

Report No.: 18220WC40029404 FCC ID: 2BFAP-TARSIER Page 1 of 69

FCC Test Report

Applicant : Visinse Technology Co., Ltd.

16D, Block A.B, Haiwang Building, 2221 Nanhai

: Avenue, Nanguang Community, Nanshan Street,

Nanshan District, Shenzhen, China

Product Name : Tarsier

Address

Report Date : May 20, 2024

Shenzhen Anbotek Con Anbotek

ce Laboratory Limited

Report No.: 18220WC40029404 FCC ID: 2BFAP-TARSIER Page 2 of 69

Contents

1 agiek	Vupo, Vi							Mr.
1. Gene	ral Information	AA	y	1840dp.	Kupo _k		hotek	Artent
101.	Client Information Client Information Description of Devi Auxiliary Equipmen Operation channel Description of Test Measurement Unce Test Summary Description of Test	, potek		b.,	olt	o _{fe} ,	Yun Fek	9:ئەرىيىـــــــــــــــــــــــــــــــــــ
1.2.	Description of Devi	ce (EUT)	boter				Wpozo	
1.3.	Auxiliary Equipmen	it Used During	j Test	ξ¥Υς	ou <u>;</u> e	VUD.		<u> </u>
1.4.	Operation channel	list			······	AUGUL	A!	
1.5. 1.5.	Measurement Unco	Modes	tek an		PD	, you	6 ₇ ,	Ω`
1.0.	Test Summary	ertainty		hotek	Aupor		rek.	nb ^{or} 10
1.8.	Description of Test	Facility	bote	bu.	_{abo} t€	V. VU	50	ate ^k 1
1.9.	Disclaimer	VUD.	notek	W.po.	bn.		Kapo _{ler}	Anb1
№1.10	0. Test Equipment Li	ist	Vu.		470			,,,\oo_^11
2. Cond	Description of Test Disclaimer	C power line	Vupo.	p.,	otek .	upote.	Aur el	
	FUT Operation	W. Stek						ρ.···
2.1.	Test Setun	y		otek	AUPOLE	نظه	K	1,0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
2.3.	Test Data	otek Anbo	(a) Vis	Va	botek	Aupo.		
2 Duty	Cycloribotes And	40.						We Je
3. Duty	Cycle:		rek.	npolek.	74,50		hotek	
3.1.	EUT Operation	oke/	- Kopo,	- 04g	,	7.e	14,00 ° 6 K	2
3.2.	Test Setup	A!	boter	bu			Anbor	23
ა.ა.	Test Data			Anb	oi	u	oborek	
4. Maxir	num conducted outp	out power	And				bo.	24
¥ 4.1.	EUT Operation		sk Vup	b		,bote	AUD.	24
4.2.	Test Setup	ote. And		otek	Vupo.		,,elt	,po ¹ 2
4.3.	Test Data		00,P		Voote.	A ^{DD}		2
5. Powe	r spectral density EUT Operation Test Setup		, boten	Anbo	,	ie _K	$v_{po_{so}}$	20
5.1	FUT Operation							Anbo 20
5.2.	Test Setup	VUpoja,	VII.	201.	itek Ar	(p.,	otek.	2
- 5 X	lest Data							9
6 Emiss	sion bandwidth and c	occupied band	dwidth ~					28
bole	FUT O	A A A A A A A A A A A A A A A A A A A	awidui .p	, otek	Anbore	Plan	·ek	botek
6.1.	Test Setup	riek vup		7P	-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\	Aybo		
6.3	Test Data					ek		^{12.} ×30
Anbero.	- ¥I M T:0 Ol	-Arboro	- *8 _K -	- botok	Anbe		hotek.	Anboic
7. Chan	nei Move Time, Cha	innel Closing	ıransmıssı	on time	iek Vu	0,66		3
7.1.	EUT Operation	Ar.	botek	<u> </u>			koboro	32
7.2.	Test Setup	······ Kupo,	b.,	7.0	1001	Ans Cak		
otek 7.3.	lest Data	ek Zupoke			bolek	Anbar		32
8. DFS I	Detection Threshold	s	4ek	pore.	Vu.		iek Vu	3
Anbol 8.1.	EUT Operation	poter And		.hotek	Aupo.	bz.	^{Jek}	33 مال
8.2.	nel Move Time, Cha EUT Operation Test Setup Test Data Detection Threshold EUT Operation Test Setup Test Data	4910,00	Upoz	N. Yek	, pot	Y.C.		34
8.3.	Test Data	VL.	<u>boje</u> k	Anbo.		el ^k	Mobole	34
9. Band	Test Dataedge emissions (Ra	adiated)	W. Totek	Anbot	E. VUI	,	botek	Anboi
γ Ω Α ^Ω	FUT Operation	Anboien		a. 4.				/
Ð. I .				7				

Report No.: 18220WC40029404	FCC ID: 2BFAP-TARSIE	R Page 3 of 69
9.2. Test Setup	Ansotek Anbotek Anb	otek
9.3. Test Data	Pr. Popole, V.	39
10. Undesirable emission limits (below 1GHz)	Pun Osk Wholek	.Anboo. 49
10.1. EUT Operation 10.2. Test Setup	Anbo K hotek	51 52
10.2. Test Setup	stek anbore Ann	
10.3. Test Data	Pupolek Pupole	53
11. Undesirable emission limits (above 1GHz)	inpose Augustek Pupo	61
11.1. EUT Operation11.2. Test Setup	Vuporer Vun	100 tek
11.2. Test Setup	hotek Anbo. A.	64
11.3. Test Data	Vun OK	65
APPENDIX I TEST SETUP PHOTOGRAPH	k Aupor K Wirek	Anboten Anbo
APPENDIX II EXTERNAL PHOTOGRAPH	rek "upose tun	69
APPENDIX III INTERNAL PHOTOGRAPH	tek anbove	Arra 69

Report No.: 18220WC40029404 FCC ID: 2BFAP-TARSIER Page 4 of 69

TEST REPORT

Applicant : Visinse Technology Co., Ltd.

Manufacturer : Luxshare Electronic Technology (Kunshan) Ltd.

Product Name : Tarsier

Test Model No. : Tarsier

Reference Model No. : N/A

Trade Mark : N/A

Date of Receipt:

Rating(s) : Input: 5V--- 3A (with DC 3.8V, 3600mAh battery inside)

47 CFR Part 15E ANSI C63.10-2020

KDB 789033 D02 General UNII Test Procedures New Rules v02r01

Test Standard(s) : KDB 905462 D02 UNII DFS Compliance Procedures New Rules v02

KDB 905462 D03 UNII Clients Without Radar Detection New Rules

Feb. 21, 2024

v01r02

KDB 662911 D01 Multiple Transmitter Output v02r01

The device described above is tested by Shenzhen Anbotek Compliance Laboratory Limited to determine the maximum emission levels emanating from the device and the severe levels of the device can endure and its performance criterion. The measurement results are contained in this test report and Shenzhen Anbotek Compliance Laboratory Limited is assumed full of responsibility for the accuracy and completeness of these measurements. Also, this report shows that the EUT (Equipment Under Test) is technically compliant with above listed standard(s) requirements. This report applies to above tested sample only and shall not be reproduced in part without written approval of Shenzhen Anbotek Compliance Laboratory Limited.

ak Anbotek Anbot At Anbotek Anbot	
Date of Test:	Feb. 21, 2024 to May 15, 2024
	Nian xiu Chen
Prepared By:	Anbor Anborek Anbo
	(Nianxiu Chen)
	Bolward pan
Approved & Authorized Signer:	All tek "Upoter Tups ok Potek
	(Edward Pan)

Report No.: 18220WC40029404 FCC ID: 2BFAP-TARSIER Page 5 of 69

Revision History

	Report Version	Description	Issued Date		
	Anbore R00 potek Ant	Original Issue.	May 20, 2024		
9,	Anbotek Anbotek	Anbotek Anbotek Anbotek	K Anbotek Anbotek Ant		
10	ore Ambotek Anbotek	Anbotek Anbotek Anbot	tek Anbotek Anboter		

Report No.: 18220WC40029404 FCC ID: 2BFAP-TARSIER Page 6 of 69

1. General Information

1.1. Client Information

Applicant	:	Visinse Technology Co., Ltd.
Address	:	16D, Block A.B, Haiwang Building, 2221 Nanhai Avenue, Nanguang Community, Nanshan Street, Nanshan District, Shenzhen, China
Manufacturer	:	Luxshare Electronic Technology (Kunshan) Ltd.
Address	:	No.158 Jinchang Road, Jinxi Town, Kunshan City, Jiangsu China
Factory	:	Luxshare Electronic Technology (Kunshan) Ltd.
Address	:	No.158 Jinchang Road, Jinxi Town, Kunshan City, Jiangsu China

1.2. Description of Device (EUT)

1.2. Description of	70 P	evice (EUT) Aupore Andrew Andrew Andrew Andrew
Product Name	:	Tarsier Anborek Anborek Anborek Anborek
Test Model No.	:	Tarsier Andrew Andrew Andrew
Reference Model No.	:	N/A otek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek
Trade Mark	:	N/A knoore Andorek Andorek Andorek Andorek Andorek
Test Power Supply	:	AC 120V/60Hz for Adapter; DC 3.8V battery inside
Test Sample No.	:	1-2-1(Normal Sample), 1-2-2(Engineering Sample)
Adapter	:	N/A Anbotek Anbotek Anbotek Anbotek
RF Specification	·	
Operation Frequency		802.11a/n(HT20)/ac(VHT20)/ax(HEW20): U-NII Band 1: 5180MHz to 5240MHz; U-NII Band 2A: 5260MHz to 5320MHz; U-NII Band 2C: 5500MHz to 5700MHz; U-NII Band 3: 5745MHz to 5825MHz; 802.11n(HT40)/ac(VHT40)/ax(HEW40): U-NII Band 1: 5190MHz to 5230MHz; U-NII Band 2A: 5270MHz to 5310MHz; U-NII Band 2C: 5510MHz to 5670MHz; U-NII Band 3: 5755MHz to 5795MHz; 802.11ac(VHT80)/ax(HEW80): U-NII Band 1: 5210MHz; U-NII Band 2A: 5290MHz; U-NII Band 2A: 5530MHz to 5610MHz; U-NII Band 3: 5775MHz
Number of Channel	i	802.11a/n(HT20)/ac(VHT20)/ax(HEW20): U-NII Band 1: 4; U-NII Band 2A: 4; U-NII Band 2C: 11; U-NII Band 3: 5;

Report No.: 18220WC40029404 FCC ID: 2BFAP-TARSIER Page 7 of 69

pois. And		stek vulgo. W. ok house when stek
		802.11n(HT40)/ac(VHT40)/ax(HEW40): U-NII Band 1: 2; U-NII Band 2A: 2; U-NII Band 2C: 5; U-NII Band 3: 2; 802.11ac(VHT80)/ax(HEW80): U-NII Band 1: 1; U-NII Band 2A: 1; U-NII Band 2C: 2; U-NII Band 3: 1
Modulation Type	:	802.11a: OFDM(BPSK, QPSK, 16QAM, 64QAM); 802.11n: OFDM (BPSK, QPSK, 16QAM, 64QAM); 802.11ac: OFDM (BPSK, QPSK, 16QAM, 64QAM, 256QAM); 802.11ax: OFDM (BPSK, QPSK, 16QAM, 64QAM, 256QAM, 1024QAM)
Antenna Type	:	FPC Antenna
Antenna Gain(Peak)	:	WiFi 5.2G-ANT0: 4.13dBi, WiFi 5.2G-ANT1: 2.62dBi; WiFi 5.3G-ANT0: 4.13dBi, WiFi 5.3G-ANT1: 3.17dBi; WiFi 5.6G-ANT0: 4.2dBi, WiFi 5.6G-ANT1: 3.75dBi; WiFi 5.8G-ANT0: 3.83dBi, WiFi 5.8G-ANT1: 3.81dBi
Directional antenna gain	:	WiFi 5.2G: 6.42dBi WiFi 5.3G: 6.67dBi WiFi 5.6G: 6.99dBi WiFi 5.8G: 6.83dBi

Remark:

- (1) All of the RF specification are provided by customer.(2) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.
- (3) Only 802.11n(HT20)/ac(VHT20)/ax(HEW20), 802.11n(HT40)/ac(VHT40)/ ax(HEW40), 802.11ac(VHT80)/ax(HEW80) support MIMO.

 (4) Directional gain = 10 log[(10^{G1/20} + 10^{G2/20}) ²/2] dBi

Report No.: 18220WC40029404 FCC ID: 2BFAP-TARSIER Page 8 of 69

1.3. Auxiliary Equipment Used During Test

Title	Manufacturer	Model No.	Serial No.
Xiaomi 33W adapter	Xiaomi	MDY-11-EX	SA62212LA04358J
ROG Rapture Quad- band Gaming Router	ASUSTeK Computer Inc	GT-AXE16000 (FCC ID: MSQ- RTAX5D00 IC: 3568A-RTAX5D00)	RAIG5D2020695NL

1.4. Operation channel list

Operation Band: U-NII Band 1

	Bandwidth:	20MHz	Bandwidth:	40MHz	Bandwidth:	80MHz
4	Channel Frequency (MHz)		Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	36 botek	5180	38	5190 book	42	5210
"Odn	40 Abor	5200	46 x	5230 Anbox	rek shotek	Aupole, k
An	44	5220 100tes	k And	Anborek Anh	sek / histore	k Alootes
	48 K	nbore 5240 Anbor	W Will Polek	Anbyek	Yupo, Hely Wi	otek Anboter

Operation Band: U-NII Band 2A

Bandwidth:	20MHz	Bandwidth:	40MHz	Bandwidth:	80MHz
Channel	Frequency Channel		Frequency (MHz)	Channel	Frequency (MHz)
Anbores Ant	5260 March 5260	54	5270	10016 58 And	5290
56	5280	otek 62 nbot	5310	Anbore. / Anb	work / Anborek
60	5300	Inbotek / Anbot	tek Jupotek	Auport A	hotek / Anbo
potek 64 nbote	5320	Anbotek/ Anb	otek / Anbotel	MAONE	Ans bords Ar

Operation Band: U-NII Band 2C

Bandwidth:	Bandwidth: 20MHz Channel Frequency (MHz)		40MHz	Bandwidth:	80MHz
Channel			Frequency (MHz)	Channel	Frequency (MHz)
nek 100 botek	5500	nbore 102 Anbo	5510	106	5530
botek 104 Anbotek	5520	110	5550	122	5610
note 108 And	5540	118**	5590	botek / Anbotek	Anbo
112	5560	126	5630	sbotek / Anbot	Aupo
116	5580	134 Anbotek	5670	And Andrew	oter / Ano
120	5600	otek / Anbot	Sk Nupor	Alborek	Anbore / Anb

Report No.: 18220WC40029404 FCC ID: 2BFAP-TARSIER Page 9 of 69

10	botek 124 Anbotek	5620	Vupo, Ak	port And	lek Yupotek	Anbo
P	128 Anb	5640	Myotek	Anbore Am	botek / Anbotek	And
	132	5660	rek Anbotek	Aupor	abotek / Anbot	Nuo otek
e ^V	136	5680	work / Anborek	Augo, sek	And Andrey	poter / And
	140	5700	otek / Anbot	ek Nupo.	and sek	Aupore, 1 Aug

Operation Band: U-NII Band 3

Bandwidth:	20MHz	Bandwidth:	40MHz	Bandwidth:	80MHz
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
149	5745	151	5755	155	nbotek 5775 Anbor
153	5765	159	5795 bottom	k And hotek	Anborek Anb
157	5785	Aupo.	nbotek / Anboth	All Polek	Anboyek
Anbore 161	5805 no tel	Anby	anborek Ant	Jore / Ams	r Allosek
Anbotto	5825 Anbot	P. Dog Stek	updek	Inbore And	otek /Anbotek

1.5. Description of Test Modes

Pretest Modes	Descriptions
Anbotek TM1 Anbotek Anbotek Anbotek Anbotek	Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report.
ek Anbore TM2 Anborek	Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.
potek Anborek Anborek Anborek	Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.
Anbotek TM4 Anbotek Ar	Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ax modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.
otek Mind TM5	Keep the EUT works in normal operating mode and connect to companion device

Note: 80211ax mode only support full resource unit size.

Report No.: 18220WC40029404 FCC ID: 2BFAP-TARSIER Page 10 of 69

1.6. Measurement Uncertainty

Parameter	Uncertainty
Conducted emissions (AMN 150kHz~30MHz)	3.4dB Anborek Anborek
Conducted Output Power	0.76dB
Power Spectral Density	0.76dB
Occupied Bandwidth	925Hz
Radiated spurious emissions (above 1GHz)	1G-6GHz: 4.78dB; 6G-18GHz: 4.88dB 18G-40GHz: 5.68dB
Radiated emissions (Below 30MHz)	3.53dB
Radiated spurious emissions (30MHz~1GHz)	Horizontal: 3.92dB; Vertical: 4.52dB

The measurement uncertainty and decision risk evaluated according to AB/WI-RF-F-032.

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence

level using a coverage factor of k=2.

1.7. Test Summary

Status	Test Modes	Test Items
P. P.	Mode1,2,3,4	Conducted Emission at AC power line
nbolen P A	Mode1,2,3,4	Duty Cycle
Anbore P	Mode1,2,3,4	Maximum conducted output power
Anbore P.ek	Mode1,2,3,4	Power spectral density
Auba.	Mode1,2,3,4	Emission bandwidth and occupied bandwidth
Problem	Mode5	Channel Move Time, Channel Closing Transmission Time
1001 P AT	Mode5	DFS Detection Thresholds
Anbores P	Mode1,2,3,4	Band edge emissions (Radiated)
Anbore P	Mode1,2,3,4	Undesirable emission limits (below 1GHz)
Pupb.	Mode1,2,3,4	Undesirable emission limits (above 1GHz)
e	Mode1,2,3,4	Undesirable emission limits (above 1GHz) Note: P: Pass

N: N/A, not applicable

Report No.: 18220WC40029404 FCC ID: 2BFAP-TARSIER Page 11 of 69

1.8. Description of Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.:434132

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No. 434132.

ISED-Registration No.: 8058A

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registered and fully described in a report filed with the (ISED) Innovation, Science and Economic Development Canada. The acceptance letter from the ISED is maintained in our files. Registration 8058A.

Test Location

Shenzhen Anbotek Compliance Laboratory Limited.

1/F, Building D, Sogood Science and Technology Park, Sanwei community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China.

1.9. Disclaimer

- The test report is invalid if not marked with the signatures of the persons responsible for preparing and approving the test report.
- The test report is invalid if there is any evidence and/or falsification.
- The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein.
- This document may not be altered or revised in any way unless done so by Anbotek and all revisions are duly noted in the revisions section.
- Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.
- The authenticity of the information provided by the customer is the responsibility of the customer and the laboratory is not responsible for its authenticity.

The laboratory is only responsible for the data released by the laboratory, except for the part provided by the applicant.

Report No.: 18220WC40029404 FCC ID: 2BFAP-TARSIER Page 12 of 69

1.10. Test Equipment List

Cond	ucted Emission at A	C power line	Aupo	k hotel	Anbore	Andrek
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due Date
. 1	L.I.S.N. Artificial Mains Network	Rohde & Schwarz	ENV216	100055	2024-01-18	2025-01-17
otek 2	Three Phase V- type Artificial Power Network	CYBERTEK	EM5040DT	E215040D T001	2024-01-17	2025-01-16
30t	Software Name EZ-EMC	Farad Technology	ANB-03A	N/A	Alooiek	Anborek
4	EMI Test Receiver	Rohde & Schwarz	ESPI3	100926	2023-10-12	2024-10-11

Duty Cycle

Maximum conducted output power

Power spectral density

Emission bandwidth and occupied bandwidth

Channel Move Time, Channel Closing Transmission Time

DFS Detection Thresholds

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due Date
1	Constant Temperature Humidity Chamber	ZHONGJIAN	ZJ- KHWS80B	ootek N/A	2023-10-16	2024-10-15
2	DC Power Supply	IVYTECH	IV3605	1804D360 510	2023-10-20	2024-10-19
An3ote	Spectrum Analyzer	Rohde & Schwarz	FSV40-N	101792	2023-05-26	2024-05-25
4nb	MXA Spectrum Analysis	KEYSIGHT	N9020A	MY505318 23	2024-02-22	2025-02-21
5	Oscilloscope	Tektronix	MDO3012	C020298	2023-10-12	2024-10-11
6	MXG RF Vector Signal Generator	Agilent	N5182A	MY474206 47	2024-02-04	2025-02-03

Hotline N

www.anbotek.com.cn

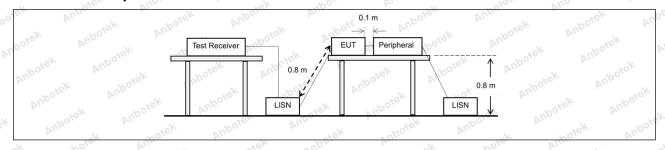
400-003-0500

Report No.: 18220WC40029404 FCC ID: 2BFAP-TARSIER Page 13 of 69

	edge emissions (Ra sirable emission limi		Aupotek	Amborek	Aupotek	Anborek
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due Date
1 00	EMI Test Receiver	Rohde & Schwarz	ESR26	101481	2024-01-23	2025-01-22
2	EMI Preamplifier	SKET Electronic	LNPA- 0118G-45	SKET-PA- 002	2024-01-17	2025-01-16
3	Double Ridged Horn Antenna	SCHWARZBECK	BBHA 9120D	02555	2022-10-16	2025-10-15
nbore 4	EMI Test Software EZ-EMC	SHURPLE	N/A	N/A	Ans	Aupolek
5	Horn Antenna	A-INFO	LB-180400- KF	J21106062 8	2023-10-12	2024-10-11
6	Spectrum Analyzer	Rohde & Schwarz	FSV40-N	101792	2023-05-26	2024-05-25
¹⁶ 7	Amplifier	Talent Microwave	TLLA18G40 G-50-30	23022802	2023-05-25	2024-05-24

Unde	sirable emission limit	ts (below 1GHz)	Anbore.	Andrek	Anboiek	Anbo
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due Date
1	EMI Test Receiver	Rohde & Schwarz	ESR26	101481	2024-01-23	2025-01-22
2	Pre-amplifier	SONOMA	310N	186860	2024-01-17	2025-01-16
34	Bilog Broadband Antenna	Schwarzbeck	VULB9163	345	2022-10-23	2025-10-22
Anistel	Loop Antenna (9K- 30M)	Schwarzbeck	FMZB1519 B	00053	2023-10-12	2024-10-11
5.nb	EMI Test Software EZ-EMC	SHURPLE	N/A	N/A door	No hore	k Anbotek

Report No.: 18220WC40029404 FCC ID: 2BFAP-TARSIER Page 14 of 69

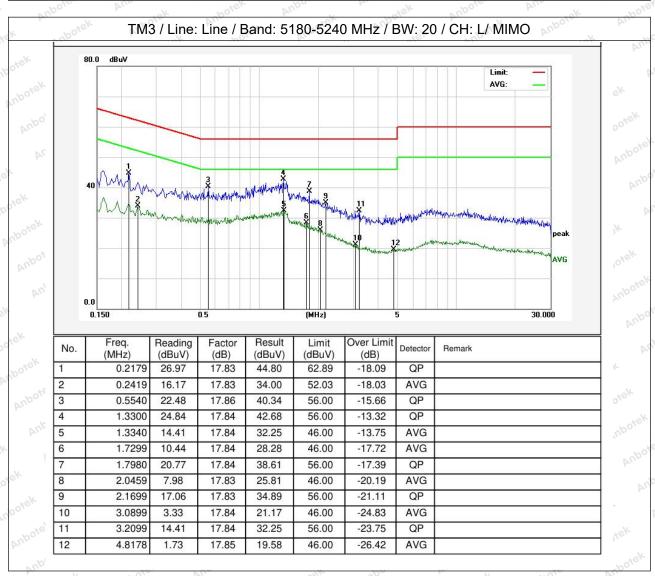

2. Conducted Emission at AC power line

Test Requirement:	47 CFR Part 15.207(a)	ek hotek Anb	ote, but
Yung sek spotek	Frequency of emission (MHz)	Conducted limit (dBµV)	hotel Anbe
Aupo, Vi	And Andrew And	Quasi-peak	Average
K- Lotek Anbo	0.15-0.5	66 to 56*	56 to 46*
Test Limit:	0.5-5 And	56 ° A	46 300 ter
	5-30 And And	60 hotek Anbor	50
otek Anbotek	*Decreases with the logarithm of the	ne frequency.	Anbo
Test Method:	ANSI C63.10-2020 section 6.2	Anbo sek abo	stek Anbore

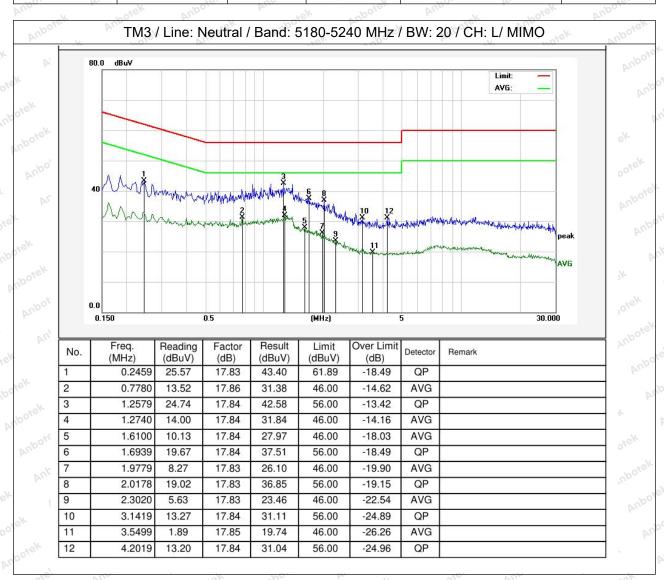
2.1. EUT Operation

Pupo,	W. All Mark Mark Mark Mark Mark Mark Mark Mark
Operating Envir	ronment:
otek Anbotek	1: 802.11a mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report.
Anbotek Ant	2: 802.11n mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of
Test mode:	worst case is recorded in the report. 3: 802.11ac mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only
Anbotek Anbotek	the data of worst case is recorded in the report. 4: 802.11ax mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ax modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only
Anbotek Anbotek	the data of worst case is recorded in the report. 4: 802.11ax mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ax modulation type. All bandwidth and

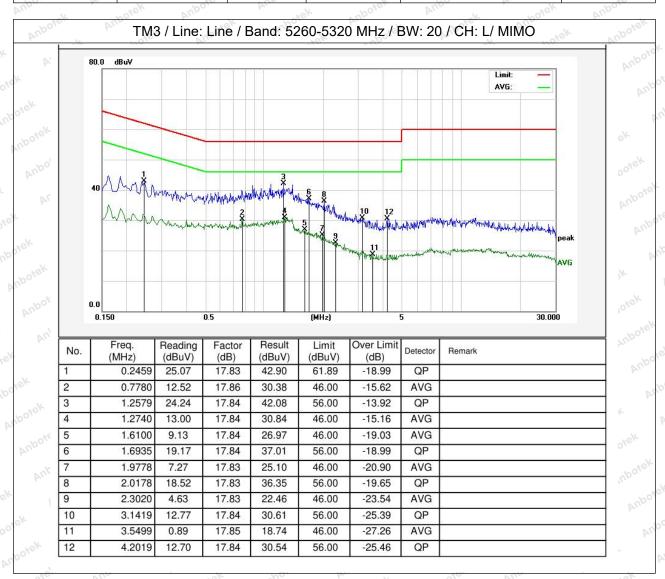
2.2. Test Setup

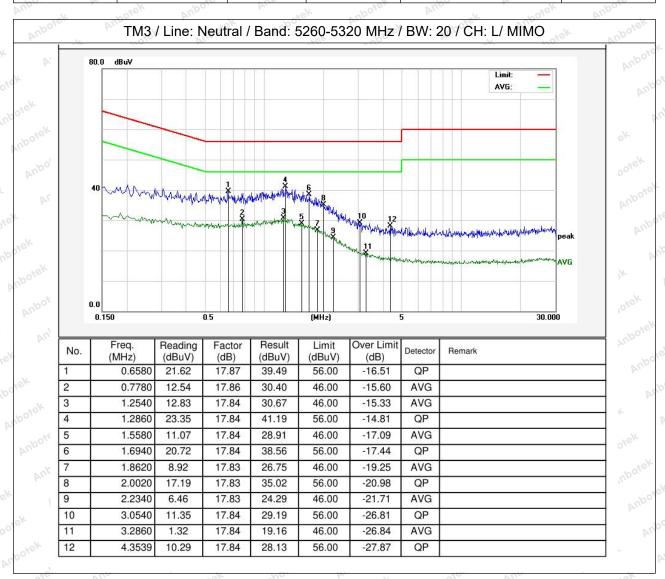


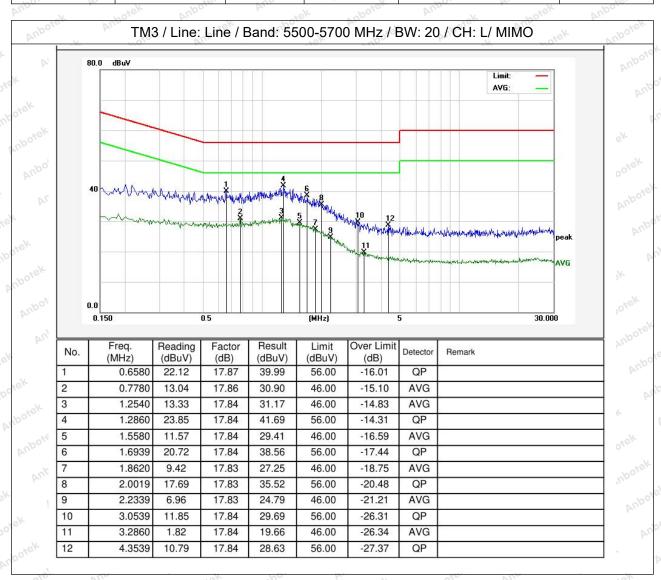
Report No.: 18220WC40029404 FCC ID: 2BFAP-TARSIER Page 15 of 69

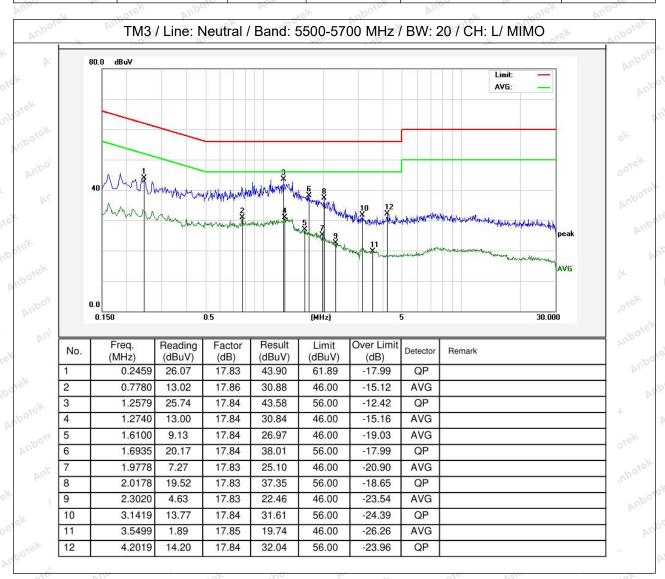

2.3. Test Data

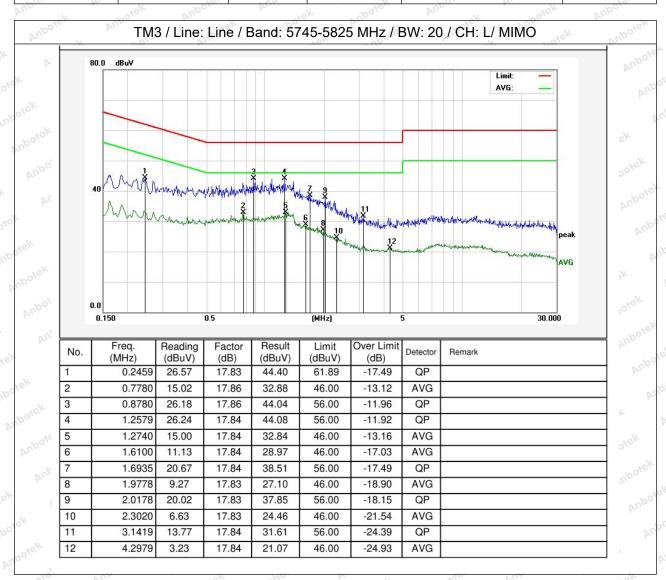
Temperature: 24	24.7 °C Hu	lumidity: 54.5 %	Atmospheric Pressure:	101 kPa
-----------------	------------	------------------	-----------------------	---------


Report No.: 18220WC40029404 FCC ID: 2BFAP-TARSIER Page 16 of 69

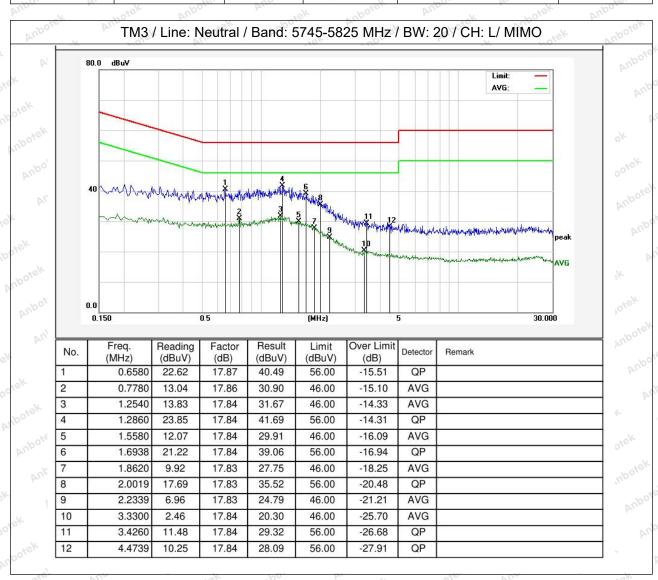

Report No.: 18220WC40029404 FCC ID: 2BFAP-TARSIER Page 17 of 69


Report No.: 18220WC40029404 FCC ID: 2BFAP-TARSIER Page 18 of 69


Report No.: 18220WC40029404 FCC ID: 2BFAP-TARSIER Page 19 of 69


Report No.: 18220WC40029404 FCC ID: 2BFAP-TARSIER Page 20 of 69

Report No.: 18220WC40029404 FCC ID: 2BFAP-TARSIER Page 21 of 69



Report No.: 18220WC40029404 FCC ID: 2BFAP-TARSIER Page 22 of 69

Temperature: 24.7 °C Humidity: 54.5 % Atmospheric Pressure: 101 kPa

Note: Only record the worst data (802.11ac(VHT20) MIMO) in the report.

Report No.: 18220WC40029404 FCC ID: 2BFAP-TARSIER Page 23 of 69

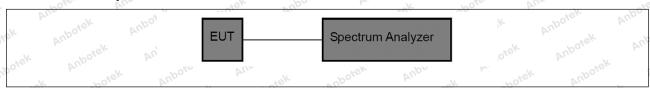
3. Duty Cycle

Test Requirement:	All measurements are to be performed with the EUT transmitting at 100% duty cycle at its maximum power control level; however, if 100% duty cycle cannot be achieved, measurements of duty cycle, x, and maximum-power transmission duration, T, are required for each tested mode of operation.
Test Limit:	No limits, only for report use.
Test Method:	ANSI C63.10-2020 section 12.2 (b)
Anbotek Anbotek	 i) Set the center frequency of the instrument to the center frequency of the transmission. ii) Set RBW >= EBW if possible; otherwise, set RBW to the largest available value.
Procedure:	iii) Set VBW >= RBW. iv) Set detector = peak.
otek Aupotek Aut	v) The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T, where T is defined in item a1) of 12.2, and the number of sweep points across duration T exceeds 100.

3.1. EUT Operation

The state of the s	
Incrating	Environment:
COCIAIIIU	

1: 802.11a mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report.


2: 802.11n mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

Test mode:

3: 802.11ac mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

4: 802.11ax mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ax modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

3.2. Test Setup

3.3. Test Data

Temperature: 25.3 °C Humidity: 49 % Atmospheric Pressure: 101	1 kPa
---	-------

Please Refer to Appendix for Details.

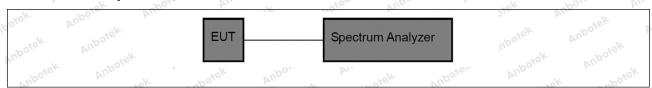
Report No.: 18220WC40029404 FCC ID: 2BFAP-TARSIER Page 24 of 69

4. Maximum conducted output power

upo, bi	Vipoles Tup, of Polek Tupo, by tek Vipoles,
Test Requirement:	47 CFR Part 15.407(a)(1)(iv) 47 CFR Part 15.407(a)(2)
Aupole Aus	47 CFR Part 15.407(a)(3)(i)
Anbotek	For client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission
	bandwidth in megahertz. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
Test Limit:	For the band 5.725-5.850 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W.
	If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB tha
	the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without
	any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems
k Aupotek Aupo	employing high gain directional antennas are used exclusively for fixed, point-to-point operations.
Test Method:	ANSI C63.10-2013, section 12.4
Procedure:	Refer to ANSI C63.10-2020 section 12.4

4.1. EUT Operation

Operating Envi	onment: Anbores Andrew Anbores Anbores
ek Anbotek	1: 802.11a mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report.
Test mode:	2: 802.11n mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.
k Aupotek	3: 802.11ac mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only



Report No.: 18220WC40029404 FCC ID: 2BFAP-TARSIER Page 25 of 69

the data of worst case is recorded in the report.

4: 802.11ax mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ax modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

4.2. Test Setup

4.3. Test Data

Temperature	e: 25.3 °C	Humidity:	49 %	Atmospheric Pressure:	101 kPa	٥٥
-------------	------------	-----------	------	-----------------------	---------	----

Please Refer to Appendix for Details.

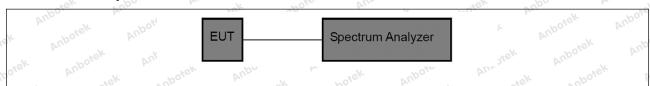
Report No.: 18220WC40029404 FCC ID: 2BFAP-TARSIER Page 26 of 69

5. Power spectral density

'D'	work All the stell appear to ak hore
Test Requirement:	47 CFR Part 15.407(a)(1)(iv) 47 CFR Part 15.407(a)(2) 47 CFR Part 15.407(a)(3)(i)
ek Anbotek Anbotek botek Anbotek Anbotek Anbotek	For client devices in the 5.15-5.25 GHz band, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
Anbotek Anbotek Anbotek Anbote	For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
Test Limit:	For the band 5.725-5.850 GHz, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that
	the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint
Otek Anbotek Anbotek Anbotek	systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.
Test Method:	ANSI C63.10-2020, section 12.6
Procedure:	Refer to ANSI C63.10-2020, section 12.6

5.1. EUT Operation

Operating Envi	ronment: Anborek Anborek Anborek
Test mode:	1: 802.11a mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report. 2: 802.11n mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report. 3: 802.11ac mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ac modulation type. All bandwidth and
Anborek	data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.
k Anbotek	4: 802.11ax mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ax modulation type. All bandwidth and



Report No.: 18220WC40029404 FCC ID: 2BFAP-TARSIER Page 27 of 69

data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

5.2. Test Setup

5.3. Test Data

Temperature	25.3 °C	, nbore	Humidity:	49 %	-hotek	Atmospheric Press	sure: 101 kPa
	70.0		,	13000			6/O.

Please Refer to Appendix for Details.

Report No.: 18220WC40029404 FCC ID: 2BFAP-TARSIER Page 28 of 69

6. Emission bandwidth and occupied bandwidth

Test Requirement:	U-NII 1, U-NII 2A, U-NII 2C: No limits, only for report use. U-NII 3, U-NII 4: 47 CFR Part 15.407(e)
Test Limit: And	U-NII 1, U-NII 2A, U-NII 2C: No limits, only for report use. U-NII 3, U-NII 4: Within the 5.725-5.850 GHz and 5.850-5.895 GHz bands,
by, age out	the minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz.
Test Method:	ANSI C63.10-2020, section 6.9 & 12.5 KDB 789033 D02, Clause C.2
upo, k kolek	Emission bandwidth:
anbote. And	a) Set RBW = approximately 1% of the emission bandwidth.
A. Albore	b) Set the VBW > RBW.
Anbo	c) Detector = peak.
abotek Ando	d) Trace mode = max hold.
All sek	e) Measure the maximum width of the emission that is 26 dB down from the
ek Aupon Air	peak of the emission.
ak shotek	Compare this with the RBW setting of the instrument. Readjust RBW and
pore And	repeat measurement
hotek Anbore	as needed until the RBW/EBW ratio is approximately 1%.
Aup. K Potek	Anbor All tek anboren Anbo
aboren Anto	Occupied bandwidth:
Ar. sek anbore	a) The instrument center frequency is set to the nominal EUT channel center
Aupo, A.	frequency. The
k bojek Anbe	frequency span for the spectrum analyzer shall be between 1.5 times and
Yun 3k	5.0 times the OBW.
otek anbore A	b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to
, otek	5% of the OBW,
abotek Anbo	and VBW shall be approximately three times the RBW, unless otherwise
All abover	specified by the
Procedure:	applicable requirement.
hore Anbo	c) Set the reference level of the instrument as required, keeping the signal
Aug Po	from exceeding the
k Anbore Arra	maximum input mixer level for linear operation. In general, the peak of the
ok hotek as	spectral envelope
oter. Mup	shall be more than [10 log (OBW/RBW)] below the reference level. Specific
itek anboter	guidance is given
upo. W.	in 4.1.5.2.
spotek Aupo.	d) Step a) through step c) might require iteration to adjust within the
Vu. ** ** ** Potek	specified range.
anbore And	e) Video averaging is not permitted. Where practical, a sample detection and
in tek Anbor	single sweep mode
Andr	shall be used. Otherwise, peak detection and max hold mode (until the trace
tek aboten An	stabilizes) shall be
V. Vick	used. And k hotel Androis All telk hotels
potek Anbor	f) Use the 99% power bandwidth function of the instrument (if available) and
ur potek	report the measured
Anbore. Ans	bandwidth.
ntek Anbote.	g) If the instrument does not have a 99% power bandwidth function, then the
Anbo	trace data points are
. aboten Anbe	recovered and directly summed in linear power terms. The recovered
bu.	amplitude data points,

Report No.: 18220WC40029404 FCC ID: 2BFAP-TARSIER Page 29 of 69

beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached;

that frequency is recorded as the lower frequency. The process is repeated until 99.5% of the

total is reached; that frequency is recorded as the upper frequency. The 99% power bandwidth is

the difference between these two frequencies.

h) The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument

display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may

be reported in addition to the plot(s).

6 dB emission bandwidth:

- a) Set RBW = 100 kHz.
- b) Set the video bandwidth (VBW) ≥ 3 >= RBW.
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.
- g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

6.1. EUT Operation

Operating Environment:

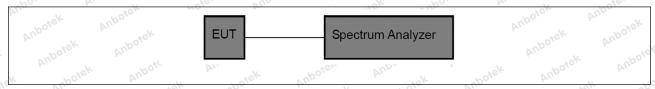
1: 802.11a mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report.

2: 802.11n mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

Test mode:

3: 802.11ac mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

4: 802.11ax mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ax modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.



Report No.: 18220WC40029404 FCC ID: 2BFAP-TARSIER Page 30 of 69

6.2. Test Setup

6.3. Test Data

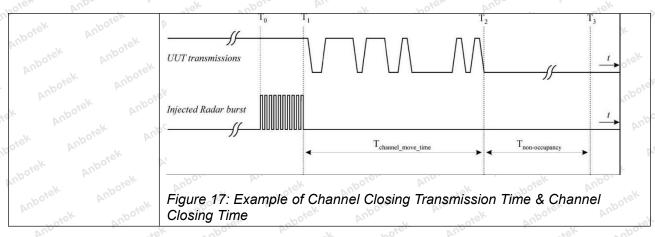
10	T	25.3 °C	11	40.00	Atan and and Daniel	404 LD-
	Temperature:	25.3 0	Humidity:	49 %	Atmospheric Pressure:	101 kPa

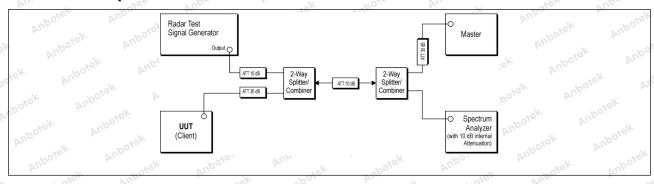
Please Refer to Appendix for Details.

Report No.: 18220WC40029404 FCC ID: 2BFAP-TARSIER Page 31 of 69

7. Channel Move Time, Channel Closing Transmission Time

Test Requirement:	47 CFR Part 15.407(h)(2)(iii)
Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek	Channel Move Time: within 10 seconds Channel Closing Transmission Time: 200 milliseconds + an aggregate of 60 milliseconds over remaining 10 second period. (The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate a Channel move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.)
Test Method:	KDB 905462 D02, Clause 7.8.3
Test Method: Anborek Anborek	KDB 905462 D02, Clause 7.8.3 The steps below define the procedure to determine the above-mentioned parameters when a radar <i>Burst</i> with a level equal to the <i>DFS Detection Threshold</i> + 1dB is generated on the <i>Operating Channel</i> of the U-NII device (<i>In- Service Monitoring</i>). 1. One frequency will be chosen from the <i>Operating Channels</i> of the UUT within the 5250-5350 MHz or 5470-5725 MHz bands. For 802.11 devices, the test frequency must contain control signals. This can be verified by disabling channel loading and monitoring the spectrum analyzer. If no control signals are detected, another frequency must be selected within the emission bandwidth where control signals are detected. 2. In case the UUT is a U-NII device operating as a <i>Client Device</i> (with or without DFS), a U-NII device operating as a <i>Master Device</i> . In case the UUT (Client device) to <i>Associate</i> with the <i>Master Device</i> . In case the UUT is a <i>Master Device</i> , a U-NII device operating as a <i>Client Device</i> will be used and it is assumed that the Client will <i>Associate</i> with the UUT (Master). In both cases for conducted tests, the <i>Radar Waveform</i> generator will be directed towards the <i>Master Device</i> . If the <i>Master Device</i> has antenna gain, the main beam of the antenna will be directed toward the radar emitter. Vertical polarization is used for testing. 3. Stream the channel loading test file from the <i>Master Device</i> to the <i>Client Device</i> on the test <i>Channel</i> for the entire period of the test. 4. At time T0 the <i>Radar Waveform</i> generator sends a <i>Burst</i> of pulses for one of the Radar Type 0 in Table 5 at levels defined in Table 3, on the <i>Operating Channel</i> . An additional 1 dB is added to the radar test signal to ensure it is at or above the <i>DFS Detection Threshold</i> , accounting for equipment variations/errors. 5. Observe the transmissions of the UUT at the end of the radar Burst on the <i>Operating Channel</i> for duration greater than 10 seconds. Measure and
	record the transmissions from the UUT during the observation time (Channel Move Time). Measure and record the Channel Move Time and Channel Closing Transmission Time if radar detection occurs. Figure 17 illustrates Channel Closing Transmission Time.
Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek	6. When operating as a <i>Master Device</i> , monitor the UUT for more than 30 minutes following instant T2 to verify that the UUT does not resume any transmissions on this <i>Channel</i> . Perform this test once and record the measurement result. 7. In case the UUT is a U-NII device operating as a <i>Client Device</i> with <i>In-Service Monitoring</i> , perform steps 1 to 6.




Report No.: 18220WC40029404 FCC ID: 2BFAP-TARSIER Page 32 of 69

7.1. EUT Operation

Operating Envir	onment:	hoiek	Aupoien	VUPO	arek.	anbotek	Auporc	<i>b.</i> 1.
Test mode:	5: Normal Operation	ng: Keep	the EUT wo	orks in no	ormal op	erating mo	de and conr	ect to 🏱
rest mode.	companion device						V	18K

7.2. Test Setup

7.3. Test Data

Temperature. 20.0 0 Training. 40 % Managinerie i ressure. To titl a	Temperature: 25.3 °C Humidity:	49 %	Atmospheric Pressure:	101 kPa
---	--------------------------------	------	-----------------------	---------

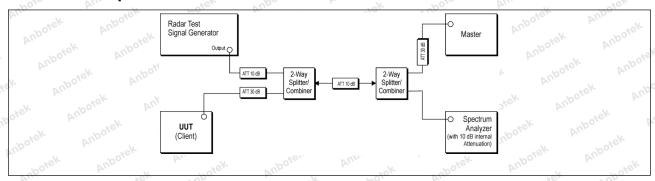
Please Refer to Appendix for Details.

Report No.: 18220WC40029404 FCC ID: 2BFAP-TARSIER Page 33 of 69

8. DFS Detection Thresholds

Test Requirement:	KDB 905462 D02, Clause 5.2 Table 3	
Anbotek Anbotek	Table 3: DFS Detection Thresholds for Master E with Radar Detection Table 3: DFS Detection Thresholds for Ma and Client Devices with Radar De	ster Devices
ek Anbotek An	Maximum Transmit Power EIRP ≥ 200 milliwatt	Value (See Notes 1, 2, and 3) -64 dBm
Test Limit:	EIRP < 200 milliwatt and power spectral density < 10 dBm/MHz EIRP < 200 milliwatt that do not meet the power spectral density	-62 dBm
Anbotek Anbotek Anbot	requirement Note 1: This is the level at the input of the receiver assuming a 0 dl Note 2: Throughout these test procedures an additional 1 dB has be test transmission waveforms to account for variations in measurement the test signal is at or above the detection threshold level to trigger Note3: EIRP is based on the highest antenna gain. For MIMO device 662911 D01.	een added to the amplitude of the ent equipment. This will ensure that a DFS response.
est Method:	KDB 905462 D02, Clause 7.4.1.1	Anbo tek nbotek
	1) A 50 ohm load is connected in place of the spectrum analyzer is connected to place of the 2) The interference Radar Detection Threshold had been taken into account the output power r 3) The following equipment setup was used to detect the setup	master Level is TH+ 0dBi +1dB that ange and antenna gain.
Anbotek Ant	waveform. A vector signal generator was utilized level for radar type 0. During this process, there either the master or client device. The spectrum	d to establish the test signal were no transmissions by
Procedure:	the zero spans (time domain) at the frequency of generator. Peak detection was used. The spect bandwidth (RBW) and video bandwidth (VBW)	rum analyzer resolution were set to 3 MHz. The
	spectrum analyzer had offset -1.0dB to compen 4) The vector signal generator amplitude was s measured at the spectrum analyzer was TH + 0	et so that the power level dBi +1dB = -63dBm. Captur
	the spectrum analyzer plots on short pulse rada Note: TH=-64 dBm or -62 dBm	ar waveform.

8.1. EUT Operation


О	perating Envir	onment:						Ann
T	est mode:	5: Norma	al Operating:	Keep the EU	T works in	normal operatin	g mode and c	onnect to
	est mode.	compani	on device					, abote

Report No.: 18220WC40029404 FCC ID: 2BFAP-TARSIER Page 34 of 69

8.2. Test Setup

8.3. Test Data

e)	Temperature:	25.3 °C	Humidity:	49 %	Atmospheric Pressure:	101 kPa
		_0.0 0.0	Co.c	10 70	100mm	13.64 2

Please Refer to Appendix for Details.

Report No.: 18220WC40029404 FCC ID: 2BFAP-TARSIER Page 35 of 69

9. Band edge emissions (Radiated)

	, N - K	70. N.	_%O.	V Cla	~ V~	VAV.
	anbore.	47 CFR Part 15.407(b)(1)	Aupo	r. otek	Anbore	Vur Fek
		47 CFR Part 15.407(b)(2)	aboles			Aupo,
	Test Requirement:	47 CFR Part 15.407(b)(3)				hote
		47 CFR Part 15.407(b)(4)				And
6	K Anbo. K A.	47 CFR Part 15.407(b)(10)	ek abote	anbo.	-K 2016	K AND

For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of −27 dBm/MHz.

For transmitters operating in the 5.25-5.35 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of −27 dBm/MHz.

For transmitters operating in the 5.47-5.725 GHz band: All emissions outside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of −27 dBm/MHz.

For transmitters operating solely in the 5.725-5.850 GHz band: All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.

Toet	ī	imit:	

MHz	MHz	GHz
16.42-16.423	399.9-410	4.5-5.15
16.69475- 16.69525	608-614	5.35-5.46
16.80425- 16.80475	960-1240	7.25-7.75
25.5-25.67	1300-1427	8.025-8.5
37.5-38.25	1435-1626.5	9.0-9.2
73-74.6	1645.5- 1646.5	9.3-9.5
74.8-75.2	1660-1710	10.6-12.7
108-121.94	1718.8- 1722.2	13.25-13.4
123-138	2200-2300	14.47-14.5
149.9-150.05	2310-2390	15.35-16.2
156.52475- 156.52525	2483.5-2500	17.7-21.4
156.7-156.9	2690-2900	22.01-23.12
162.0125-167.17	3260-3267	23.6-24.0
167.72-173.2	3332-3339	31.2-31.8
240-285	3345.8-3358	36.43-36.5
322-335.4	3600-4400	(2) 10 tek
Aupore Dir.	sek ap	Le. Vup.
	16.42-16.423 16.69475- 16.69525 16.80425- 16.80475 25.5-25.67 37.5-38.25 73-74.6 74.8-75.2 108-121.94 123-138 149.9-150.05 156.52475- 156.52525 156.7-156.9 162.0125-167.17 167.72-173.2 240-285	16.42-16.423 399.9-410 16.69475- 608-614 16.80425- 960-1240 16.80475 1300-1427 25.5-25.67 1300-1427 37.5-38.25 1435-1626.5 73-74.6 1645.5- 1646.5 1718.8- 1722.2 123-138 2200-2300 149.9-150.05 2310-2390 156.52475- 2483.5-2500 156.7-156.9 2690-2900 162.0125-167.17 3260-3267 167.72-173.2 3332-3339 240-285 3345.8-3358

¹Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

²Above 38.6

Report No.: 18220WC40029404 FCC ID: 2BFAP-TARSIER Page 36 of 69

otek Anbore A		or k botek A	upo, Ve.		
ak abotek	The field strength of emiss	sions appearing within thes	se frequency bands shall		
Anbore Arr	not exceed the limits show	n in § 15.209. At frequenc	cies equal to or less than		
	1000 MHz, compliance with	th the limits in § 15.209sha	all be demonstrated		
	using measurement instru	mentation employing a CIS	SPR quasi-peak		
	detector. Above 1000 MHz	z, compliance with the emi	ssion limits in §		
A. otek Anboi	15.209shall be demonstra	ted based on the average	value of the measured		
	emissions. The provisions	in § 15.35apply to these n	neasurements.		
	k cotek Ant		abotek Anbe		
	Except as provided elsewh				
hotek Anbo.	intentional radiator shall no	ot exceed the field strength	n levels specified in the		
	following table:	Anbore And	potek Anbo		
	Frequency (MHz)	Field strength	Measurement		
sofek Anbore	All abover	(microvolts/meter)	distance		
And	ek Anbore Arr	k aboten And	(meters)		
	0.009-0.490	2400/F(kHz)	300		
	0.490-1.705	24000/F(kHz)	30 do 100 pm		
	1.705-30.0	30 botek An	30		
	30-88	100 **	botel 3 Anbo		
	88-216	150 **	AND O TOTOK		
	216-960	200 **	Anbor 3 Ans		
	Above 960	500	3er Ancor		
	** Except as provided in p	V 1201	D.C.		
	intentional radiators opera				
	frequency bands 54-72 MI				
sk abotek Ant	However, operation within				
	sections of this part, e.g.,		permitted under other		
	In the emission table above		at the hand edges		
	The emission limits shown				
	- XO		- XC.		
	employing a CISPR quasi-peak detector except for the frequency bands 9–90 kHz, 110–490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average				
	detector.	K Kotek Anbort	Plus Sek Spot		
Test Method:	ANSI C63.10-2020, sectio	n 12.7.4. 12.7.6. 12.7.7	otek Aupon K		
- Stek	NOTO ALL	Polok Pupos, - HV	Cick Vupore, Mu		
	Above 1GHz:	IT was also and so the tow	of a matation table 1.5		
	a. For above 1GHz, the El				
	meters above the ground				
	rotated 360 degrees to de				
	b. The EUT was set 3 met				
	which was mounted on the				
	c. The antenna height is v				
	ground to determine the m				
Procedure:	and vertical polarizations of				
	d. For each suspected em and then the antenna was				
	test frequency of below 30				
	and the rotatable table wa	s turried from 0 degrees to	5 300 degrees to lind the		
	maximum reading. e. The test-receiver syster	n was set to Poak Dotact I	Function and Specified		
	Bandwidth with Maximum		unction and Specified		
	f. If the emission level of the		10dB lower than the		
	limit specified, then testing				
		こししいい いき ろいしいせん すけい けん	- DUAN VAIDES UI LIE EUT		

Report No.: 18220WC40029404 FCC ID: 2BFAP-TARSIER Page 37 of 69

would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak or average method as specified and then reported in a data sheet.

- g. Test the EUT in the lowest channel, the middle channel, the Highest channel.
- h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
- i. Repeat above procedures until all frequencies measured was complete. Remark:
- 1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor
- 2. Scan from 18GHz to 40GHz, the disturbance above 18GHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 3. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.
- 4. The disturbance above 18GHz were very low and the harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.

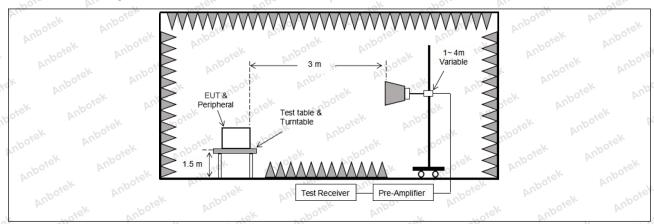
9.1. EUT Operation

Operating Environment:

1: 802.11a mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report.

Test mode:

2: 802.11n mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.


- 3: 802.11ac mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.
- 4: 802.11ax mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ax modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

Report No.: 18220WC40029404 FCC ID: 2BFAP-TARSIER Page 38 of 69

9.2. Test Setup

Report No.: 18220WC40029404 FCC ID: 2BFAP-TARSIER Page 39 of 69

9.3. Test Data

Temperature: 25.3 °C	Humidity: 49 %	Atmospheric Pressure:	101 kPa
----------------------	----------------	-----------------------	---------

		TM1 / B	and: 5150-5	350 MHz / BV	W: 20 / L		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5150.00	37.13	15.99 And	53.12	68.20	-15.08	work H	Peak
5150.00	39.22	15.99	55.21	68.20	-12.99	V.	Peak
5150.00	27.02	15.99	43.01	54.00	-10.99	Hyek Hitek	AVG
5150.00	29.12	15.99	45.11	54.00	-8.89	And Sick	AVG
	,	TM1 / B	and: 5150-53	350 MHz / BV	V: 20 / H		,
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5350.00	37.53	16.43	53.96	68.20	-14.24	H	Peak
5350.00	40.57	16.43	57.00	68.20	-11.20	And V.ok	Peak
5350.00	28.91	16.43	45.34	54.00	-8.66	PLUBO T	AVG
5350.00	29.75	16.43	46.18	54.00	-7.82	Wpoyer	AVG

Remark:

- 1. Result=Reading + Factor
- 2. During the test, all antenna chains has been tested, and only worst case (ANT1) data is listed in the report.

тероп.	207	AP .	-\-	201 D		207	- up
		TM2 / B	and: 5150-53	350 MHz / BV	V: 20 / L		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5150.00	36.02	15.99	52.01	68.20	-16.19	H bote	Peak
5150.00	37.45	15.99	53.44	68.20 no	-14.76 · · · · · · · · · · · · · · · · · · ·	rek V	_{ote^K Peak_{An}bo}
5150.00	26.74	15.99	42.73	54.00	-11.27	H	AVG
5150.00	27.72	15.99	43.71	54.00	-10.29	Aupor A	AVG
		TM2 / B	and: 5150-53	350 MHz / BV	V: 20 / H		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5350.00	37.87	16.43	54.30	68.20	-13.90	. Н	rek Peak,noo
5350.00	38.88	16.43	55.31 And	68.20	12.89 AN	V Pur	Peak
5350.00	27.91	16.43	44.34	54.00	-9.66	inpoter H A	AVG
5350.00	29.40	16.43	45.83	54.00	-8.17	No Vk	AVG
No.	ly.	240.	VU.	40.	-100	No.	210

- 1. Result=Reading + Factor
- 2. During the test, SISO and MIMO modes have been tested, and only worst case (MIMO) data is listed in the report.

Report No.: 18220WC40029404 FCC ID: 2BFAP-TARSIER Page 40 of 69

1/2.	TONE ALL	/w	VICK V	Upo h.	You	"POLOGO P	111
		TM2 / B	and: 5150-53	350 MHz / BV	V: 40 / L		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5150.00	36.63	15.99	52.62	68.20	-15.58	k Hupotel	Peak
5150.00	38.47	15.99	54.46	68.20	-13.74	otek V Anba	Peak
5150.00	27.21	15.99	43.20	54.00 M	-10.80	Lotek H	ore AVG A
5150.00	28.81	15.99	44.80	54.00	-9.20	V. V.	AVG
		TM2 / B	and: 5150-53	350 MHz / BV	V: 40 / H		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5350.00	38.18	16.43	54.61	68.20	-13.59	tek H Anbo	Peak
5350.00	37.01	16.43	53.44	68.20 M	-14.76	V V	Peak M
5350.00	28.46	16.43	44.89	54.00	9.11 P	H by	AVG
5350.00	29.69	16.43	46.12	54.00	-7.88	Anbord	AVG

Remark:

- 1. Result=Reading + Factor
- 2. During the test, SISO and MIMO modes have been tested, and only worst case (MIMO) data is listed in the report.

	46. VUD		V - V	20,		710. VU	2
		TM3 / B	and: 5150-5	350 MHz / BV	V: 20 / L		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5150.00	37.10	15.99	53.09	68.20	-15.11	Hotek	Peak
5150.00	38.88	15.99	54.87	68.20	-13.33	k V bote	Peak
5150.00	26.65	15.99	42.64	54.00	-11.36 ^{nboo}	H H	otel ^k AVG pobo
5150.00	28.90	15.99 _M	44.89	54.00	9.11 PA	N WILL	AVG
		TM3 / B	and: 5150-53	350 MHz / BV	V: 20 / H		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5350.00	37.97	16.43	54.40	68.20	-13.80	k H potel	Peak
5350.00	38.21	16.43	54.64	68.20	-13.56	V	Peak No
5350.00	27.91	16.43	44.34	54.00	-9.66	OLE H WUR	AVG
5350.00	28.52	16.43	44.95	54.00	-9.05	obotek A	AVG

- 1. Result=Reading + Factor
- 2. During the test, SISO and MIMO modes have been tested, and only worst case (MIMO) data is listed in the report.

Report No.: 18220WC40029404 FCC ID: 2BFAP-TARSIER Page 41 of 69

	2101	, -	40.	PO. B.		Alex.
	TM3 / B	and: 5150-53	350 MHz / BV	V: 40 / L		
Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
36.04	15.99	52.03	68.20	-16.17	PH	Peak
36.43	15.99	52.42	68.20	-15.78	Nupo,	Peak
26.29	15.99	42.28 Abo	54.00	-11.72 N	otek H Anbo	AVG
o ^{te 2} 26.96 M	15.99	42.95	54.00 AN	-11.05	nbotek V A	AVG
	TM3 / B	and: 5150-53	350 MHz / BV	V: 40 / H		
Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
38.16	16.43	54.59	68.20	-13.61	H ^{nb}	Peak
37.27	16.43	53.70	68.20	-14.50	isk A Vupo,	Peak
27.58	16.43	44.01	54.00	-9.99	Notek H An	AVG
27.68	16.43	44.11	54.00	-9.89	V	AVG
	(dBuV) 36.04 36.43 26.29 26.96 Reading (dBuV) 38.16 37.27 27.58	Reading (dBuV) (dB/m) 36.04 15.99 36.43 15.99 26.29 15.99 26.96 15.99 TM3 / B Reading (dBuV) (dB/m) 38.16 16.43 37.27 16.43 27.58 16.43	Reading (dBuV) Factor (dB/m) Result (dBuV/m) 36.04 15.99 52.03 36.43 15.99 52.42 26.29 15.99 42.28 26.96 15.99 42.95 TM3 / Band: 5150-53 Reading (dBuV) Factor (dB/m) Result (dBuV/m) 38.16 16.43 54.59 37.27 16.43 53.70 27.58 16.43 44.01	Reading (dBuV) Factor (dB/m) Result (dBuV/m) Limit (dBuV/m) 36.04 15.99 52.03 68.20 36.43 15.99 52.42 68.20 26.29 15.99 42.28 54.00 TM3 / Band: 5150-5350 MHz / BV Reading (dBuV) Factor (dB/m) Result (dBuV/m) Limit (dBuV/m) 38.16 16.43 54.59 68.20 37.27 16.43 53.70 68.20 27.58 16.43 44.01 54.00	(dBuV) (dB/m) (dBuV/m) (dBuV/m) (dB) 36.04 15.99 52.03 68.20 -16.17 36.43 15.99 52.42 68.20 -15.78 26.29 15.99 42.28 54.00 -11.72 26.96 15.99 42.95 54.00 -11.05 TM3 / Band: 5150-5350 MHz / BW: 40 / H Reading (dBuV) Result (dBuV/m) Limit (dBuV/m) Over limit (dBuV/m) (dBuV) (dB/m) 68.20 -13.61 37.27 16.43 54.59 68.20 -14.50 27.58 16.43 44.01 54.00 -9.99	Reading (dBuV) Factor (dB/m) Result (dBuV/m) Limit (dBuV/m) Over limit (dB) Antenna Pol. 36.04 15.99 52.03 68.20 -16.17 H 36.43 15.99 52.42 68.20 -15.78 V 26.29 15.99 42.28 54.00 -11.72 H 26.96 15.99 42.95 54.00 -11.05 V TM3 / Band: 5150-5350 MHz / BW: 40 / H Reading (dBuV) Factor (dB/m) Result (dBuV/m) Over limit (dB) Antenna Pol. 38.16 16.43 54.59 68.20 -13.61 H 37.27 16.43 53.70 68.20 -14.50 V 27.58 16.43 44.01 54.00 -9.99 H

Remark:

- 1. Result=Reading + Factor
- 2. During the test, SISO and MIMO modes have been tested, and only worst case (MIMO) data is listed in the report.

_xC	The Superior		77 NO.	NI.		ice and	*
		TM3 / B	and: 5150-5	350 MHz / BV	V: 80 / L		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5150.00	36.11	15.99	52.10	68.20	-16.10	Hek.	Peak
5150.00	36.62	15.99	52.61	68.20	-15.59	Votek	Peak
5150.00	26.78	15.99	42.77	54.00	-11.23	H bote	AVG
5150.00	26.98	15.99	42.97	54.00	-11.03 ¹⁰⁰	V V	AVG ANG
		TM3 / B	and: 5150-53	350 MHz / BV	V: 80 / H	,	
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5350.00	38.48	16.43	54.91	68.20	-13.29	Hotek	Peak
5350.00	37.59	16.43	54.02	68.20	-14.18	V stel	Peak
5350.00	29.02	16.43	45.45	54.00	-8.55 ₀ 0000	Hanbo	AVG
5350.00	28.25	16.43	44.68 M	54.00	-9.32	otek A Vupe	AVG

- 1. Result=Reading + Factor
- 2. During the test, SISO and MIMO modes have been tested, and only worst case (MIMO) data is listed in the report.

Report No.: 18220WC40029404 FCC ID: 2BFAP-TARSIER Page 42 of 69

	2161		40.	Po, by		yer.
	TM4 / B	and: 5150-53	350 MHz / BV	V: 20 / L		
Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
37.27	15.99	53.26	68.20	-14.94	PH	Peak
39.07	15.99	55.06	68.20	-13.14	Nupp.	Peak
26.74	15.99	42.73	54.00	11.27 NO	otek H Anbo	AVG
29.03 An	15.99	45.02	54.00	-8.98	nbotek V A	AVG
	TM4 / B	and: 5150-53	550 MHz / BV	V: 20 / H		
Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
38.06	16.43	54.49	68.20	-13.71	H ^{nb}	Peak
38.28	16.43	54.71 mg/	68.20	-13.49	tek A Vupo,	Peak
28.02	16.43	44.45	54.00	-9.55	hotek H An	AVG
28.69	16.43	45.12	54.00	-8.88	V	AVG
	(dBuV) 37.27 39.07 26.74 29.03 Reading (dBuV) 38.06 38.28 28.02	Reading (dBuV) (dB/m) 37.27 15.99 39.07 15.99 26.74 15.99 29.03 15.99 TM4 / B Reading (dBuV) (dB/m) 38.06 16.43 38.28 16.43 28.02 16.43	Reading (dBuV) Factor (dB/m) Result (dBuV/m) 37.27 15.99 53.26 39.07 15.99 55.06 26.74 15.99 42.73 29.03 15.99 45.02 TM4 / Band: 5150-53 Reading (dBuV) Factor (dB/m) Result (dBuV/m) 38.06 16.43 54.49 38.28 16.43 54.71 28.02 16.43 44.45	Reading (dBuV) Factor (dB/m) Result (dBuV/m) Limit (dBuV/m) 37.27 15.99 53.26 68.20 39.07 15.99 55.06 68.20 26.74 15.99 42.73 54.00 29.03 15.99 45.02 54.00 TM4 / Band: 5150-5350 MHz / BV Reading (dBuV) Result (dBuV/m) Limit (dBuV/m) 38.06 16.43 54.49 68.20 38.28 16.43 54.71 68.20 28.02 16.43 44.45 54.00	(dBuV) (dB/m) (dBuV/m) (dBuV/m) (dB) 37.27 15.99 53.26 68.20 -14.94 39.07 15.99 55.06 68.20 -13.14 26.74 15.99 42.73 54.00 -11.27 29.03 15.99 45.02 54.00 -8.98 TM4 / Band: 5150-5350 MHz / BW: 20 / H Reading (dBuV) Result (dBuV/m) Limit (dBuV/m) Over limit (dBuV/m) (dBuV) (dB,43 54.49 68.20 -13.71 38.28 16.43 54.71 68.20 -13.49 28.02 16.43 44.45 54.00 -9.55	Reading (dBuV) Factor (dB/m) Result (dBuV/m) Limit (dBuV/m) Over limit (dB) Antenna Pol. 37.27 15.99 53.26 68.20 -14.94 H 39.07 15.99 55.06 68.20 -13.14 V 26.74 15.99 42.73 54.00 -11.27 H 29.03 15.99 45.02 54.00 -8.98 V TM4 / Band: 5150-5350 MHz / BW: 20 / H Reading (dBuV) Result (dBuV/m) Cover limit (dBuV/m) Antenna Pol. 38.06 16.43 54.49 68.20 -13.71 H 38.28 16.43 54.71 68.20 -13.49 V 28.02 16.43 44.45 54.00 -9.55 H

Remark:

- 1. Result=Reading + Factor
- 2. During the test, SISO and MIMO modes have been tested, and only worst case (MIMO) data is listed in the report.

		TM4 / B	and: 5150-53	350 MHz / BV	V: 40 / L		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5150.00	36.19	15.99	52.18	68.20	-16.02	AnbAir	Peak
5150.00	36.53	15.99	52.52	68.20	-15.68	Nooye	Peak
5150.00	26.51	15.99	42.50	54.00	-11.50	sk Hanbore	AVG
5150.00	otel 27.11 And o	15.99	43.10	54.00×nb0	-10.90	otek V Anb	AVG
		TM4 / B	and: 5150-53	350 MHz / BW	V: 40 / H		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5350.00	38.29	16.43	54.72	68.20	-13.48	AH ^{oro}	Peak
5350.00	37.36	16.43	53.79	68.20	-14.41	k Nupote	Peak
5350.00	27.67	16.43	44.10	54.00	-9.90	** H	AVG AVG
5350.00	27.88	16.43	44.31	54.00	-9.69 M	V	AVG

- 1. Result=Reading + Factor
- 2. During the test, SISO and MIMO modes have been tested, and only worst case (MIMO) data is listed in the report.

Report No.: 18220WC40029404 FCC ID: 2BFAP-TARSIER Page 43 of 69

		TM4 / B	and: 5150-53	350 MHz / BV	N: 80 / L		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5150.00	36.20	15.99	52.19	68.20	-16.01	PH	Peak
5150.00	36.81	15.99	52.80	68.20	-15.40	Nupo,	Peak
5150.00	26.98	15.99	42.97	54.00	11.03 NO	otek H Anbo	AVG
5150.00	27.11 An	15.99	43.10	54.00	-10.90	nbotek V A	AVG
		TM4 / B	and: 5150-53	350 MHz / BV	V: 80 / H		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5350.00	38.67	16.43	55.10	68.20	-13.10	H ^{nb}	Peak
5350.00	37.74	16.43	54.17 mg	68.20	-14.03	tek A Vupo	Peak
5350.00	29.24 M	16.43	45.67	54.00	-8.33	hotek H An	AVG AVG
5350.00	28.38	16.43	44.81	54.00	-9.19	V	AVG

- 1. Result=Reading + Factor
- 2. During the test, SISO and MIMO modes have been tested, and only worst case (MIMO) data is listed in the report.

Report No.: 18220WC40029404 FCC ID: 2BFAP-TARSIER Page 44 of 69

		TM1 / B	and: 5470-58	350 MHz / BV	V: 20 / L		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5460.00	38.51	16.37	54.88	68.20	-13.32	"Ho _{ter}	Peak
5460.00	40.02	16.37	56.39	68.20	-11.81	k V botek	Peak
5470.00	39.44	16.70	56.14	68.20	-12.06	H	Peak
5470.00	40.31	16.70	57.01 57	68.20	-11.19 N	oter A Vupe	Peak
5460.00	29.01	16.37	45.38	54.00	-8.62	botek H Ar	AVG
5460.00	28.91	16.37	45.28	54.00	-8.72	V	AVG
5470.00	29.28	16.70	45.98	54.00	-8.02	Pup H ok	AVG
5470.00	30.42	16.70	47.12	54.00	-6.88	PUA.	AVG
		TM1 / B	and: 5470-58	350 MHz / BV	V: 20 / H		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5850.00	39.52	17.21 And	56.73	68.20	-11.47	sotek H An	Peak
5850.00	39.95	17.21	57.16	68.20	-11.04	V	Peak
5850.00	29.44	17.21	46.65	54.00	-7.35	Anbor H	AVG
5850.00	29.39	17.21	46.60	54.00	-7.40	N/View	AVG

Remark:

- 1. Result=Reading + Factor
- 2. During the test, all antenna chains has been tested, and only worst case (ANT1) data is listed in the report.

		TM2 / B	and: 5470-58	850 MHz / BV	V: 20 / L		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5460.00	38.51	16.37	54.88	68.20	-13.32	H stek	Peak
5460.00	39.19	16.37	55.56	68.20	-12.64	V	Peak
5470.00	38.62	16.70	55.32	68.20	-12.88	ok Hanbor	Peak
5470.00	39.14	16.70	55.84	68.20	-12.36	otek V no	Peak Andre
5460.00	27.34	16.37	43.71	54.00	-10.29	Н	AVG
5460.00	27.86	16.37	44.23	54.00	-9.77	Aupolo V	AVG
5470.00	27.78	16.70	44.48	54.00	-9.52	nbH ^P	AVG
5470.00	28.40	16.70	45.10	54.00	-8.90	Votek	AVG
		TM2 / B	and: 5470-58	350 MHz / BV	V: 20 / H		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5850.00	37.76	17.21	54.97 And	68.20	-13.23	H	Peak
5850.00	38.28	17.21	55.49	68.20	-12.71	nbote V P	Peak
5850.00	28.12	17.21	45.33	54.00	-8.67	aboH ^V	AVG
5850.00	28.82	17.21	46.03	54.00	-7.97	N. Viek	AVG
D	700	40.	2007	V.	N. O. C.	740	40.

- 1. Result=Reading + Factor
- 2. During the test, SISO and MIMO modes have been tested, and only worst case (MIMO) data is listed in the report.

Report No.: 18220WC40029404 FCC ID: 2BFAP-TARSIER Page 45 of 69

		TM2 / B	and: 5470-58	350 MHz / BV	V: 40 / L		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5460.00	38.09	16.37	54.46	68.20	-13.74	"Ho _{ter}	Peak
5460.00	39.07	16.37	55.44	68.20	-12.76	k V spotek	Peak
5470.00	38.92	16.70	55.62	68.20	-12.58	H	Peak,
5470.00	39.68	16.70	56.38 M	68.20	-11.82	oter A Vupe	Peak
5460.00	27.12	16.37	43.49	54.00	-10.51	botek H Ar	AVG
5460.00	28.90	16.37	45.27	54.00	-8.73	V	AVG
5470.00	27.32	16.70	44.02	54.00	-9.98	Aup H	AVG
5470.00	28.58	16.70	45.28	54.00	-8.72	PUD.	AVG
		TM2 / B	and: 5470-58	350 MHz / BV	V: 40 / H		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5850.00	38.45	17.21 And	55.66	68.20	-12.54	sotek H An	Peak A
5850.00	38.74	17.21	55.95	68.20	-12.25	V	Peak
5850.00	28.66	17.21	45.87	54.00	-8.13	Anbort H	AVG
5850.00	29.66	17.21	46.87	54.00	-7.13	N/View	AVG

Remark:

- 1. Result=Reading + Factor
- 2. During the test, SISO and MIMO modes have been tested, and only worst case (MIMO) data is listed in the report.

	TM3 / Band: 5470-5850 MHz / BW: 20 / L							
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector	
5460.00	37.68	16.37	54.05	68.20	-14.15	AupH K	Peak	
5460.00	37.68	16.37	54.05	68.20	-14.15	Noote	Peak	
5470.00	38.26	16.70	54.96	68.20	-13.24	ek H bote	Peak	
5470.00	38.48	16.70	55.18	68.20	-13.02	V	rek Peak	
5460.00	28.23	16.37	44.60	54.00	9.40	ooter H And	AVG	
5460.00	29.00	16.37	45.37	54.00	-8.63	1 Varoda	AVG	
5470.00	28.51	16.70	45.21	54.00	-8.79	H.	AVG	
5470.00	29.46	16.70	46.16	54.00	-7.84	AUD A PK	AVG	
		TM3 / B	and: 5470-58	350 MHz / BV	V: 20 / H			
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector	
5850.00	38.42	17.21	ote ³⁴ 55.63 and c	68.20	-12.57	otek H Anb	Peak	
5850.00	39.24	17.21 Am	56.45	68.20	-11.75	Vyeton	Peak	
5850.00	28.23	17.21	45.44	54.00	-8.56	Hr.	AVG	
5850.00	29.42	17.21	46.63	54.00	-7.37	Nupo, N	AVG	

- 1. Result=Reading + Factor
- 2. During the test, SISO and MIMO modes have been tested, and only worst case (MIMO) data is listed in the report.

Report No.: 18220WC40029404 FCC ID: 2BFAP-TARSIER Page 46 of 69

			,				
		TM3 / B	and: 5470-5	850 MHz / BV	V: 40 / L		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5460.00	36.59	16.37	52.96	68.20	-15.24	"Ho,	Peak
5460.00	38.02	16.37	54.39	68.20	-13.81	V Voick	Peak
5470.00	37.02	16.70	53.72	68.20	-14.48	H	→ Peak
5470.00	38.36	16.70	55.06 m	68.20	13.14	oter A bugs	Peak
5460.00	27.54	16.37	43.91	54.00	-10.09	botek H A	AVG
5460.00	27.63	16.37	44.00	54.00	-10.00	V	AVG
5470.00	27.79	16.70	44.49	54.00	-9.51	AUD H	AVG
5470.00	28.44	16.70	45.14	54.00	-8.86	AnV	AVG
		TM3 / B	and: 5470-58	350 MHz / BV	V: 40 / H		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5850.00	37.91	17.21 And	55.12	68.20	-13.08	hotek H An	Peak Peak
5850.00	38.86	17.21	56.07	68.20	-12.13	V	Peak
5850.00	27.94	17.21	45.15	54.00	-8.85	Aupo, H	AVG
5850.00	27.65	17.21	44.86	54.00	-9.14	NU Vier	AVG

Remark:

- 1. Result=Reading + Factor
- 2. During the test, SISO and MIMO modes have been tested, and only worst case (MIMO) data is listed in the report.

		- T	NA .	V1.		-0.7	3
		TM3 / B	Band: 5470-58	350 MHz / BV	V: 80 / L		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5460.00	35.84	16.37	52.21	68.20	-15.99	AnbH K	Peak
5460.00	37.46	16.37	53.83	68.20	-14.37	Noote	Peak
5470.00	36.20	16.70	52.90	68.20	-15.30	H bote	Peak
5470.00	38.41	16.70	55.11	68.20	-13.09	V	xe ^k Peak
5460.00	26.26	16.37	42.63	54.00	-11.37	ooter H Ans	AVG
5460.00	27.22	16.37	43.59	54.00	-10.41	A Varoda	AVG
5470.00	27.01	16.70	43.71	54.00	-10.29	HP/r	AVG
5470.00	27.43	16.70	44.13	54.00	-9.87	And V "Sk	AVG
		TM3 / B	and: 5470-58	350 MHz / BV	V: 80 / H		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5850.00	38.11	17.21	55.32 M	68.20	-12.88	otek H Anbi	Peak
5850.00	38.28	17.21	55.49	68.20	-12.71	NotekV A	Peak
5850.00	28.66	17.21	45.87	54.00	-8.13	Hk H	AVG
5850.00	28.63	17.21	45.84	54.00	-8.16	Pupol	AVG
							V CLA

- 1. Result=Reading + Factor
- 2. During the test, SISO and MIMO modes have been tested, and only worst case (MIMO) data is listed in the report.

Report No.: 18220WC40029404 FCC ID: 2BFAP-TARSIER Page 47 of 69

			200				
		TM4 / B	and: 5470-58	850 MHz / BV	V: 20 / L		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5460.00	37.79	16.37	54.16	68.20	-14.04	"Ho _{ter}	Peak
5460.00	37.74	16.37	54.11	68.20	-14.09	k V społek	Peak
5470.00	38.37	16.70	55.07	68.20	-13.13	H	Peak
5470.00	38.54	16.70	55.24	68.20	-12.96	oter A VUD	Peak
5460.00	28.31	16.37	44.68	54.00	-9.32	botek H A	AVG
5460.00	29.14	16.37	45.51	54.00	-8.49	V	AVG
5470.00	28.59	16.70	45.29	54.00	-8.71	Pupe Hk	AVG
5470.00	29.60	16.70	46.30	54.00	-7.70	PUA.	AVG
		TM4 / B	and: 5470-58	350 MHz / BV	V: 20 / H		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5850.00	38.53	17.21	55.74	68.20 M	-12.46	hotek H An	Peak
5850.00	39.33	17.21	56.54	68.20	-11.66	V	Peak
5850.00	28.32	17.21	45.53	54.00	-8.47	Aupo, H	AVG
5850.00	29.56	17.21	46.77	54.00	-7.23	Anit View	AVG

Remark:

- 1. Result=Reading + Factor
- 2. During the test, SISO and MIMO modes have been tested, and only worst case (MIMO) data is listed in the report.

		TM4 / B	and: 5470-58	350 MHz / BV	V: 40 / L	51/2Y A.S	
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5460.00	36.70	16.37	53.07	68.20	-15.13	AnbH K	Peak
5460.00	38.09	16.37	54.46	68.20	-13.74	Noote	Peak
5470.00	37.13	16.70	53.83	68.20	-14.37	ek H bote	Peak
5470.00	38.43	16.70 both	55.13	68.20	-13.07	V	rek Peak
5460.00	27.62	16.37	43.99	54.00	-10.01	poter H And	AVG
5460.00	27.70	16.37	44.07	54.00	-9.93	aboteV P	AVG
5470.00	27.87	16.70	44.57	54.00	-9.43	H	AVG
5470.00	28.51	16.70	45.21	54.00	-8.79	AUD ∧ ***	AVG
		TM4 / B	and: 5470-58	50 MHz / BV	V: 40 / H		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5850.00	38.00	17.21	55.21 M	68.20	-12.99	otek H Anbi	Peak
5850.00	39.00	17.21 And	56.21	68.20	-11.99	Motely A	Peak
5850.00	28.05	17.21	45.26	54.00	-8.74	Hk W	AVG
5850.00	27.79	17.21	45.00	54.00	-9.00	Aupol	AVG

- 1. Result=Reading + Factor
- 2. During the test, SISO and MIMO modes have been tested, and only worst case (MIMO) data is listed in the report.

FCC ID: 2BFAP-TARSIER Report No.: Page 48 of 69 18220WC40029404

- /2 -	-100, by.		7,8,	Up	40	",00, P	
		TM4 / E	Band: 5470-58	350 MHz / BV	V: 80 / L		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5460.00	35.93	16.37	52.30	68.20	-15.90	H week	Peak
5460.00	37.59	16.37	53.96	68.20	-14.24	$\Lambda_{\omega_{\mathcal{O}}}$	Peak
5470.00	36.29	16.70	52.99	68.20	-15.21	otek H Anbo	Peak
5470.00	38.54	16.70	55.24	68.20	-12.96	Nek V	Peak
5460.00	26.41	16.37	42.78	54.00	-11.22	H	AVG
5460.00	27.31	16.37	43.68	54.00	-10.32	AnboV	AVG
5470.00	27.16	16.70	43.86	54.00	-10.14	nHier.	AVG
5470.00	27.52	16.70	44.22	54.00	-9.78	Votek	AVG
501-		TM4 / B	and: 5470-58	350 MHz / BV	V: 80 / H	, , , , , , , , , , , , , , , , , , , ,	'
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
5850.00	38.29		55.50	68.20	-12.70	H k	Peak
5850.00	38.42	17.21	55.63	68.20	-12.57	Aupoto	Peak
5850.00	28.90	17.21	46.11	54.00	-7.89	Aprek	AVG
5850.00	28.76	17.21	45.97	54.00	-8.03	V	AVG

Remark:

- 1. Result=Reading + Factor
- 2. During the test, SISO and MIMO modes have been tested, and only worst case (MIMO) data is listed in the report.

Hotline

Report No.: 18220WC40029404 FCC ID: 2BFAP-TARSIER Page 49 of 69

10. Undesirable emission limits (below 1GHz)

Test Requirement:	47 CFR Part 15.407(b)(9)	And abotek Ant	o. Al.
Aupotek Vupote	Unwanted emissions below strength limits set forth in §	v 1 GHz must comply with the go	eneral field
		nere in this subpart, the emission ot exceed the field strength level	
Anbotek Anbotek	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
	0.009-0.490	2400/F(kHz)	300
	0.490-1.705	24000/F(kHz)	30
	1.705-30.0	30	30
	30-88	100 **	3 Anbo.
Test Limit:	88-216	150 **	3 appoint
sotek Anbore	216-960	200 **	3 Mek
ok wotek	Above 960	500	3 Ambore
abote. And	-10,0	aragraph (g), fundamental emiss	-16/4
	The emission limits shown employing a CISPR quasi- 90 kHz, 110–490 kHz and	e, the tighter limit applies at the in the above table are based or peak detector except for the free above 1000 MHz. Radiated emised on measurements employing	n measurements quency bands 9– ssion limits in
Test Method:	ANSI C63.10-2020, section	n 12.7.4, 12.7.5	Vupo, W.
Procedure:	meters above the ground a was rotated 360 degrees to b. The EUT was set 3 or 10 antenna, which was mound c. The antenna height is var ground to determine the mand vertical polarizations of d. For each suspected emissions.	JT was placed on the top of a rotat a 3 meter semi-anechoic chan be determine the position of the hold meters away from the interferenced on the top of a variable-heighed from one meter to four met aximum value of the field streng of the antenna are set to make the ission, the EUT was arranged to tuned to heights from 1 meter to	nber. The table ighest radiation. ence-receiving ht antenna tower. ers above the th. Both horizontale measurement. its worst case
	test frequency of below 30 and the rotatable table was maximum reading.	MHz, the antenna was tuned to sturned from 0 degrees to 360 cm was set to Peak Detect Function	heights 1 meter) degrees to find the
	Bandwidth with Maximum f. If the emission level of the limit specified, then testing		lower than the values of the EU

Report No.: 18220WC40029404 FCC ID: 2BFAP-TARSIER Page 50 of 69

would be re-tested one by one using quasi-peak method as specified and then reported in a data sheet.

- g. Test the EUT in the lowest channel, the middle channel, the Highest channel.
- h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case
- i. Repeat above procedures until all frequencies measured was complete. Remark:
- 1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor
- 2. Scan from 9kHz to 30MHz, the disturbance below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 3. The disturbance below 1GHz was very low and the harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.

Above 1GHz:

- a. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak or average method as specified and then reported in a data sheet.
- g. Test the EUT in the lowest channel, the middle channel, the Highest channel.
- h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case
- i. Repeat above procedures until all frequencies measured was complete. Remark:
- 1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor
- 2. Scan from 18GHz to 40GHz, the disturbance above 18GHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB

Report No.: 18220WC40029404 FCC ID: 2BFAP-TARSIER Page 51 of 69

below the limit need not be reported.

- 3. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.
- 4. The disturbance above 18GHz were very low and the harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.

10.1. EUT Operation

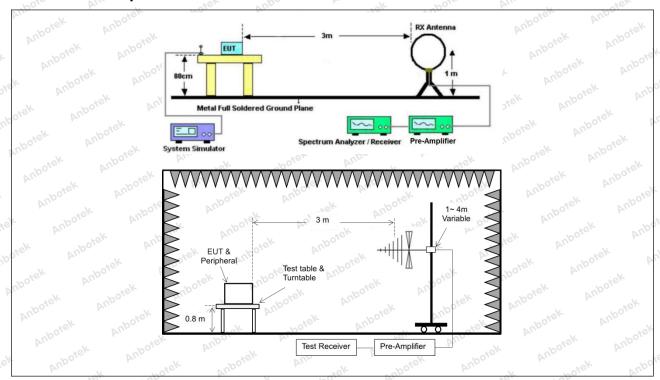
Operating Environment:

1: 802.11a mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report.

2: 802.11n mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

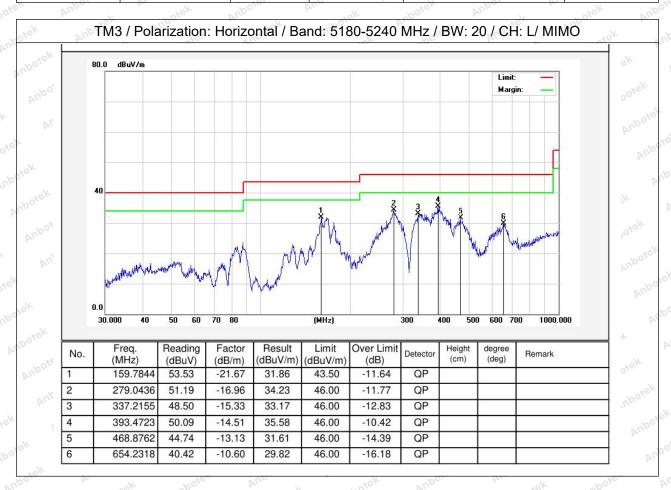
Test mode:

- 3: 802.11ac mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.
- 4: 802.11ax mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ax modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.


Shenzhen Anbotek Compliance Laboratory Limited

Report No.: 18220WC40029404 FCC ID: 2BFAP-TARSIER Page 52 of 69

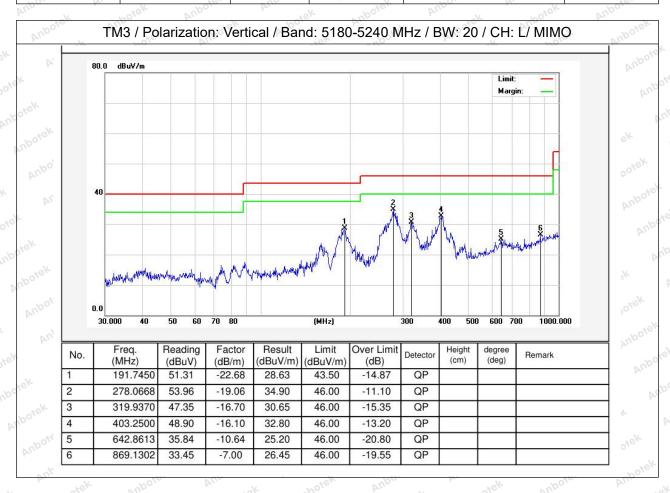
10.2. Test Setup

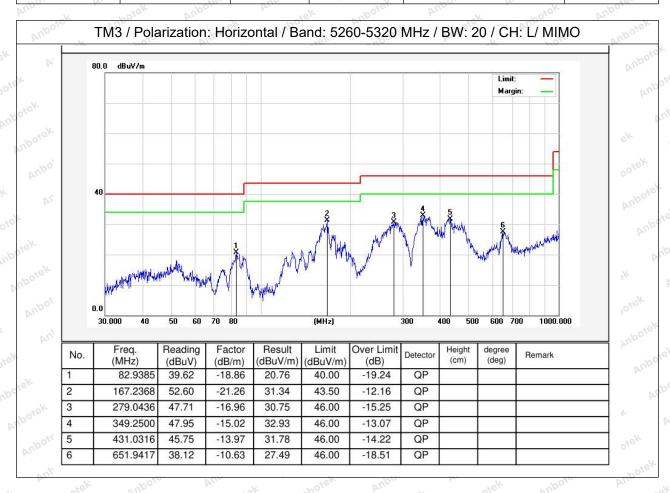


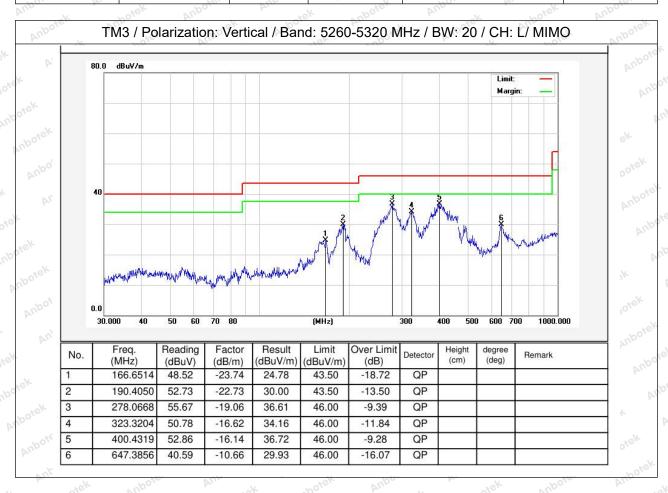
FCC ID: 2BFAP-TARSIER Report No.: 18220WC40029404 Page 53 of 69

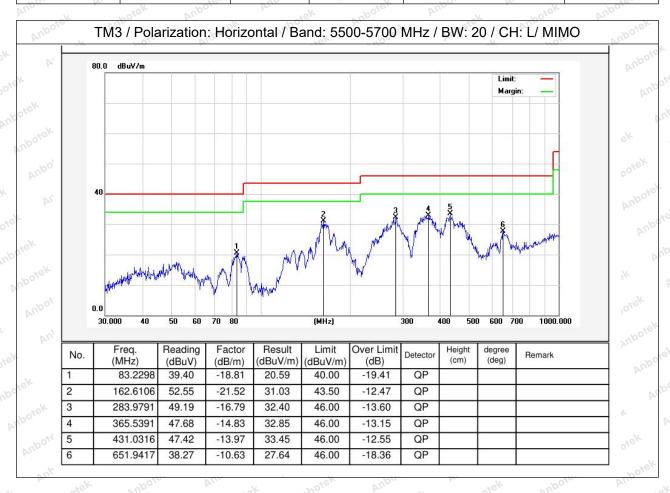
10.3. Test Data

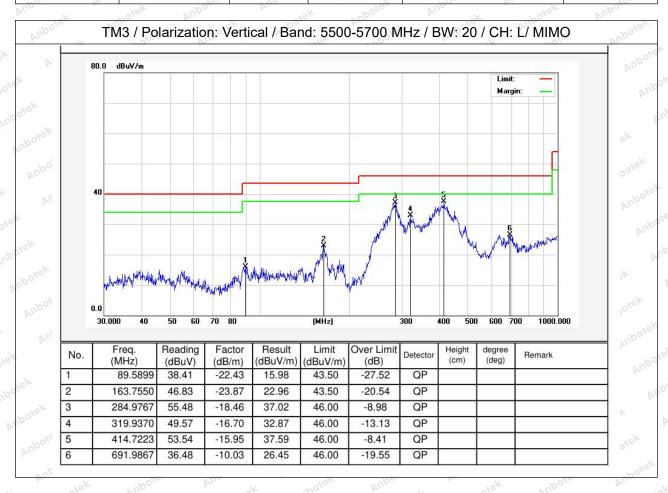
The test results of 9kHz-30MHz was attenuated more than 20dB below the permissible limits, so the results don't record in the report.

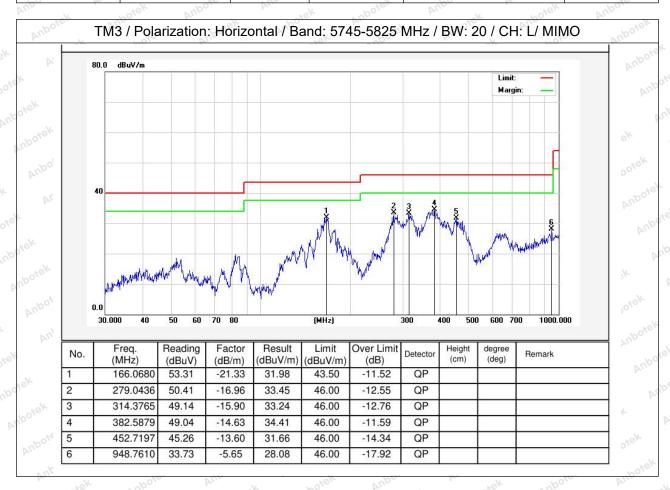

Temperature:	20.3 °C	Humid	ity: 46 %	Atmospheric Pr	essure: 101 kPa
			1.2(7)	(%)	


Report No.: 18220WC40029404 FCC ID: 2BFAP-TARSIER Page 54 of 69

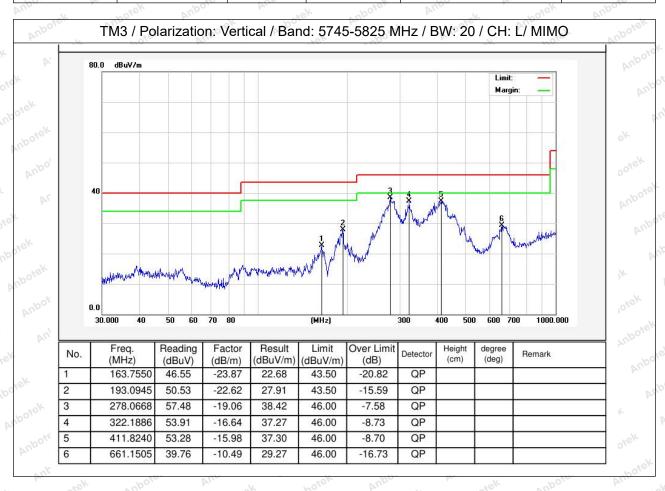

Report No.: 18220WC40029404 FCC ID: 2BFAP-TARSIER Page 55 of 69


Report No.: 18220WC40029404 FCC ID: 2BFAP-TARSIER Page 56 of 69


Report No.: 18220WC40029404 FCC ID: 2BFAP-TARSIER Page 57 of 69


Report No.: 18220WC40029404 FCC ID: 2BFAP-TARSIER Page 58 of 69

Report No.: 18220WC40029404 FCC ID: 2BFAP-TARSIER Page 59 of 69



Report No.: 18220WC40029404 FCC ID: 2BFAP-TARSIER Page 60 of 69

Temperature: 20.3 °C Humidity: 46 % Atmospheric Pressure: 101 kPa

Note: Only record the worst data (802.11ac(VHT20) MIMO) in the report.

Report No.: 18220WC40029404 FCC ID: 2BFAP-TARSIER Page 61 of 69

11. Undesirable emission limits (above 1GHz)

	, N - K	70. N.	_XO.	V Ula	~V~	VVV .
	anbore.	47 CFR Part 15.407(b)(1)	Aupo.	k. otek	Anbois	Vur Fek
		47 CFR Part 15.407(b)(2)	aboten			Anbo.
	Test Requirement:	47 CFR Part 15.407(b)(3)				hote
		47 CFR Part 15.407(b)(4)				AUC
6	K Anbo. K	47 CFR Part 15.407(b)(10)	ek abote	Anbo.	-K hote	k aup

For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of −27 dBm/MHz.

For transmitters operating in the 5.25-5.35 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

For transmitters operating in the 5.47-5.725 GHz band: All emissions outside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of −27 dBm/MHz.

For transmitters operating solely in the 5.725-5.850 GHz band: All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.

Toet	ı	im	it:

MHz And	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
10.495-0.505	16.69475- 16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425- 16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5- 1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8- 1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475- 156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(2) 10 tek
13.36-13.41	Aupor Au	iek ab	Ve. Vuga
PUL VILLE	19.	2po	V "0"

¹Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

²Above 38.6

Report No.: 18220WC40029404 FCC ID: 2BFAP-TARSIER Page 62 of 69

otek Anbore A		ok hotek Ar	10010 AT
ak abotek	The field strength of emiss	sions appearing within thes	e frequency bands shall
Anbore Arr	not exceed the limits show	n in § 15.209. At frequence	ies equal to or less than
	1000 MHz, compliance wi	th the limits in § 15.209sha	II be demonstrated
	using measurement instru	mentation employing a CIS	SPR quasi-peak
	detector. Above 1000 MHz	z, compliance with the emis	ssion limits in §
A. otek Anbo	15.209shall be demonstra	ted based on the average	value of the measured
	emissions. The provisions	in § 15.35apply to these m	neasurements.
	is cotek Aut		botek And
		nere in this subpart, the em	
hotek Anbo.		ot exceed the field strength	levels specified in the
	following table:		abotek Anbo
	Frequency (MHz)	Field strength	Measurement
Lotek Anbore	All abover	(microvolts/meter)	distance
And	ek Anbor Ari	k aboien And	(meters)
	0.009-0.490	2400/F(kHz)	300
	0.490-1.705	24000/F(kHz)	atel 30 above part
	1.705-30.0	30 botel Ani	30
	30-88	100 **	botek 3 Anbo
	88-216	150 **	3 0000
	216-960	200 **	Anber 3
	Above 960	500	o 3 Anbor
		aragraph (g), fundamental	D.C.
		ting under this section sha	
		Hz, 76-88 MHz, 174-216 M	
sk spoter Aur		these frequency bands is	
	sections of this part, e.g.,		permitted drider other
		e, the tighter limit applies a	at the hand edges
		in the above table are bas	
	20.	-peak detector except for the	- XC
		above 1000 MHz. Radiate	
		ed on measurements emp	
	detector.	K kotek Anbott) SAIL SON
Test Method:	ANSI C63.10-2020, section	n 12.7.4. 12.7.6. 12.7.7	Pick Vupo, Y
	NOTO ANY	Potek Nupon	siek vupoter bu
	Above 1GHz:	UT was placed as the ten	of a ratation table 1 E
		UT was placed on the top o	
		at a 3 meter fully-anechoic	
		termine the position of the	
		ers away from the interfere e top of a variable-height a	
		aried from one meter to foun naximum value of the field s	
Ando		of the antenna are set to m	
Procedure:		ission, the EUT was arrang	
		tuned to heights from 1 m	
		MHz, the antenna was tun	
		s turned from 0 degrees to	
	maximum reading.	s tarrica nom o degrees to	Journal of the state of the sta
		n was set to Peak Detect F	Function and Specified
	Bandwidth with Maximum		unduon and Specified
		ne EUT in peak mode was	10dB lower than the
		could be stopped and the	
	T III III SPOOMOU, LIIGII LOSUILL	y ocala be stopped and the	pour values of the LOT

Report No.: 18220WC40029404 FCC ID: 2BFAP-TARSIER Page 63 of 69

would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak or average method as specified and then reported in a data sheet.

- g. Test the EUT in the lowest channel, the middle channel, the Highest channel.
- h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case
- i. Repeat above procedures until all frequencies measured was complete. Remark:
- 1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor
- 2. Scan from 18GHz to 40GHz, the disturbance above 18GHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
- 3. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.
- 4. The disturbance above 18GHz were very low and the harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.

11.1. EUT Operation

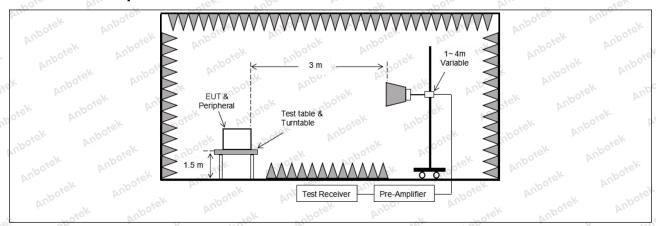
Operating Environment:

1: 802.11a mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report.

Test mode:

2: 802.11n mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

- 3: 802.11ac mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.
- 4: 802.11ax mode: Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ax modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.


Shenzhen Anbotek Compliance Laboratory Limited

Report No.: 18220WC40029404 FCC ID: 2BFAP-TARSIER Page 64 of 69

11.2. Test Setup

Report No.: 18220WC40029404 FCC ID: 2BFAP-TARSIER Page 65 of 69

11.3. Test Data

Temperature: 25.3 °C	Humidity: 49 %	Atmospheric Pressure:	101 kPa
----------------------	----------------	-----------------------	---------

- No.	hore	D11.	76F	"Up,	-Va-	-h07	Dir.
		TM4 / Ban	d: 5150-525	0 MHz / BW:	20 / CH: L		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
10360.00	31.44	23.81	55.25	68.20	-12.95	V	Peak
15540.00	32.74	28.68	61.42	68.20	-6.78	Yupo, A	Peak
10360.00	31.78	23.81	55.59	68.20	-12.61	Anbort	Peak
15540.00	32.84	28.68	61.52	68.20	-6.68	VIHO46H	Peak
10360.00	20.790	23.81	44.60	54.00	-9.40	Vootek	AVG
15540.00	21.842	28.68	50.52	54.00	-3.48	V V	AVG NO
10360.00	20.971	23.81	44.78	54.00	-9.22 N	H Ann	AVG
15540.00	21.538	28.68	50.22	54.00	-3.78	nbotek H A	AVG
-117		TM4 / Ban	d: 5150-5250	MHz / BW:	20 / CH: M	10	\$1600°
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
10400.00	30.80	23.81	54.61	68.20	-13.59	Kupore	Peak
15600.00	32.27	29.13	61.40	68.20	-6.80	ek V nbo	Peak
10400.00	31.27	23.81	55.08	68.20	-13.12	Н	Peak
15600.00	32.36	29.13	o ^{te} 61.49 An	68.20	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	H by	Peak
10400.00	21.060	23.81	44.87	54.00	-9.13	Anborev	AVG
15600.00	21.962	29.13	51.09	54.00	-2.91	NO ALEK	AVG
10400.00	20.961	23.81	44.77	54.00	-9.23	Hotek	AVG
15600.00	21.618	29.13	50.75	54.00	-3.25	H	AVG
		TM4 / Ban	d: 5150-525	0 MHz / BW:	20 / CH: H		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
10480.00	30.37	23.80	54.17	68.20	-14.03	Aups A	Peak
15720.00	31.75	30.03	61.78	68.20	-6.42	Anbor	Peak
10480.00	30.91	23.80	54.71	68.20	-13.49	Hoores	Peak
15720.00	31.27	30.03	61.30	68.20	-6.90	ek Habote	Peak
10480.00	19.73	23.80	43.53	54.00	-10.47	V V	otek AVG MO
15720.00	20.72	30.03	50.75 And	54.00	-3.25	Over Aug	AVG
10480.00	20.17 An	23.80	43.97	54.00	-10.03	Anbote H	AVG
15720.00	20.41	30.03	50.44	54.00	-3.56	_\oH\	AVG

- 1. Result =Reading + Factor
- 2. Only the worst case (802.11ax(HEW20) MIMO) is recorded in the report.

Report No.: 18220WC40029404 FCC ID: 2BFAP-TARSIER Page 66 of 69

ien Vup.		TMO / Daw	A. 5050 505	0 MILL / DVA/-	hoten Ani	, , , , , , , , , , , , , , , , , , ,	Aek.
	- I			0 MHz / BW:			
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
10520.00	27.77	23.81	51.58	68.20	-16.62	AV	Peak
15780.00	29.15	30.48	59.63	68.20	-8.57	K Nupote	Peak
10520.00	28.69	23.81	52.50	68.20	-15.70	niek H anbo	Peak
15780.00	27.78	30.48 And	58.26	68.20	9.94 And	Н	Peak
10520.00	17.617	23.81	41.43	54.00	-12.57	Wpo, A	AVG
15780.00	19.322	30.48	49.80	54.00	-4.20	Aupor.	AVG
10520.00	19.083	23.81	42.89	54.00	-11.11	VIII OLEK	AVG
15780.00	18.494	30.48	48.97	54.00	-5.03	Hobotek	AVG
		TM3 / Ban	d: 5250-535	MHz / BW:	20 / CH: M		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
10600.00	28.96	23.87	52.83	68.20	-15.37	V	Peak
15900.00	28.20	31.38	59.58	68.20	-8.62	Aup Aup	Peak
10600.00	27.99	23.87	51.86	68.20	-16.34	An H	Peak
15900.00	28.20	31.38	59.58	68.20	-8.62	Hipoter	Peak
10600.00	18.287	23.87	42.16	54.00	-11.84	lek V nbot	AVG
15900.00	19.072	31.38	50.45	54.00	-3.55 And	V	AVG
10600.00	18.363	23.87	42.23	54.00	41.77 N	H bu	AVG
15900.00	18.644	31.38	50.02	54.00	-3.98	Anboret	AVG
		TM3 / Ban	d: 5250-535	0 MHz / BW:	20 / CH: H		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
10640.00	28.30	23.90	52.20	68.20	-16.00	Sk A Vupor	Peak
15960.00	27.70	31.83	59.53	68.20	-8.67	otek V ant	Peak
10640.00	28.36	23.90	52.26	68.20	-15.94 AT	H	Peak
15960.00	27.76	31.83	59.59	68.20	-8.61	Pupo, H	Peak
10640.00	17.03	23.90	40.93	54.00	-13.07	AUPS	AVG
15960.00	18.03	31.83	49.86	54.00	-4.14	Motek	AVG
10640.00	17.53	23.90	41.43	54.00	-12.57	H bote	AVG
15960.00	18.96	31.83	50.79	54.00	-3.21	Н	AVG

- 1. Result =Reading + Factor
- 2. Only the worst case (802.11ac(VHT20) MIMO) is recorded in the report.

Report No.: 18220WC40029404 FCC ID: 2BFAP-TARSIER Page 67 of 69

stek Aupo	by.	arek anb	ote. Aur	10	potek Ani	DO. N.	aje ^k
		TM4 / Ban	d: 5470-572	5 MHz / BW:	20 / CH: L		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
11000.00	26.97	24.15	51.12	68.20	-17.08	P.A.	Peak
16500.00	29.07	33.05	62.12	68.20	-6.08	k Nupore	Peak
11000.00	28.76	24.15	52.91	68.20	-15.29	otek H note	Peak
16500.00	29.15	ote ^k 33.05 palot	62.20	68.20	-6.00 Ant	Н	Peak
11000.00	16.644	24.15	40.79	54.00	-13.21	upo, A	AVG
16500.00	17.975	33.05	51.03	54.00	-2.97	Aupolo V	AVG
11000.00	16.850	24.15	41.00	54.00	-13.00	Hotek	AVG
16500.00	16.744	33.05	49.79	54.00	-4.21	H botek	AVG
		TM4 / Ban	d: 5470-572	5 MHz / BW:	20 / CH: M		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
11200.000	26.65	23.83	50.48	68.20	-17.72	V	Peak
16800.000	27.24	32.16	59.40	68.20	-8.80	Anbov	Peak
11200.000	27.69	23.83	51.52	68.20	-16.68	Anh	Peak
16800.000	27.76	32.16	59.92	68.20	-8.28	Hypoten	Peak
11200.000	16.894	23.83	40.72	54.00	-13.28	ek V nbot	AVG
16800.000	18.375	32.16	50.54	54.00	-3.46	V	ote ^K AVG An
11200.000	17.350	23.83	41.18 An	54.00	-12.82	Pole H	AVG
16800.000	18.604	32.16	50.76	54.00	-3.24	AnboreH	AVG
		TM4 / Ban	d: 5470-572	5 MHz / BW:	20 / CH: H		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
11400.000	25.74	23.51	49.25	68.20	-18.95	SK A VUpos	Peak
17100.000	27.13	31.73	58.86	68.20 mbc	-9.34	otek V Ank	Peak Pri
11400.000	26.59	23.51	50.10	68.20	-18.10 AC	H	Peak
17100.000	27.76	31.73	59.49	68.20	-8.71	Aupo, H	Peak
11400.000	16.27	23.51	39.78	54.00	-14.22	Aup Ofer	AVG
17100.000	17.59	31.73	49.32	54.00	-4.68	Notek	AVG
11400.000	20.14	23.51	43.65	54.00	-10.35	H H bote	AVG
17100.000	18.39	31.73	50.12	54.00	-3.88	Н	AVG AVG

- 1. Result =Reading + Factor
- 2. Only the worst case (802.11ax(HEW20) MIMO) is recorded in the report.

Report No.: 18220WC40029404 FCC ID: 2BFAP-TARSIER Page 68 of 69

D., D.,	**	Tien VUD			PO. D.		7,61
		TM2 / Ban	d: 5725-585	0 MHz / BW:	40 / CH: L		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
11510.000	28.62	23.36	51.98	68.20	-16.22	P. A.	Peak
17265.000	29.20	32.02	61.22	68.20	-6.98	K VAnbore	Peak
11510.000	29.51	23.36	52.87	68.20	-15.33	oden H var	Peak
17265.000	29.44	otel*32.02 palos	61.46	68.20	-6.74 Ant	Н	Peak
11510.000	18.35	23.36	1.71 A	54.00	-12.29	Npo, A	AVG
17265.000	18.75	32.02	50.77	54.00	-3.23	Auporto.	AVG
11510.000	18.73	23.36	42.09	54.00	-11.91	Hotek	AVG
17265.000	19.22	32.02	51.24	54.00	-2.76	H botek	AVG
5.03		TM2 / Ban	d: 5725-585	0 MHz / BW:	40 / CH: H		
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over limit (dB)	Antenna Pol.	Detector
11590.00	27.98	23.43	51.41	68.20	-16.79	Ŋ.	Peak
17385.00	29.15	32.23	61.38	68.20	-6.82	AnboV	Peak
11590.00	28.47	23.43	51.90	68.20	-16.30	AnH	Peak
17385.00	28.70	32.23	60.93	68.20	-7.27	Hopoter	Peak
11590.00	17.62	23.43	41.05	54.00	-12.95	ek V nbot	AVG
17385.00	17.76	32.23	49.99	54.00	-4.01 Pribe	V	AVG AN
11590.00	18.51	23.43	41.94 M	54.00	-12.06	Pose H	AVG
17385.00	18.67	32.23	50.90	54.00	-3.10	Anborett H	AVG

Remark:

- Result =Reading + Factor
- 2. Only the worst case (802.11n(HT40) MIMO) is recorded in the report.

Hotline

www.anbotek.com.cn

400-003-0500

Report No.: 18220WC40029404 FCC ID: 2BFAP-TARSIER Page 69 of 69

APPENDIX I -- TEST SETUP PHOTOGRAPH

Please refer to separated files Appendix I -- Test Setup Photograph_RF

APPENDIX II -- EXTERNAL PHOTOGRAPH

Please refer to separated files Appendix II -- External Photograph

APPENDIX III -- INTERNAL PHOTOGRAPH

Please refer to separated files Appendix III -- Internal Photograph

----- End of Report -----

