

FCC ID: 2BFAP-TARSIER 18220WC40029402 Report No.: Page 1 of 32

FCC Test Report

Applicant : Visinse Technology Co., Ltd.

16D, Block A.B, Haiwang Building, 2221 Nanhai

: Avenue, Nanguang Community, Nanshan Street, **Address**

Nanshan District, Shenzhen, China

Product Name Tarsier

: May 20, 2024 **Report Date**

Shenzhen Anbotek Con Anbotek

ce Laboratory Limited

Report No.: 18220WC40029402 FCC ID: 2BFAP-TARSIER Page 2 of 32

Contents

I MOCITE	ral Information	⁰ 24				00.	150	y	
1.1.	Client Information	ote ^k	upo _{ter}	And	, ol	Mpotek /	Aupoi	Otek Dr	otel
1.3	Description of Device (EU Auxiliary Equipment Used	d During To	est						de
14	Operation channel list								_
^o 1.5.	Description of Test Modes	s 🕰 🗀		-xe/4	~ Vpo.	h.,		1000	P.
1.7.	Measurement Uncertainty Test Summary	λ ^{৮//} / ₂₅		botek	Anbon	р	or otek	nbot	8
1.8.	Description of Test Facilit	^{од} ллV			۷,,,,,,,,,	ofe	VU.		otek (
1.9.	Disclaimer	ASK	, <u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>	224	ek.	boyelt		K)
2 Anton	D. Test Equipment List na requirement	· otek	anbotek	AUD	.ek	Spotek	Anb.	, v	ματ 10 46
Z. AIILEII		_t_0\- [t]D.:	, north	b.	100)		tek V	Upoler	<u> </u>
o ^{ter} 2.1.	Conclusion	- Vupo,		otek	Aupore,		atek	Anborek.	T
3. Cond	ucted Emission at AC pow	er line	, V	tek	<u>Anbote</u>	k	, ok	. ~bote	; 13
3.1.	EUT Operation	Anbot	(er	rek	do .	-18/L	Pupor	VII.	13
3.2.	Test Data		po _{kek} .	PUPO!		rotek	Anbolon Anbolon		12
4. Occu	Conclusion		, obotek	Anbo'	, P	'ur 'ur	Anbo	ick l	16
4.1.	EUT Operation		h. hotel	K PL	pore	Vu.	ek si	potek	16
4.2.	Test Setup			,,ek	Wpo _{ler}	Aup		- Notek	16
nbote* 4.3.	Test Data	Anboten	4.02	rek	, upotel		00,	-hote	16
5. Maxir	num Conducted Output Po	ower	3/	,00°	~/pc	, rol	W.Pole.	A^\(\sigma^*_\)	
5.1.	EUT Operation	ek	2016/r	- Pupose	-k V1,		- AHODIEN	V _{UD}	1
5.3.	Test Setup Test Data		botek	Anbot	e:	orek	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	×	,/p2:-1.
6. Powe								· · · · · · · · · · · · · · · · · · ·	14
e A	r Spectral Density		VII.	Anl	o _{je} ,	Vupo.		potek	1, Anbor
nı	r Spectral Density	Aupolek P	Pulpote _k	nek An	ote, Napotek	Anbok Anbok		potek r	1 181
6.1. 6.2.	r Spectral Density EUT Operation Test Setup	Vupoleje Vupoleje	Arteofel Arteo	kek Mak	ore Anborek	Anbot Anbot		oorek oorek	1 18 18 18
.6.3.	Test Datar Spectral Density	ke	P	<u> </u>			01	· · · · · · · · · · · · · · · · · · ·	18
.6.3.	r Spectral Density	ke	P	<u> </u>			01	· · · · · · · · · · · · · · · · · · ·	18
6.3. 7. Emiss 7.1.	Test Datasions in non-restricted freq	uency bar	nds	Pepolesk	k Aupo	Polisik	Arboisk Arboisk	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	18 19 19
6.3. 7. Emiss 7.1.	Test Datasions in non-restricted freq	uency bar	nds	Pepolesk	k Aupo	Polisik	Arboisk Arboisk	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	18 19 19
6.3. 7. Emiss 7.1.	Test Datasions in non-restricted freq	uency bar	nds	Pepolesk	k Aupo	Polisik	Arboisk Arboisk	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	18 19 19
6.3. 7. Emiss 7.1.	Test Datasions in non-restricted freq	uency bar	nds	Pepolesk	k Aupo	Polisik	Arboisk Arboisk	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	18 19 19
6.3. 7. Emiss 7.1.	Test Datasions in non-restricted freq	uency bar	nds	Pepolesk	k Aupo	Polisik	Arboisk Arboisk	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	18 19 19
6.3. 7. Emiss 7.1.	Test Datasions in non-restricted freq	uency bar	nds	Pepolesk	k Aupo	Polisik	Arboisk Arboisk	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	18 19 19
6.3. 7. Emiss 7.1.	Test Datasions in non-restricted freq	uency bar	nds	Pepolesk	k Aupo	Polisik	Arboisk Arboisk	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	18 19 19
6.3. 7. Emiss 7.1.	Test Datasions in non-restricted freq	uency bar	nds	Pepolesk	k Aupo	Polisik	Arboisk Arboisk	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	18 19 19
6.3. 7. Emiss 7.1.	Test Datasions in non-restricted freq	uency bar	nds	Pepolesk	k Aupo	Politik	Arboisk Arboisk	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	18 19 19

Report No.: 18220WC40029402	FCC ID: 2	BFAP-TARSIER	Page 3 of 32	2
10. Emissions in frequency bands (above 1GHz)) ""po _{tek}	Anboten And	k Aupotek	27
10.1. EUT Operation	botek	Anboro Air	atek unboten	27
10.2. Test Setup	bu. ek	botek Anb	ie ^l	. 28
10.3. Test Data	k Vipois		inpoter And	29
APPENDIX I TEST SETUP PHOTOGRAPH	dek sabot	ier Yupo	botek Anb	. 32
APPENDIX II EXTERNAL PHOTOGRAPH	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	otek Anbore	V.	. 32
APPENDIX III INTERNAL PHOTOGRAPH				3 2

Report No.: 18220WC40029402 FCC ID: 2BFAP-TARSIER Page 4 of 32

TEST REPORT

Applicant : Visinse Technology Co., Ltd.

Manufacturer : Luxshare Electronic Technology (Kunshan) Ltd.

Product Name : Tarsier

Test Model No. : Tarsier

Reference Model No. : N/A

Trade Mark : N/A

Rating(s) : Input: 5V--- 3A (with DC 3.8V, 3600mAh battery inside)

47 CFR Part 15.247

Test Standard(s) : KDB 558074 D01 15.247 Meas Guidance v05r02

ANSI C63.10-2020

The device described above is tested by Shenzhen Anbotek Compliance Laboratory Limited to determine the maximum emission levels emanating from the device and the severe levels of the device can endure and its performance criterion. The measurement results are contained in this test report and Shenzhen Anbotek Compliance Laboratory Limited is assumed full of responsibility for the accuracy and completeness of these measurements. Also, this report shows that the EUT (Equipment Under Test) is technically compliant with above listed standard(s) requirements. This report applies to above tested sample only and shall not be reproduced in part without written approval of Shenzhen Anbotek Compliance Laboratory Limited.

Date of Neccipt.		1 CD. 21, 2027	
Anborek Anborek		oter Aup tek	
Date of Test:	ter And hotek F	eb. 21, 2024 to May 15, 20	24 orek Anborer
		Anbotek Anbo	
		Nian Xiu Cher) Anbotek A
Prepared By:	Anbore. And	Anbote Anbo	k Potek
		(Nianxiu Chen)	Ar. anbotek
Anbotek Anbor An		Trek Anborek Anb	o. Al abotek
Aupotek Aupor Air		Bolward par	No.
Approved & Authorized Signer:	hotek Anbotek	Arios Helk Moot k	Anbore Al.
		(Edward Pan)	

Report No.: 18220WC40029402 FCC ID: 2BFAP-TARSIER Page 5 of 32

Revision History

	Report Version	Description	Issued Date
	Anbore R00 potek Ant	Original Issue.	May 20, 2024
9,	Anbotek Anbotek	Anbotek Anbotek Anbotek	K Anbotek Anbotek Ant
10	ore Ambotek Anbotek	Anbotek Anbotek Anbot	tek Anbotek Anboter

Report No.: 18220WC40029402 FCC ID: 2BFAP-TARSIER Page 6 of 32

1. General Information

1.1. Client Information

Applicant	:	Visinse Technology Co., Ltd.
Address	:	16D, Block A.B, Haiwang Building, 2221 Nanhai Avenue, Nanguang Community, Nanshan Street, Nanshan District, Shenzhen, China
Manufacturer	:	Luxshare Electronic Technology (Kunshan) Ltd.
Address	:	No.158 Jinchang Road, Jinxi Town, Kunshan City, Jiangsu China
Factory	:	Luxshare Electronic Technology (Kunshan) Ltd.
Address	:	No.158 Jinchang Road, Jinxi Town, Kunshan City, Jiangsu China

1.2. Description of Device (EUT)

	700	K 1010 All
Product Name	:	Tarsier Anborek Anborek Anborek Anborek
Test Model No.	:	Tarsier Andrew Andrew Andrew
Reference Model No.	:	N/Aotek Anbotek Anbotek Anbotek Anbotek Anbotek
Trade Mark	:	N/A Anbore Anborek Anborek Anborek Anborek
Test Power Supply	:	AC 120V/60Hz for Adapter; DC 3.8V battery inside
Test Sample No.	:	1-2-1(Normal Sample), 1-2-2(Engineering Sample)
Adapter	:	N/A Anbotek Anbotek Anbotek Anbotek
RF Specification		
Operation Frequency	:	2402MHz to 2480MHz
Number of Channel	:	40 Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek
Modulation Type	:	GFSK And Tek Andorek Andorek Andorek Andorek Andorek Andorek
Antenna Type	:	FPC Antenna
Antenna Gain(Peak)	:	3.28dBi Anborek Anborek Anborek Anborek

Remark:

- (1) All of the RF specification are provided by customer.
- (2) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

Report No.: 18220WC40029402 FCC ID: 2BFAP-TARSIER Page 7 of 32

1.3. Auxiliary Equipment Used During Test

Title	Manufacturer	Model No.	Serial No.	
Xiaomi 33W adapter	Xiaomi	MDY-11-EX	SA62212LA04358J	

1.4. Operation channel list

Operation Band:

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
Anboio	2402	10	2422	20.04	2442	And 30 tek	2462
Antorek	2404	130tek	2424	21 _{botek}	2444	31	2464
2,nboke	2406	12 _{nb} ote	2426	22	2446	32	2466 Above
ek 3 Anbo	2408	otek 13 Anb	2428	23	otek 2448 Anbo	33	2468
botek 4 A	2410	, e14	2430	24	2450	34	2470
Napot 5	2412	15	2432	25	2452	Anh 35	2472
6 tek	2414	16	2434	26	2454	36	2474
7 _{nbořek}	2416	17 000	2436	27	2456	37	2476
ek 8 Anbo	2418	18	2438	28	2458 And of	38 🗥	2478
otek 9 Ar	2420 Andre	19	1001 2440 Ant	29 Ani	2460	o ^{dek} 39 M	2480

1.5. Description of Test Modes

Pretest Modes	Descriptions
Anbotek TM1Anbo otek	Keep the EUT works in continuously transmitting mode (BLE 1M)
or Anbore TM2 Anborrek	Keep the EUT works in continuously transmitting mode (BLE 2M)

Report No.: 18220WC40029402 FCC ID: 2BFAP-TARSIER Page 8 of 32

1.6. Measurement Uncertainty

Parameter	Uncertainty
Conducted emissions (AMN 150kHz~30MHz)	3.4dB
Occupied Bandwidth	925Hz
Conducted Output Power	0.76dB
Power Spectral Density	0.76dB
Conducted Spurious Emission	1.24dB
Radiated spurious emissions (above 1GHz)	1G-6GHz: 4.78dB; 6G-18GHz: 4.88dB 18G-40GHz: 5.68dB
Radiated emissions (Below 30MHz)	3.53dB
Radiated spurious emissions (30MHz~1GHz)	Horizontal: 3.92dB; Vertical: 4.52dB

The measurement uncertainty and decision risk evaluated according to AB/WI-RF-F-032. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence

level using a coverage factor of k=2.

1.7. Test Summary

Test Items	Test Modes	Status	
Antenna requirement	Jek Molek Aupo	P An	
Conducted Emission at AC power line	Mode1,2	P	
Occupied Bandwidth	Mode1,2	Anbore P. ek	
Maximum Conducted Output Power	Mode1,2	AND SE	
Power Spectral Density	Mode1,2	Problem	
Emissions in non-restricted frequency bands	Mode1,2	P Anb	
Band edge emissions (Radiated)	Mode1,2	P	
Emissions in frequency bands (below 1GHz)	Mode1,2	Anbore P	
Emissions in frequency bands (above 1GHz)	Mode1,2	Pubos	
Note: P: Pass N: N/A not applicable	Anbotek Anbotek	k Aupore	

Shenzhen Anbotek Compliance Laboratory Limited

Report No.: 18220WC40029402 FCC ID: 2BFAP-TARSIER Page 9 of 32

1.8. Description of Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.:434132

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No. 434132.

ISED-Registration No.: 8058A

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registered and fully described in a report filed with the (ISED) Innovation, Science and Economic Development Canada. The acceptance letter from the ISED is maintained in our files. Registration 8058A.

Test Location

Shenzhen Anbotek Compliance Laboratory Limited.

1/F, Building D, Sogood Science and Technology Park, Sanwei community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China.

1.9. Disclaimer

- The test report is invalid if not marked with the signatures of the persons responsible for preparing and approving the test report.
- 2. The test report is invalid if there is any evidence and/or falsification.
- 3. The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein.
- 4. This document may not be altered or revised in any way unless done so by Anbotek and all revisions are duly noted in the revisions section.
- 5. Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.
- 6. The authenticity of the information provided by the customer is the responsibility of the customer and the laboratory is not responsible for its authenticity.

The laboratory is only responsible for the data released by the laboratory, except for the part provided by the applicant.

Report No.: 18220WC40029402 FCC ID: 2BFAP-TARSIER Page 10 of 32

1.10. Test Equipment List

Cond	ucted Emission at A	C power line				
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due Date
. 1	L.I.S.N. Artificial Mains Network	Rohde & Schwarz	ENV216	100055	2024-01-18	2025-01-17
žek 2	Three Phase V- type Artificial Power Network	CYBERTEK	EM5040DT	E215040D T001	2024-01-17	2025-01-16
304	Software Name EZ-EMC	Farad Technology	ANB-03A	N/A	Wootek	Anborek
4	EMI Test Receiver	Rohde & Schwarz	ESPI3	100926	2023-10-12	2024-10-11

Occupied Bandwidth

Maximum Conducted Output Power

Power Spectral Density

Emis	sions in non-restricte	d frequency bands	VII.	poter	Aupa	FOICH
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due Date
1 _{Anh}	Constant 1 Temperature ZHONGJIAN Humidity Chamber		ZJ- KHWS80B	N/A	2023-10-16	2024-10-15
2	DC Power Supply	IVYTECH	IV3605	1804D360 510	2023-10-20	2024-10-19
3	Spectrum Analyzer	Rohde & Schwarz	FSV40-N	101792	2023-05-26	2024-05-25
An4ote	MXA Spectrum Analysis	KEYSIGHT	N9020A	MY505318 23	2024-02-22	2025-02-21
5.nb	Oscilloscope	Tektronix	MDO3012	C020298	2023-10-12	2024-10-11
6	MXG RF Vector Signal Generator	Agilent	N5182A	MY474206 47	2024-02-04	2025-02-03

Report No.: 18220WC40029402 FCC ID: 2BFAP-TARSIER Page 11 of 32

ote.	And	stek npo.	N. Ok	pote.	AUS	- dek
	edge emissions (Ra sions in frequency ba		Auporg	Anbotek	Aupotek	Anbotek
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due Date
1 00	EMI Test Receiver	Rohde & Schwarz	ESR26	101481	2024-01-23	2025-01-22
2	EMI Preamplifier	SKET Electronic	LNPA- 0118G-45	SKET-PA- 002	2024-01-17	2025-01-16
3	Double Ridged Horn Antenna	SCHWARZBECK	BBHA 9120D	02555	2022-10-16	2025-10-15
nbote 4	EMI Test Software EZ-EMC	SHURPLE	N/A	N/A	Anbotek	Aupolek
5	Horn Antenna	A-INFO	LB-180400- KF	J21106062 8	2023-10-12	2024-10-11
6	Spectrum Analyzer	Rohde & Schwarz	FSV40-N	101792	2023-05-26	2024-05-25
re ^k 7	Amplifier	Talent Microwave	TLLA18G40 G-50-30	23022802	2023-05-25	2024-05-24

Emiss	sions in frequency ba	ands (below 1GHz)				
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due Date
1 EMI Test Receiver Roh		Rohde & Schwarz	ESR26	101481	2024-01-23	2025-01-22
2	Pre-amplifier	SONOMA	310N	186860	2024-01-17	2025-01-16
3/-	Bilog Broadband Antenna	Schwarzbeck	VULB9163	345	2022-10-23	2025-10-22
Antotel	Loop Antenna (9K- 30M)	Schwarzbeck	FMZB1519 B	00053	2023-10-12	2024-10-11
5,00	EMI Test Software EZ-EMC	SHURPLE	N/A	N/A No	k Vupo,	k Anbotek

Report No.: 18220WC40029402 FCC ID: 2BFAP-TARSIER Page 12 of 32

2. Antenna requirement

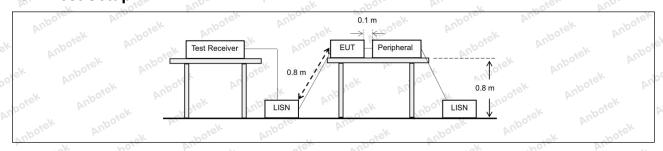
Test Requirement:

Refer to 47 CFR Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

2.1. Conclusion

The antenna is a FPC antenna which permanently attached, and the best case gain of the antenna is 3.28dBi. It complies with the standard requirement.

FCC ID: 2BFAP-TARSIER Report No.: 18220WC40029402 Page 13 of 32

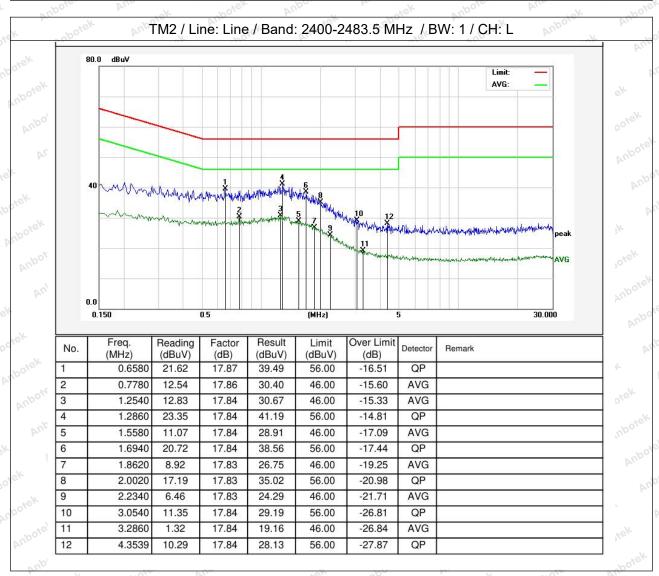

3. Conducted Emission at AC power line

10 N	70, V.	Sir Con	'Y 70'.		
Test Requirement:	Refer to 47 CFR 15.207(a), Exce section, for an intentional radiator public utility (AC) power line, the back onto the AC power line on a band 150 kHz to 30 MHz, shall no measured using a 50 µH/50 ohms (LISN).	r that is designed to be col radio frequency voltage th my frequency or frequenci- ot exceed the limits in the	nnected to the at is conducted es, within the following table, as		
hotek Anbotek	Frequency of emission (MHz)	Conducted limit (dBµV)	dBµV)		
	Anbot Anboth	Quasi-peak	es, within the following table, as tion network		
Aupore Au	0.15-0.5	66 to 56*	56 to 46*		
Test Limit:	0.5-5	56	46		
	5-30	60	50 And		
	*Decreases with the logarithm of	the frequency.	Ar solek Ar		
Test Method:	ANSI C63.10-2020 section 6.2	Anborek Anborek	Vue		
Procedure:	Refer to ANSI C63.10-2020 section line conducted emissions from ur				

3.1. EUT Operation

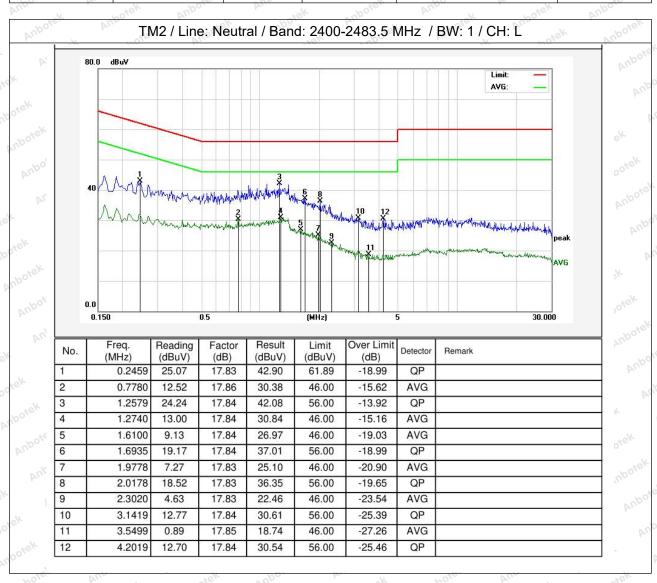
Operating Envir	onment:	Aupo,	γ _γ • γ _γ	otek	Aupole	AUR	rick	Anboiek	Anbo.
YUDO STEK		de(BLE 1M): Keep th	e EUT w	orks in o	continuou	sly trans	mitting mo	de (BLE
Test mode:	1M) 2: TX mod	de(BLE 2M): Keep th	e EUT w	orks in o	continuou	sly trans	mittina ma	de (BLE
Motek Anbore	2M)	hotek	Anbore	AUD.	*ek	anbotek	Aupo		hotek

3.2. Test Setup


Hotline

Report No.: 18220WC40029402 FCC ID: 2BFAP-TARSIER Page 14 of 32

3.3. Test Data


+- 200, + b,	04.000	0400	L : -0.60	FF 4 0/	Vo	Atus a solla mia Dua a coma . MAGA IsDay o	
Temperature:	24.6 °C	CUP -	⊣umidity:	55.4 %	10010	Atmospheric Pressure: 101 kPa	
	VVO.	Pres.	-	-80.	610	- AC MO.	

Report No.: 18220WC40029402 FCC ID: 2BFAP-TARSIER Page 15 of 32

Temperature: 24.6 °C Humidity: 55.4 % Atmospheric Pressure: 101 kPa

Note: Only record the worst data in the report.

Report No.: 18220WC40029402 FCC ID: 2BFAP-TARSIER Page 16 of 32

4. Occupied Bandwidth

47 CFR 15.247(a)(2)
Refer to 47 CFR 15.247(a)(2), Systems using digital modulation techniques may operate in the 902-928 MHz, and 2400-2483.5 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.
ANSI C63.10-2020, section 11.8 KDB 558074 D01 15.247 Meas Guidance v05r02
11.8.1 Option 1 The steps for the first option are as follows: a) Set RBW = shall be in the range of 1% to 5% of the OBW but not less than 100 kHz. b) Set the VBW ≥ [3 × RBW]. c) Detector = peak. d) Trace mode = max-hold. e) Sweep = No faster than coupled (auto) time. f) Allow the trace to stabilize. g) Measure the maximum width of the emission by placing two markers, one at the lowest frequency and the other at the highest frequency of the envelope of the spectral display, such that each marker is at or slightly below the "-6 dB down amplitude". If a marker is below this "-6 dB down amplitude" value, then it shall be as close as possible to this value.
11.8.2 Option 2 The automatic bandwidth measurement capability of an instrument may be
employed using the X dB bandwidth mode with X set to 6 dB, if the functionality described in 11.8.1 (i.e., RBW = 100 kHz, VBW ≥ 3 × RBW, and peak detector with maximum hold) is implemented by the instrumentation function. When using this capability, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the

4.1. EUT Operation

Operating Environment:		And	Anbote	Anb.	· ek	aboiek	Aupore	\.
Test mode:	1: TX mode(BL 1M) 2: TX mode(BL	otek Anbo			abotek	Aupo	V	
Anboren	2M)	nbotek Ar	.ok	hotek	Anboile	ARTON	g mede (~upot

4.2. Test Setup

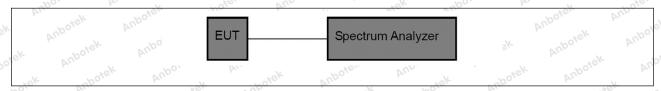
			\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-\-			-177.
O.	o ^{tek}		EUT	Spectrum Analyzer	abotek	
	Anbore	VII.	P77.	 	*ur otek	Anbotek

4.3. Test Data

Temperature:	25.3 °C	Humidity:	48 %	Atmospheric Pressure:	101 kPa
.01	700		. 010	VII	

Please Refer to Appendix for Details.

Report No.: 18220WC40029402 FCC ID: 2BFAP-TARSIER Page 17 of 32


5. Maximum Conducted Output Power

Test Requirement:	47 CFR 15.247(b)(3)
Anbotek	Refer to 47 CFR 15.247(b)(3), For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.
Test Method:	ANSI C63.10-2020 section 11.9.1 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	ANSI C63.10-2020, section 11.9.1 Maximum peak conducted output power

5.1. EUT Operation

×	Operating Envir	onment:	abořek.	Anbore	Ans	Aupotek	Aupo	12
0,0	Test mode:	-1M) Note	Anbo	"K 20,	works in conti	P ₂ U ₂	ek anbor	Sk. Vi

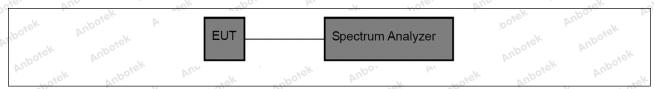
5.2. Test Setup

5.3. Test Data

Temperature:	25.3 °C	Humidity:	48 %	Atmospheric Pressure:	101 kPa
--------------	---------	-----------	------	-----------------------	---------

Please Refer to Appendix for Details.

FCC ID: 2BFAP-TARSIER Report No.: 18220WC40029402 Page 18 of 32


6. Power Spectral Density

Test Requirement:	47 CFR 15.247(e)
Test Limit:	Refer to 47 CFR 15.247(e), For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.
Test Method:	ANSI C63.10-2020, section 11.10 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	ANSI C63.10-2020, section 11.10, Maximum power spectral density level in the fundamental emission

6.1. EUT Operation

Operating Env	vironment:	hotek	Anbotek	Anbo	rek h	nbotek	Aupole	r ru	otek
Test mode:	1: TX mod 1M) 2: TX mod 2M)	Anboro	VIII			Aupo	6 .v	otek A	upor
6.2. Test Se	tup abotek	Anbo	* E.	borek .	Aupois	Aup	*ek	a nbotek	Anb

6.2. Test Setup

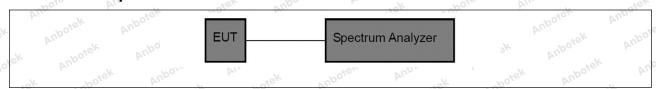
6.3. Test Data

Temperature:	25.3 °C	Humidity:	48 %	Atmospheric Pressure:	101 kPa
36.	-/-	NO	Par.	760.	1.

Please Refer to Appendix for Details.

Hotline

Report No.: 18220WC40029402 FCC ID: 2BFAP-TARSIER Page 19 of 32


7. Emissions in non-restricted frequency bands

Test Requirement:	47 CFR 15.247(d), 15.209, 15.205
Test Limit: Anborek	Refer to 47 CFR 15.247(d), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required.
Test Method:	ANSI C63.10-2020 section 11.11 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	ANSI C63.10-2020 Section 11.11.1, Section 11.11.2, Section 11.11.3

7.1. EUT Operation

Opera	ating Envir	onment:	abotek	Anboro	V	-oiek	Anborek	Aupo.	rek al
Test r	node:	1M) 30016	e(BLE 1M):	. W.			500	,ek	abotek.

7.2. Test Setup

7.3. Test Data

Temperature:	25.3 °C	Humidity: 48 %	Atmospheric Pressure:	101 kPa	

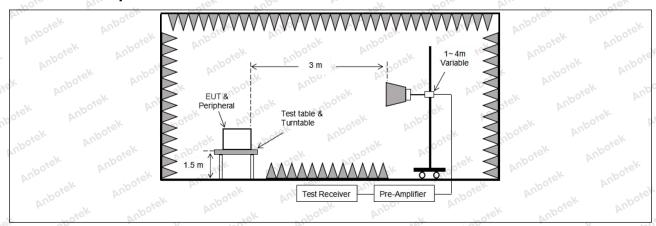
Please Refer to Appendix for Details.

Report No.: 18220WC40029402 FCC ID: 2BFAP-TARSIER Page 20 of 32

8. Band edge emissions (Radiated)

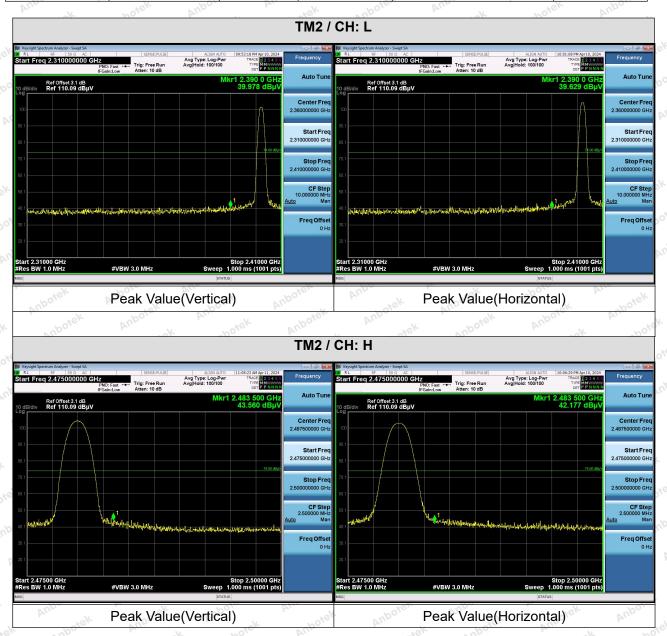
70°		10 VD	
Test Requirement:	restricted bands, as defined	In addition, radiated emissions d in § 15.205(a), must also comp ecified in § 15.209(a)(see § 15.20	ly with the
k Anbotek Anbot	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
	0.009-0.490	2400/F(kHz)	300 000
shotek Anbo	0.490-1.705	24000/F(kHz)	30
	1.705-30.0	3000	30
	30-88	100 **	3.ek abore
	88-216	150 **	3
	216-960	200 **	3 botel And
	Above 960	500	3 30
	intentional radiators operatifrequency bands 54-72 MH However, operation within t sections of this part, e.g., § In the emission table above The emission limits shown employing a CISPR quasi-p 90 kHz, 110–490 kHz and a	ragraph (g), fundamental emissing under this section shall not be z, 76-88 MHz, 174-216 MHz or 4 hese frequency bands is permitt § 15.231 and 15.241. If the tighter limit applies at the bein the above table are based on beak detector except for the frequency 1000 MHz. Radiated emisted on measurements employing	e located in the 470-806 MHz. sed under other oand edges. measurements uency bands 9– ssion limits in
POLEK PUD	Tally Marie All	a tack sporter Aubo	V voley
Test Method:	ANSI C63.10-2020 section		
Vupo, V.	KDB 558074 D01 15.247 N	leas Guidance v05r02	ek spojek

8.1. EUT Operation


oie	Operating Envir	onment:	Anbotek	Anbe	F	notek A	upore Ar	siek vi
o'n,	Test mode:	1: TX mode(BLE 1M)	1M): Keep	the EUT v	works in	continuousl	y transmitting	mode (BLE
9	inbounde.	2: TX mode(BLE 2M)	2M): Keep	the EUT v	works in	continuousl	y transmitting	mode (BLE

Report No.: 18220WC40029402 FCC ID: 2BFAP-TARSIER Page 21 of 32

8.2. Test Setup



Report No.: 18220WC40029402 FCC ID: 2BFAP-TARSIER Page 22 of 32

8.3. Test Data

Temperature: 25.3 °C Humidity: 48 % Atmospheric Pressure: 101 kPa

Remark

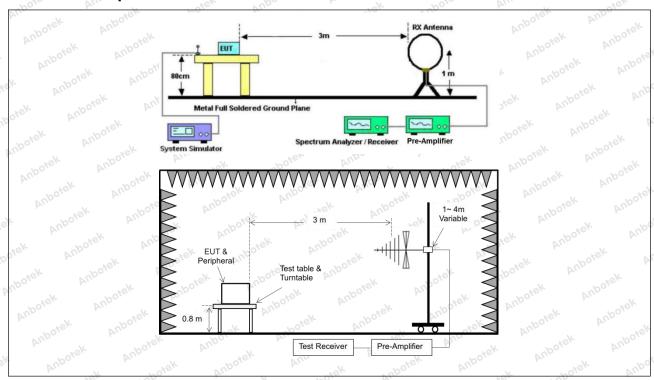
- 1. During the test, pre-scan all modes, the report only record the worse case mode.
- 2. When the PK measure result value is less than the AVG limit value, the AV measure result values test not applicable.

Report No.: 18220WC40029402 FCC ID: 2BFAP-TARSIER Page 23 of 32

9. Emissions in frequency bands (below 1GHz)

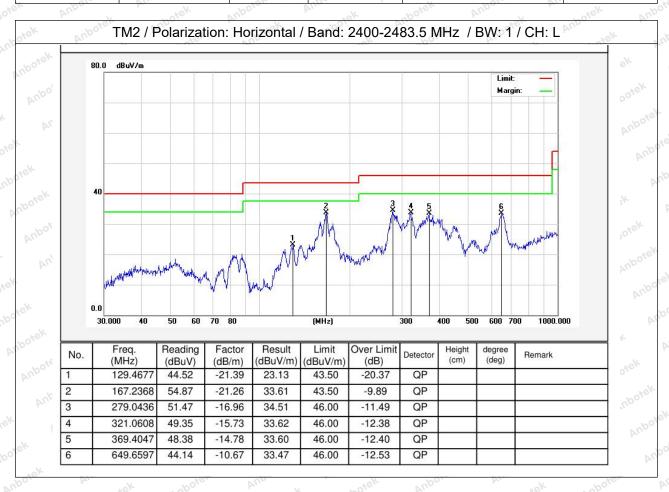
Test Requirement:	restricted bands, as defin radiated emission limits s	pecified in § 15.209(a)(see § 15	.205(c)).
ek Anbotek Anbo	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
	0.009-0.490	2400/F(kHz)	64 300 Mports
Joseph Ande	0.490-1.705	24000/F(kHz)	30 Sotel
	1.705-30.0	30	30
	30-88	100 **	3,ek Anbo
	88-216	150 **	AT 3
	216-960	200 **	3 bote, An
	Above 960	500 sorter ambou	3
Test Limit:	intentional radiators opera frequency bands 54-72 M	paragraph (g), fundamental emis ating under this section shall not Hz, 76-88 MHz, 174-216 MHz o	be located in the or 470-806 MHz.
Test Limit: Anbotek Anbotek	intentional radiators opera frequency bands 54-72 M However, operation within sections of this part, e.g., In the emission table about The emission limits show employing a CISPR quas 90 kHz, 110–490 kHz and	paragraph (g), fundamental emis ating under this section shall not Hz, 76-88 MHz, 174-216 MHz on these frequency bands is perm	be located in the or 470-806 MHz. nitted under other band edges. on measurements equency bands 9-nission limits in
Test Method:	intentional radiators opera frequency bands 54-72 M However, operation within sections of this part, e.g., In the emission table about The emission limits show employing a CISPR quas 90 kHz, 110–490 kHz and these three bands are base	paragraph (g), fundamental emistating under this section shall not Hz, 76-88 MHz, 174-216 MHz on these frequency bands is perming \$\frac{8}{3}\$ 15.231 and 15.241. If the tighter limit applies at the in the above table are based of the interpretation in the above table are based of the free above 1000 MHz. Radiated emisted on measurements employing 16.6.4	be located in the or 470-806 MHz. nitted under other band edges. on measurements equency bands 9-nission limits in

9.1. EUT Operation


o'l	Operating Envir	onment:	Aupolek	Aupo	ok N	-boiek	Anbore	Vien	otek vi
70	Test mode:	1: TX mode(BLE 1M) 2: TX mode(BLE 2M)	AND. Cal	٧			. bu.	ek .	anboise

Report No.: 18220WC40029402 FCC ID: 2BFAP-TARSIER Page 24 of 32

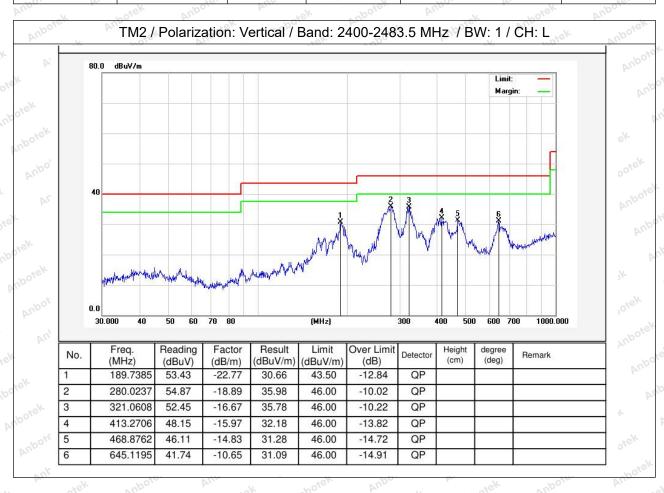
9.2. Test Setup



FCC ID: 2BFAP-TARSIER Page 25 of 32 Report No.: 18220WC40029402

9.3. Test Data

The test results of 9kHz-30MHz was attenuated more than 20dB below the permissible limits, so the results don't record in the report.


Temperature:	20.3 °C	Humidity:	46 %	Atmospheric Pressure:	101 kPa

Report No.: 18220WC40029402 FCC ID: 2BFAP-TARSIER Page 26 of 32

Temperature: 20.3 °C Humidity: 46 % Atmospheric Pressure: 101 kPa

Note: Only record the worst data in the report.

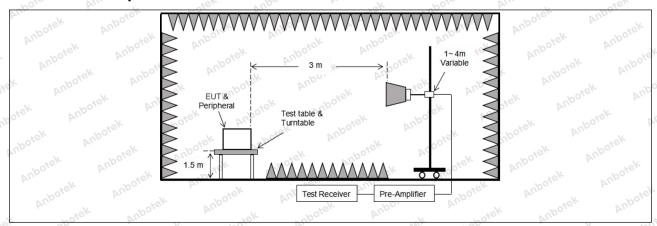
Report No.: 18220WC40029402 FCC ID: 2BFAP-TARSIER Page 27 of 32

10. Emissions in frequency bands (above 1GHz)

Pupp.		ons which fall in the restricted ba						
Test Requirement:	in § 15.205(a), must also comply with the radiated emission limits specifin § 15.209(a)(see § 15.205(c)).							
k Anbotek Anbo	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)					
o. W. Stek	0.009-0.490	2400/F(kHz)	300					
aborek Ando	0.490-1.705	24000/F(kHz)	30 Stek					
The sek apoles	1.705-30.0	30 Rev 100	30 And					
Anbo, Air	30-88	100 **	3,ek nobote					
abotek Anbo	88-216	150 **	3					
All rok abore	216-960	200 **	3 boter And					
Anbor	Above 960	500 Market Ambo	3 rek on					
Test Limit: Anbotek	intentional radiators operatifrequency bands 54-72 MH However, operation within the sections of this part, e.g., § In the emission table above The emission limits shown employing a CISPR quasi-page 110–490 kHz and a section of the emission limits of the emission limits shown employing a CISPR quasi-page 110–490 kHz and a section of the emission limits shown employing a CISPR quasi-page 110–410 kHz and a section of the emission limits shown employing a CISPR quasi-page 110–410 kHz and a section of the emission of the emis	aragraph (g), fundamental emissing under this section shall not be lz, 76-88 MHz, 174-216 MHz or these frequency bands is permittly 15.231 and 15.241. The tighter limit applies at the bein the above table are based on beak detector except for the frequency 1000 MHz. Radiated emisted on measurements employing	e located in the 470-806 MHz. ted under other pand edges. measurements uency bands 9—ssion limits in					
Test Method:	ANSI C63.10-2020 section KDB 558074 D01 15.247 M	· Up.	ek Aupotek					
Procedure:	ANSI C63.10-2020 section	6.6.4	port. K hotel					

10.1. EUT Operation

o'l	Operating Envir	onment:	anbotek	Aupo	K	notek An	pore An	ojek on
0,0	Test mode:	1: TX mode(BLE 1M)	And			Vupo,	pi, otek	Vupote.
	Anbore House. Anbor	2: TX mode(BLE 2M)	2M): Keep	the EUT	works in	continuously	transmitting	mode (BLE


Hotline

Anbo

Report No.: 18220WC40029402 FCC ID: 2BFAP-TARSIER Page 28 of 32

10.2. Test Setup

Report No.: 18220WC40029402 FCC ID: 2BFAP-TARSIER Page 29 of 32

10.3. Test Data

Temperature: 25.3 °C	Humidity: 48 %	Atmospheric Pressure:	101 kPa
----------------------	----------------	-----------------------	---------

Vu.	hotek Anb		stek anboti	And	ok hotek	Anbo.
			TM2 / CH: L			
Peak value:						
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4804.00	28.35	15.27	43.62	74.00	-30.38	Vertical
7206.00	29.31	18.09	47.40	74.00	-26.60	Vertical
9608.00	30.54	23.76	54.30	74.00	-19.70	Vertical
12010.00	Vupote,* V	io.	abotek Anb	74.00	otek Anbote	Vertical
14412.00	VUPO*SK	Aupo	Potek b	74.00	otek onk	Vertical
4804.00	28.63	15.27	43.90	74.00	-30.10	Horizontal
7206.00	29.92	18.09	48.01	74.00	-25.99	Horizontal
9608.00	28.74	23.76	52.50	74.00	-21.50	Horizontal
12010.00	otek * Anbo	V. No	iek Aupote	74.00	s abotek	Horizontal
14412.00	hotek* Ar	DOJE VILL	tek ab	74.00	ok hote	Horizontal
Average value: Frequency	Reading	Factor	Result	Limit	Over Limit	polarization
(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	•
4804.00	17.73	15.27	33.00	54.00	-21.00	Vertical
7206.00	18.34	18.09	36.43	54.00	-17.57	Vertical
9608.00	19.56	23.76	43.32	54.00	-10.68	Vertical
12010.00	* Nbotok	Yupo, W.	Notek Pe	54.00	arek nipe	Vertical
14412.00	Al" * tek	Aupole.	Aur	54.00	100, N.	Vertical
4804.00	16.98	15.27	32.25	54.00	-21.75	Horizontal
7206.00	18.98	18.09	37.07	54.00	-16.93	Horizontal
9608.00	18.05	23.76	41.81	54.00	-12.19	Horizontal
12010.00	tek *	otek Aupo,	N. NO.	54.00	Vur.	Horizontal
14412.00	4 ×	sotek Ant	or And	54.00	er Anbo	Horizontal

Report No.: 18220WC40029402 FCC ID: 2BFAP-TARSIER Page 30 of 32

			ГM2 / CH: M			
Peak value:						
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4882.00	28.37	15.42	43.79	74.00	-30.21	Vertical
7323.00	29.16	18.02	47.18	74.00	-26.82	Vertical
9764.00	29.55	23.80	53.35	74.00	-20.65	Vertical
12205.00	ek * spotek	Anborr	but hotek	74.00	And	Vertical
14646.00	*	tek Wipose	Pun de	74.00	Aupo	Vertical
4882.00	28.33	15.42	43.75	74.00	-30.25	Horizontal
7323.00	29.91	18.02	47.93	74.00	-26.07	Horizontal
9764.00	28.44	23.80	52.24	74.00	-21.76	Horizontal
12205.00	* otek	Anbore	And	74.00	YUPO, OK	Horizontal
14646.00	Ant siek	nbotek	Anbo	74.00	Aupore	Horizontal
Average value:						
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	polarization
4882.00	17.46	15.42	32.88	54.00	-21.12	Vertical °
7323.00	18.44	18.02	36.46	54.00	-17.54	Vertical
9764.00	19.42	23.80	43.22	54.00	-10.78	Vertical
12205.00	k *upor	N. Siek	anbotek	54.00	boiek	Vertical
14646.00	otek * Anbot	Anb	ek spojek	54.00	pi, potek	Vertical
4882.00	16.89	15.42	32.31	54.00	-21.69	Horizontal
7323.00	18.54	18.02	36.56	54.00	-17.44	Horizontal
9764.00	18.56	23.80	42.36	54.00	11.64 M	Horizontal
12205.00	Anb*otek	Aup	abořek	54.00	wotek D	Horizontal
14646.00	* "otek	VUPO.	Zi.	54.00	VUD.	Horizontal

Report No.: 18220WC40029402 FCC ID: 2BFAP-TARSIER Page 31 of 32

Le. VUL	atek.	vupo.	N. OK	hole	V.U.P.	"tek
			TM2 / CH: H			
Peak value:						
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4960.00	28.64	15.58	44.22	74.00	-29.78	Vertical
7440.00	29.17	17.93	47.10	74.00	-26.90	Vertical
9920.00	30.10	23.83	53.93	74.00	-20.07	Vertical
12400.00	* P. Mark	anboyer	And	74.00	Aupo,	Vertical
14880.00	* 400	iek "potel	Aupo.	74.00	Aupore.	Vertical
4960.00	28.40	15.58	43.98	74.00	-30.02	Horizontal
7440.00	29.94	17.93	47.87	74.00	-26.13	Horizontal
9920.00	29.12	23.83	52.95	74.00	-21.05	Horizontal
12400.00	AUD * "SK	abotek	Aupo,	74.00	Aupore, Au	Horizontal
14880.00	Vipo,	hotek	Anbore	74.00	abotek	Horizontal
Average value:						
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	polarization
4960.00	18.58	15.58	34.16	54.00	-19.84	Vertical
7440.00	19.45	17.93	37.38	54.00	-16.62	Vertical
9920.00	19.97	23.83	43.80	54.00	-10.20	Vertical
12400.00	k * "potek	Aupo,	hotek	54.00	And	Vertical
14880.00	* * *	k Aupolo.	Ann	54.00	Vupo.	Vertical
4960.00	18.33	15.58 NO	33.91	54.00	-20.09	Horizontal
7440.00	19.91 Ani	17.93	37.84	54.00	-16.16	Horizontal
9920.00	18.46	23.83	42.29	54.00	±11.71	Horizontal
12400.00	* tok	Anbores	Vur.	54.00	Ipo. br.	Horizontal
14880.00	An*	anbotek	Vupo.	54.00	Anbore	Horizontal

Remark:

- 1. Result =Reading + Factor
- 2. "*" means the test results were attenuated more than 20dB below the permissible limits, so the results don't record in the report.
- 3. Only the worst case is recorded in the report.

Report No.: 18220WC40029402 FCC ID: 2BFAP-TARSIER Page 32 of 32

APPENDIX I -- TEST SETUP PHOTOGRAPH

Please refer to separated files Appendix I -- Test Setup Photograph_RF

APPENDIX II -- EXTERNAL PHOTOGRAPH

Please refer to separated files Appendix II -- External Photograph

APPENDIX III -- INTERNAL PHOTOGRAPH

Please refer to separated files Appendix III -- Internal Photograph

----- End of Report -----

