

Shenzhen Huatongwei International Inspection Co.,Ltd. Huatongwei 101, No.006, Keji south 12th Road, High-tech zone community, Yuehai Street, Nanshan District, Shenzhen, Guangdong, China Phone:86-755-26715499 E-mail: cs@szhtw.com.cn Website:http://www.szhtw.com.cn

TEST REPORT

For WiFi-2.4GHz Band

Report No	CHTW24080051	Report Verification:	
Project No	SHT2311064901EW		
FCC ID:	2BFB9-SID-ATMET		
Applicant's name:	Shenzhen AOTO Electroni	ics Co., Ltd.	
Address	Room 1805, Tower 2, Shum Street, Luohu District, Shen		g, Qingshuihe
Product Name	Meeting card		
Trade Mark	ΑΟΤΟ		
Model No	ATMET2K		
Listed Model(s)	ATMET4K,ATMET8K,ATMET2KA,ATMET4KA,ATMET8KA, ATMET2KB,ATMET4KB,ATMET8KB,ATMET2KC,ATMET4KC, ATMET8KC		
Standard:	FCC CFR Title 47 Part 15 S	Subpart C § 15.247	
Date of receipt of test sample	Dec.05, 2023		
Date of testing	Dec.05, 2023 - Aug.11, 2024	4	
Date of issue	Aug.12, 2024		
Result	PASS		
Compiled by (Position+Printed name+Signature):	File administrators Kiki Kong	g	r konf
Supervised by (Position+Printed name+Signature):	Project Engineer Kiki Kong	PAD	r konf
Approved by (Position+Printed name+Signature):	RF Manager Xu yang	In	, Yong
Testing Laboratory Name : Shenzhen Huatongwei International Inspection Co., L		on Co., Ltd.	
Address	Building 7, Baiwang Idea Factory, No.1051, Songbai Road, Yangguang Community, Xili Subdistrict, Nanshan District, Shenzhen, Guangdong, China		
Shenzhen Huatongwei International Inspe	ection Co., Ltd. All rights reserv	ved.	
This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen Huatongwei International Inspection Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen Huatongwei International Inspection Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.			

The test report merely correspond to the test sample.

	Contents		
<u>1.</u>	TEST STANDARDS AND REPORT VERSION	3	
1.1. 1.2.	Test Standards Report version	3 3	
<u>2.</u>	TEST DESCRIPTION	4	
<u>3.</u>	SUMMARY	5	
3.1. 3.2. 3.3. 3.4.	Client Information Product Description Radio Specification Description Testing Laboratory Information	5 5 5 6	
<u>4.</u>	TEST CONFIGURATION	<u> 7</u>	
4.1. 4.2. 4.3. 4.4. 4.5. 4.6. 4.7.	Test frequency list Test mode Test sample information Support unit used in test configuration and system Testing environmental condition Statement of the measurement uncertainty Equipment Used during the Test	7 7 8 8 8 9 10	
<u>5.</u>	TEST CONDITIONS AND RESULTS	<u>. 12</u>	
5.1. 5.2. 5.3. 5.4. 5.5. 5.6. 5.7. 5.8. 5.9. 5.10.	Antenna Requirement AC Conducted Emission Peak Output Power Power Spectral Density 6dB bandwidth 99% Occupied Bandwidth Duty Cycle Conducted Band edge and Spurious Emission Radiated Band edge Emission Radiated Spurious Emission	12 13 14 15 16 17 18 19 21 26	
<u>6.</u>	TEST SETUP PHOTOS	<u>. 34</u>	
<u>7.</u>	EXTERNAL AND INTERNAL PHOTOS	.36	
<u>8.</u>	APPENDIX REPORT	<u>.36</u>	

1. TEST STANDARDS AND REPORT VERSION

1.1. Test Standards

The tests were performed according to following standards:

- FCC CFR Title 47 Part 15 Subpart C § 15.247: Operation within the bands 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz
- <u>ANSI C63.10:2020</u>: American National Standard for Testing Unlicensed Wireless Devices
- <u>KDB 558074 D01 15.247 Meas Guidance v05r02</u>: Guidance for Compliance Measurements on Digital Transmission System, Frequency Hopping Spread Spectrum System, and Hybrid System Devices Operating under Section 15.247 of The FCC Rules
- <u>KDB662911 D01 Multiple Transmitter Output v02r01</u>: Emissions Testing of Transmitters with Multiple Outputs in the Same Band (e.g., MIMO, Smart Antenna, etc)
- KDB662911 D02 MIMO with Cross-Polarized Antennas v01: MIMO with Cross-Polarized Antenna

1.2. Report version

Revision No.	Date of issue	Description
N/A	2024-08-12	Original

2. TEST DESCRIPTION

Report clause	Test Items	Standard Requirement	Result	Test Engineer
5.1	Antenna Requirement	15.203/15.247(c)	PASS	Xiangyu Wei
5.2	AC Conducted Emission	15.207	N/A	N/A
5.3	Peak Output Power	15.247(b)(3)	PASS	Xiangyu Wei
5.4	Power Spectral Density	15.247(e)	PASS	Xiangyu Wei
5.5	6dB Bandwidth	15.247(a)(2)	PASS	Xiangyu Wei
5.6	99% Occupied Bandwidth	-	PASS ^{*1}	Xiangyu Wei
5.7	Duty cycle	-	PASS ^{*1}	Xiangyu Wei
5.8	Conducted Band Edge and Spurious Emission	15.247(d)/15.205	PASS	Xiangyu Wei
5.9	Radiated Band Edge Emission	15.205/15.209	PASS	Yifan Wang
5.10	Radiated Spurious Emission	15.247(d)/15.205/15.209	PASS	Yifan Wang

Note:

- The measurement uncertainty is not included in the test result.

- *1: No requirement on standard, only report these test data.

3. SUMMARY

3.1. Client Information

Applicant:	Shenzhen AOTO Electronics Co., Ltd.
Address:	Room 1805, Tower 2, Shum Yip Jinyuan Building, Qingshuihe Street, Luohu District, Shenzhen,china
Manufacturer:	Shenzhen AOTO Electronics Co., Ltd.
Address:	Room 1805, Tower 2, Shum Yip Jinyuan Building, Qingshuihe Street, Luohu District, Shenzhen,china
Factory:	HuiZhou AOTO Electronic Technology Co., Ltd.
Address:	No. 7 Yongda Road, West District, Dayawan, 516083 Huizhou PEOPLE'S REPUBLIC OF CHINA.

3.2. Product Description

Main unit information:		
Product Name:	Meeting card	
Trade Mark:	ΑΟΤΟ	
Model No.:	ATMET2K	
Listed Model(s):	ATMET4K,ATMET8K,ATMET2KA,ATMET4KA,ATMET8KA,ATMET2KB, ATMET4KB,ATMET8KB,ATMET2KC,ATMET4KC,ATMET8KC	
Power supply:	DC 12.0V	
Hardware version:	V1.0.1.0.T1	
Software version:	ATMET210_V1.02.0.CTM0112	

3.3. Radio Specification Description

Current turner	🛛 802.11b	🛛 802.11g	🛛 802.11n
Support type:	🔀 802.11ax		
Support bandwidth:	🛛 20MHz	40MHz	
Modulation:	802.11b:	DBPSK, DQPSK, BPSK, QPSK	
	802.11g/n:	BPSK, QPSK, 16QAM, 64QAM	
Operation frequency: 802.11b/g/n(HT20		2412MHz~2462MHz	
Channel number:	number: 802.11b/g/n(HT20): 11		
Channel separation:	5MHz		
Antenna technology:			
Antenna Delivery:		🛛 2*TX+2*RX	3*TX+3*RX
Antenna type:	Monopole Antenna		
Antenna gain:	Antenna 0: 4.89dBi		
	Antenna 1: 4.89dBi		

3.4. Testing Laboratory Information

Laboratory Name	Shenzhen Huatongwei International Inspection Co., Ltd.	
Laboratory Location	Building 7, Baiwang Idea Factory, No.1051, Songbai Road, Yangguang Community, Xili Subdistrict, Nanshan District, Shenzhen, Guangdong, China	
Contact information:	Phone: 86-755-26715499 E-mail: <u>cs@szhtw.com.cn</u> <u>http://www.szhtw.com.cn</u>	
	Type Accreditation Number	
Qualifications	FCC Registration Number	762235
	FCC Designation Number	CN1181

4. TEST CONFIGURATION

4.1. Test frequency list

According to section 15.31(m), regards to the operating frequency range over 10 MHz, must select three channels which were tested. The Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, please see the below blue front.

802.11b/802.11g/802.11n(HT20)/ 802.11ax(HE20)		
Channel Frequency (MHz)		
01	2412	
02	2417	
· :	• :	
06	2437	
· :	• :	
10	2457	
11	2462	

4.2. Test mode

For RF test items

The engineering test program was provided and enabled to make EUT continuous transmit.

For AC power line conducted emissions:

The EUT was set to connect with the WLAN AP under large package sizes transmission.

For Radiated spurious emissions test item:

The engineering test program was provided and enabled to make EUT continuous transmit. The EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data Recorded in the report.

Preliminary tests were performed in different data rates, final test modes are considering the modulation and worse data rates as below table.

Modulation	Data rate
802.11b	1Mbps
802.11g	6Mbps
802.11n(HT20)	MCS0
802.11ax(HE20)	MCS0

4.3. Test sample information

Test item	HTW sample no.	
RF Conducted test items	Please refer to the description in the appendix report	
RF Radiated test items	YPHT23110649002	
EMI test items	-	

Note:

RF Conducted test items: Peak Output Power, Power Spectral Density, 6dB Bandwidth, 99% Occupied Bandwidth, Duty cycle, Conducted Band Edge and Spurious Emission

RF Radiated test items: Radiated Band Edge Emission, Radiated Spurious Emission EMI test items: AC Conducted Emission

4.4. Support unit used in test configuration and system

The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application.

The following peripheral devices and interface cables were connected during the measurement:

Whether support unit is used?			
✓ No			
Item	Equipment	Trade Name	Model No.
1			
2			

4.5. Testing environmental condition

Туре	Requirement	Actual
Temperature:	15~35°C	25°C
Relative Humidity:	25~75%	50%
Air Pressure:	860~1060mbar	1000mbar

No.	Test Items	Measurement Uncertainty
1	AC Conducted Emission	3.21dB
2	Peak Output Power	1.07
3	Power Spectral Density	1.07
4	6dB Bandwidth	0.002%
5	99% Occupied Bandwidth	0.002%
6	Duty cycle	-
7	Conducted Band Edge and Spurious Emission	1.68dB
8	Radiated Band Edge Emission	4.54dB for 30MHz-1GHz
Ŭ		5.10dB for above 1GHz
9	Padiated Spurious Emission	4.54dB for 30MHz-1GHz
9	Radiated Spurious Emission	5.10dB for above 1GHz

4.6. Statement of the measurement uncertainty

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

4.7. Equipment Used during the Test

•	RF Conducted	test item					
Used	Test Equipment	Manufacturer	Equipment No.	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)
•	Signal and spectrum Analyzer	R&S	HTWE0242	FSV40	100048	2023/08/22	2024/08/21
•	Signal & Spectrum Analyzer	R&S	HTWE0262	FSW26	103440	2023/08/22	2024/08/21
•	Vector signal generator	R&S	HTWE0244	SMBV100A	260790	2023/05/23	2024/05/22
•	Vector signal generator	R&S	HTWE0244	SMBV100A	260790	2024/5/25	2025/5/24
•	Test software	Tonscend	N/A	JS1120	N/A	N/A	N/A

•	Conducted E	mission					
Used	Test Equipment	Manufacturer	Equipment No.	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)
•	EMI Test Receiver	R&S	HTWE0111	ESCI	101247	2023/8/22	2024/8/21
•	Artificial Mains	SCHWARZBECK	HTWE0113	NNLK 8121	573	2023/8/18	2024/8/17
•	Protection Network	SCHWARZBECK	HTWE0567	VTSD9561FN	00899	2023/8/18	2024/8/17
•	ISN	FCC	HTWE0148	FCC-TLISN-T2- 02	20371	2023/8/18	2024/8/17
•	ISN	FCC	HTWE0150	FCC-TLISN-T8- 02	20375	2023/8/18	2024/8/17
•	Test Software	R&S	N/A	EMC32	N/A	N/A	N/A

•	Radiated Em	ission – 9kHz-	-30MHz				
Used	Test Equipment	Manufacturer	Equipment No.	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)
•	Semi-Anechoic Chamber	Albatross projects	HTWE0127	SAC-3m-02	C11121	2023/4/6	2026/4/5
•	EMI Test Receiver	R&S	HTWE0099	ESCI 7	100900	2023/8/22	2024/8/21
•	Loop Antenna	R&S	HTWE0170	HFH2-Z2	100020	2021/4/6	2024/4/5
•	Loop Antenna	R&S	HTWE0170	HFH2-Z2	100020	2024/04/08	2027/04/07
•	Test Software	R&S	N/A	EMC32	N/A	N/A	N/A

•	Radiated Em	ission - 30MHz	z~1GHz				
Used	Test Equipment	Manufacturer	Equipment No.	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)
•	Semi-Anechoic Chamber	Albatross projects	HTWE0127	SAC-3m-02	C11121	2023/4/6	2026/4/5
•	EMI Test Receiver	R&S	HTWE0099	ESCI 7	100900	2023/8/22	2024/8/21
•	Ultra-Broadband Antenna	SCHWARZBEC K	HTWE0119	VULB9163	546	2023/2/22	2026/2/21
•	Pre-Amplifer	SCHWARZBEC K	HTWE0295	BBV 9742	/	2023/5/25	2024/5/24
•	Pre-Amplifer	SCHWARZBEC K	HTWE0295	BBV 9742	/	2024/5/24	2025/5/23
•	Test Software	R&S	N/A	EMC32	N/A	N/A	N/A

•	Radiated em	ission-Above	1GHz				
Used	Test Equipment	Manufacturer	Equipment No.	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)
•	Semi-Anechoic Chamber	Albatross projects	HTWE0122	SAC-3m-01	C11121	2023/4/17	2026/4/16
•	Spectrum Analyzer	R&S	HTWE0098	FSP40	100597	2023/8/22	2024/8/21
•	Horn Antenna	SCHWARZBE CK	HTWE0126	BBHA 9120D	1011	2023/2/14	2026/2/13
•	Horn Antenna	SCHWARZBE CK	HTWE0103	BBHA9170	BBHA9170472	2023/2/20	2026/2/19
•	Broadband Pre- amplifier	SCHWARZBE CK	HTWE0551	SCU18F	100855	2023/5/25	2024/5/24
•	Broadband Pre- amplifier	SCHWARZBE CK	HTWE0551	SCU18F	100855	2024/6/6	2025/6/5
•	Test Software	R&S	N/A	EMC32	N/A	N/A	N/A

5. TEST CONDITIONS AND RESULTS

5.1. Antenna Requirement

<u>Requirement</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responseble party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

TEST RESULT

☑ Passed □ Not Applicable

The product has two Monopole antennas, both two are 4.89dBi antenna gain, and the product is a CDD device with the same gain, according to KDB 662911 D01 section F, the Directional gain=Gant + Array gain

For power spectral density measurements on all devices,

Array gain=10log(Nant/Nss) dB,

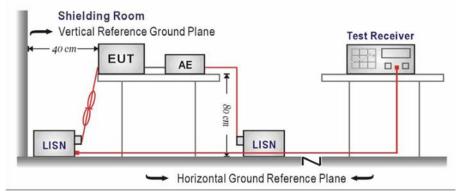
So the Directional gain=4.89+10log(2/1)=7.90dBi

For power measurements on IEEE 802.11 devices,

Array gain=0 dB for Nant≤4

So the Directional gain=4.89+0=4.89dBi which is less than 6 dBi requirement, please refer to the below antenna photo.

5.2. AC Conducted Emission


<u>LIMIT</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.207

	Limit (d	BuV)
Frequency range (MHz)	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50

* Decreases with the logarithm of the frequency.

TEST CONFIGURATION

TEST PROCEDURE

- 1. The EUT was setup according to ANSI C63.10 requirements.
- The EUT was placed on a platform of nominal size, 1 m by 1.5 m, raised 80 cm above the conducting ground plane. The vertical conducting plane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 80 cm from any other grounded conducting surface.
- The EUT and simulators are connected to the main power through a line impedances stabilization network (LISN). The LISN provides a 50 ohm /50uH coupling impedance for the measuring equipment.
- 4. The peripheral devices are also connected to the main power through a LISN. (Please refer to the block diagram of the test setup and photographs)
- 5. Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor, was individually connected through a LISN to the input power source.
- 6. The excess length of the power cord between the EUT and the LISN receptacle were folded back and forth at the center of the lead to form a bundle not exceeding 40 cm in length.
- 7. Conducted emissions were investigated over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9 kHz.
- 8. During the above scans, the emissions were maximized by cable manipulation.

TEST MODE:

Refer to the clause 4.2

TEST RESULT

5.3. Peak Output Power

<u>LIMIT</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (b)(3): 30dBm

TEST CONFIGURATION

TEST PROCEDURE

- 1. The EUT was tested according to ANSI C63.10 and KDB 558074 D01 requirements.
- 2. The maximum peak conducted output power may be measured using a broadband peak RF power meter.
- 3. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall utilize a fast-responding diode detector.
- 4. Record the measurement data.

TEST MODE:

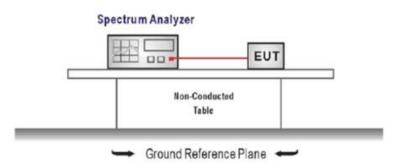
Refer to the clause 4.2

TEST RESULT

☑ Passed □ Not Applicable

<u>TEST DATA</u>

Refer to the appendix report


5.4. Power Spectral Density

<u>LIMIT</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (e):

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8dBm in any 3 kHz band during any time interval of continuous transmission.

TEST CONFIGURATION

TEST PROCEDURE

- 1. Connect the antenna port(s) to the spectrum analyzer input,
- Configure the spectrum analyzer as shown below: Center frequency=DTS channel center frequency Span =1.5 times the DTS bandwidth RBW = 3 kHz ≤ RBW ≤ 100 kHz, VBW ≥ 3 × RBW Sweep time = auto couple Detector = peak Trace mode = max hold
 Place the radio in continuous transmit mode, allow the
- 3. Place the radio in continuous transmit mode, allow the trace to stabilize, view the transmitter wave form on the spectrum analyzer.
- 4. Use the peak marker function to determine the maximum amplitude level within the RBW.
- 5. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

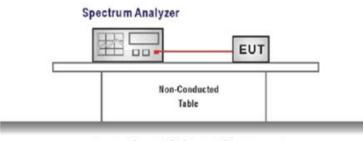
TEST MODE:

Refer to the clause 4.2

TEST RESULT

☑ Passed □ Not Applicable

TEST DATA Refer to the appendix report


5.5. 6dB bandwidth

<u>LIMIT</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (a)(2):

For digital modulation systems, the minimum 6 dB bandwidth shall be at least 500 kHz.

TEST CONFIGURATION

Ground Reference Plane

TEST PROCEDURE

- 1. Connect the antenna port(s) to the spectrum analyzer input.
- 2. Configure the spectrum analyzer as shown below (enter all losses between the transmitter output and the spectrum analyzer).

Center Frequency =DTS channel center frequency

Span=2 x DTS bandwidth

RBW = 100 kHz, VBW \ge 3 × RBW

Sweep time= auto couple

Detector = Peak

Trace mode = max hold

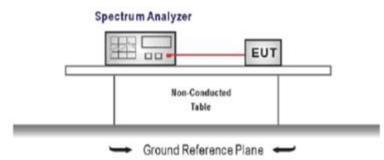
- 3. Place the radio in continuous transmit mode, allow the trace to stabilize, view the transmitter waveform on the spectrum analyzer.
- 4. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission, and record the pertinent measurements.

TEST MODE:

Refer to the clause 4.2

TEST RESULT

☑ Passed □ Not Applicable


TEST DATA Refer to the appendix report

5.6. 99% Occupied Bandwidth

<u>LIMIT</u>

N/A

TEST CONFIGURATION

TEST PROCEDURE

- 1. Connect the antenna port(s) to the spectrum analyzer input.
- 2. Configure the spectrum analyzer as shown below (enter all losses between the transmitter output and the spectrum analyzer).

Center Frequency =channel center frequency Span≥1.5 x OBW RBW = 1%~5%OBW VBW ≥ 3 × RBW Sweep time= auto couple Detector = Peak Trace mode = max hold

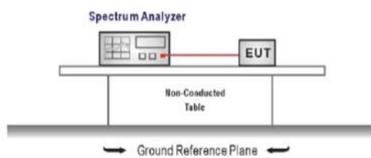
3. Place the radio in continuous transmit mode, allow the trace to stabilize, view the transmitter waveform on the spectrum analyzer.

TEST MODE:

Refer to the clause 4.2

TEST RESULT

☑ Passed □ Not Applicable


TEST DATA Refer to the appendix report

Page:

5.7. Duty Cycle LIMIT

N/A

TEST CONFIGURATION

TEST PROCEDURE

- 1. The transmitter output was connected to the spectrum analyzer through an attenuator, the path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously
- 3. Use the following spectrum analyzer settings:

Span=zero span, Frequency=centered channel, RBW= 1 MHz, VBW ≥ RBW Sweep=as necessary to capture the entire dwell time,

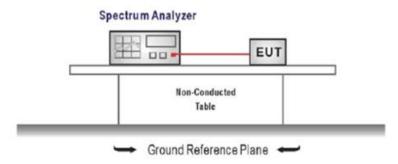
Detector function = peak, Trigger mode

4. Measure and record the duty cycle data

TEST MODE:

Refer to the clause 4.2

TEST DATA


Refer to the appendix report

5.8. Conducted Band edge and Spurious Emission

<u>LIMIT</u>

FCC CFR Title 47 Part 15 Subpart C Section15.247 (d):In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

TEST CONFIGURATION

TEST PROCEDURE

- 1. Connect the antenna port(s) to the spectrum analyzer input.
- Establish a reference level by using the following procedure Center frequency=DTS channel center frequency The span = 1.5 times the DTS bandwidth. RBW = 100 kHz, VBW ≥ 3 x RBW Detector = peak, Sweep time = auto couple, Trace mode = max hold Allow trace to fully stabilize

Use the peak marker function to determine the maximum PSD level

Note that the channel found to contain the maximum PSD level can be used to establish the reference level.

3. Emission level measurement

Set the center frequency and span to encompass frequency range to be measured RBW = 100 kHz, VBW \ge 3 x RBW

Detector = peak, Sweep time = auto couple, Trace mode = max hold

Allow trace to fully stabilize

Use the peak marker function to determine the maximum amplitude level.

- 4. Place the radio in continuous transmit mode, allow the trace to stabilize, view the transmitter waveform on the spectrum analyzer.
- Ensure that the amplitude of all unwanted emission outside of the authorized frequency band excluding restricted frequency bands) are attenuated by at least the minimum requirements specified (at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz). Report the three highest emission relative to the limit.

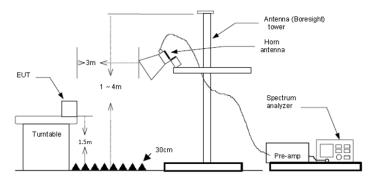
TEST MODE:

Refer to the clause 4.2

TEST RESULT

☑ Passed □ Not Applicable

TEST DATA


Refer to the appendix report

<u>LIMIT</u>

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (d):

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, Radiated Emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the Radiated Emissions limits specified in §15.209(a) (see §15.205(c)).

TEST CONFIGURATION

TEST PROCEDURE

- 1. The EUT was setup and tested according to ANSI C63.10.
- 2. The EUT is placed on a turn table which is 1.5 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3. The EUT waspositioned such that the distance from antenna to the EUT was 3 meters.
- 4. The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. This is repeated for both horizontal and vertical polarization of the antenna. In order to find themaximum emission, all of the interface cables were manipulated according to ANSI C63.10 on radiated measurement.
- 5. Use the following spectrum analyzer settings:
 - a) Span shall wide enough to fully capture the emission being measured
 - b) Set RBW=100kHz for <1GHz, VBW=3*RBW, Sweep time=auto, Detector=peak, Trace=max hold
 - c) Set RBW=1MHz, VBW=3MHz for >1GHz, Sweep time=auto, Detector=peak, Trace=max hold for Peak measurement

For average measurement:

- VBW=10Hz, When duty cycle is no less than 98 percent
- VBW≥1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation, so refer to this clasue 5.7 duty cycle.

TEST MODE:

Refer to the clause 4.2

TEST RESULT

☑ Passed □ Not Applicable

Note:

- 1) Level= Reading + Factor; Factor = Antenna Factor+ Cable Loss- Preamp Factor
- 2) Over Limit = Level- Limit
- 3) Average measurement was not performed if peak level is lower than average limit(54 dBuV/m).
- 4) Pre-scan all modulation mode and antenna. 802.11b/g in the report only displays the worst antenna information. The worst antenna is antenna 1.

Туре		802.11b		Test cha	annel	CH0	1	Pola	arity		Horizontal	
	Mark	Frequency MHz	Reading dBuV/m	Antenna dB	Cable dB	Preamp dB	Aux dB	Level dBuV/m	Limit dBuV/m	Over limi		
	1	2310.00	42.71	27.86	4.01	41.80	20.00	52.78	74.00		-	
	2	2388.39	51.69	27.55	4.31	41.80	20.00	61.75	74.00	-12.2	5 Peak	
	3	2390.01	47.84	27.54	4.31	41.80	20.00	57.89	74.00	-16.1	1 Peak	
	Mark	Frequency MHz	Reading dBuV/m	Antenna dB	Cable dB	Preamp dB	Aux dB	Level dBuV/m	Limit dBuV/m	Over limi		
	1	2310.00	32.14	27.86	4.01	41.80	20.00	42.2	1 54.00	-11.7	9 Average	
	2	2390.01	31.99	27.54	4.31	41.80	20.00	42.04	4 54.00	-11.9	6 Average	
Туре		802.11	b	Test c	hannel	CH	101	P	olarity		Vertical	
Туре	Mark	802.11 Frequency	Reading	Test cl	hannel Cable	Preamp	Aux	Level	Limit	Over limit	Remark	
Туре	 Mark 1	Frequency		Antenna	Cable				Limit dBuV/m	limit	Remark	
Туре		Frequency MHz	Reading dBuV/m	Antenna dB	Cable dB	Preamp dB	Aux dB 20.00	Level dBuV/m	Limit dBuV/m 74.00	limit -20.99	Remark Peak	
Туре	1	Frequency MHz 2310.00	Reading dBuV/m 42.94	Antenna dB 27.86	Cable dB 4.01	Preamp dB 41.80	Aux dB 20.00	Level dBuV/m 53.01	Limit dBuV/m 74.00	limit -20.99	Remark Peak	
Туре	1 2	Frequency MHz 2310.00 2390.01 Frequency	Reading dBuV/m 42.94 59.42 Reading	Antenna dB 27.86 27.54 Antenna	Cable dB 4.01 4.31 Cable	Preamp dB 41.80 41.80 Preamp	Aux dB 20.00 20.00 Aux	Level dBuV/m 53.01 69.47 Level	Limit dBuV/m 74.00 74.00 Limit	limit -20.99 -4.53 Over	Remark Peak Peak Remark	
Туре	1 2 Mark	Frequency MHz 2310.00 2390.01 Frequency MHz	Reading dBuV/m 42.94 59.42 Reading dBuV/m	Antenna dB 27.86 27.54 Antenna dB	Cable dB 4.01 4.31 Cable dB	Preamp dB 41.80 41.80 Preamp dB	Aux dB 20.00 20.00 Aux dB	Level dBuV/m 53.01 69.47 Level dBuV/m	Limit dBuV/m 74.00 74.00 Limit dBuV/m	limit -20.99 -4.53 Over limit	Remark Peak Peak Remark Average	

Туре		802.11b		Test cha	nnel	CH1 ²	1	Pola	arity		Horizontal
	Mark	Frequency MHz	Reading dBuV/m	Antenna dB	Cable dB	Preamp dB	Aux dB	Level dBuV/m	Limit dBuV/m	Over limi	
	1	2483.49	47.62	27.33	4.18	41.80	20.00	57.33	74.00	-16.6	7 Peak
	2	2486.81	51.73	27.33	4.18	41.80	20.00	61.44	74.00	-12.5	6 Peak
	3	2500.00	44.00	27.30	4.19	41.80	20.00	53.69	74.00	-20.3	1 Peak
	Mark	Frequency MHz	Reading dBuV/m	Antenna dB	Cable dB	Preamp dB	Aux dB	Level dBuV/m	Limit dBuV/m	Over limi	
	1	2483.49	32.00	27.33	4.18	41.80	20.00	41.7	1 54.00	-12.2	9 Average
	2	2500.00	34.74	27.30	4.19	41.80	20.00	44.4	3 54.00	-9.5	7 Average
Туре		802.11	lb	Test c	hannel	CH	111	P	olarity		Vertical
	Mark	Frequency MHz	Reading dBuV/m	Antenna dB	Cable dB	Preamp dB	Aux dB	Level dBuV/m	Limit dBuV/m	Ove lin	
	1	2483.49	57.79	27.33	4.18	41.80	20.00	67.50	74.00	-6.	50 Peak
	2	2484.09	62.55	27.33	4.18	41.80	20.00	72.26	74.00	-1.	74 Peak
	3	2500.00	54.64	27.30	4.19	41.80	20.00	64.33	74.00	-9.	67 Peak
	Mark	Frequency MHz	Reading dBuV/m	Antenna dB		Preamp dB	Aux dB	Level dBuV/m)ver limit	Remark
	1	2483.49	32.67	27.33	4.18	41.80	20.00	42.38	54.00 -1	1.62	Average
	2	2500.00	36.99	27.30	4.19	41.80	20.00	46.68	54.00 -	7.32	Average

Туре		802.11g		Test cha	annel	CHO)1	Pola	arity		Horizontal
	Mark	Frequency MHz	Reading dBuV/m	Antenna dB	Cable dB	Preamp dB	Aux dB	Level dBuV/m	Limit dBuV/m	Over limit	Remark
	1	2310.00	43.06	27.86	4.01	41.80	20.00	53.13	74.00		7 Peak
	2	2390.01	43.34	27.54	4.31	41.80	20.00	53.39	74.00		L Peak
	Mark	Frequency	Reading	Antenna	Cable	Preamp	Aux	Level	Limit	Over	Remark
		MHZ	dBuV/m	dB	dB	dB	dB			limit	
	1	2310.00	32.92	27.86	4.01	41.80	20.00	42.99		-11.01	Average
	2	2390.01	32.85	27.54	4.31	41.80	20.00	42.90	54.00	-11.10	Average
Туре		802.11	g	Test c	hannel	CH	H01	P	olarity		Vertical
	Mark	Frequency	Reading	Antenna	Cable	Preamp	Aux	Level	Limit	Over	Remark
	PIOLIN	MHz	dBuV/m	dB	dB	dB	dB	dBuV/m	dBuV/m	limit	Kelliot K
	1	2310.00	43.34	27.86	4.01	41.80	20.00	53.41	74.00	-20.59	Peak
	2	2390.01	44.37	27.54	4.31	41.80	20.00	54.42	74.00	-19.58	Peak
	Mark	Frequency	Reading dBuV/m	Antenna dB	Cable dB	Preamp dB	Aux dB	Level dBuV/m	Limit dBuV/m	Over limit	Remark
		MHZ	ubuv/m								
	1	MHZ 2310.00	33.31	27.86	4.01	41.80	20.00	43.38	54.00	-10.62	Average

Remark t 2 Peak
2 Peak
0 Peak
Remark
Average
Average
ventical
Remark
Peak Peak

CHTW24080051

24 of 36

Туре		802.11n(H	HT20)	Test	channel	CI	H01	Po	larity		Horizontal
	Mark	Frequency MHz	Reading dBuV/m	Antenna dB	Cable dB	Pream dB	p Aux dB	Level dBuV/m	Limit dBuV/m	Over limi	
	1 2	2310.00 2390.01	44.01 42.57	27.86 27.54	4.01 4.31	41.80 41.80	20.00	54.08	74.00	-19.9	
	Mark	Frequency MHz	Reading dBuV/m	Antenna dB	Cable dB	Preamp dB	Aux dB	Level dBuV/m	Limit dBuV/m	Over limit	Remark
	1 2	2310.00 2390.01	33.05 32.85	27.86 27.54	4.01 4.31	41.80 41.80	20.00 20.00	43.12 42.90		-10.88 -11.10	Average Average
Туре		802.11r	n(HT20)	Te	st chanr	nel	CH01		Polarity		Vertical
	Mark	Frequency MHz	Reading dBuV/m	Antenna dB	Cable dB	Pream dB	p Aux dB	Level dBuV/m	Limit dBuV/m	Over lim	
	1 2	2310.00 2390.01	43.58 44.60	27.86	4.01 4.31	41.80 41.80	20.00	53.65		-20.3	35 Peak 35 Peak
	Mark	Frequency MHz	Reading dBuV/m	Antenna dB	Cable dB	Preamp dB	Aux dB	Level dBuV/m	Limit dBuV/m	Over limit	Remark
	1	2310.00	33.18 34.37	27.86	4.01 4.31	41.80 41.80	20.00	43.25	54.00	-10.75	Average

Туре		802.11n(H	HT20)	٦	Test o	channel		СН	11		Pola	arity		Horizontal	
	Mark	Frequency MHz	Reading dBuV/m	Ante dB	enna	Cable dB	Prea dB	amp	Aux dB	Leve dBuV		Limit dBuV/m	Over limi		
	1 2	2483.49 2500.00	42.91 45.35	27.3		4.18 4.19	41.8 41.8		20.00 20.00					88 Peak 96 Peak	
	Mark	Frequency MHz	Reading dBuV/m	Ante dB	nna	Cable dB	Prea dB	mp	Aux dB	Level dBuV/		Limit dBuV/m	Over limi		
	1 2	2483.49 2500.00	32.35 35.05	27.3 27.3		4.18 4.19	41.8 41.8					54.00 54.00	-11.9 -9.2	04 Average 26 Average	
Туре		802.11n	(HT20)		Tes	t channe	el	C	H11		Po	olarity		Vertical	
	Mark	Frequency MHz	Reading dBuV/m	Ante dB	enna	Cable dB	Prea dB	amp	Aux dB	Leve dBuV		Limit dBuV/m	Ove lim		
	1 2	2483.49 2500.00	44.01 45.18	27.3 27.3		4.18 4.19	41.8 41.8		20.00 20.00	53.72 54.87				28 Peak 13 Peak	
	Mark	Frequency MHz	Reading dBuV/m	Ante dB	enna	Cable dB	Prea dB	amp	Aux dB	Leve dBuV		Limit dBuV/m	Over limi		
	1 2	2483.49 2500.00	34.65 37.40	27.3		4.18 4.19	41.8 41.8		20.00 20.00		4.36 7.09	54.00 54.00	-9.6 -6.9		

ark 1 2 ark	Frequency MHz 2310.00 2390.01 Frequency	Reading dBuV/m 42.17 41.06	Antenna dB 27.86 27.54	Cable dB 4.01 4.31	Pream dB 41.80 41.80	dB 20.00	dBuV/m 52.24	Limit dBuV/ 74.0 74.0	/m lim 00 -21.	it 76 Peak
2	2310.00 2390.01	42.17 41.06	27.86	4.01	41.80	20.00	52.24	74.0	0 -21.	76 Peak
2	2390.01	41.06								
ark	Frequency									
ark	Frequency									
	MHZ	Reading dBuV/m	Antenna dB	Cable dB	Preamp dB	Aux dB	Level dBuV/m	Limit dBuV/m	Over limit	Remark
1	2310.00	32.74	27.86	4.01	41.80	20.00	42.81	54.00	-11.19	Average
2	2390.01	32.78	27.54	4.31	41.80	20.00	42.83	54.00	-11.17	Average
	802.11ax	(HE20)	Te	st chan	nel	CH01		Polarity		Vertical
		Reading	Antenna dp	Cable	Preamp	Aux	Level	Limit	Over	Remark
										Peak
-		42.88	27.54	4.31	41.80			74.00	-21.07	
ark	Frequency	Reading	Antenna	Cable	Preamp	Aux	Level	Limit	Over	Remark
	MHZ	dBuV/m	dB	dB	dB	dB	dBuV/m			
1	2310.00	32.57	27.86	4.01	41.80					-
2	2390.01	34.35	27.54	4.31	41.80	20.00	44.40	0 54.00	-9.6	0 Average
	2 k 1 2 ark 1	1 2310.00 2 2390.01 802.11ax k Frequency MHz 1 2310.00 2 2390.01 ark Frequency MHz 1 2310.00	1 2310.00 32.74 2 2390.01 32.78 802.11ax(HE20) k Frequency Reading MHZ dBuV/m 1 2310.00 42.85 2 2390.01 42.88 ark Frequency Reading MHZ dBuV/m 1 2310.00 32.57	1 2310.00 32.74 27.86 2 2390.01 32.78 27.54 802.11ax(HE20) Te k Frequency Reading Antenna MHz dBuV/m dB 1 2310.00 42.85 27.86 2 2390.01 42.88 27.54 42.88 42.85 42.86 ark Frequency Reading Antenna 48 48 48 1 2310.00 32.57 27.86 48 48 48	1 2310.00 32.74 27.86 4.01 2 2390.01 32.78 27.54 4.31 BO2.11ax(HE2O) Test cham k Frequency MHz Reading dBuV/m Antenna dB Cable dB 1 2310.00 42.85 27.86 4.01 2 2390.01 42.88 27.54 4.31	1 2310.00 32.74 27.86 4.01 41.80 2 2390.01 32.78 27.54 4.31 41.80 802.11ax(HE20) Test channel k Frequency MHz Reading dBuV/m Antenna dB Cable dB Preamp dB 1 2310.00 42.85 27.86 4.01 41.80 ark Frequency MHz Reading dBuV/m Antenna dB Cable dB Preamp dB ark Frequency MHz Reading dBuV/m Antenna dB Cable dB Preamp dB 1 2310.00 32.57 27.86 4.01 41.80	1 2310.00 32.74 27.86 4.01 41.80 20.00 2 2390.01 32.78 27.54 4.31 41.80 20.00 BO2.11ax(HE20) Test channel CH01 K Frequency Reading Antenna Cable Preamp Aux MHZ dBuV/m dB dB dB dB dB 1 2310.00 42.85 27.86 4.01 41.80 20.00 2 2390.01 42.85 27.86 4.01 41.80 20.00 ark Frequency Reading Antenna Cable Preamp Aux dBuV/m dB dB dB dB dB dB dB dB dB 20.00 ark Frequency Reading Antenna Cable Preamp Aux dBuV/m dB dB	1 2310.00 32.74 27.86 4.01 41.80 20.00 42.81 2 2390.01 32.78 27.54 4.31 41.80 20.00 42.83 BO2.11ax(HE20) Test channel CH01 k Frequency Reading Antenna Cable Preamp Aux Level MHz dBuV/m dB dB dB dB dB dB dB dB dB uv/m Level 1 2310.00 42.85 27.86 4.01 41.80 20.00 52.92 2 2390.01 42.88 27.54 4.31 41.80 20.00 52.92 2 2390.01 42.88 27.54 4.31 41.80 20.00 52.92 2 2390.01 42.88 27.54 4.31 41.80 20.00 52.93 ark Frequency Reading Antenna Cable Preamp Aux Level MHz dBuv/m dB dB dB dB dB dB 4.01 41.80 20.00 42.64 1 <t< td=""><td>1 2310.00 32.74 27.86 4.01 41.80 20.00 42.81 54.00 2 2390.01 32.78 27.54 4.31 41.80 20.00 42.81 54.00 802.11ax(HE20) Test channel CH01 Polarity k Frequency Reading Antenna Gable Preamp Aux Level Limit Limit dBuV/m dB dB dB dB dB dB dBuV/m dBuV/m<</td><td>1 2310.00 32.74 27.86 4.01 41.80 20.00 42.81 54.00 -11.19 2 2390.01 32.78 27.54 4.31 41.80 20.00 42.81 54.00 -11.19 802.11ax(HE20) Test channel CH01 Polarity k Frequency Reading Antenna Cable Preamp Aux Level Limit Over MHz dBuV/m dB dB dB dB dB dBuV/m dBuV/m 1imit 2390.01 42.85 27.86 4.01 41.80 20.00 52.92 74.00 -21.08 2390.01 42.88 27.54 4.31 41.80 20.00 52.93 74.00 -21.08 2 2390.01 42.88 27.54 4.31 41.80 20.00 52.93 74.00 -21.07 ark Frequency Reading Antenna Cable Preamp Aux Level Limit Over MHz dBuV/m dB dB dB dB d</td></t<>	1 2310.00 32.74 27.86 4.01 41.80 20.00 42.81 54.00 2 2390.01 32.78 27.54 4.31 41.80 20.00 42.81 54.00 802.11ax(HE20) Test channel CH01 Polarity k Frequency Reading Antenna Gable Preamp Aux Level Limit Limit dBuV/m dB dB dB dB dB dB dBuV/m dBuV/m<	1 2310.00 32.74 27.86 4.01 41.80 20.00 42.81 54.00 -11.19 2 2390.01 32.78 27.54 4.31 41.80 20.00 42.81 54.00 -11.19 802.11ax(HE20) Test channel CH01 Polarity k Frequency Reading Antenna Cable Preamp Aux Level Limit Over MHz dBuV/m dB dB dB dB dB dBuV/m dBuV/m 1imit 2390.01 42.85 27.86 4.01 41.80 20.00 52.92 74.00 -21.08 2390.01 42.88 27.54 4.31 41.80 20.00 52.93 74.00 -21.08 2 2390.01 42.88 27.54 4.31 41.80 20.00 52.93 74.00 -21.07 ark Frequency Reading Antenna Cable Preamp Aux Level Limit Over MHz dBuV/m dB dB dB dB d

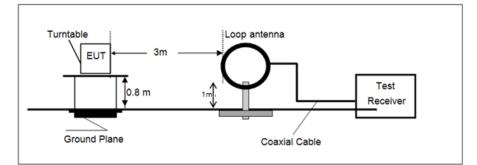
Туре		802.11ax((HE20)	Те	st channe	el C	H11	P	olarity		Horizontal
	Mark	Frequency MHz	Reading dBuV/m	Antenna dB	Cable dB	Preamp dB	Aux dB	Level dBuV/m	Limit dBuV/m	Over 1 lim	
	1	2483.49		27.33	4.18	41.80		55.06			
	2	2500.00	45.15	27.30	4.19	41.80	20.00	54.84	74.00	-19.1	L6 Peak
	Mark	Frequency MHz	Reading dBuV/m	Antenna dB	a Cable dB	Preamp dB	Aux dB	Level dBuV/m		Over limi	
	1	2483.49	33.12	27.33	4.18	41.80	20.00	42.8		-11.1	7 Average
	2	2500.00	35.54	27.30	4.19	41.80	20.00	45.2	3 54.00	-8.7	7 Average
Туре		802.11a	ax(HE20)	-	Test char	nnel	CH11		Polarity		Vertical
	Mark	Frequency MHz	Reading dBuV/m	Antenna dB	Cable dB	Preamp dB	Aux dB	Level dBuV/m	Limit dBuV/m	Over limi	
	1	2483.49		27.33	4.18	41.80	20.00		74.00		
	2	2500.00	43.93	27.30	4.19	41.80	20.00	53.62	74.00	-20.3	8 Peak
	Mark	Frequency MHz	Reading dBuV/m	Antenna dB	Cable dB	Preamp dB	Aux dB	Level dBuV/m	Limit dBuV/m	Over limit	Remark
	1	2483.49	35.91	27.33	4.18	41.80	20.00	45.62	54.00	-8.38	Average
	2	2500.00	37.81	27.30	4.19	41.80	20.00	47.50	54.00	-6.50	Average

5.10. Radiated Spurious Emission

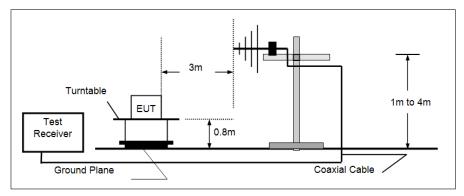
LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.209

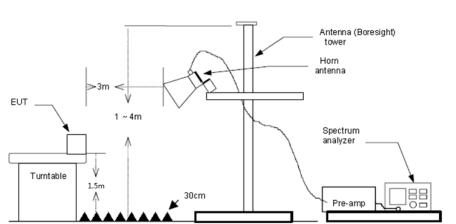
Frequency	Limit (dBuV/m)	Value
0.009 MHz ~0.49 MHz	2400/F(kHz) @300m	Quasi-peak
0.49 MHz ~ 1.705 MHz	24000/F(kHz) @30m	Quasi-peak
1.705 MHz ~30 MHz	30 @30m	Quasi-peak


Note: Limit dBuV/m @3m = Limit dBuV/m @300m + 40*log(300/3)= Limit dBuV/m @300m +80,

Limit dBuV/m @3m = Limit dBuV/m @30m +40*log(30/3)= Limit dBuV/m @30m + 40.


Frequency	Limit (dBuV/m @3m)	Value
30MHz~88MHz	40.00	Quasi-peak
88MHz~216MHz	43.50	Quasi-peak
216MHz~960MHz	46.00	Quasi-peak
960MHz~1GHz	54.00	Quasi-peak
Above 1GHz	54.00	Average
Above IGHZ	74.00	Peak

TEST CONFIGURATION


9 kHz ~ 30 MHz

> 30 MHz ~ 1 GHz

Above 1 GHz

Page:

TEST PROCEDURE

- 1. The EUT was setup and tested according to ANSI C63.10.
- 2. The EUT is placed on a turn table which is 0.8 meter above ground for below 1 GHz, and 1.5 m for above 1 GHz. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- The EUT was set 3 meters from the receiving antenna, which was mounted on the top of a variable 3. height antenna tower.
- For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower 4. (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 5. Set to the maximum power setting and enable the EUT transmit continuously.
- 6. Use the following spectrum analyzer settings
 - a) Span shall wide enough to fully capture the emission being measured;
 - b) Below 1 GHz:

RBW=120 kHz, VBW=300 kHz, Sweep=auto, Detector function=peak, Trace=max hold;

If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

c) Set RBW=1MHz, VBW=3MHz for >1GHz, Sweep time=auto, Detector=peak, Trace=max hold for Peak measurement

For average measurement:

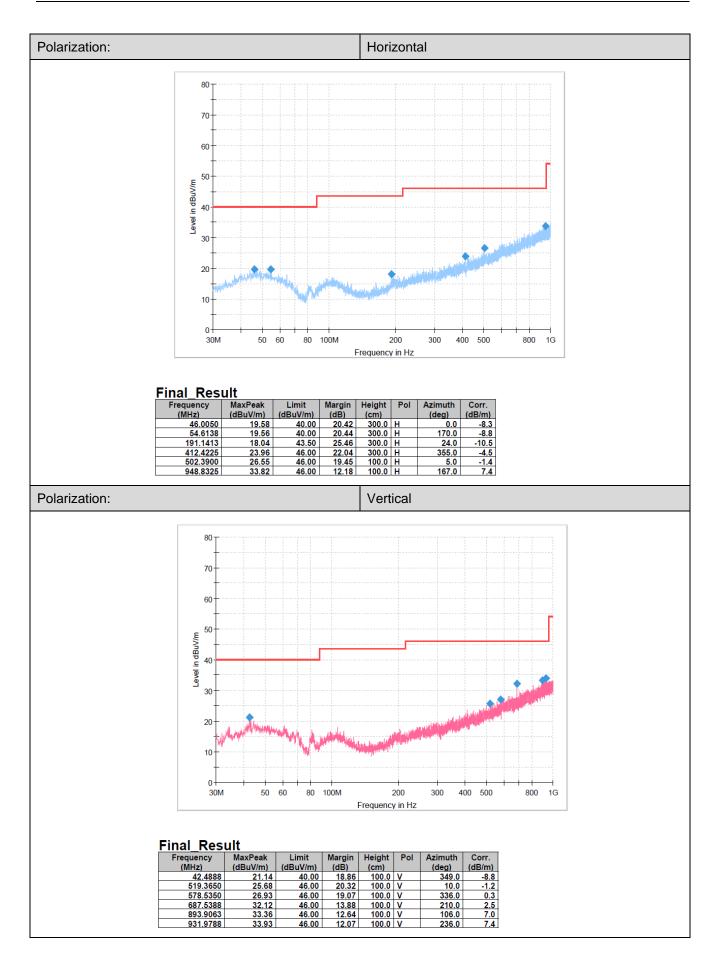
- VBW=10Hz, When duty cycle is no less than 98 percent
- VBW≥1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation, so refer to this clasue 5.7 duty cycle.

TEST MODE:

Refer to the clause 4.2

☑ Passed □ Not Applicable

Note:


- 1) Level= Reading + Factor/Transd; Factor/Transd = Antenna Factor+ Cable Loss- Preamp Factor
- 2) Over Limit = Level- Limit
- Average measurement was not performed if peak level is lower than average limit(54 dBuV/m) for above 1GHz.

FOR 9 kHz ~ 30 MHz

The EUT was pre-scanned this frequency band, found the radiated level 20dB lower than the limit, so don't show data on this report.

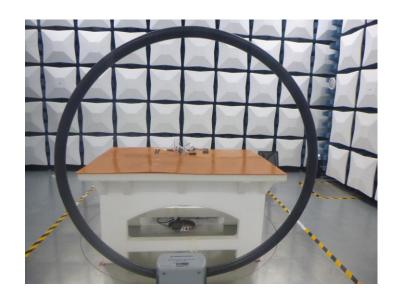
FOR 30 MHz ~ 1000 MHz

Have pre-scan all test channel, found CH06 of 802.11B which it was worst case, so only show the worst case's data on this report.

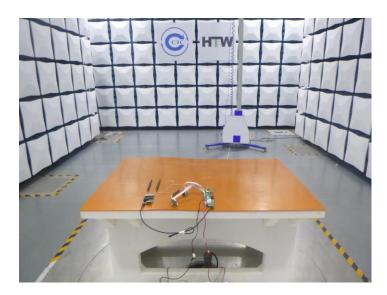
FOR 1 GHz ~ 25 GHz

The EUT was pre-scanned all modulation mode and antenna. 802.11b/g in the report only displays the worst antenna information. The worst antenna is antenna 1.

Туре		802.11b		Test chann	nel	CH01		Polarity		Horizontal
.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		002.110		. cot onam		0.101		· oranty		
	Mark	Frequency	Reading				•		Over	Remark
		MHZ	dBuV/i		dB	dB	dBuV/r			
	1 2	3498.74	53.81	28.99	5.08		46.28	74.00	-27.72	
	3	4996.69	51.83	31.39	6.09		48.20 49.30	74.00 74.00		
	4	7009.96 8002.06	47.70 44.85	35.14 37.00	7.35		49.04	74.00		
	-	0002.00	44.00	57.00	0.00	40.01	43.04	/4.00	-24.50	FEOK
Туре		802.11b		Test chann	nel	CH01		Polarity		Vertical
	Mark	Frequency				Preamp		Limit	Over	Remark
		MHZ	dBuV/m		dB	dB	dBuV/m	dBuV/m	limit	Parel.
	1	3003.17	54.98	28.51		41.65		74.00	-27.44	Peak
	2		52.05	30.91		41.40	47.43	74.00	-26.57	Peak
	3		52.14			41.11	48.51	74.00	-25.49	Peak
	4	12024.96	43.02	39.53	10.72	42.30	50.97	74.00	-23.03	Peak
Туре		802.11b		Test chann	nel	CH06		Polarity		Horizontal
	Mark	Frequency	Reading	Antenna	Cable	Preamp	Level	Limit	Over	Remark
		MHZ	dBuV/m		dB	dB .	dBuV/m	dBuV/m	limit	
	1	3003.17	51.18	28.51		41.65	42.76	74.00	-31.24	Peak
	2	3498.74	52.59			41.60		74.00		Peak
	3		49.89				46.26	74.00		Peak
	4	10374.42	40.14	39.82	9.69	40.65	49.00	74.00	-25.00	Peak
Туре		802.11b		Test chann	nel	CH06		Polarity		Vertical
- 71								· · · · · · · · · · · · · · · · · · ·		
	Mark	Frequency	Reading	Antenna	Cable	Preamp	Level	Limit	Over	Remark
	PIGEN	MHZ	dBuV/m		dB	dB	dBuV/m		limit	Nellion K
	1	3003.17	55.83	28.51	4.72	41.65	47.41		-26.59	Peak
	2	4605.81	51.87	30.91		41.40	47.25		-26.75	Peak
	3		50.31	31.46	6.10	41.10	46.77		-27.23	Peak
	4	8002.06	44.57	37.00	8.00	40.81	48.76	74.00	-25.24	Peak
Туре		802.11b		Test chann	nel	CH11		Polarity		Horizontal
	·							·····		
	Mark	Frequency	Reading	Antenna		Preamp	Level	Limit	Over	Remark
		MHZ	dBuV/m	dB	dB	dB			limit	
	1	4996.69	52.89	31.39	6.09		49.26		-24.74	Peak
	2	7009.96	47.01	35.14	7.35	40.89	48.61	74.00	-25.39	Peak
	3	8002.06	45.96	37.00	8.00	40.81	50.15	74.00	-23.85	Peak
	4	11633.54	41.03	40.17	10.45	42.30	49.35	74.00	-24.65	Peak
Туре		802.11b		Test chann	nel	CH11		Polarity		Vertical
i ypc										
1,960			CONTRACTOR OF STREET	Antonna	Cable	Preamp	Level	Limit	Over	Remark
1,900	Mark	Frequency	Reading	Antenna						
1,900	Mark	Frequency	Reading dBuV/m				dBuV/m	dBuV/m	limit	
1,900		MHZ	dBuV/m	dB	dB	dB	dBuV/m	dBuV/m 74.00	limit -26,42	Peak
1,900	1	MHz 3003.17	dBuV/m 56.00	dB 28.51	dB 4.72	dB 41.65	47.58	74.00	-26.42	Peak Peak
- , , po	1 2	MHz 3003.17 4996.69	dBuV/m 56.00 53.03	dB 28.51 31.39	dB 4.72 6.09	dB 41.65 41.11	47.58 49.40	74.00 74.00	-26.42 -24.60	Peak
1,100	1 2 3	MHz 3003.17 4996.69 7009.96	dBuV/m 56.00 53.03 47.49	dB 28.51 31.39 35.14	dB 4.72 6.09 7.35	dB 41.65 41.11 40.89	47.58 49.40 49.09	74.00 74.00 74.00	-26.42 -24.60 -24.91	Peak Peak
1360	1 2	MHz 3003.17 4996.69	dBuV/m 56.00 53.03	dB 28.51 31.39	dB 4.72 6.09	dB 41.65 41.11	47.58 49.40	74.00 74.00	-26.42 -24.60	Peak

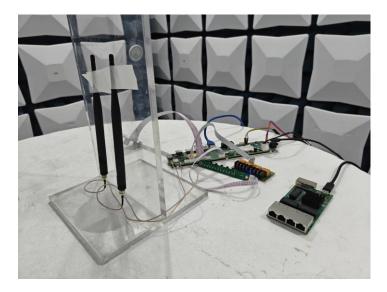

Туре		802.11g		Test chann	el	CH01		Polarity		Horizontal
	Mark	Frequency	Reading		Cable			Limit	Over	Remark
		MHZ	dBuV/m		dB	dB	dBuV/m	dBuV/m	limit	B arah
	1	3003.17	50.17	28.51	4.72	41.65	41.75	74.00	-32.25	Peak
	2	4996.69	52.10	31.39	6.09	41.11	48.47	74.00	-25.53	Peak
	3	7009.96	46.64	35.14	7.35	40.89	48.24	74.00	-25.76	Peak
	4	10507.31	39.95	40.00	9.76	40.95	48.76	74.00	-25.24	Peak
Туре		802.11g		Test chann	el	CH01		Polarity		Vertical
	Mark	Frequency	Reading	z Antenna	Cable	e Preamp	Level	Limit	0ver	Remark
	HOLK	MHz	dBuV/n		dB	dB	dBuV/m	dBuV/m	limit	Nelliot K
	1	2995.54	53.99	28.50	4.75	41.65	45.59	74.00	-28.41	Peak
	2	4605.81	48.23	30.91	5.87	41.40	43.61	74.00	-30.39	Peak
	3	4996.69	50.01	31.39	6.09	41.11	46.38	74.00	-27.62	Peak
	4	5762.24	49.18	31.39	6.65	40.71	40.38	74.00	-26.95	Peak
_		_								
Туре		802.11g		Test chann	el	CH06		Polarity		Horizontal
	Mark	Frequency	Reading	Antenna	Cable	Preamp	Level	Limit	Over	Remark
	FIGT K	MHZ	dBuV/m		dB	dB	dBuV/m	dBuV/m	limit	NUMBER N
	1	3003.17	53.40	28.51	4.72	41.65	44.98	74.00	-29.02	Peak
	2	3561.64	55.00	29.22	5.16	41.60	47.78	74.00	-26.22	Peak
	3	5009.43	51.64	31.46	6.10	41.10	48.10	74.00	-25.90	Peak
	4				8.00				-25.90	Peak
	-	8002.06	44.65	37.00	0.00	40.81	48.84	74.00	-25.10	FEON
Туре		802.11g		Test chann	el	CH06		Polarity		Vertical
	Mark		Reading	Antenna	Cable	Preamp	Level	Limit	Over	Remark
	T ANT IS	Frequency		dim.			dBuV/m			
		MHZ	dBuV/m	dB	dB	dB		dBuV/m		Deals
	1	MHz 3003.17	dBuV/m 57.01	28.51	4.72	41.65	48.59	74.00	-25.41	Peak
	1 2	MHz 3003.17 4605.81	dBuV/m 57.01 51.31	28.51 30.91	4.72	41.65 41.40	48.59 46.69	74.00 74.00	-25.41 -27.31	Peak
	1 2 3	MHZ 3003.17 4605.81 4996.69	dBuV/m 57.01 51.31 52.00	28.51 30.91 31.39	4.72 5.87 6.09	41.65 41.40 41.11	48.59 46.69 48.37	74.00 74.00 74.00	-25.41 -27.31 -25.63	Peak Peak
	1 2 3	MHz 3003.17 4605.81	dBuV/m 57.01 51.31	28.51 30.91	4.72	41.65 41.40 41.11	48.59 46.69	74.00 74.00	-25.41 -27.31	Peak
Туре	1 2 3	MHZ 3003.17 4605.81 4996.69	dBuV/m 57.01 51.31 52.00	28.51 30.91 31.39	4.72 5.87 6.09 10.72	41.65 41.40 41.11	48.59 46.69 48.37	74.00 74.00 74.00	-25.41 -27.31 -25.63	Peak Peak
Туре	1 2 3	MHz 3003.17 4605.81 4996.69 12024.96 802.11g	dBuV/m 57.01 51.31 52.00 42.07	28.51 30.91 31.39 39.53	4.72 5.87 6.09 10.72	41.65 41.40 41.11 42.30 CH11	48.59 46.69 48.37 50.02	74.00 74.00 74.00 74.00 Polarity	-25.41 -27.31 -25.63 -23.98	Peak Peak Peak
Туре	1 2 3	MHz 3003.17 4605.81 4996.69 12024.96	dBuV/m 57.01 51.31 52.00 42.07 Reading	28.51 30.91 31.39 39.53 Test chann	4.72 5.87 6.09 10.72	41.65 41.40 41.11 42.30 CH11	48.59 46.69 48.37 50.02	74.00 74.00 74.00 74.00 Polarity	-25.41 -27.31 -25.63 -23.98	Peak Peak Peak
Туре	1 2 3 4	MHz 3003.17 4605.81 4996.69 12024.96 802.11g	dBuV/m 57.01 51.31 52.00 42.07	28.51 30.91 31.39 39.53 Test chann	4.72 5.87 6.09 10.72	41.65 41.40 41.11 42.30 CH11	48.59 46.69 48.37 50.02	74.00 74.00 74.00 74.00 Polarity	-25.41 -27.31 -25.63 -23.98	Peak Peak Peak Horizontal
Туре	1 2 3 4	MHz 3003.17 4605.81 4996.69 12024.96 802.11g Frequency	dBuV/m 57.01 51.31 52.00 42.07 Reading	28.51 30.91 31.39 39.53 Test chann	4.72 5.87 6.09 10.72 el	41.65 41.40 41.11 42.30 CH11 CH11	48.59 46.69 48.37 50.02	74.00 74.00 74.00 74.00 Polarity	-25.41 -27.31 -25.63 -23.98 Over limit	Peak Peak Peak Horizontal
Туре	1 2 3 4	MHz 3003.17 4605.81 4996.69 12024.96 802.11g Frequency MHz	dBuV/m 57.01 51.31 52.00 42.07 Reading dBuV/m	28.51 30.91 31.39 39.53 Test chann g Antenna d dB	4.72 5.87 6.09 10.72 el	41.65 41.40 41.11 42.30 CH11 CH11 e Pream dB 41.65	48.59 46.69 48.37 50.02 0 Level dBuV/m	74.00 74.00 74.00 74.00 74.00 Polarity	-25.41 -27.31 -25.63 -23.98 Over limit -30.19	Peak Peak Horizontal Remark Peak
Туре	1 2 3 4 	MHz 3003.17 4605.81 4996.69 12024.96 802.11g Frequency MHz 3003.17	dBuV/m 57.01 51.31 52.00 42.07 Reading dBuV/m 52.23	28.51 30.91 31.39 39.53 Test chann dB 28.51	4.72 5.87 6.09 10.72 el Cable dB 4.72	41.65 41.40 41.11 42.30 CH11 CH11 e Pream dB 41.65 41.60	48.59 46.69 48.37 50.02 0 Level dBuV/m 43.81	74.00 74.00 74.00 74.00 74.00 Limit dBuV/m 74.00	-25.41 -27.31 -25.63 -23.98 Over limit -30.19 -30.35	Peak Peak Horizontal Remark Peak Peak
Туре	1 2 3 4 	MHz 3003.17 4605.81 4996.69 12024.96 802.11g Frequency MHz 3003.17 3498.74	dBuV/m 57.01 51.31 52.00 42.07 Reading dBuV/m 52.23 51.18	28.51 30.91 31.39 39.53 Test chann dB 28.51 28.99	4.72 5.87 6.09 10.72 el Cable dB 4.72 5.08	41.65 41.40 41.11 42.30 CH11 CH11 CH11 CH11 CH11	48.59 46.69 48.37 50.02 0 Level dBuV/m 43.81 43.65	74.00 74.00 74.00 74.00 74.00 Limit dBuV/m 74.00 74.00 74.00	-25.41 -27.31 -25.63 -23.98 Over limit -30.19 -30.35	Peak Peak Horizontal Remark Peak Peak
	1 2 3 4 Mark 1 2 3	MHz 3003.17 4605.81 4996.69 12024.96 802.11g Frequency MHz 3003.17 3498.74 4996.69	dBuV/m 57.01 51.31 52.00 42.07 Reading dBuV/m 52.23 51.18 51.97	28.51 30.91 31.39 39.53 Test chann dB 28.51 28.99 31.39	4.72 5.87 6.09 10.72 el Cable dB 4.72 5.08 6.09 8.00	41.65 41.40 41.11 42.30 CH11 CH11 CH11 CH11 CH11	48.59 46.69 48.37 50.02 0 Level dBuV/m 43.81 43.65 48.34	74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00	-25.41 -27.31 -25.63 -23.98 Over limit -30.19 -30.35 -25.66	Peak Peak Peak Horizontal Remark Peak Peak Peak Peak
Туре	1 2 3 4 Mark 1 2 3	MHz 3003.17 4605.81 4996.69 12024.96 802.11g Frequency MHz 3003.17 3498.74 4996.69 8002.06	dBuV/m 57.01 51.31 52.00 42.07 Reading dBuV/m 52.23 51.18 51.97	28.51 30.91 31.39 39.53 Test chann dB 28.51 28.99 31.39 37.00	4.72 5.87 6.09 10.72 el Cable dB 4.72 5.08 6.09 8.00	41.65 41.40 41.11 42.30 CH11 CH11 CH11 dB 41.65 41.60 41.11 40.81	48.59 46.69 48.37 50.02 0 Level dBuV/m 43.81 43.65 48.34	74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00	-25.41 -27.31 -25.63 -23.98 Over limit -30.19 -30.35 -25.66	Peak Peak Morizontal Remark Peak Peak Peak Peak Peak
	1 2 3 4 Mark 1 2 3	MHz 3003.17 4605.81 4996.69 12024.96 802.11g Frequency MHz 3003.17 3498.74 4996.69 8002.06	dBuV/m 57.01 51.31 52.00 42.07 Reading dBuV/m 52.23 51.18 51.97	28.51 30.91 31.39 39.53 Test chann dB 28.51 28.99 31.39 37.00 Test chann	4.72 5.87 6.09 10.72 el Cable dB 4.72 5.08 6.09 8.00 el	41.65 41.40 41.11 42.30 CH11 CH11 CH11 CH11	48.59 46.69 48.37 50.02 0 Level dBuV/m 43.81 43.65 48.34 50.44	74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00	-25.41 -27.31 -25.63 -23.98 Over limit -30.19 -30.35 -25.66	Peak Peak Morizontal Remark Peak Peak Peak Peak Peak
	1 2 3 4 Mark 1 2 3 4	MHz 3003.17 4605.81 4996.69 12024.96 802.11g Frequency MHz 3003.17 3498.74 4996.69 8002.06 802.11g Frequency	dBuV/m 57.01 51.31 52.00 42.07 Reading dBuV/m 52.23 51.18 51.97 46.25 Reading	28.51 30.91 31.39 39.53 Test chann dB 28.51 28.99 31.39 37.00 Test chann	4.72 5.87 6.09 10.72 el Cable dB 4.72 5.08 6.09 8.00 el	41.65 41.40 41.11 42.30 CH11 CH11 CH11 CH11 CH11	48.59 46.69 48.37 50.02 0 Level dBuV/m 43.81 43.65 48.34 50.44 Level	74.00 74.00 74.00 74.00 74.00 Polarity 74.00 74.00 74.00 74.00 74.00 74.00 74.00	-25.41 -27.31 -25.63 -23.98 Over limit -30.19 -30.35 -25.66 -23.56 Over	Peak Peak Peak Horizontal Remark Peak Peak Peak Peak Peak Peak
	1 2 3 4 Mark 1 2 3 4 Mark	MHz 3003.17 4605.81 4996.69 12024.96 802.11g Frequency MHz 3003.17 3498.74 4996.69 8002.06 802.11g Frequency MHz	dBuV/m 57.01 51.31 52.00 42.07 Reading dBuV/m 52.23 51.18 51.97 46.25 Reading dBuV/m	28.51 30.91 31.39 39.53 Test chann dB 28.51 28.99 31.39 37.00 Test chann g Antenna dB	4.72 5.87 6.09 10.72 el Cable dB 4.72 5.08 6.09 8.00 el Cable dB	41.65 41.40 41.11 42.30 CH11 CH11 CH11 CH11 Preamp dB	48.59 46.69 48.37 50.02 0 Level dBuV/m 43.81 43.65 48.34 50.44 Level dBuV/m	74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00	-25.41 -27.31 -25.63 -23.98 Over limit -30.19 -30.35 -25.66 -23.56 Over limit	Peak Peak Horizontal Remark Peak Peak Peak Peak Peak Peak Peak Pea
	1 2 3 4 Mark 1 2 3 4 Mark 1	MHz 3003.17 4605.81 4996.69 12024.96 802.11g Frequency MHz 3003.17 3498.74 4996.69 8002.06 802.11g Frequency MHz 3003.17	dBuV/m 57.01 51.31 52.00 42.07 Reading dBuV/m 52.23 51.18 51.97 46.25 Reading dBuV/m 55.19	28.51 30.91 31.39 39.53 Test chann dB 28.51 28.99 31.39 37.00 Test chann g Antenna dB 28.51	4.72 5.87 6.09 10.72 el Cable dB 4.72 5.08 6.09 8.00 el Cable dB 4.72	41.65 41.40 41.11 42.30 CH11 e Preamy dB 41.65 41.60 41.11 40.81 CH11 Preamp dB 41.65	48.59 46.69 48.37 50.02 0 Level dBuV/m 43.81 43.65 48.34 50.44 Level dBuV/m 46.77	74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00	-25.41 -27.31 -25.63 -23.98 Over limit -30.19 -30.35 -25.66 -23.56 Over limit -27.23	Peak Peak Peak Horizontal Remark Peak Peak Peak Peak Vertical Remark Peak
	1 2 3 4 Mark 1 2 3 4 Mark 1 2	MHz 3003.17 4605.81 4996.69 12024.96 802.11g Frequency MHz 3003.17 3498.74 4996.69 8002.06 802.11g Frequency MHz 3003.17 3498.74	dBuV/m 57.01 51.31 52.00 42.07 Reading dBuV/m 52.23 51.18 51.97 46.25 Reading dBuV/m 55.19 53.16	28.51 30.91 31.39 39.53 Test chann dB 28.51 28.99 31.39 37.00 Test chann dB 28.51 28.99 31.39 37.00	4.72 5.87 6.09 10.72 el Cable dB 4.72 5.08 6.09 8.00 el Cable dB 4.72 5.08	41.65 41.40 41.11 42.30 CH11 e Preamy dB 41.65 41.60 41.11 40.81 CH11 Preamp dB 41.65 41.65 41.60	48.59 46.69 48.37 50.02 D Level dBuV/m 43.81 43.65 48.34 50.44 Level dBuV/m 46.77 45.63	74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00	-25.41 -27.31 -25.63 -23.98 Over limit -30.19 -30.35 -25.66 -23.56 Over limit -27.23 -28.37	Peak Peak Peak Horizontal Remark Peak Peak Peak Peak Peak Peak Peak Pea
	1 2 3 4 Mark 1 2 3 4 Mark 1	MHz 3003.17 4605.81 4996.69 12024.96 802.11g Frequency MHz 3003.17 3498.74 4996.69 8002.06 802.11g Frequency MHz 3003.17	dBuV/m 57.01 51.31 52.00 42.07 Reading dBuV/m 52.23 51.18 51.97 46.25 Reading dBuV/m 55.19	28.51 30.91 31.39 39.53 Test chann dB 28.51 28.99 31.39 37.00 Test chann g Antenna dB 28.51	4.72 5.87 6.09 10.72 el Cable dB 4.72 5.08 6.09 8.00 el Cable dB 4.72	41.65 41.40 41.11 42.30 CH11 e Preamy dB 41.65 41.60 41.11 e Preamp dB 41.65 41.60 41.65 41.60 41.11	48.59 46.69 48.37 50.02 0 Level dBuV/m 43.81 43.65 48.34 50.44 Level dBuV/m 46.77 45.63 49.46	74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00 74.00	-25.41 -27.31 -25.63 -23.98 Over limit -30.19 -30.35 -25.66 -23.56 Over limit -27.23	Peak Peak Peak Horizontal Remark Peak Peak Peak Peak Vertical Remark Peak

Mark Frequency MHz Reading dBUV/m Antenna dB Cable dB Preamp dB Level dBUV/m Limit dBUV/m Over limit 1 3003.17 51.33 28.51 4.72 41.65 42.91 74.00 -31.0 2 3625.67 47.60 29.25 5.07 41.60 40.32 74.00 -33.6 3 4996.69 53.41 31.39 6.09 41.11 49.78 74.00 -24.2 4 5762.24 46.07 31.92 6.66 40.71 43.94 74.00 -30.6	t 9 Peak
1 3003.17 51.33 28.51 4.72 41.65 42.91 74.00 -31.00 2 3625.67 47.60 29.25 5.07 41.60 40.32 74.00 -33.00 3 4996.69 53.41 31.39 6.09 41.11 49.78 74.00 -24.2	9 Peak
3 4996.69 53.41 31.39 6.09 41.11 49.78 74.00 -24.2	n nank
	8 Peak
	2 Peak
	6 Peak
Type802.11n(HT20)Test channelCH01Polarity	Vertical
Mark Frequency Reading Antenna Cable Preamp Level Limit Over	
MHz dBuV/m dB dB dB dBuV/m dBuV/m limit	
1 3003.17 57.24 28.51 4.72 41.65 48.82 74.00 -25.18	
2 4996.69 52.76 31.39 6.09 41.11 49.13 74.00 -24.8	
3 5762.24 50.05 31.92 6.66 40.71 47.92 74.00 -26.08	
4 12024.96 41.59 39.53 10.72 42.30 49.54 74.00 -24.46	5 Peak
Type802.11n(HT20)Test channelCH06Polarity	Horizontal
Mark Frequency Reading Antenna Cable Preamp Level Limit Ov	
MHz dBuV/m dB dB dB dBuV/m dBuV/m lim	
1 3003.17 55.22 28.51 4.72 41.65 46.80 74.00 -27.	
2 3498.74 51.39 28.99 5.08 41.60 43.86 74.00 -30.	
3 5009.43 51.93 31.46 6.10 41.10 48.39 74.00 -25.	61 Peak
4 8002.06 45.78 37.00 8.00 40.81 49.97 74.00 -24.	03 Peak
Type802.11n(HT20)Test channelCH06Polarity	Vertical
Mark Frequency Reading Antenna Cable Preamp Level Limit Ov MHz dBuV/m dB dB dB dBuV/m dBuV/m lim	
1 3003.17 57.01 28.51 4.72 41.65 48.59 74.00 -25.	
2 4996.69 52.00 31.39 6.09 41.11 48.37 74.00 -25.	
2 4330.03 32.00 31.33 0.03 41.11 40.37 74.00 -23.	
	15 FEak
3 5762.24 49.98 31.92 6.66 40.71 47.85 74.00 -26.	70 Dook
	79 Peak
3 5762.24 49.98 31.92 6.66 40.71 47.85 74.00 -26.	79 Peak Horizontal
3 5762.24 49.98 31.92 6.66 40.71 47.85 74.00 -26. 4 10507.31 40.40 40.00 9.76 40.95 49.21 74.00 -24. Type 802.11n(HT20) Test channel CH11 Polarity	Horizontal
3 5762.24 49.98 31.92 6.66 40.71 47.85 74.00 -26. 4 10507.31 40.40 40.00 9.76 40.95 49.21 74.00 -24. Type 802.11n(HT20) Test channel CH11 Polarity Mark Frequency Reading Antenna Cable Preamp Level Limit 0	Horizontal ver Remark
3 5762.24 49.98 31.92 6.66 40.71 47.85 74.00 -26. 4 10507.31 40.40 40.00 9.76 40.95 49.21 74.00 -24. Type 802.11n(HT20) Test channel CH11 Polarity Mark Frequency MHz Reading dBuV/m Antenna dB Cable dB Preamp dB Level dBuV/m Limit dBuV/m O dBuV/m	Horizontal ver Remark mit
3 5762.24 49.98 31.92 6.66 40.71 47.85 74.00 -26. 4 10507.31 40.40 40.00 9.76 40.95 49.21 74.00 -24. Type 802.11n(HT20) Test channel CH11 Polarity Mark Frequency MHz Reading dBuV/m Antenna dB Cable Preamp dB Level Limit dBuV/m 0 dBuV/m 1 3003.17 55.24 28.51 4.72 41.65 46.82 74.00 -27	Horizontal ver Remark mit .18 Peak
3 5762.24 49.98 31.92 6.66 40.71 47.85 74.00 -26. 4 10507.31 40.40 40.00 9.76 40.95 49.21 74.00 -24. Type 802.11n(HT20) Test channel CH11 Polarity Mark Frequency MHz Reading dBuV/m Antenna dB Cable Preamp Level Limit O 1 3003.17 55.24 28.51 4.72 41.65 46.82 74.00 -27 2 3498.74 47.88 28.99 5.08 41.60 40.35 74.00 -33	Horizontal ver Remark mit .18 Peak .65 Peak
3 5762.24 49.98 31.92 6.66 40.71 47.85 74.00 -26. 4 10507.31 40.40 40.00 9.76 40.95 49.21 74.00 -24. Type 802.11n(HT20) Test channel CH11 Polarity Mark Frequency MHz Reading dBuV/m Antenna dB Cable dB Preamp dB Level Limit O 1 3003.17 55.24 28.51 4.72 41.65 46.82 74.00 -27 2 3498.74 47.88 28.99 5.08 41.60 40.35 74.00 -33 3 5009.43 52.17 31.46 6.10 41.10 48.63 74.00 -25	Horizontal ver Remark mit .18 Peak .65 Peak .37 Peak
3 5762.24 49.98 31.92 6.66 40.71 47.85 74.00 -26. 4 10507.31 40.40 40.00 9.76 40.95 49.21 74.00 -24. Type 802.11n(HT20) Test channel CH11 Polarity Mark Frequency MHz Reading dBuV/m Antenna dB Cable Preamp dB Level Limit O 1 3003.17 55.24 28.51 4.72 41.65 46.82 74.00 -27 2 3498.74 47.88 28.99 5.08 41.60 40.35 74.00 -33 3 5009.43 52.17 31.46 6.10 41.10 48.63 74.00 -25	Horizontal ver Remark mit .18 Peak .65 Peak
3 5762.24 49.98 31.92 6.66 40.71 47.85 74.00 -26. 4 10507.31 40.40 40.00 9.76 40.95 49.21 74.00 -24. Type 802.11n(HT20) Test channel CH11 Polarity Mark Frequency Reading Antenna Cable Preamp Level Limit 0 MHz dBuV/m dB dB dB dBuV/m dBuV/m 11 1 3003.17 55.24 28.51 4.72 41.65 46.82 74.00 -27 2 3498.74 47.88 28.99 5.08 41.60 40.35 74.00 -33 3 5009.43 52.17 31.46 6.10 41.10 48.63 74.00 -25	Horizontal ver Remark mit .18 Peak .65 Peak .37 Peak
3 5762.24 49.98 31.92 6.66 40.71 47.85 74.00 -26. 4 10507.31 40.40 40.00 9.76 40.95 49.21 74.00 -24. Type 802.11n(HT20) Test channel CH11 Polarity Mark Frequency Reading Antenna Cable Preamp Level Limit 0 1 3003.17 55.24 28.51 4.72 41.65 46.82 74.00 -27 2 3498.74 47.88 28.99 5.08 41.60 40.35 74.00 -25 4 10400.86 39.04 39.90 9.71 40.60 48.05 74.00 -25 Type 802.11n(HT20) Test channel CH11 Polarity	Horizontal wer Remark mit .18 Peak .65 Peak .37 Peak .95 Peak
3 5762.24 49.98 31.92 6.66 40.71 47.85 74.00 -26. 4 10507.31 40.40 40.00 9.76 40.95 49.21 74.00 -24. Type 802.11n(HT20) Test channel CH11 Polarity Mark Frequency Reading Antenna Cable Preamp Level Limit 0 1 3003.17 55.24 28.51 4.72 41.65 46.82 74.00 -27 2 3498.74 47.88 28.99 5.08 41.60 40.35 74.00 -25 3 5009.43 52.17 31.46 6.10 41.10 48.63 74.00 -25 4 10400.86 39.04 39.90 9.71 40.60 48.05 74.00 -25 Type 802.11n(HT20) Test channel CH11 Polarity -25 Mark Frequency Reading Antenna Cable Preamp Level Limit 0v	Horizontal ver Remark mit .18 Peak .65 Peak .37 Peak .95 Peak Vertical
3 5762.24 49.98 31.92 6.66 40.71 47.85 74.00 -26. 4 10507.31 40.40 40.00 9.76 40.95 49.21 74.00 -24. Type 802.11n(HT20) Test channel CH11 Polarity Mark Frequency MHz Reading dBuV/m Antenna dB Cable dB Preamp dB Level Limit O 1 3003.17 55.24 28.51 4.72 41.65 46.82 74.00 -27 2 3498.74 47.88 28.99 5.08 41.60 40.35 74.00 -27 3 5009.43 52.17 31.46 6.10 41.10 48.63 74.00 -25 4 10400.86 39.04 39.90 9.71 40.60 48.05 74.00 -25 Type 802.11n(HT20) Test channel CH11 Polarity Mark Frequency MHz Reading dBuV/m Antenna dBuV/m Cable Pre	Horizontal ver Remark mit .18 Peak .65 Peak .37 Peak .95 Peak Vertical
3 5762.24 49.98 31.92 6.66 40.71 47.85 74.00 -26. 4 10507.31 40.40 40.00 9.76 40.95 49.21 74.00 -24. Type 802.11n(HT20) Test channel CH11 Polarity Mark Frequency Reading Antenna Cable Preamp Level Limit 0 Mark Frequency Reading Antenna Cable Preamp Level Limit 0 Mark Frequency Reading Antenna Cable Preamp Level Limit 0 1 3003.17 55.24 28.51 4.72 41.65 46.82 74.00 -27 2 3498.74 47.88 28.99 5.08 41.60 40.35 74.00 -25 4 10400.86 39.04 39.90 9.71 40.60 48.63 74.00 -25 Type 802.11n(HT20) Test channel CH11 Polarity Mark Frequency Reading Antenna	Horizontal ver Remark mit .18 Peak .65 Peak .37 Peak .95 Peak Vertical ver Remark nit 31 Peak
3 5762.24 49.98 31.92 6.66 40.71 47.85 74.00 -26. 4 10507.31 40.40 40.00 9.76 40.95 49.21 74.00 -24. Type 802.11n(HT20) Test channel CH11 Polarity Mark Frequency Reading dBuV/m Antenna dB Cable Preamp dB Level Limit dBuV/m 0 1 3003.17 55.24 28.51 4.72 41.65 46.82 74.00 -27 2 3498.74 47.88 28.99 5.08 41.60 40.35 74.00 -25 3 5009.43 52.17 31.46 6.10 41.10 48.63 74.00 -25 4 10400.86 39.04 39.90 9.71 40.60 48.05 74.00 -25 Type 802.11n(HT20) Test channel CH11 Polarity Mark Frequency Reading Antenna Cable Preamp Level Limit Ov Mark Frequency Reading	Horizontal ver Remark mit .18 Peak .65 Peak .37 Peak .95 Peak Vertical ver Remark nit 31 Peak 21 Peak
3 5762.24 49.98 31.92 6.66 40.71 47.85 74.00 -26. 4 10507.31 40.40 40.00 9.76 40.95 49.21 74.00 -24. Type 802.11n(HT20) Test channel CH11 Polarity Mark Frequency Reading Antenna Cable Preamp Level Limit 0 Mark Frequency Reading Antenna Cable Preamp Level Limit 0 Mark Frequency Reading Antenna Cable Preamp Level Limit 0 1 3003.17 55.24 28.51 4.72 41.65 46.82 74.00 -27 2 3498.74 47.88 28.99 5.08 41.60 40.35 74.00 -25 4 10400.86 39.04 39.90 9.71 40.60 48.63 74.00 -25 Type 802.11n(HT20) Test channel CH11 Polarity Mark Frequency Reading Antenna	Horizontal ver Remark mit .18 Peak .65 Peak .37 Peak .95 Peak Vertical ver Remark mit 31 Peak 21 Peak 17 Peak


Туре		802.11ax	(HE20)	Test chann	el	CH01		Polarity		Horizontal
	Mark	Frequency MHz	Reading dBuV/r		Cable dB	e Preamp dB	p Level dBuV/n		Over limit	
	1	3003.17	53.68	28.51	4.72	41.65	45.26	74.00	-28.74	
	2	4223.95	48.22	29.95	5.79	41.40	42.56	74.00	-31.44	
	3	4996.69	52.17	31.39	6.09	41.11	48.54	74.00	-25.46	
	4	11515.68	40.57	40.47	10.37		49.11	74.00	-24.89	
Туре		802.11ax	(HE20)	Test chann	el	CH01		Polarity		Vertical
	Mark	Frequency	Readin	g Antenna	Cabl	e Pream	np Leve	l Limit	 Ove	r Remark
	PIGT K	MHz	dBuV/i		dB	dB	dBuV/			
	1	2995.54	55.51	28.50	4.75		47.11	74.00	-26.8	
	2	4605.81	47.83	30.91	5.87		43.21	74.00		
	3	4996.69	52.01	31.39	6.09		48.38	74.00		
	4	8002.06	42.70	37.00	8.00		46.89	74.00		
Туре		802.11ax	(HE20)	Test chann	ما	CH06		Polarity		Horizontal
Type		002.114	(1220)			01100		rolanty		TIONZONIA
	Mark	Frequency MHz	Readin dBuV/	-	Cabl dB	e Pream dB	p Level dBuV/r		Over limit	Remark
	1	3003.17	54.12	28.51	4.72		45.70	74.00	-28.30	
	2	3498.74	51.50	28.99	5.08	41.60	43.97	74.00	-30.03	Peak
	3	5009.43	51.92	31.46	6.10	41.10	48.38	74.00	-25.62	Peak
	4	8002.06	46.22	37.00	8.00	40.81	50.41	74.00	-23.59	Peak
Туре		802.11ax	(HE20)	Test chann	el	CH06		Polarity		Vertical
	Mark	Frequency	Reading	Antenna	Cable	Preamp	Level	Limit	Over	Remark
		MHZ	dBuV/m		dB	dB	dBuV/m	dBuV/m	limit	
	1	3003.17	56.11	28.51	4.72	41.65	47.69	74.00	-26.31	Peak
	2	4605.81	51.71	30.91	5.87	41.40	47.09	74.00	-26.91	Peak
	3	5009.43	53.31	31.46	6.10	41.10	49.77	74.00	-24.23	Peak
	4	5762.24	49.82	31.92	6.66	40.71	47.69	74.00	-26.31	Peak
Туре		802.11ax	(HE20)	Test chann	el	CH11		Polarity		Horizontal
	Mark	Frequency	Reading	Antenna	Cable	Preamp	Level	Limit	Over	Remark
	CION A.	MHZ	dBuV/m		dB	dB	dBuV/m	dBuV/m	limit	ACTION N
	1	3003.17	55.75	28.51	4.72	41.65	47.33	74.00	-26.67	Peak
	2	3498.74	48.42	28.99	5.08	41.60	40.89	74.00	-33.11	Peak
	3	4996.69	52.10	31.39	6.09	41.11	48.47	74.00	-25.53	Peak
	4	11457.21	39.86	40.46	10.33	42.30	48.35	74.00	-25.65	Peak
Туре		802.11ax	(HE20)	Test chann	el	CH11		Polarity		Vertical
•••										
	Mark	Frequency	Reading	Antenna	Cable	Preamp	Level	Limit	Over	Remark
		MHZ	dBuV/m	dB	dB	dB	dBuV/m		limit	
	1	3003.17	56.23	28.51	4.72		47.81		-26.19	Peak
				24 20	C 00	44 44	49.56	74.00	-24.44	Peak
	2	4996.69	53.19	31.39	6.09					
	3		53.19 45.06 40.40	35.14	7.35	40.89	46.66	74.00	-27.34	Peak Peak

6. TEST SETUP PHOTOS

Radiated Emission


Shenzhen Huatongwei International Inspection Co., Ltd.

Page:

2024-08-12

Refer to the test report No. CHTW24080050

8. <u>APPENDIX REPORT</u>