

TEST REPORT

Report No.:	BCTC2402983875-1E
Applicant:	ShenZhen Brand Sound Technology.,Ltd
Product Name:	Bluetooth module/SOC application software development
Test Model:	M8048H
Tested Date:	2024-02-27 to 2024-03-08
Issued Date:	2024-03-08
She	enzhen BCTC Testing Co., Ltd.
No. : BCTC/RF-EMC-005	Page: 1 of 85

FCC ID: 2BFB8-M8048H

Product Name:	Bluetooth module/SOC application software development
Trademark:	BrandSound
Model/Type Reference:	M8048H
Prepared For:	ShenZhen Brand Sound Technology.,Ltd
Address:	F5, Pengzhou Industrial Park office building, No.158,Fuyuan 1st Rd, FuHai street, Bao'an district, Shenzhen city, Guangdong, China
Manufacturer:	ShenZhen Brand Sound Technology.,Ltd
Address:	F5, Pengzhou Industrial Park office building, No.158,Fuyuan 1st Rd, FuHai street, Bao'an district, Shenzhen city, Guangdong, China
Prepared By:	Shenzhen BCTC Testing Co., Ltd.
Address:	1-2/F., Building B, Pengzhou Industrial Park, No.158, Fuyuan 1st Road, Zhancheng, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, China
Sample Received Date:	2024-02-27
Sample Tested Date:	2024-02-27 to 2024-03-08
Issue Date:	2024-03-08
Report No.:	BCTC2402983875-1E
Test Standards:	FCC Part15.247 ANSI C63.10-2013
Test Results:	PASS
Remark:	This is Bluetooth Classic radio test report.

Tested by: Zil

Eric Yang/Project Handler

Approved by:

Zero Zhou/Reviewer

The test report is effective only with both signature and specialized stamp. This result(s) shown in this report refer only to the sample(s) tested. Without written approval of Shenzhen BCTC Testing Co., Ltd, this report can't be reproduced except in full. The tested sample(s) and the sample information are provided by the client.

Page: 2 of 85

Table Of Content

Test	Report Declaration Pa	age
1.	Version	5
2.	Test Summary	6
3.	Measurement Uncertainty	7
4.	Product Information And Test Setup	
4.1	Product Information	
4.2	Test Setup Configuration	
4.3	Support Equipment	
4.4	Channel List	
4.5	Test Mode	
4.6	Table Of Parameters Of Text Software Setting	
5.	Test Facility And Test Instrument Used	
5.1	Test Facility	
5.2	Test Instrument Used	
6.	Conducted Emissions	
6.1	Block Diagram Of Test Setup	
6.2	Limit	
6.3	Test procedure	
6.4	EUT operating Conditions	
6.5	Test Result	
7.	Radiated emissions	
7.1	Block Diagram Of Test Setup	
7.2	Limit	
7.3	Test procedure	
7.4	EUT operating Conditions	
7.5	Test Result	
8.	Radiated Band Emission Measurement And Restricted Bands Of Operation	
8.1	Block Diagram Of Test Setup	
8.2	Limit	25
8.3	Test procedure	20 26
8.4	EUT operating Conditions	
8.5	Test Result	
9.	Spurious RF Conducted Emissions	
9. 9.1	Block Diagram Of Test Setup	20 28
9.1 9.2	Limit	20 28
9.2 9.3		20 28
9.3 9.4	Test Procedure	20
9. 4 10.	20 dB Bandwidth	
10.1	Test procedure Test Result 20 dB Bandwidth Block Diagram Of Test Setup	50
10.1	Limit	50 50
10.2	Tost procedure	50
10.3		
10.4	Maximum Peak Output Power	50 56
11.1	Riock Diagram Of Tost Sofun	
11.1	Block Diagram Of Test Setup	
11.2		
11.4		

12.	Hopping Channel Separation	62
12.1	Block Diagram Of Test Setup	
12.2	-	
12.3	Test procedure	62
12.4	Test Result	
13.	Number Of Hopping Frequency	
13.1	Block Diagram Of Test Setup	68
13.2	-	
13.3	Test procedure	68
13.4	Test Result	68
14.	Dwell Time	71
14.1	Block Diagram Of Test Setup	71
14.2		
14.3	Test procedure	71
14.4		71
15.	Antenna Requirement	81
15.1	Limit	81
15.2	Test Result	81
16.	EUT Photographs	82
	EUT Test Setup Photographs	

(Note: N/A Means Not Applicable)

No.: BCTC/RF-EMC-005

Page: 4 of 85

Edition: B.1

t Sea

1. Version

Report No.	Issue Date	Description	Approved
BCTC2402983875-1E	2024-03-08	Original	Valid

No. : BCTC/RF-EMC-005

Page: 5 of 85

Edition: B.1

2. Test Summary

The Product has been tested according to the following specifications:

No.	Test Parameter	Clause No	Results
1	Conducted emission AC power port	§15.207	PASS
2	Conducted peak output power for FHSS	§15.247(b)(1)	PASS
3	20dB Occupied bandwidth	§15.247(a)(1)	PASS
4	Hopping channel separation	§15.247(a)(1)	PASS
5	Number of hopping frequencies	§15.247(a)(1)(iii)	PASS
6	Dwell Time	§15.247(a)(1)(iii)	PASS
7	Spurious RF conducted emissions	§15.247(d)	PASS
8	Band edge	§15.247(d)	PASS
9	Spurious radiated emissions for transmitter	§15.247(d) & §15.209 & §15.205	PASS
10	Antenna Requirement	15.203	PASS

Page: 6 of 85

Edition: B.1

3. Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the Product as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

No.	Item	Uncertainty
1	3m chamber Radiated spurious emission(30MHz-1GHz)	U=4.3dB
2	3m chamber Radiated spurious emission(9KHz-30MHz)	U=3.7dB
3	3m chamber Radiated spurious emission(1GHz-18GHz)	U=4.5dB
4	3m chamber Radiated spurious emission(18GHz-40GHz)	U=3.34dB
5	Conducted Emission (150kHz-30MHz)	U=3.20dB
6	Conducted Adjacent channel power	U=1.38dB
7	Conducted output power uncertainty Above 1G	U=1.576dB
8	Conducted output power uncertainty below 1G	U=1.28dB
9	humidity uncertainty	U=5.3%
10	Temperature uncertainty	U=0.59°C

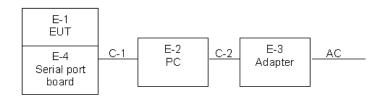
4. Product Information And Test Setup

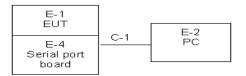
4.1 Product Information

Model/Type Reference:	M8048H
Model Differences:	N/A
Bluetooth Version:	5.4
Operation Frequency:	2402-2480MHz
Type of Modulation:	GFSK, π/ 4 DQPSK, 8DPSK
Number Of Channel:	79CH
Antenna installation:	PCB Antenna
Antenna Gain:	1.7 dBi
Ratings:	DC 3.3V
Remark:	The antenna gain of the product comes from the antenna report provided by the customer, and the test data is affected by the customer information.

No. : BCTC/RF-EMC-005

Page: 8 of 85


Edition: B.1


4.2 Test Setup Configuration

See test photographs attached in *EUT TEST SETUP PHOTOGRAPHS* for the actual connections between Product and support equipment.

Conducted Emission:

Radiated Spurious Emission

4.3 Support Equipment

No.	Device Type	Brand	Model	Series No.	Note
E-2	PC	Lenovo	T430	N/A	Auxiliary
E-3	Adapter	N/A	92P1107	N/A	Auxiliary
E-4	Serial port board	N/A	N/A	N/A	Auxiliary
		1944. 1944.			

Item	Shielded Type	Ferrite Core	Length	Note
C-1	NO	NO NO	0.8M	USB cable unshielded
C-2	NO	NO	1.0M	DC cable unshielded

Notes:

1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.

2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

4.4 Channel List

СН	Frequency (MHz)	СН	Frequency (MHz)	СН	Frequency (MHz)	СН	Frequency (MHz)
0	2402	1	2403	2	2404	3	2405
4	2406	5	2407	6	2408	7	2409
8	2410	9	2411	10	2412	11	2413
12	2414	13	2415	14	2416	15	2417
16	2418	17	2419	18	2420	19	2421
20	2422	21	2423	22	2424	23	2425
24	2426	25	2427	26	2428	27	2429
28	2430	29	2431	30	2432	31	2433
32	2434	33	2435	34	2436	35	2437
36	2438	37	2439	38	2440	39	2441
40	2442	41	2443	42	2444	43	2445
44	2446	45	2447	46	2448	47	2449
48	2450	49	2451	50	2452	51	2453
52	2454	53	2455	54	2456	55	2457
56	2458	57	2459	58	2460	59	2461
60	2462	61	2463	62	2464	63	2465
64	2466	65	2467	66	2468	67	2469
68	2470	69	2471	70	2472	71	2473
72	2474	73	2475	74	2476	75	2477
76	2478	77	2479	78	2480	79	/

4.5 Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

Test Mode	Test mode	Low channel	Middle channel	High channel	
1	Transmitting(GFSK)	2402MHz	2441MHz	2480MHz	
2	Transmitting(π/ 4 DQPSK)	2402MHz	2441MHz	2480MHz	
3	Transmitting(8DPSK)	2402MHz	2441MHz	2480MHz	
4	Transmitting (Conducted emission & Radiated emission)				

Note:

(1) The measurements are performed at the highest, middle, lowest available channels.

(2) Fully-charged battery is used during the test

4.6 Table Of Parameters Of Text Software Setting

During testing channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters

Test software Version	BT Tool	
Frequency	2402 MHz 2441 MHz	2480 MHz
Parameters	DEF	DEF

T

5. Test Facility And Test Instrument Used

5.1 Test Facility

All measurement facilities used to collect the measurement data are located at Shenzhen BCTC Testing Co., Ltd. Address:1-2/F., Building B, Pengzhou Industrial Park, No.158, Fuyuan 1st Road, Zhancheng, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, China. The site and apparatus are constructed in conformance with the requirements of ANSI C63.4 and CISPR 16-1-1 other equivalent standards.

FCC Test Firm Registration Number: 712850

A2LA certificate registration number is: CN1212

ISED Registered No.: 23583

ISED CAB identifier: CN0017

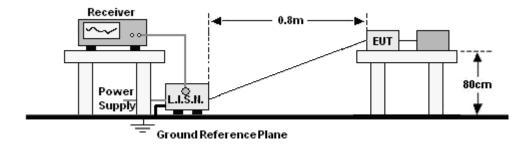
5.2 Test Instrument Used

Conducted Emissions Test							
Equipment	Manufacturer	Model#	Serial#	Last Cal.	Next Cal.		
Receiver	R&S	ESR3	102075	May 15, 2023	May 14, 2024		
LISN	R&S	ENV216	101375	May 15, 2023	May 14, 2024		
Software	Frad	EZ-EMC	EMC-CON 3A1	/	/		
Pulse limiter	Schwarzbeck	VTSD9561-F	01323	Sept. 22, 2023	Sept. 21, 2024		

RF Conducted Test						
Equipment	Manufacturer	Model#	Serial#	Last Cal.	Next Cal.	
Power Metter	Keysight	E4419	I.	May 15, 2023	May 14, 2024	
Power Sensor (AV)	Keysight	E9300A		May 15, 2023	May 14, 2024	
Signal Analyzer20kH z-26.5GHz	Keysight	N9020A	MY49100060	May 15, 2023	May 14, 2024	
Spectrum Analyzer9kHz- 40GHz	R&S	FSP40	100363	May 15, 2023	May 14, 2024	
Radio frequency control box	MAIWEI	MW100-RFC B		\ \		
Software	MAIWEI	MTS 8310				

Radiated Emissions Test (966 Chamber01)					
Equipment	Manufacturer	Model#	Serial#	Last Cal.	Next Cal.
966 chamber	ChengYu	966 Room	966	May 15, 2023	May 14, 2026
Receiver	R&S	ESR3	102075	May 15, 2023	May 14, 2024
Receiver	R&S	ESRP	101154	May 15, 2023	May 14, 2024
Amplifier	Schwarzbeck	BBV9744	9744-0037	May 15, 2023	May 14, 2024
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	942	May 29, 2023	May 28, 2024
Loop Antenna(9KHz -30MHz)	Schwarzbeck	FMZB1519B	00014	May 31, 2023	May 30, 2024
Amplifier	SKET	LAPA_01G1 8G-45dB	SK202104090 1	May 15, 2023	May 14, 2024
Horn Antenna	Schwarzbeck	BBHA9120D	1541	May 31, 2023	May 30, 2024
Amplifier(18G Hz-40GHz)	MITEQ	TTA1840-35- HG	2034381	May 15, 2023	May 14, 2024
Horn Antenn(18GH z-40GHz)	Schwarzbeck	BBHA9170	00822	May 31, 2023	May 30, 2024
Spectrum Analyzer9kHz- 40GHz	R&S	FSP40	100363	May 15, 2023	May 14, 2024
Software	Frad	EZ-EMC	FA-03A2 RE	\	Λ_{j}

c. CO.,LTA


No. : BCTC/RF-EMC-005

Edition : B.1

6. Conducted Emissions

6.1 Block Diagram Of Test Setup

6.2 Limit

	Limit (dBuV)
Frequency (MHz)	Quas-peak	Average
0.15 -0.5	66 - 56 *	56 - 46 *
0.50 -5.0	56.00	46.00
5.0 -30.0	60.00	50.00

Notes:

1. *Decreasing linearly with logarithm of frequency.

2. The lower limit shall apply at the transition frequencies.

6.3 Test procedure

Receiver Parameters		Setting	
Attenuation		10 dB	
Start Frequency		0.15 MHz	
Stop Frequency		30 MHz	
IF Bandwidth		9 kHz	

a. The Product was placed on a nonconductive table 0.8 m above the horizontal ground reference plane, and 0.4 m from the vertical ground reference plane, and connected to the main through Line Impedance Stability Network (L.I.S.N).

b. The RBW of the receiver was set at 9 kHz in 150 kHz ~ 30MHz with Peak and AVG detector in Max Hold mode. Run the receiver's pre-scan to record the maximum disturbance generated from Product in all power lines in the full band.

c. For each frequency whose maximum record was higher or close to limit, measure its QP and AVG values and record.

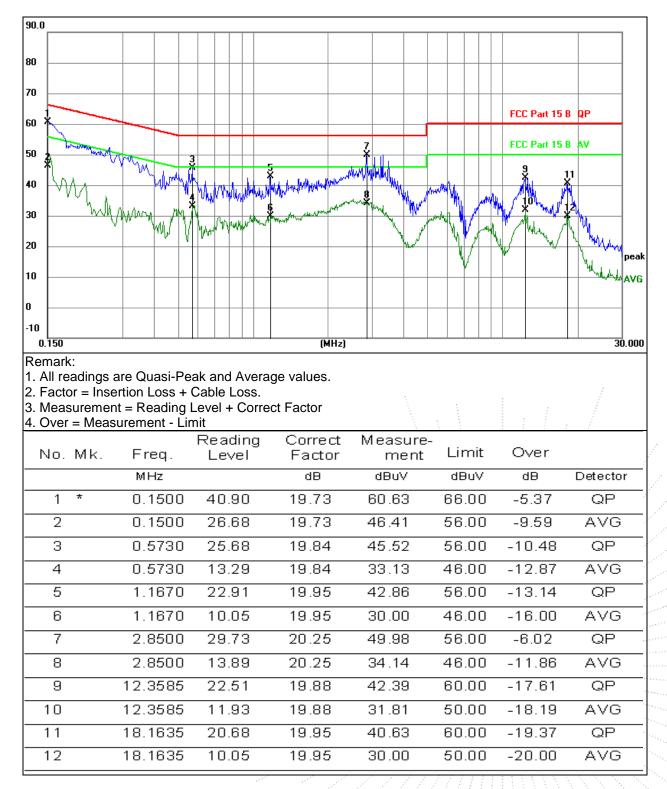
6.4 EUT operating Conditions

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

6.5 Test Result

Temperature:	26 ℃	2	Re	lative Humidity	/: 54%	6	
Pressure:	101k	(Pa	Te	st Voltage:	AC	120V/60Hz	
Test Mode:	Mode	e 4	Po	larization:	L		
90.0					·		
80							
70							
						FCC Part 15 E	3 QP
60 3						FCC Part 15 E	
50 2 10				9 X			
40	m hu X	7		46.1899		M	
30		Willia Million Mich	Long My May Marked Way	www.www.	My washing	$\begin{pmatrix} 1^2 \\ \end{pmatrix}$	A.
200 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	harm		a not show when	man and a start and a start and	mare maren	$7 \times W$	A Martine
20		₩₽₩₩₩₽	W WM W		War I		peak
10							AVG
0							
-10							
0.150			(MHz)			· .	30.000
Remark: 1. All readings are	Quasi-Pea	ak and Averag	ge values.	1		:	/
2. Factor = Insertic	on Loss + (Cable Loss.	-				
 Measurement = Over = Measure 			t Factor				
		Reading	Correct	Measure-		<u> </u>	
	Freq.	Level	Factor	ment	Limit	Over	
	MHz		dB	dBuV	dBuV	dB	Detector
	0.1539	41.09	19.74	60.83	65.79	-4.96	QP
	0.1539	27.84	19.74	47.58	55.79	-8.21	AVG
	0.2940	34.20	19.83	54.03	60.41		QP
	0.2940	15.74	19.83	35.57	50.41	-14.84	
	0.5611	23.43	19.84	43.27	56.00	-12.73	QP
	0.5611	12.38	19.84	32.22	46.00	-13.78	AVG
	1.1534	14.97	19.95	34.92	56.00	-21.08	QP -
8	1.1534	4.03	19.95	23.98	46.00	-22.02	AVG .
9 :	3.7395	26.03	20.57	46.60	56.00	-9.40	QP
					10 00	10.00	
	3.7395	6.55	20.57	27.12	46.00	-18.88	AVG
10 :	3.7395 2.3182	6.55 26.95	20.57 19.88	27.12 46.83	46.00	-18.88	

F


No. : BCTC/RF-EMC-005

Page: 14 of 85

Edition : B.1

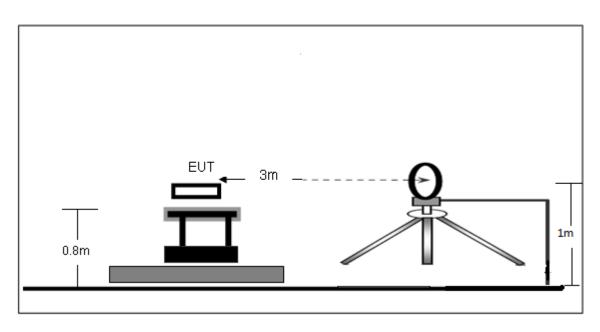
Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101KPa	Test Voltage:	AC 120V/60Hz
Test Mode:	Mode 4	Polarization:	Ν

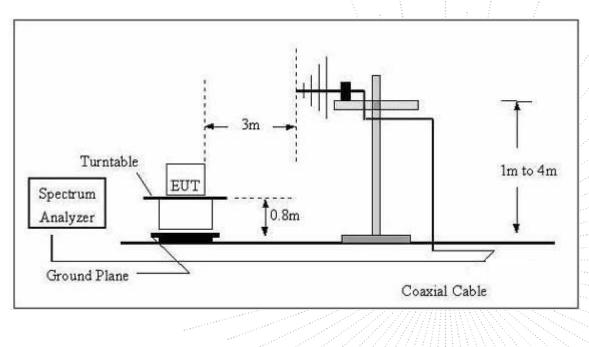
Page: 15 of 85

Edition : B.1

,TC 3C

PR


Por


7. Radiated emissions

7.1 Block Diagram Of Test Setup

(A) Radiated Emission Test-Up Frequency Below 30MHz

(B) Radiated Emission Test-Up Frequency 30MHz~1GHz

No. : BCTC/RF-EMC-005


TE,

T(

t sea

(C) Radiated Emission Test-Up Frequency Above 1GHz

7.2 Limit

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequency	Field Strength	Distance	Field Strength Limit at 3m Distance		
(MHz)	uV/m	(m)	uV/m	dBuV/m	
0.009 ~ 0.490	2400/F(kHz)	300	10000 * 2400/F(kHz)	20log ^{(2400/F(kHz))} + 80	
0.490 ~ 1.705	24000/F(kHz)	30	100 * 24000/F(kHz)	20log ^{(24000/F(kHz))} + 40	
1.705 ~ 30	30	30	100 * 30	20log ⁽³⁰⁾ + 40	
30 ~ 88	100	3	100	20log ⁽¹⁰⁰⁾	
88 ~ 216	150	3	150	20log ⁽¹⁵⁰⁾	
216 ~ 960	200	3	200	20log ⁽²⁰⁰⁾	
Above 960	500	3	500	20log ⁽⁵⁰⁰⁾	
	*				

Limits Of Radiated Emission Measurement (Above 1000MHz)

	Limit (dBuV/m) (at 3M)					
Frequency (MHz)	Peak	Average				
Above 1000	74	54				

Notes:

(1)The limit for radiated test was performed according to FCC PART 15C.

(2)The tighter limit applies at the band edges.

(3) Emission level (dBuV/m)=20log Emission level (uV/m).

ΞD

Frequency Range Of Radiated Measurement

(a) For an intentional radiator the spectrum shall be investigated from the lowest radio frequency signal generated in the device, without going below 9 kHz, up to at least the frequency shown in this paragraph:
(1) If the intentional radiator operates below 10 GHz: to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.

(2) If the intentional radiator operates at or above 10 GHz and below 30 GHz: to the fifth harmonic of the highest fundamental frequency or to 100 GHz, whichever is lower.

(3) If the intentional radiator operates at or above 30 GHz: to the fifth harmonic of the highest fundamental frequency or to 200 GHz, whichever is lower, unless specified otherwise elsewhere in the rules.

(4) If the intentional radiator operates at or above 95 GHz: To the third harmonic of the highest fundamental frequency or to 750 GHz, whichever is lower, unless specified otherwise elsewhere in the rules.

(5) If the intentional radiator contains a digital device, regardless of whether this digital device controls the functions of the intentional radiator or the digital device is used for additional control or function purposes other than to enable the operation of the intentional radiator, the frequency range shall be investigated up to the range specified in paragraphs (a) (1)through (4) of this section or the range applicable to the digital device, as shown in paragraph (b)(1) of this section, whichever is the higher frequency range of investigation.

7.3 Test procedure

Receiver Parameter	Setting
Attenuation	Auto
9kHz~150kHz	RBW 200Hz for QP
150kHz~30MHz	RBW 9kHz for QP
30MHz~1000MHz	RBW 120kHz for QP

Spectrum Parameter	Setting
1-25GHz	RBW 1 MHz /VBW 1 MHz for Peak, RBW 1 MHz / VBW 10Hz for Average

Below 1GHz test procedure as below:

a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

a. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.

b.The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

c.The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

d.For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.

e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

g. Test the EUT in the lowest channel, the middlest channel, the Highest channel. Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported.

7.4 EUT operating Conditions

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

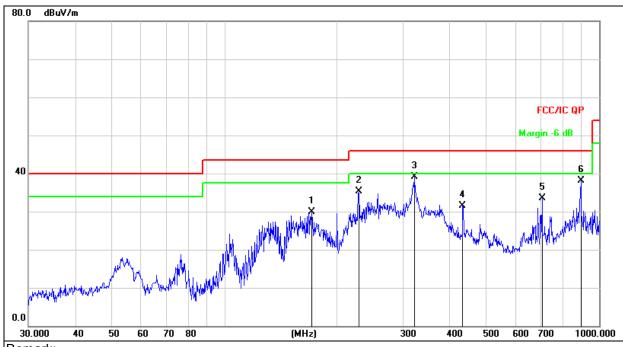
7.5 Test Result

Below 30MHz

Temperature:	26 °C	Relative Humidity:	54%
Pressure:	101KPa	Test Voltage:	DC 3.3V From Laptop
Test Mode:	Mode 4	Test vollage.	DC 5.3V FIOIII Laptop

Freq.	Reading	Limit	Margin	State
(MHz)	(dBuV/m)	(dBuV/m)	(dB)	P/F
				PASS
				PASS

Note:


The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

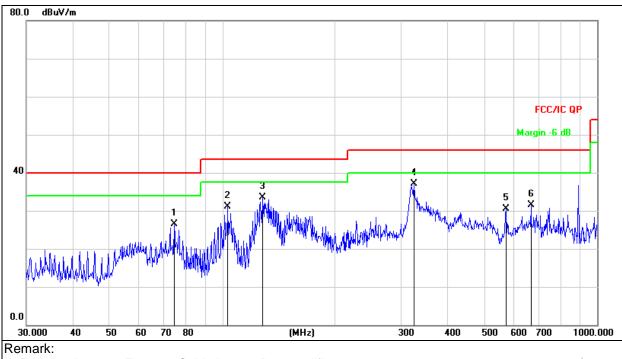
Distance extrapolation factor =40 log (specific distance/test distance)(dB); Limit line = specific limits(dBuv) + distance extrapolation factor.

Detween Joinitz - TOTIZ						
Temperature:	26 ℃	Relative Humidity:	54%			
Pressure:	101KPa	Test Voltage:	DC 3.3V From Laptop			
Test Mode:	Mode 4	Polarization:	Horizontal			

Between 30MHz – 1GHz

Remark:

Factor = Antenna Factor + Cable Loss – Pre-amplifier.
 Measurement = Reading Level + Correct Factor
 Over = Measurement - Limit


0.010	- 10000							
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
1	17	71.3926	47.77	-17.84	29.93	43.50	-13.57	QP
2	22	28.4904	50.12	-14.91	35.21	46.00	-10.79	QP
3	* 32	22.1886	51.59	-12.46	39.13	46.00	-6.87	QP
4	43	32.5457	41.80	-10.20	31.60	46.00	-14.40	QP
5	70	4.2261	39.24	-5.65	33.59	46.00	-12.41	QP
6	89	3.8567	41.32	-3.23	38.09	46.00	-7.91	QP

No. : BCTC/RF-EMC-005

Edition :

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101KPa	Test Voltage:	DC 3.3V From Laptop
Test Mode:	Mode 4	Polarization:	Vertical

Factor = Antenna Factor + Cable Loss – Pre-amplifier. Measurement = Reading Level + Correct Factor Over = Measurement - Limit

2. Meas		actor + Cable Los ading Level + Cor nt - Limit	•	er.			
No.	Mk. Fre	Reading eq. Level	g Correct Factor		e- Limit	Over	
	МН	lz dBuV	dB	dBuV/m	dB/m	dB	Detector
1	74.39	65 45.29	-18.77	26.52	40.00	-13.48	QP
2	103.44	21 47.27	-16.17	31.10	43.50	-12.40	QP
3	128.11	30 51.35	-17.90	33.45	43.50	-10.05	QP
4	* 324.45	61 49.41	-12.38	37.03	46.00	-8.97	QP
5	570.61	00 39.58	-8.99	30.59	46.00	-15.41	QP
6	665.80	35 37.53	-6.02	31.51	46.00	-14.49	QP

Edition :

Between 1GHz – 25GHz

Polar	Frequency	Reading Level	Correct Factor	Measure- ment	Limits	Over	Detector
(H/V)	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/ m)	(dB)	Туре
			GFSK Low ch	annel			
V	4804.00	71.31	-19.99	51.32	74.00	-22.68	PK
V	4804.00	62.53	-19.99	42.54	54.00	-11.46	AV
V	7206.00	61.31	-14.22	47.09	74.00	-26.91	PK
V	7206.00	51.81	-14.22	37.59	54.00	-16.41	AV
Н	4804.00	66.82	-19.99	46.83	74.00	-27.17	PK
Н	4804.00	57.52	-19.99	37.53	54.00	-16.47	AV
Н	7206.00	60.16	-14.22	45.94	74.00	-28.06	PK
Н	7206.00	51.26	-14.22	37.04	54.00	-16.96	AV
		G	FSK Middle c	hannel	•		•
V	4882.00	69.44	-19.84	49.60	74.00	-24.40	PK
V	4882.00	63.16	-19.84	43.32	54.00	-10.68	AV
V	7323.00	59.88	-13.90	45.98	74.00	-28.02	PK
V	7323.00	51.43	-13.90	37.53	54.00	-16.47	AV
Н	4882.00	66.29	-19.84	46.45	74.00	-27.55	PK
Н	4882.00	56.16	-19.84	36.32	54.00	-17.68	AV
Н	7323.00	58.21	-13.90	44.31	74.00	-29.69	PK
Н	7323.00	50.06	-13.90	36.16	54.00	-17.84	AV
			GFSK High ch	annel			
V	4960.00	71.47	-19.68	51.79	74.00	-22.21	PK
V	4960.00	62.07	-19.68	42.39	54.00	-11.61	AV
V	7440.00	64.98	-13.57	51.41	74.00	-22.59	PK
V	7440.00	54.40	-13.57	40.83	54.00	-13.17	AV
Н	4960.00	69.40	-19.68	49.72	74.00	-24.28	PK
Н	4960.00	58.64	-19.68	38.96	54.00	-15.04	AV
Н	7440.00	62.60	-13.57	49.03	74.00	-24.97	PK
Н	7440.00	54.17	-13.57	40.60	54.00	-13.40	AV

Remark:

1. Measurement = Reading Level + Correct Factor, Correct Factor = Antenna Factor + Cable Loss – Pre-amplifier. Over= Measurement - Limit

2.If peak below the average limit, the average emission was no test.

3. In restricted bands of operation, The spurious emissions below the permissible value more than 20dB

4. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

TE, T(OV se

Polar	Frequency	Reading Level	Correct Factor	Measure- ment	Limits	Over	Detector
(H/V)	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/ m)	(dB)	Туре
		π/4	DQPSK Low	channel			
V	4804.00	72.07	-19.99	52.08	74.00	-21.92	PK
V	4804.00	63.06	-19.99	43.07	54.00	-10.93	AV
V	7206.00	62.24	-14.22	48.02	74.00	-25.98	PK
V	7206.00	53.16	-14.22	38.94	54.00	-15.06	AV
Н	4804.00	70.96	-19.99	50.97	74.00	-23.03	PK
Н	4804.00	60.64	-19.99	40.65	54.00	-13.35	AV
Н	7206.00	60.40	-14.22	46.18	74.00	-27.82	PK
Н	7206.00	53.32	-14.22	39.10	54.00	-14.90	AV
	π/4 DQPSK Middle channel						
V	4882.00	70.38	-19.84	50.54	74.00	-23.46	PK
V	4882.00	63.21	-19.84	43.37	54.00	-10.63	AV
V	7323.00	60.54	-13.90	46.64	74.00	-27.36	PK
V	7323.00	52.46	-13.90	38.56	54.00	-15.44	AV
Н	4882.00	65.51	-19.84	45.67	74.00	-28.33	PK
Н	4882.00	56.17	-19.84	36.33	54.00	-17.67	AV
Н	7323.00	58.05	-13.90	44.15	74.00	-29.85	PK
Н	7323.00	50.43	-13.90	36.53	54.00	-17.47	AV
		π/4	DQPSK High	channel			
V	4960.00	71.84	-19.68	52.16	74.00	-21.84	PK
V	4960.00	60.86	-19.68	41,18	54.00	-12.82	AV
V	7440.00	64.93	-13.57	51.36	74.00	-22.64	PK
V	7440.00	55.01	-13.57	41.44	54.00	-12.56	AV
Н	4960.00	69.04	-19.68	49.36	74.00	-24.64	PK
Н	4960.00	58.32	-19.68	38.64	54.00	-15.36	AV
Н	7440.00	63.20	-13.57	49.63	74.00	-24.37	PK
Н	7440.00	55.27	-13.57	41.70	54.00	-12.30	AV

Remark:

1. Measurement = Reading Level + Correct Factor, Correct Factor = Antenna Factor + Cable Loss – Pre-amplifier. Over= Measurement - Limit

2.If peak below the average limit, the average emission was no test.

3. In restricted bands of operation, The spurious emissions below the permissible value more than 20dB

4. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Polar	Frequency	Reading Level	Correct Factor	Measure- ment	Limits	Over	Detector
(H/V)	(MHz)	(dBuV/m)	(dB)	(dBuV/m)	(dBuV/ m)	(dB)	Туре
		8	BDPSK Low cl	nannel			
V	4804.00	70.55	-19.99	50.56	74.00	-23.44	PK
V	4804.00	61.94	-19.99	41.95	54.00	-12.05	AV
V	7206.00	60.08	-14.22	45.86	74.00	-28.14	PK
V	7206.00	50.36	-14.22	36.14	54.00	-17.86	AV
Н	4804.00	66.92	-19.99	46.93	74.00	-27.07	PK
Н	4804.00	56.92	-19.99	36.93	54.00	-17.07	AV
Н	7206.00	58.11	-14.22	43.89	74.00	-30.11	PK
Н	7206.00	50.46	-14.22	36.24	54.00	-17.76	AV
		80	OPSK Middle	channel			
V	4882.00	67.94	-19.84	48.10	74.00	-25.90	PK
V	4882.00	61.81	-19.84	41.97	54.00	-12.03	AV
V	7323.00	59.06	-13.90	45.16	74.00	-28.84	PK
V	7323.00	49.32	-13.90	35.42	54.00	-18.58	AV
Н	4882.00	63.22	-19.84	43.38	74.00	-30.62	PK
Н	4882.00	53.41	-19.84	33.57	54.00	-20.43	AV
Н	7323.00	57.47	-13.90	43.57	74.00	-30.43	PK
Н	7323.00	49.75	-13.90	35.85	54.00	-18.15	AV
		8	DPSK High c	hannel			
V	4960.00	69.22	-19.68	49.54	74.00	-24.46	PK
V	4960.00	60.52	-19.68	40.84	54.00	-13.16	AV
V	7440.00	60.60	-13.57	47.03	74.00	-26.97	PK
V	7440.00	51.28	-13.57	37.71	54.00	-16.29	AV
Н	4960.00	67.28	-19.68	47.60	74.00	-26.40	PK
Н	4960.00	56.32	-19.68	36.64	54.00	-17.36	AV
Н	7440.00	58.10	-13.57	44.53	74.00	-29.47	PK
Н	7440.00	50.99	-13.57	37.42	54.00	-16.58	AV

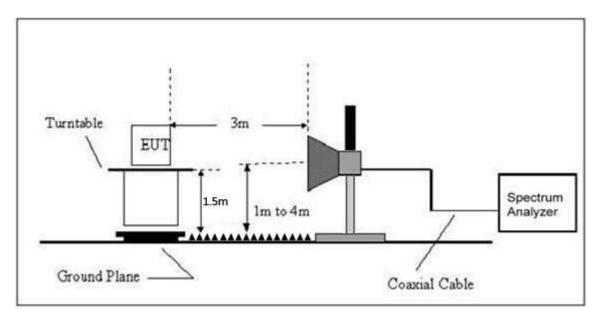
Remark:

1. Measurement = Reading Level + Correct Factor, Correct Factor = Antenna Factor + Cable Loss – Pre-amplifier. Over= Measurement - Limit

2.If peak below the average limit, the average emission was no test.

3. In restricted bands of operation, The spurious emissions below the permissible value more than 20dB 4. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

No.: BCTC/RF-EMC-005


Page: 24 of 85

8. Radiated Band Emission Measurement And Restricted Bands Of Operation

8.1 Block Diagram Of Test Setup

Radiated Emission Test-Up Frequency Above 1GHz

8.2 Limit

FCC Part15 C Section 15.209 and 15.205

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(²)
13.36-13.41			

Limits Of Radiated Emission Measurement (Above 1000MHz)

Frequency (MHz)	Limit (dBuV/m) (at 3M)				
Frequency (MHz)	Peak	Average			
Above 1000	74	54			

Notes:

(1)The limit for radiated test was performed according to FCC PART 15C.

(2) The tighter limit applies at the band edges.

(3)Emission level (dBuV/m)=20log Emission level (uV/m).

8.3 Test procedure

Receiver Parameter	Setting
Attenuation	Auto
Start Frequency	2300MHz
Stop Frequency	2520
RB / VB (Emission In Restricted Band)	1 MHz / 1 MHz for Peak, 1 MHz / 10Hz for Average

Above 1GHz test procedure as below:

a. The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

c.The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

d.For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.

e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

g. Test the EUT in the lowest channel, the Highest channel.

Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported.

8.4 EUT operating Conditions

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

E

8.5 Test Result

Test mode	Polar (H/V)	Frequency (MHz)	Reading Level (dBuV/m)	Correct Factor (dB)	Measure- ment (dBuV/m)	(dBuV/m)		Over	Result	
			(ubuv/iii)	(UD)	PK	PK	AV	PK		
	Low Channel 2402MHz									
GFSK	Н	2390.00	72.98	-25.43	47.55	74.00	54.00	-26.45	PASS	
	Н	2400.00	75.55	-25.40	50.15	74.00	54.00	-23.85	PASS	
	V	2390.00	72.93	-25.43	47.50	74.00	54.00	-26.50	PASS	
	V	2400.00	73.87	-25.40	48.47	74.00	54.00	-25.53	PASS	
	High Channel 2480MHz									
	Н	2483.50	72.44	-25.15	47.29	74.00	54.00	-26.71	PASS	
	Н	2500.00	68.17	-25.10	43.07	74.00	54.00	-30.93	PASS	
	V	2483.50	71.70	-25.15	46.55	74.00	54.00	-27.45	PASS	
	V	2500.00	67.52	-25.10	42.42	74.00	54.00	-31.58	PASS	
π/4DQPSK		Low Channel 2402MHz								
	Н	2390.00	73.96	-25.43	48.53	74.00	54.00	-25.47	PASS	
	Н	2400.00	74.99	-25.40	49.59	74.00	54.00	-24.41	PASS	
	V	2390.00	73.36	-25.43	47.93	74.00	54.00	-26.07	PASS	
	V	2400.00	73.34	-25.40	47.94	74.00	54.00	-26.06	PASS	
	High Channel 2480MHz									
	Н	2483.50	72.20	-25.15	47.05	74.00	54.00	-26.95	PASS	
	Н	2500.00	69.39	-25.10	44.29	74.00	54.00	-29.71	PASS	
	V	2483.50	71.94	-25.15	46.79	74.00	54.00	-27.21	PASS	
	V	2500.00	68.87	-25.10	43.77	74.00	54.00	-30.23	PASS	
8DPSK		Low Channel 2402MHz								
	Н	2390.00	73.33	-25.43	47.90	74.00	54.00	-26.10	PASS	
	Н	2400.00	74.85	-25.40	49.45	74.00	54.00	-24.55	PASS	
	V	2390.00	72.45	-25.43	47.02	74.00	54.00	-26.98	PASS	
	V	2400.00	73.47	-25.40	48.07	74.00	54.00	-25.93	PASS	
	High Channel 2480MHz									
	Н	2483.50	71.84	-25.15	46.69	74.00	54.00	-27.31	PASS	
	Н	2500.00	68.49	-25.10	43.39	74.00	54.00	-30.61	PASS	
	V	2483.50	71.95	-25.15	46.80	74.00	54.00	-27.20	PASS	
	V	2500.00	68.07	-25.10	42.97	74.00	54.00	-31.03	PASS	

Remark:

1. Measurement = Reading Level + Correct Factor, Correct Factor = Antenna Factor + Cable Loss - Pre-amplifier.

2. If the PK measured levels comply with average limit, then the average level were deemed to comply with average limit.

3. In restricted bands of operation, The spurious emissions below the permissible value more than 20dB

4. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

ТC

DOI

9. Spurious RF Conducted Emissions

9.1 Block Diagram Of Test Setup

9.2 Limit

Regulation 15.247 (d),In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.205(c))

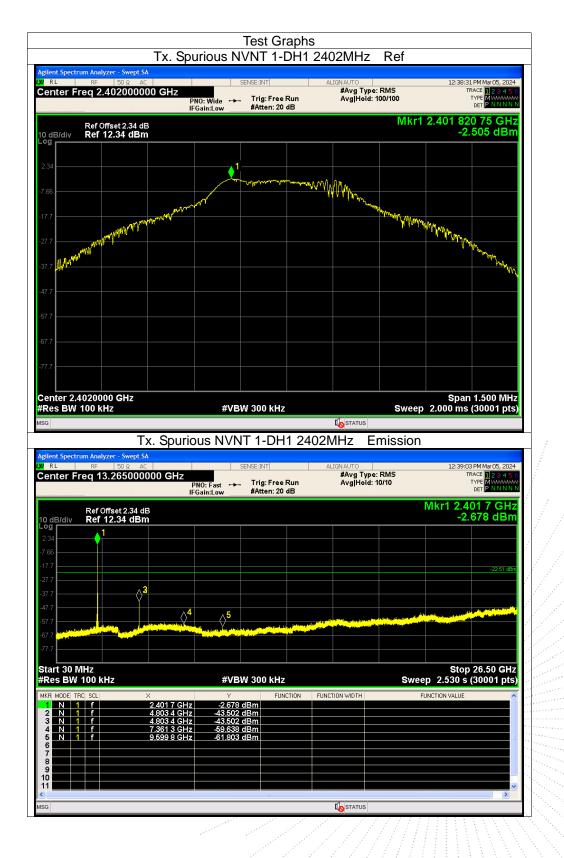
9.3 Test procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;

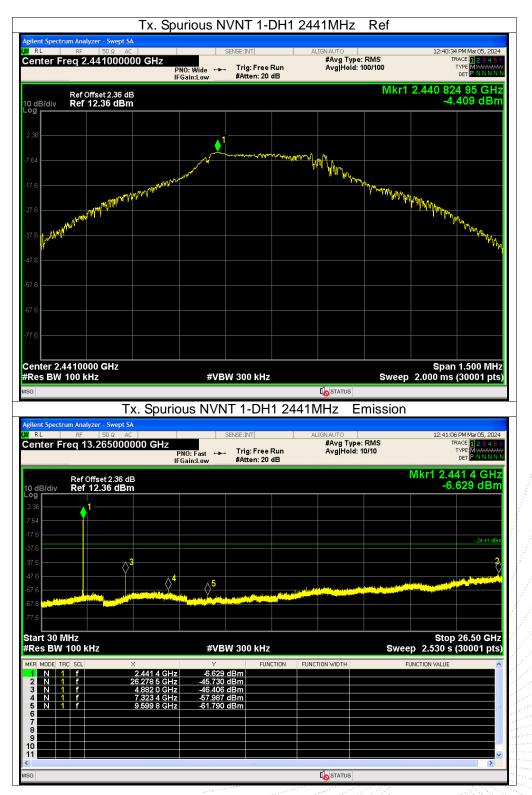
2. Set the spectrum analyzer:

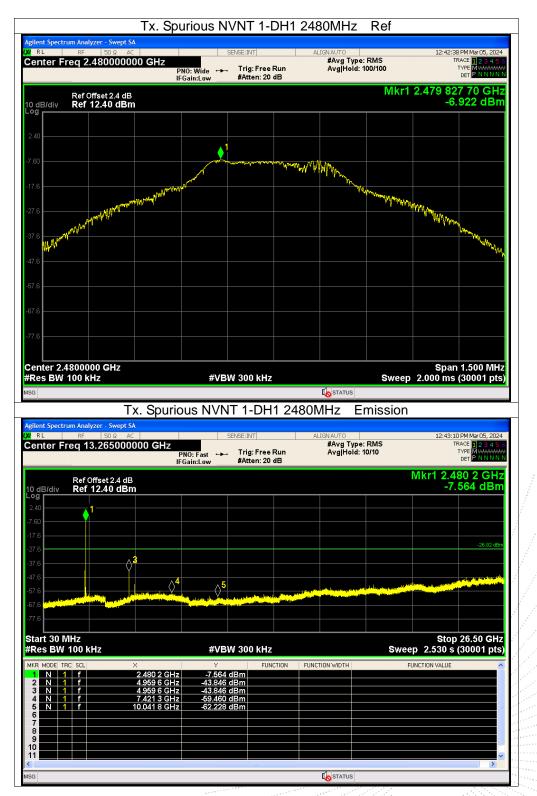
RBW = 100kHz, VBW = 300kHz, Sweep = auto

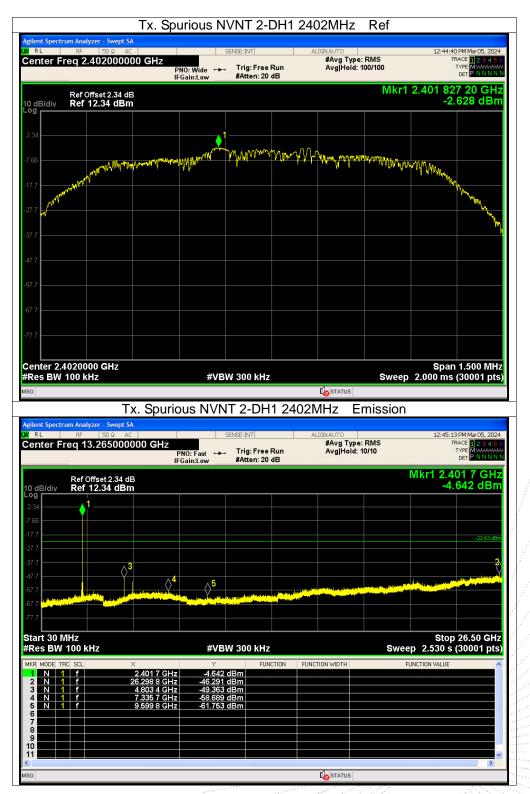
Detector function = peak, Trace = max hold

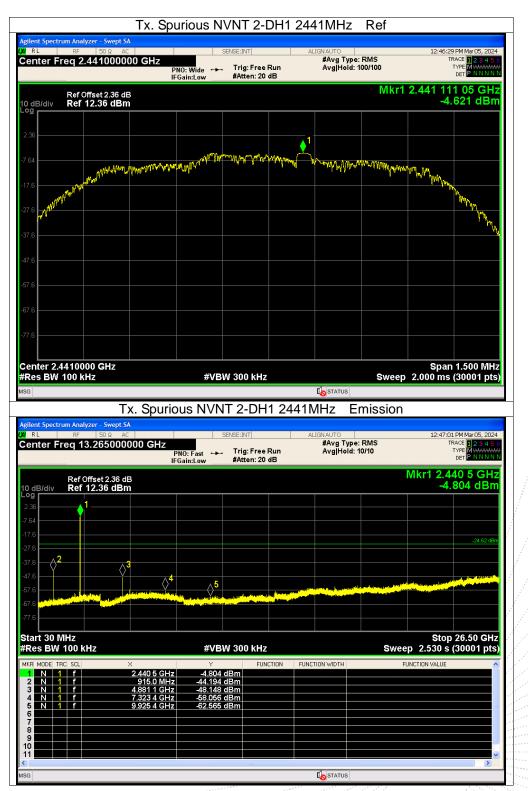


Page: 28 of 8

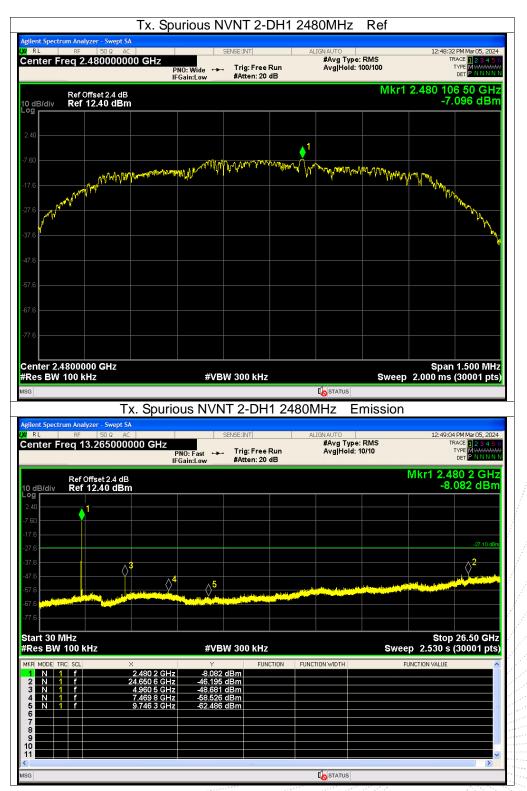

Edition : B.1

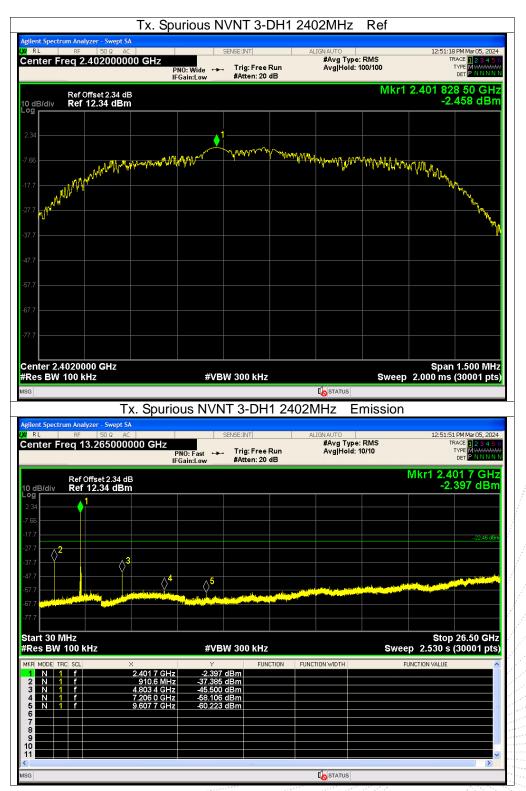

9.4 Test Result



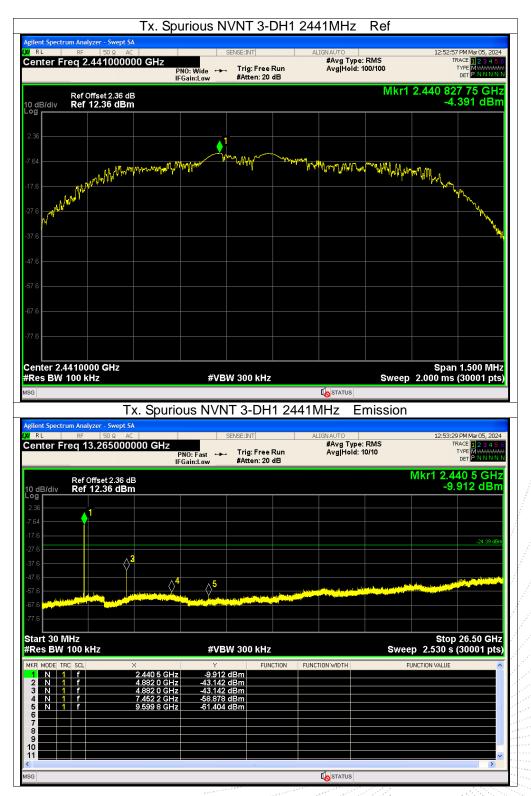

Edition : B.1

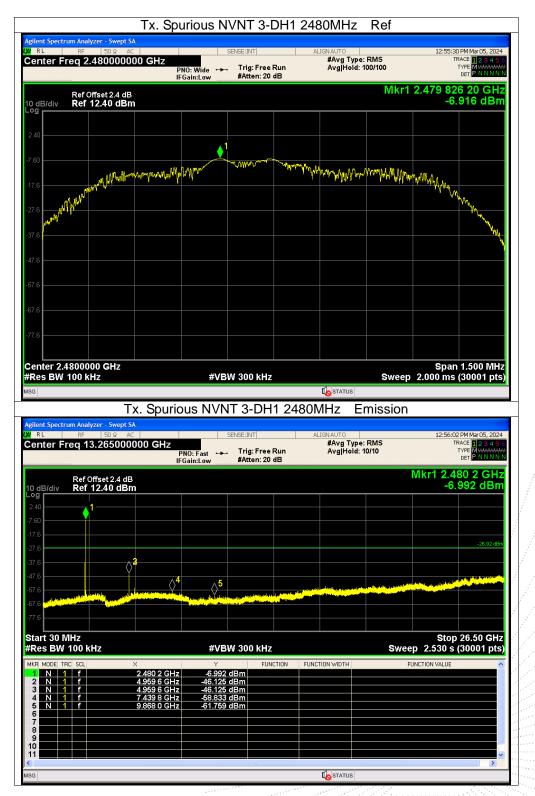
Edition : B.1

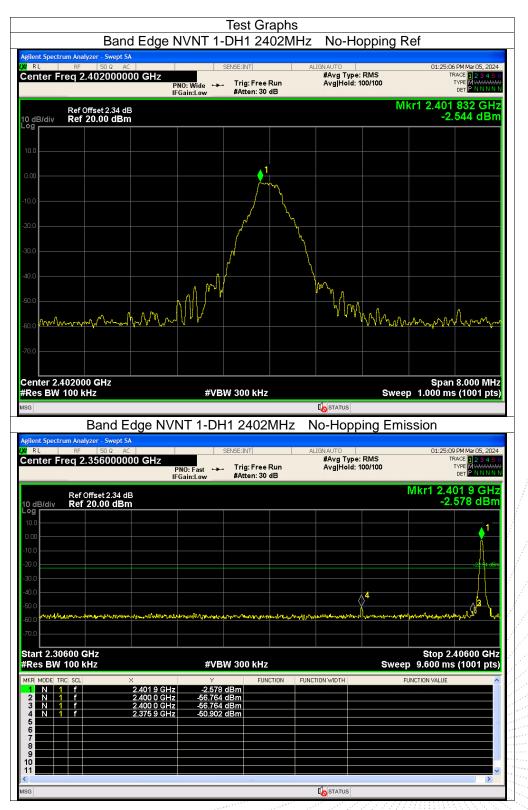


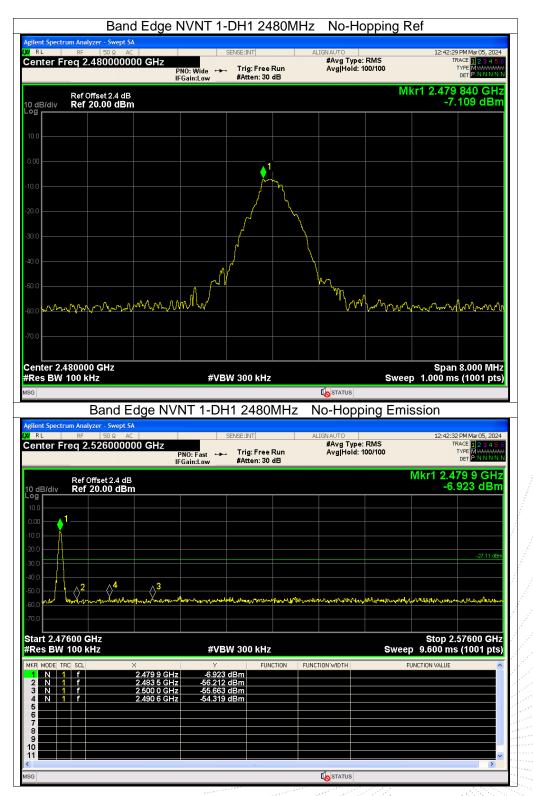

JC JC PPR

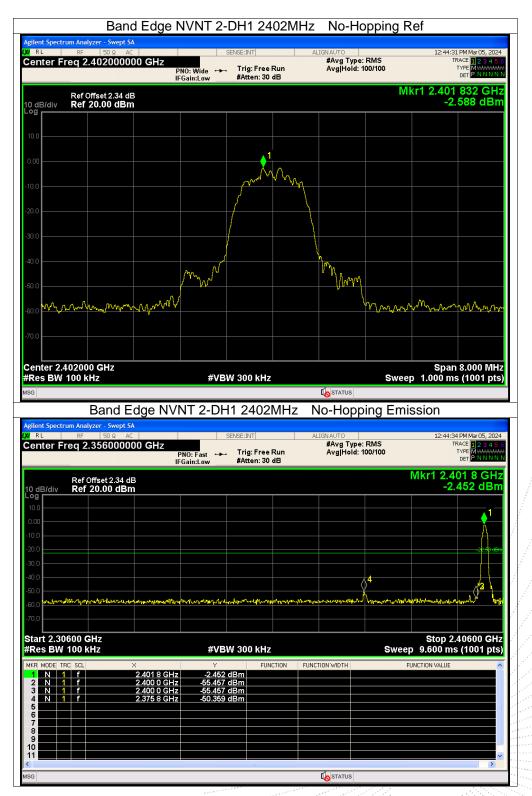
еро

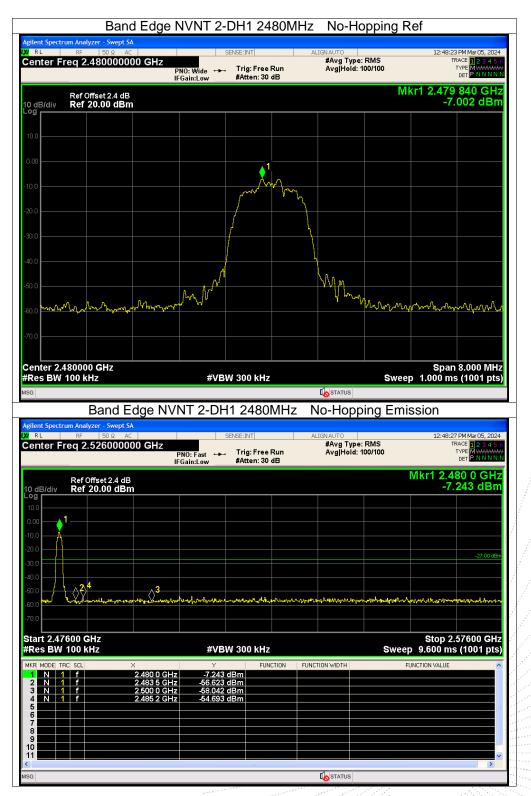


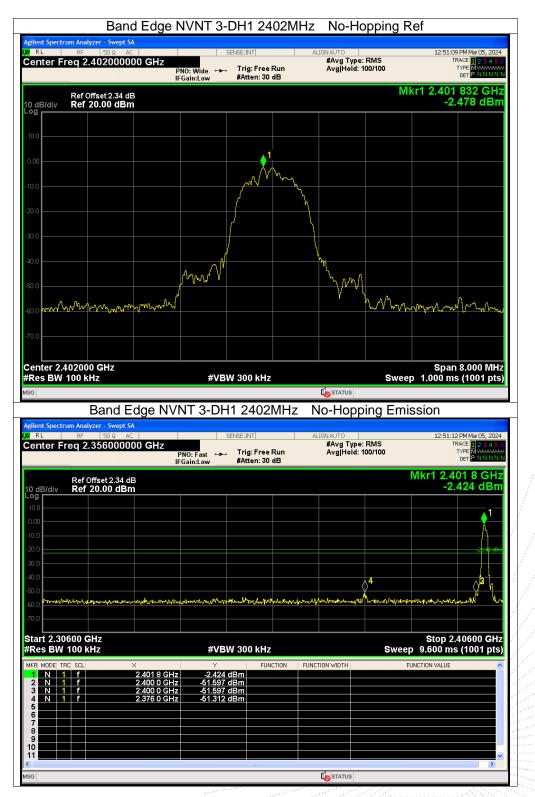


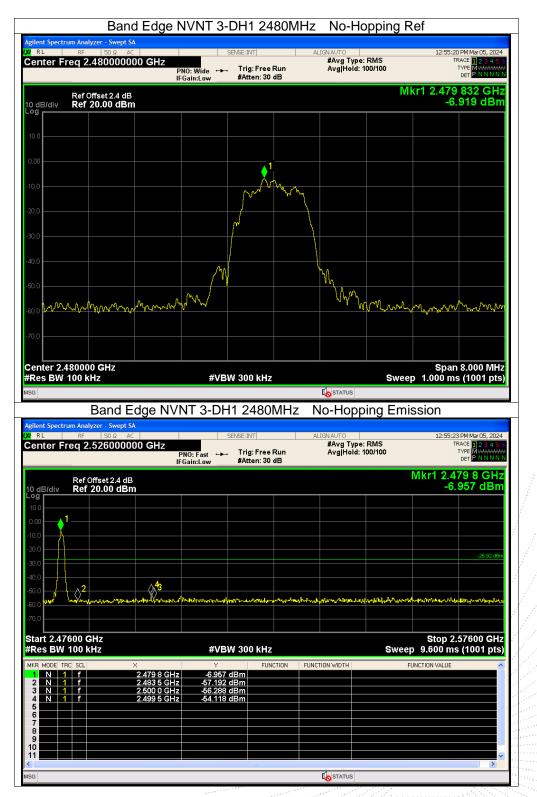






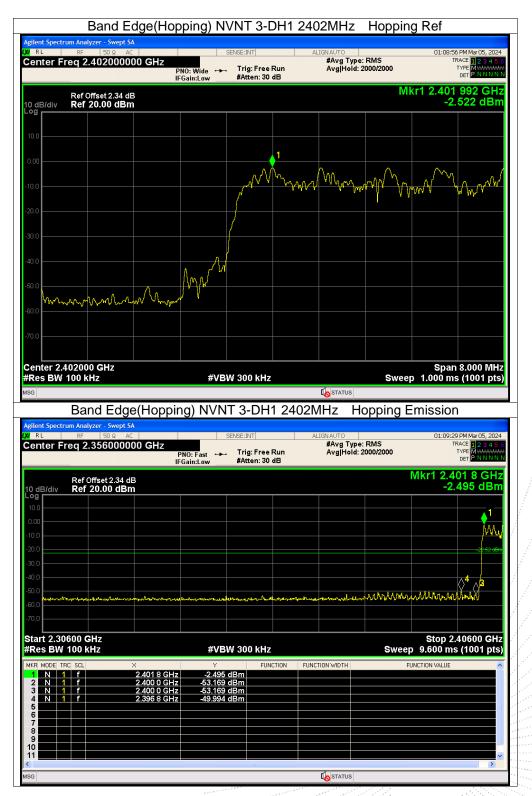






No.: BCTC/RF-EMC-005

еро



10. 20 dB Bandwidth

10.1 Block Diagram Of Test Setup

10.2 Limit

N/A

10.3 Test procedure

1. Set RBW = 30kHz.

2. Set the video bandwidth (VBW) \ge 3 x RBW.

3. Detector = Peak.

4. Trace mode = max hold.

5. Sweep = auto couple.

6. Allow the trace to stabilize.

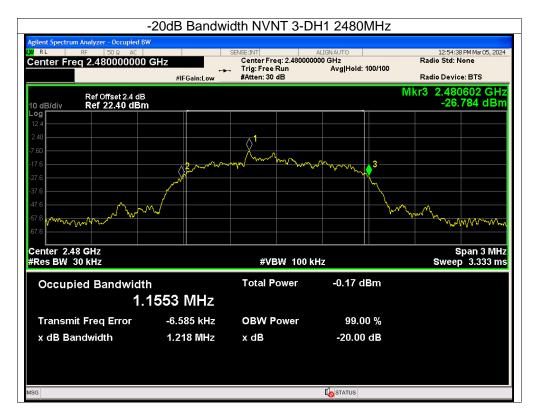
7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

10.4 Test Result

Condition	Mode	Frequency (MHz)	-20 dB Bandwidth (MHz)	Verdict
NVNT	1-DH1	2402	0.848	Pass
NVNT	1-DH1	2441	0.863	Pass
NVNT	1-DH1	2480	0.867	Pass
NVNT	2-DH1	2402	1.252	Pass
NVNT	2-DH1	2441	1.282	Pass
NVNT	2-DH1	2480	1.28	Pass
NVNT	3-DH1	2402	1.221	Pass
NVNT	3-DH1	2441	1.213	Pass
NVNT	3-DH1	2480	1.218	Pass
		· · · · · · · · · · · · · · · · · · ·		

JC JC PPR

еро



No.: BCTC/RF-EMC-005

Page: 55 of 85

11. Maximum Peak Output Power

11.1 Block Diagram Of Test Setup

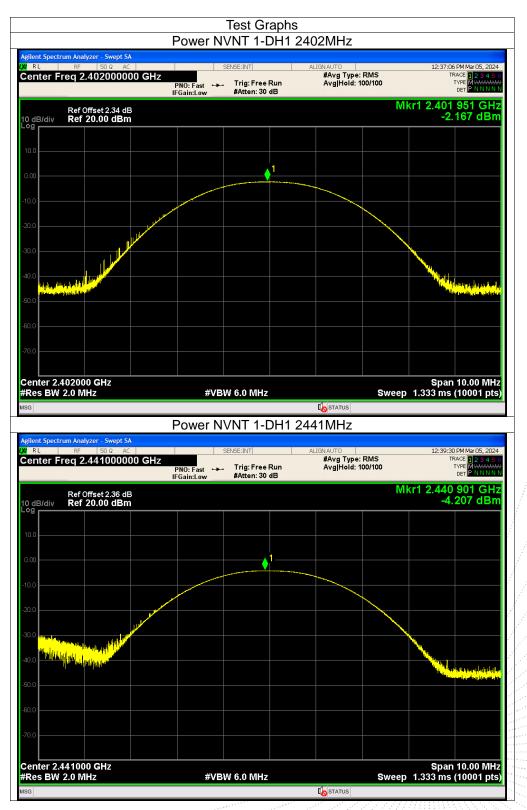
11.2 Limit

		FCC Part15 (15.247) , S	ubpart C	
Section	Test Item	Limit	Frequency Range (MHz)	Result
15.247(b)(1)	Peak Output Power	0.125 watt or 21dBm	2400-2483.5	PASS

11.3 Test procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

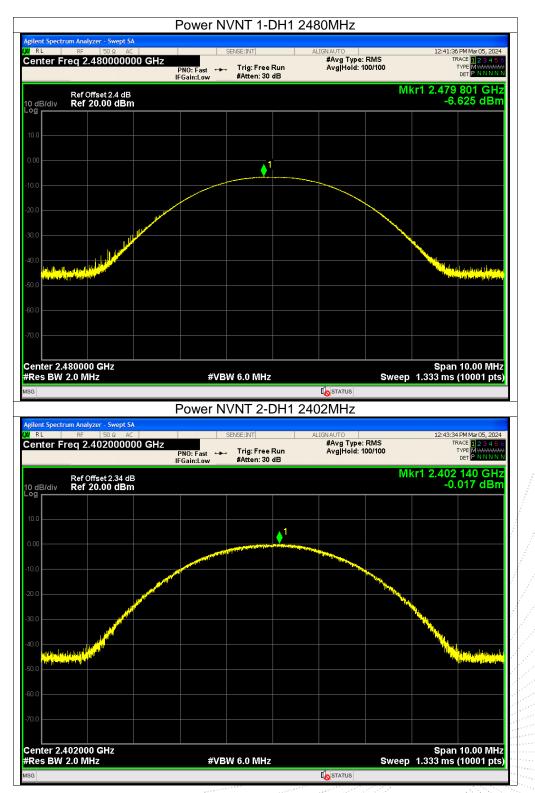
2. Set the spectrum analyzer: RBW = 2MHz. VBW = 6MHz. Sweep = auto; Detector Function = Peak.


3. Keep the EUT in transmitting at lowest, medium and highest channel individually. Record the max value.

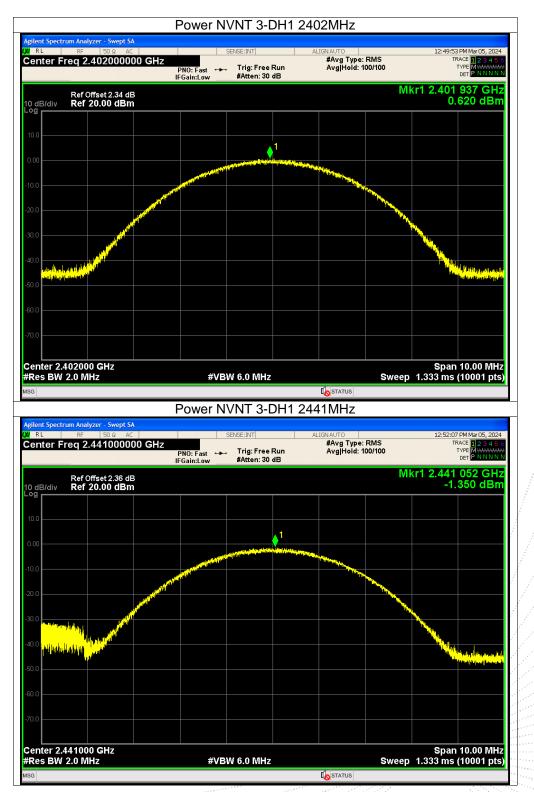
11.4 Test Result

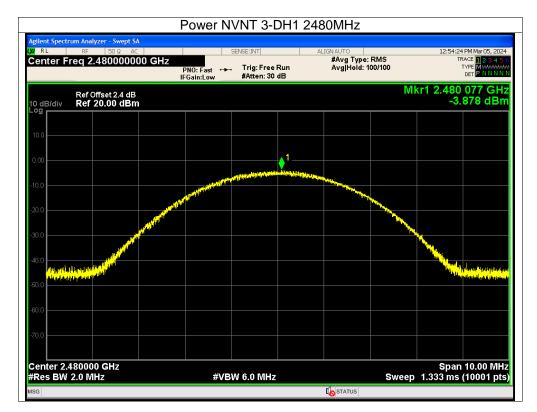
Condition	Mode	Frequency (MHz)	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	1-DH1	2402	-2.17	21	Pass
NVNT	1-DH1	2441	-4.21	21	Pass
NVNT	1-DH1	2480	-6.63	21	Pass
NVNT	2-DH1	2402	-0.02	21	Pass
NVNT	2-DH1	2441	-2.04	21	Pass
NVNT	2-DH1	2480	-4.48	21	Pass
NVNT	3-DH1	2402	0.62	21	Pass
NVNT	3-DH1	2441	-1.35	21	Pass
NVNT	3-DH1	2480	-3.88	21	Pass

E



epoi





C 00.,LT

No.: BCTC/RF-EMC-005

Page: 61 of 85

12. Hopping Channel Separation

12.1 Block Diagram Of Test Setup

12.2 Limit

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 0.125W.

12.3 Test procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

2. Set the spectrum analyzer: RBW = 30kHz. VBW = 100kHz , Span = 2.0MHz. Sweep = auto; Detector Function = Peak. Trace = Max hold.

3. Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. The limit is specified in one of the subparagraphs of this Section Submit this plot.

odulation	Test Channel	Separation (MHz)	Limit(MHz)	Result
GFSK	Low Market	1.000	0.565	PASS
GFSK	Middle	0.998	0.575	PASS
GFSK	High Mark	1.002	0.578	PASS
π/4 DQPSK	Low	1.002	0.835	PASS
π/4 DQPSK	Middle	1.000	0.855	PASS
π/4 DQPSK	High	1.000	0.853	PASS
8DPSK	Low	1.000	0.814	PASS
8DPSK	Middle	0.998	0.809	PASS
8DPSK	High	1.002	0.812	PASS

12.4 Test Result

Edition : B.1

APPR

Repor

lent Spectrum Analyzer - S	Swept SA	CFS NVNT				
RL RF 50 enter Freq 2.402	PN		g: Free Run ten: 30 dB	ALIGNAUTO #Avg Type: Rf Avg Hold:>100	VIS	2:38:16 PM Mar 05, 2024 TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P N N N N
Ref Offset					Mkr1 2.	401 826 GHz -3.990 dBm
00				2		
						~~~
			$\sim$			
1.0						
1.0						
.0						
enter 2.402500 GH Res BW 30 kHz	z	#VBW 10	0 kHz		Sweep 2.13	Span 2.000 MHz 3 ms (1001 pts)
R MODE TRC SCL	X	Y	FUNCTION	FUNCTION WIDTH	FUNCTION V	· · /
N 1 f N 1 f	2.401 826 GHz 2.402 826 GHz	-3.990 dBm -4.093 dBm				
						3
						~
			Ш			
				STATUS		
		CFS NVNT	1-DH1 2			
ent Spectrum Analyzer - S	5wept SA Ω AC 500000 GHz	SENSE:I	NT g: Free Run		vis	2:40:28 PM Mar 05, 2024
lent Spectrum Analyzer - 5 RL RF 50 enter Freq 2.441 Ref Offset	Swept SA 1Ω AC 5000000 GHz Pho IF0 2.36 dB	SENSE:I	NT	441MHz ALIGNAUTO #Avg Type: Rf	MS 0/100	2:40:29 PM Mar 05, 2024 TRACE 12 3 4 5 TYPE MINIMUM DET PUNNING 440 828 GHZ
lent Spectrum Analyzer - 5 RL RF 50 enter Freq 2.441 Ref Offset dB/div Ref 20.00	Swept SA 1Ω AC 5000000 GHz Pho IF0 2.36 dB	SENSE:I	NT g: Free Run	441MHz ALIGNAUTO #Avg Type: Rf	MS 0/100	2:40:28 PM Mar 05, 2024 TRACE 1 2 3 4 5 TYPE MWWWW DET P NNNN
lent Spectrum Analyzer - 5 RL RF 50 enter Freq 2.441 Ref Offset dB/div Ref 20.00	Swept SA 1Ω AC 5000000 GHz Pho IF0 2.36 dB	SENSE:I	NT g: Free Run	441MHz ALIGNAUTO #Avg Type: RI Avg[Hold>100	MS 0/100	2:40:28 PM Mar 05, 2024 TRACE 12 3 4 5 TYPE MINIMUM DET 2 NINNIN 440 828 GHZ
RL RF 50 RL RF 50 enter Freq 2.441 Ref Offset dB/div Ref 20.00	Swept SA (x) AC 5000000 GHz Ph F( 2.36 dB 0 dBm	SENSE:I	NT g: Free Run	441MHz ALIGNAUTO #Avg Type: Rf	MS 0/100	2:40:29 PM Mar 05, 2024 TRACE 12 3 4 5 TYPE MINIMUM DET PUNNING 440 828 GHZ
lent Spectrum Analyzer - 5 RL RF 50 enter Freq 2.441 B/div Ref 20.00 9 0 0 0 0	Swept SA (x) AC 5000000 GHz Ph F( 2.36 dB 0 dBm	SENSE:I	NT g: Free Run	441MHz ALIGNAUTO #Avg Type: RI Avg[Hold>100	MS 0/100	2:40:28 PM Mar 05, 2024 TRACE 12 3 4 5 TYPE MINIMUM DET 2 NINNIN 440 828 GHZ
lent Spectrum Analyzer - 5 RL RF 50 enter Freq 2.441 Bldiv Ref 20.00	Swept SA (x) AC 5000000 GHz Ph F( 2.36 dB 0 dBm	SENSE:I	NT g: Free Run	441MHz ALIGNAUTO #Avg Type: RI Avg[Hold>100	MS 0/100	2:40:28 PM Mar 05, 2024 TRACE 12 3 4 5 TYPE MINIMUM DET 2 NINNIN 440 828 GHZ
lent Spectrum Analyzer - 5 RL RF 50 enter Freq 2.441 B/div Ref 20.00 9 0 0 0 0 0 0 0 0 0 0 0 0 0	Swept SA (x) AC 5000000 GHz Ph F( 2.36 dB 0 dBm	SENSE:I	NT g: Free Run	441MHz ALIGNAUTO #Avg Type: RI Avg[Hold>100	MS 0/100	2:40:28 PM Mar 05, 2024 TRACE 12 3 4 5 TYPE MINIMUM DET 2 NINNIN 440 828 GHZ
Ient Spectrum Analyzer - 5 RL RF 50 enter Freq 2.441 Ref Offset dB/div Ref 20.00 9 0 0 0 0 0 0 0 0	Swept SA (x) AC 5000000 GHz Ph F( 2.36 dB 0 dBm	SENSE:I	NT g: Free Run	441MHz ALIGNAUTO #Avg Type: RI Avg[Hold>100	MS 0/100	2:40:28 PM Mar 05, 2024 TRACE 12 3 4 5 TYPE MINIMUM DET 2 NINNIN 440 828 GHZ
Ient Spectrum Analyzer - 5 RL RF 50 enter Freq 2.441 BJ/div Ref 20.00 9 0 0 0 0 0 0 0 0 0 0 0 0 0	Swept SA Ω AC 500000 GHz P P IFI 2.36 dB 0 dBm 1	SENSE:I	NT g: Free Run	441MHz ALIGNAUTO #Avg Type: RI Avg[Hold>100	Ms Mkr1 2.	2:40:28 PM Mar 05, 2024 TRACE 12 3 4 5 TYPE MINIMU PET PINNINU 440 828 GHz -6.006 dBm
Ref Offset BL Ref Offset BL Ref 2.441 BJ/div Ref 20.00 B C C C C C C C C C C C C C C C C C C C	Swept SA Ω2 AC 500000 GHz P P IFI 2.36 dB 0 dBm 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2	SENSE:I	g: Free Run ten: 30 dB	441MHz	Mkr1 2. Mkr1 2.	2:40:28 PM Mar 05, 2024 TYPE TYPE DET PNNNN PET PNNNN 440 828 GHz -6.006 dBm -6.006 dBm
ent Spectrum Analyzer - 3 RL RF 50 enter Freq 2.441 Ref Offset dB/div Ref 20.00 9 9 9 9 9 9 9 9 9 9 9 9 9	Swept SA R2 AC 500000 GHz P P P P P P P P P P P P P	V: Wide Tri Gain:Low #At	NT g: Free Run ten: 30 dB	441MHz ALIGNAUTO #Avg Type: RI Avg[Hold>100	Mkr1 2.	2:40:28 PM Mar 05, 2024 TYPE TYPE DET PNNNN PET PNNNN 440 828 GHz -6.006 dBm -6.006 dBm
RL         Ref Offset           Ref Offset <t< td=""><td>Swept SA IR AC 500000 GHz P IF 2.36 dB 0 dBm 1 1 1 1 1 1 1 1 1 1 1 1 1</td><td>O: Wide Tri Gain:Low Tri #At</td><td>g: Free Run ten: 30 dB</td><td>441MHz</td><td>Mkr1 2. Mkr1 2.</td><td>2:40:28 PM Mar 05, 2024 TRACE 12 3 4 5 6 TYPE NNNNN DET NNNNN 440 828 GHz -6.006 dBm</td></t<>	Swept SA IR AC 500000 GHz P IF 2.36 dB 0 dBm 1 1 1 1 1 1 1 1 1 1 1 1 1	O: Wide Tri Gain:Low Tri #At	g: Free Run ten: 30 dB	441MHz	Mkr1 2. Mkr1 2.	2:40:28 PM Mar 05, 2024 TRACE 12 3 4 5 6 TYPE NNNNN DET NNNNN 440 828 GHz -6.006 dBm
Int Spectrum Analyzer - 5 RL RF 50 Parter Freq 2.4415 Ref Offset dB/div Ref 20.00 G C C C C C C C C C C C C C	Swept SA R2 AC 500000 GHz P P P P P P P P P P P P P	V: Wide Tri Gain:Low #At	g: Free Run ten: 30 dB	441MHz	Mkr1 2. Mkr1 2.	2:40:28 PM Mar 05, 2024 TRACE 12 3 4 5 6 TYPE NNNNN DET NNNNN 440 828 GHz -6.006 dBm
Image: Spectrum Analyzer         Spectrum Analyzer <td>Swept SA R2 AC 500000 GHz P P P P P P P P P P P P P</td> <td>V: Wide Tri Gain:Low #At</td> <td>g: Free Run ten: 30 dB</td> <td>441MHz</td> <td>Mkr1 2. Mkr1 2.</td> <td>2:40:28 PM Mar 05, 2024 TRACE 12 3 4 5 6 TYPE NNNNN DET NNNNN 440 828 GHz -6.006 dBm</td>	Swept SA R2 AC 500000 GHz P P P P P P P P P P P P P	V: Wide Tri Gain:Low #At	g: Free Run ten: 30 dB	441MHz	Mkr1 2. Mkr1 2.	2:40:28 PM Mar 05, 2024 TRACE 12 3 4 5 6 TYPE NNNNN DET NNNNN 440 828 GHz -6.006 dBm





	50 Ω AC 9500000 GHz	SENSE:INT PNO: Wide Trig: Free Run	ALIGNAUTO #Avg Type: RMS Avg Hold:>100/100	12:42:24 PM Mar 05, 20 TRACE 1 2 3 4 TYPE M WWWW DET P N N N
	I	FGain:Low #Atten: 30 dB		/lkr1 2.478 824 GH
Ref Offso dB/div Ref 20.	et 2.4 dB 00 dBm			-8.377 dBi
0	<b>↓</b> 1		<mark>2</mark>	
	$\frown$			
			~~~	
0				
0				
nter 2.479500 G	Hz			Span 2.000 MH
es BW 30 kHz		#VBW 100 kHz		ep 2.133 ms (1001 pt
MODE TRC SCL N 1 f N 1 f	× 2.478 824 GHz	Y FUNCTION -8.377 dBm	FUNCTION WIDTH	FUNCTION VALUE
N 1 f	2.479 826 GHz	-8.427 dBm		
				>
			STATUS	
			STATUS	
		CFS NVNT 2-DH1		
			2402MHz	
RL RF	50 Ω AC 2500000 GHz	SENSE:INT	2402MHz	12:44:26 PM Mar 05, 20 TRACE 12 3 4 TYPE MAMANA
RL RF	50 Ω AC 2500000 GHz		2402MHz ALIGNAUTO #Avg Type: RMS Avg Hold>100/100	TRACE 1234 TYPE MWWWW DET PNNN
nter Freq 2.40 Ref Offs	50 Ω AC 2500000 GHz et 2.34 dB	SENSE:INT	2402MHz ALIGNAUTO #Avg Type: RMS Avg Hold>100/100	TRACE 1234 TYPE MWWW DET PNNN 1kr1 2.401 824 GH
nter Freq 2.40 Ref Offs dB/div Ref 20.	50 Ω AC 2500000 GHz	SENSE:INT	2402MHz ALIGNAUTO #Avg Type: RMS Avg Hold>100/100	TRACE 1234 TYPE MWWWW DET PNNN
RL RF nter Freq 2.40 Ref Offs dB/div Ref 20.	50 Ω AC 2500000 GHz et 2.34 dB	SENSE:INT	2402MHz ALIGNAUTO #Avg Type: RMS Avg Hold>100/100	TRACE 1234 TYPE MWWW DET PNNN 1kr1 2.401 824 GH
RL RF G 2.40 Ref Offs: dB/div Ref 20.	50 Ω AC 2500000 GHz et 2.34 dB 00 dBm	SENSE:INT	2402MHz	TRACE 1234 TYPE MWWW DET PNNN 1kr1 2.401 824 GH
RL RF G 2.40 Ref Offse B/div Ref 20.	50 Ω AC 2500000 GHz et 2.34 dB 00 dBm	SENSE:INT	2402MHz	TRACE 1234 TYPE MWWW DET PNNN 1kr1 2.401 824 GH
RL RF Freq 2.40 Ref Offse dB/div Ref 20.	50 Ω AC 2500000 GHz et 2.34 dB 00 dBm	SENSE:INT	2402MHz	TRACE 1234 TYPE MWWW DET PNNN 1kr1 2.401 824 GH
RL RF Freq 2.40 Ref Offs: Ref Offs: Ref 20.	50 Ω AC 2500000 GHz et 2.34 dB 00 dBm	SENSE:INT	2402MHz	TRACE 1234 TYPE MWWW DET PNNN 1kr1 2.401 824 GH
RL RF G 2.40 Ref Offse dB/div Ref 20.	50 Ω AC 2500000 GHz et 2.34 dB 00 dBm	SENSE:INT	2402MHz	TRACE 1234 TYPE MWWW DET PNNN 1kr1 2.401 824 GH
RL RF Control Ref Offso Ref Offso Ref 20. Ref 20.	50 Ω AC 2500000 GHz et 2.34 dB 00 dBm	SENSE:INT	2402MHz	TRACE 1234 TYPE MWWW DET PNNN 1kr1 2.401 824 GH
Ref Offso Ref Offso B/div Ref 20.	50 Ω AC 2500000 GHz et 2.34 dB 00 dBm	SENSE:INT	2402MHz	74.608 dB1
RL RF Freq 2.40 Ref Offs B/div Ref 20.	50 Ω AC 2500000 GHz et 2.34 dB 00 dBm	SENSE:INT	2402MHz	TRACE 1234 TYPE MWWW DET PNNN 1kr1 2.401 824 GH
Ref Offs Ref Offs Ref 20. Ref	50 Ω AC 2500000 GHz et 2.34 dB 00 dBm 1 1 3Hz ×	SENSE:INT PNO: Wide FGain:Low Trig: Free Run #Atten: 30 dB	2402MHz ALIGNAUTO #AvgType: RMS AvgHold>100/100	TRACE 12.3.4. Type Municipal Sectors 12.3.4. Akr1 2.401 824 GH -4.608 dB1
Ref Offs Ref Offs B/div Ref 20.	50 9 AC 2500000 GHz et 2:34 dB 00 dBm	SENSE:INT FGain:Low Trig: Free Run #Atten: 30 dB #VBW 100 kHz #VBW 100 kHz FUNCTION 4.609 dBm	2402MHz ALIGNAUTO #AvgType: RMS AvgHold>100/100	Akr1 2.401 824 GH -4.608 dB1
RLE REF CITES	50 9 AC 2500000 GHz et 2.34 dB 00 dBm 1 1 3Hz 2.401 824 GHz	SENSE:INT FGain:Low Trig: Free Run #Atten: 30 dB #VBW 100 kHz #VBW 100 kHz FUNCTION 4.609 dBm	2402MHz ALIGNAUTO #AvgType: RMS AvgHold>100/100	Akr1 2.401 824 GH -4.608 dB1
RLE REF CITES	50 9 AC 2500000 GHz et 2.34 dB 00 dBm 1 1 3Hz 2.401 824 GHz	SENSE:INT FGain:Low Trig: Free Run #Atten: 30 dB #VBW 100 kHz #VBW 100 kHz FUNCTION 4.609 dBm	2402MHz ALIGNAUTO #AvgType: RMS AvgHold>100/100	Akr1 2.401 824 GH -4.608 dB1

