15	30.33	6.32	24.55	41.69	54	-12.31	AV

Project No.: ZHT-240314018E Page 23 of 36

		100		π/4	4DQPSK					
Polar	Frequency	Meter Reading	Pre-ampli fier	Cable Loss	Antenna Factor	Emission Level	Limits	Margin	Detector	
(H/V)	(MHz)	(dBuV)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Туре	
				Low Cha	nnel:2402M	Hz				
V	4804	55.43	30.55	5.77	24.66	55.31	74	-18.69	Pk	
V	4804	41.51	30.55	5.77	24.66	41.39	54	-12.61	AV	
V	7206	56.97	30.33	6.32	24.55	57.51	74	-16.49	Pk	
V	7206	41.52	30.33	6.32	24.55	42.06	54	-11.94	AV	
Н	4804	56.48	30.55	5.77	24.66	56.36	74	-17.64	Pk	
Н	4804	41.4	30.55	5.77	24.66	41.28	54	-12.72	AV	
Н	7206	57.56	30.33	6.32	24.55	58.1	74	-15.9	Pk	
Н	7206	43.06	30.33	6.32	24.55	43.6	54	-10.4	AV	
)		(11)	IV	liddle Ch	annel:2441I	MHz	7 M	2		
V	4882	59.31	30.55	5.77	24.66	59.19	74	-14.81	Pk	
V	4882	41.86	30.55	5.77	24.66	41.74	54	-12.26	AV	
V	7323	59.25	30.33	6.32	24.55	59.79	74	-14.21	Pk	
\	7323	43.18	30.33	6.32	24.55	43.72	54	-10.28	AV	
Ι	4882	56.72	30.55	5.77	24.66	56.6	74	-17.4	Pk	
Ι	4882	41.01	30.55	5.77	24.66	40.89	54	-13.11	AV	
Ι	7323	55.7	30.33	6.32	24.55	56.24	74	-17.76	Pk	
I	7323	41.26	30.33	6.32	24.55	41.8	54	-12.2	AV	
				High Cha	nnel:2480N	lHz				
V	4960	57.33	30.55	5.77	24.66	57.21	74	-16.79	Pk	
V	4960	41.87	30.55	5.77	24.66	41.75	54	-12.25	AV	
V	7440	57.03	30.33	6.32	24.55	57.57	74	-16.43	Pk	
V	7440	42.26	30.33	6.32	24.55	42.8	54	-11.2	AV	
Н	4960	57.27	30.55	5.77	24.66	57.15	74	-16.85	Pk	
Н	4960	42.91	30.55	5.77	24.66	42.79	54	-11.21	AV	
Н	7440	57.68	30.33	6.32	24.55	58.22	74	-15.78	Pk	
Н	7440	41.12	30.33	6.32	24.55	41.66	54	-12.34	AV	

Project No.: ZHT-240314018E Page 24 of 36

8DPSK

					אטועו		- 44		
Polar	Frequency	Meter Reading	Pre-ampli fier	Cable Loss	Antenna Factor	Emission Level	Limits	Margin	Detector
(H/V)	(MHz)	(dBuV)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Туре
				Low Cha	nnel:2402M	Hz			
V	4804	59.71	30.55	5.77	24.66	59.59	74	-14.41	Pk
V	4804	42.24	30.55	5.77	24.66	42.12	54	-11.88	AV
V	7206	56.69	30.33	6.32	24.55	57.23	74	-16.77	Pk
V	7206	41.74	30.33	6.32	24.55	42.28	54	-11.72	AV
Н	4804	57.58	30.55	5.77	24.66	57.46	74	-16.54	Pk
Н	4804	41.69	30.55	5.77	24.66	41.57	54	-12.43	AV
Н	7206	57.85	30.33	6.32	24.55	58.39	74	-15.61	Pk
Н	7206	42.13	30.33	6.32	24.55	42.67	54	-11.33	AV
2)		(11)	N	liddle Ch	annel:2441 i	МНz	7.19	2	
V	4882	56.02	30.55	5.77	24.66	55.9	74	-18.1	Pk
V	4882	41.16	30.55	5.77	24.66	41.04	54	-12.96	AV
V	7323	57.11	30.33	6.32	24.55	57.65	74	-16.35	Pk
V	7323	44.12	30.33	6.32	24.55	44.66	54	-9.34	AV
Н	4882	58.68	30.55	5.77	24.66	58.56	74	-15.44	Pk
Н	4882	41.69	30.55	5.77	24.66	41.57	54	-12.43	AV
Н	7323	59.75	30.33	6.32	24.55	60.29	74	-13.71	Pk
Н	7323	41.73	30.33	6.32	24.55	42.27	54	-11.73	AV
				High Cha	nnel:2480N	lHz			
V	4960	59.22	30.55	5.77	24.66	59.1	74	-14.9	Pk
V	4960	41.29	30.55	5.77	24.66	41.17	54	-12.83	AV
V	7440	57.44	30.33	6.32	24.55	57.98	74	-16.02	Pk
V	7440	44.7	30.33	6.32	24.55	45.24	54	-8.76	AV
Н	4960	58.95	30.55	5.77	24.66	58.83	74	-15.17	Pk
Н	4960	44.86	30.55	5.77	24.66	44.74	54	-9.26	AV
Н	7440	59.33	30.33	6.32	24.55	59.87	74	-14.13	Pk
Н	7440	42.35	30.33	6.32	24.55	42.89	54	-11.11	AV

Remark:

- 1. Emission Level = Meter Reading + Antenna Factor + Cable Loss Pre-amplifier, Margin= Emission Level - Limit
- 2. If peak below the average limit, the average emission was no test.
- 3. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Page 25 of 36

5. RADIATED BAND EMISSION MEASUREMENT

5.1 Test Requirement:

Test Requirement:	FCC Part15 C Section 15.209 and 15.205									
Test Method:	ANSI C63.10: 2013									
Test Frequency Range:		All of the restrict bands were tested, only the worst band's (2310MHz to 2500MHz) data was showed.								
Test site:	Measurement Distance: 3m									
Receiver setup:	Frequency	Detector	RBW	VBW	Value					
	Above	Peak	1MHz	3MHz	Peak					
	1GHz	Average	1MHz	3MHz	Average					

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

FREQUENCY (MHz)	Limit (dBuV/m) (at 3M)						
FREQUENCT (MITZ)	PEAK	AVERAGE					
Above 1000	74	54					

Notes:

- (1) The limit for radiated test was performed according to FCC PART 15C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

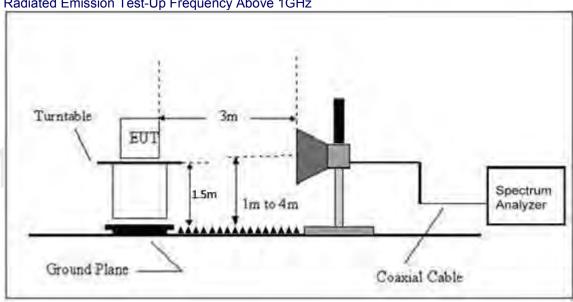
Spectrum Parameter	Setting					
Attenuation	Auto					
Start Frequency	2300MHz					
Stop Frequency	2520					
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 10Hz for Average					

5.2 TEST PROCEDURE

Above 1GHz test procedure as below:

- a. 1. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- g. Test the EUT in the lowest channel, the Highest channel

Note:


Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

5.3 DEVIATION FROM TEST STANDARD

No deviation

5.4 TEST SETUP

Radiated Emission Test-Up Frequency Above 1GHz

5.5 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

5.6 TEST RESULT

			Meter	Pre-	Cable	Antenna	Emission	Limit	Margi	Detec	
	Polar	Frequency	Readin	amplifier	Loss	Factor	level	(dBuV	n	tor	Result
	(H/V)	(MHz)	g	(dB)	(dB)	(dB/m)	(dBuV/m)	/m)	(dB)	Туре	
	-0.00		(dBuV)	(- /	` ′	nannel: 240	,		(- /	71	
	Н	2390.00	60.71	30.22	4.85	23.98	59.32	74.00	-14.68	Pk	PASS
	H	2390.00	48.88	30.22	4.85	23.98	47.49	54.00	-6.51	AV	PASS
	H	2400.00	62.40	30.22	4.85	23.98	61.01	74.00	-12.99	Pk	PASS
	H	2400.00	46.15	30.22	4.85	23.98	44.76	54.00	-9.24	AV	PASS
	V	2390.00	61.72	30.22	4.85	23.98	60.33	74.00	-13.67	Pk	PASS
	V	2390.00	46.02	30.22	4.85	23.98	44.63	54.00	-9.37	AV	PASS
	V	2400.00	62.13	30.22	4.85	23.98	60.74	74.00	-13.26	Pk	PASS
OFOI	V	2400.00	47.45	30.22	4.85	23.98	46.06	54.00	-7.94	AV	PASS
GFSK					High Cl	nannel: 248	0MHz				
	Н	2483.50	60.35	30.22	4.85	23.98	58.96	74.00	-15.04	PK	PASS
	Н	2483.50	47.58	30.22	4.85	23.98	46.19	54.00	-7.81	AV	PASS
	H	2500.00	59.96	30.22	4.85	23.98	58.57	74.00	-15.43	PK	PASS
	H	2500.00	46.84	30.22	4.85	23.98	45.45	54.00	-8.55	AV	PASS
	V	2483.50	60.84	30.22	4.85	23.98	59.45	74.00	-14.55	PK	PASS
	V	2483.50	48.88	30.22	4.85	23.98	47.49	54.00	-6.51	AV	PASS
	V	2500.00	61.79	30.22	4.85	23.98	60.40	74.00	-13.60	PK	PASS
	V	2500.00	48.05	30.22	4.85	23.98	46.66	54.00	-7.34	AV	PASS
						nannel: 240		100			
	H	2390.00	59.38	30.22	4.85	23.98	57.99	74.00	-16.01	PK	PASS
	H	2390.00	47.49	30.22	4.85	23.98	46.10	54.00	-7.90	AV	PASS
	H	2400.00	62.46	30.22	4.85	23.98	61.07	74.00	-12.93	PK	PASS
	Н	2400.00	47.85	30.22	4.85	23.98	46.46	54.00	-7.54	AV	PASS
	V	2390.00	62.81	30.22	4.85	23.98	61.42	74.00	-12.58	PK	PASS
	V	2390.00 2400.00	48.52	30.22 30.22	4.85	23.98 23.98	47.13 59.97	54.00 74.00	-6.87	AV PK	PASS
π/4DQPS	V	2400.00	61.36 48.26	30.22	4.85 4.85	23.98	46.87	54.00	-14.03 -7.13	AV	PASS
K	V	2400.00	40.20	30.22		1 23.96 nannel: 248		34.00	-7.13	AV	PASS
	Н	2483.50	59.04	30.22	4.85	23.98	57.65	74.00	-16.35	PK	PASS
	H	2483.50	48.93	30.22	4.85	23.98	47.54	54.00	-6.46	AV	PASS
	H	2500.00	61.93	30.22	4.85	23.98	60.54	74.00	-13.46	PK	PASS
	H	2500.00	48.26	30.22	4.85	23.98	46.87	54.00	-7.13	AV	PASS
	V	2483.50	62.55	30.22	4.85	23.98	61.16	74.00	-12.84	PK	PASS
	V	2483.50	46.77	30.22	4.85	23.98	45.38	54.00	-8.62	AV	PASS
	V	2500.00	61.57	30.22	4.85	23.98	60.18	74.00	-13.82	PK	PASS
	V	2500.00	47.46	30.22	4.85	23.98	46.07	54.00	-7.93	AV	PASS
					•	nannel: 240					
	Н	2390.00	62.95	30.22	4.85	23.98	61.56	74.00	-12.44	PK	PASS
	H	2390.00	47.29	30.22	4.85	23.98	45.90	54.00	-8.10	AV	PASS
	H	2400.00	59.98	30.22	4.85	23.98	58.59	74.00	-15.41	PK	PASS
	Н	2400.00	46.00	30.22	4.85	23.98	44.61	54.00	-9.39	AV	PASS
8DPSK	V	2390.00	59.37	30.22	4.85	23.98	57.98	74.00	-16.02	PK	PASS
ODESK	V	2390.00	48.77	30.22	4.85	23.98	47.38	54.00	-6.62	AV	PASS
	V	2400.00	59.15	30.22	4.85	23.98	57.76	74.00	-16.24	PK	PASS
	V	2400.00	47.57	30.22	4.85	23.98	46.18	54.00	-7.82	AV	PASS
		4.5	7			nannel: 248			2		
	Н	2483.50	62.70	30.22	4.85	23.98	61.31	74.00	-12.69	PK	PASS
	Н	2483.50	48.06	30.22	4.85	23.98	46.67	54.00	-7.33	AV	PASS
	Н	2500.00	60.39	30.22	4.85	23.98	59.00	74.00	-15.00	PK	PASS

Project No.: ZHT-240314018E Page 28 of 36

446	Н	2500.00	47.27	30.22	4.85	23.98	45.88	54.00	-8.12	AV	PASS
7 ()	V	2483.50	59.84	30.22	4.85	23.98	58.45	74.00	-15.55	PK	PASS
	V	2483.50	47.93	30.22	4.85	23.98	46.54	54.00	-7.46	AV	PASS
	V	2500.00	59.16	30.22	4.85	23.98	57.77	74.00	-16.23	PK	PASS
	V	2500.00	46.60	30.22	4.85	23.98	45.21	54.00	-8.79	AV	PASS

Project No.: ZHT-240314018E Page 29 of 36

6. CONDUCTED BAND EDGE AND SPURIOUS EMISSION

Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	KDB558074 D0115.247 Meas Guidancev05r02

6.1 Limit

Regulation 15.247 (d), In any 100 kHz bandwidth outside the frequency band in which the or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

6.2 Test Setup

SPECTRUM EUT ANALYZER

6.3 Test procedure

Using the following spectrum analyzer setting:

- A) Set the RBW = 100KHz.
- B) Set the VBW = 300KHz.
- C) Sweep time = auto couple.
- D) Detector function = peak.
- E) Trace mode = max hold.
- F) Allow trace to fully stabilize.

6.4 DEVIATION FROM STANDARD

No deviation.

6.5 Test Result

Please refer to the Appendix BT

□ admin@zht-lab.cn

Project No.: ZHT-240314018E Page 30 of 36

7. 20DB&99% BANDWIDTH

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)
Test Method:	ANSI C63.10:2013

7.1 Test Setup

SPECTRUM EUT ANALYZER

7.2 Limit

N/A

- 7.3 Test procedure
- 1. Set RBW = 30 kHz.
- 2. Set the video bandwidth (VBW) \geq 3 x RBW.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.
- 7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

7.4 DEVIATION FROM STANDARD

No deviation.

7.5 Test Result

Please refer to the Appendix BT

□ admin@zht-lab.cn

Project No.: ZHT-240314018E Page 31 of 36

8. Maximum Peak Output Power

Test Requirement:	FCC Part15 C Section 15.247 (b)(1)
Test Method:	ANSI C63.10:2013

8.1 Block Diagram Of Test Setup

EUT	SPECTRUM	7
	ANALYZER	

8.2 Limit

For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.

For FHSs operating in the band 2400-2483.5 MHz, the maximum peak conducted output power shall not exceed 1.0 W if the hopset uses 75 or more hopping channels; the maximum peak conducted output power shall not exceed 0.125 W if the hopset uses less than 75 hopping channels. The e.i.r.p. shall not exceed 4 W.

8.3 Test procedure

The EUT was directly connected to the Power Analyzer

8.4 DEVIATION FROM STANDARD

No deviation.

8.5 Test Result

Please refer to the Appendix BT

Page 32 of 36

9. HOPPING CHANNEL SEPARATION

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)
Test Method:	ANSI C63.10:2013
Receiver setup:	RBW=30KHz, VBW=100KHz, detector=Peak
Limit:	0.025MHz or 2/3 of the 20dB bandwidth (whichever is greater)

9.1 Test Setup

9.2 Test procedure

- 1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.
- 2. Set the spectrum analyzer: RBW = 30kHz. VBW = 100kHz , Span = 2.0MHz. Sweep = auto; Detector Function = Peak. Trace = Max hold.
- 3. Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. The limit is specified in one of the sub-paragraphs of this Section Submit this plot.

9.3 DEVIATION FROM STANDARD

No deviation.

9.4 Test Result Please refer to the Appendix BT

Page 33 of 36

10. NUMBER OF HOPPING FREQUENCY

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)(iii)
Test Method:	ANSI C63.10:2013
Receiver setup:	RBW=100kHz, VBW=300kHz, Frequency range=2400MHz-2483.5MHz, Detector=Peak
Limit:	15 channels

10.1 Test Setup

10.2 Test procedure

- 1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.
- 2. Set the spectrum analyzer: RBW = 100kHz. VBW = 300kHz. Sweep = auto; Detector Function = Peak. Trace = Max hold.
- 3. Allow the trace to stabilize. It may prove necessary to break the span up to sections. in order to clearly show all of the hopping frequencies. The limit is specified in one of the subparagraphs of this Section.
- 4. Set the spectrum analyzer: Start Frequency = 2.4GHz, Stop Frequency = 2.4835GHz. Sweep=auto;

10.3 DEVIATION FROM STANDARD

No deviation.

10.4 Test Result

Please refer to the Appendix BT

Page 34 of 36

11. DWELL TIME

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)(iii)
Test Method:	ANSI C63.10:2013
Receiver setup:	RBW=1MHz, VBW=3MHz, Span=0Hz, Detector=Peak
Limit:	0.4 Second

11.1 Test Setup

11.2 Test procedure

- 1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.
- 2. Set spectrum analyzer span = 0Hz;
- 3. Set RBW = 1MHz and VBW = 3MHz.Sweep = as necessary to capture the entire dwell time per hopping channel. Set the EUT for DH5, DH3 and DH1 packet transmitting.
- 4. Use the marker-delta function to determine the dwell time. If this value varies with different modes of operation (e.g., data rate, modulation format, etc.), repeat this test for each variation. The limit is specified in one of the subparagraphs of this Section. Submit this plot(s).

11.3 DEVIATION FROM STANDARD

No deviation.

11.4 Test Result

Please refer to the Appendix BT

Page 35 of 36

12. ANTENNA REQUIREMENT

Standard requirement:

FCC Part15 C Section 15.203 /247(b)(4)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:

The antenna is PCB Antenna, the best case gain of the antenna is 1.33dBi, reference to the appendix II for details

13.APPENDIX BT

Reference to the Appendix BT for details.

14. Test Setup Photo

Reference to the appendix I for details.

15. EUT Constructional Details

Reference to the appendix II for details.

**** END OF REPORT ****