DP	ale ale
DAG -	V1.0 Report No.: DACE240224009RL004
DA	RF TEST REPORT
	Shenzhen Kaida Hi-Tech Digital Co., Ltd.
	Product Name: Tablet PC
	Test Model(s).: D115
Report Refere	ence No. : DACE240224009RL004
FCC ID:	: 2BF9U-D115
Applicant's N Address	 ame : Shenzhen Kaida Hi-Tech Digital Co., Ltd. 4/F,building C,No.9,Huayuan Xincun Avenue,xiangjiaotang community, Bantian street,Longgang District, Shenzhen,China
Testing Labo	 ratory : Shenzhen DACE Testing Technology Co., Ltd. 102 Building H1 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao' an District, Shenzhen, Guangdong, China
Test Specific	ation Standard : 47 CFR Part 15E
Date of Recei	pt : February 24, 2024
Date of Test	: February 24, 2024 to March 11, 2024
Data of Issue	IC IC
Testing Techno Co., Ltd. perso	• Pass ort shall not be reproduced except in full, without the written approval of Shenzhen DACE blogy Co., Ltd. This document may be altered or revised by Shenzhen DACE Testing Technology onnel only, and shall be noted in the revision section of the document. The test results in the bly to the tested sample

 102 Building H1 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao' an District, Shenzhen, Guangdong, China

 Web: http://www.dace-lab.com
 Tel: +86-755-23010613
 E-mail: service@dace-lab.com

Page 1 of 170

)DC

Report No.: DACE240224009RL004

Revision History Of Report

Version	Description	REPORT No.	Issue Date
V1.0	Original	DACE240224009RL004	March 11, 2024
	- 26	6	
	DV I		(
		0E	27

NOTE1:

1

DAG

DA

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

Ben Tang / Test Engineer

Supervised by: Some for

Stone Yin / Project Engineer

AC

AC

DAG

Approved by: 1 om chen

ø

NE

Tom Chen / Manager

-

102 Building H1 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao' an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

NE

26

Page 2 of 170

CONTENTS

1
1
······
1
1
,

V1.0	Report No.: DACE240224009RL004
5 TEST SETUP PHOTOS	
6 PHOTOS OF THE EUT	51
APPENDIX-5.2GWIFI	
126DB AND 99% EMISSION BANDWIDTH	
2. DUTY CYCLE	
3. MAXIMUM CONDUCTED OUTPUT POWER	
4. Power Spectral Density	
5. BANDEDGE	
6. SPURIOUS EMISSION	
7. FREQUENCY STABILITY	
APPENDIX-5.8GWIFI	
226dB AND 99% EMISSION BANDWIDTH	

DV

DAG

.

DAE

DAG

)AC

NE

)AC

)De

DAG

Ne

)AC

NE

OVE

DAG

1 TEST SUMMARY

1.1 Test Standards

DAG

)DE

The tests were performed according to following standards:

47 CFR Part 15E: Unlicensed National Information Infrastructure Devices

1.2 Summary of Test Result

Item	Standard	Method	Requirement	Result
Antenna requirement	47 CFR Part 15E		Part 15.203	Pass
Conducted Emission at AC power line	47 CFR Part 15E	ANSI C63.10-2013 section 6.2	47 CFR Part 15.207(a)	Pass
Duty Cycle	47 CFR Part 15E	ANSI C63.10-2013 section 12.2 (b)	DAC	Pass
Maximum conducted output power	47 CFR Part 15E	ANSI C63.10-2013, section 12.3	47 CFR Part 15.407(a)(1)(i) 47 CFR Part 15.407(a)(1)(ii) 47 CFR Part 15.407(a)(1)(iii) 47 CFR Part 15.407(a)(1)(iv) 47 CFR Part 15.407(a)(3)(i)	Pass
Power spectral density	47 CFR Part 15E	ANSI C63.10-2013, section 12.5	47 CFR Part 15.407(a)(1)(i) 47 CFR Part 15.407(a)(1)(ii) 47 CFR Part 15.407(a)(1)(iii) 47 CFR Part 15.407(a)(1)(iv) 47 CFR Part 15.407(a)(3)(i)	Pass
Emission bandwidth and occupied bandwidth	47 CFR Part 15E	ANSI C63.10-2013, section 6.9 & 12.4 KDB 789033 D02, Clause C.2	U-NII 1, U-NII 2A, U-NII 2C: No limits, only for report use. 47 CFR Part 15.407(e)	Pass
Band edge emissions (Radiated)	47 CFR Part 15E	ANSI C63.10-2013, section 12.7.4, 12.7.6, 12.7.7	47 CFR Part 15.407(b)(1) 47 CFR Part 15.407(b)(4) 47 CFR Part 15.407(b)(10)	Pass
Undesirable emission limits (below 1GHz)	47 CFR Part 15E	ANSI C63.10-2013, section 12.7.4, 12.7.5	47 CFR Part 15.407(b)(9)	Pass
Undesirable emission limits (above 1GHz)	47 CFR Part 15E	ANSI C63.10-2013, section 12.7.4, 12.7.6, 12.7.7	47 CFR Part 15.407(b)(1) 47 CFR Part 15.407(b)(4) 47 CFR Part 15.407(b)(10)	Pass

)AC

,AC

102 Building H1 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao' an District, Shenzhen, Guangdong, ChinaWeb: http://www.dace-lab.comTel: +86-755-23010613E-mail: service@dace-lab.com

NE

Page 5 of 170

ΔΕ ——	V1.0	Report No.: DACE240224009RL
2 GENERAL I		
2.1 Client Informati	on	
Applicant's Name	: Shenzhen Kaida Hi-Tech D	igital Co., Ltd.
Address	: 4/F,building C,No.9,Huayua Bantian street,Longgang Di	n Xincun Avenue,xiangjiaotang community, istrict, Shenzhen,China
Manufacturer	: Shenzhen Kaida Hi-Tech D	igital Co., Ltd.
Address	: 4/F,building C,No.9,Huayua Bantian street,Longgang Di	an Xincun Avenue,xiangjiaotang community, istrict, Shenzhen,China

2.2 Description of Device (EUT)

Series Model:	D115
L	
	D110、D108、D109、D113、D125、D126、D128、D135、D150
	The product has many models, only the model name is different, and the other parts such as the circuit principle, pcb and electrical structure are the same.
Trade Mark: N	N/A
Power Supply: D	DC 5V/2A from adapter Battery:DC3.7V 7000mA
' II	MODEL:K-T100502000E INPUT:100-240V~50/60Hz 0.35A Max OUTPUT:DC5V/2A
	802.11a/n(HT20)/ac(HT20): U-NII Band 1: 5180MHz to 5240MHz; U-NII Band 3: 5745MHz to 5825MHz; 802.11n(HT40)/ac(HT40)): U-NII Band 1: 5190MHz to 5230MHz; U-NII Band 3: 5755MHz to 5795MHz; 802.11ac(HT80): U-NII Band 1: 5210MHz; U-NII Band 3: 5775MHz
և 8 Լ 8 Ն	802.11a/n(HT20)/ac(HT20): U-NII Band 1: 4; U-NII Band 3: 5; 802.11n(HT40)/ac(HT40): U-NII Band 1: 2; U-NII Band 3: 2; 802.11ac(HT80)/ax(HE80): U-NII Band 1: 1; U-NII Band 3: 1
8	802.11a: OFDM(BPSK, QPSK, 16QAM, 64QAM); 802.11n: OFDM (BPSK, QPSK, 16QAM, 64QAM); 802.11ac: OFDM (BPSK, QPSK, 16QAM, 64QAM, 256QAM);
Antenna Type: Ir	Internal
Antenna Gain: 0	0.69dBi
Hardware Version: V	V1.0
Software Version: V	V1.0

Page 6 of 170

 102 Building H1 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao' an District, Shenzhen, Guangdong, China

 Web: http://www.dace-lab.com
 Tel: +86-755-23010613
 E-mail: service@dace-lab.com

Report No.: DACE240224009RL004

Operation Frequency each of channel

24	802.11a/n(HT20)/ac(HT20)	XC
	U-NII Band 1	U-NII Band 3
Channel	Frequency	Frequency
1	5180 MHz	5745 MHz
2	5200 MHz	5765 MHz
3	5220 MHz	5785 MHz
4	5240 MHz	5805 MHz
5	1	5825 MHz

802.11n(HT40)/ac(HT40)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	U-NII Band 1	U-NII Band 3
Channel	Frequency	Frequency
1	5190 MHz	5755 MHz
2	5230 MHz	5795 MHz

#### 802.11ac(HT80)

	U-NII Band 1	U-NII Band 3
Channel	Frequency	Frequency
1	5210 MHz	5775 MHz

#### Note:

DA

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

802.11a/n(HT20)/ac(HT20)	UF I
U-NII Band 1	U-NII Band 3
Frequency (MHz)	Frequency (MHz)
5180 MHz	5745 MHz
5200 MHz	5785 MHz
5240 MHz	5825 MHz
	U-NII Band 1 Frequency (MHz) 5180 MHz 5200 MHz

802.11n(HT40)/ac(HT40)				
U-NII Band 1 U-NII Band 3				
Test channel	Frequency (MHz)	X	Frequency (MHz)	
Lowest channel	5190 MHz		5755 MHz	
Highest channel	5230 MHz		5795 MHz	

C	802.11ac(HT80)	
	U-NII Band 1	U-NII Band 3
Test channel	Frequency (MHz)	Frequency (MHz)
Middle channel	5210 MHz	5775 MHz

102 Building H1 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao' an District, Shenzhen, Guangdong, ChinaWeb: http://www.dace-lab.comTel: +86-755-23010613E-mail: service@dace-lab.com

Page 7 of 170

Report No.: DACE240224009RL004

DAG

## 2.3 Description of Test Modes

DΔC

1

1

DAE

No	Title	Description
TM1	802.11a mode	Keep the EUT in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report.
TM2	802.11n mode	Keep the EUT in continuously transmitting mode with 802.11n modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.
TM3	802.11ac mode	Keep the EUT in continuously transmitting mode with 802.11ac modulation type. All bandwidth and data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.

NE

)DE

NE

DAG

Remark:Only the data of the worst mode would be recorded in this report.

## 2.4 Description of Support Units

DAG

The EUT was tested as an independent device.

)DE

NE

1

 102 Building H1 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao' an District, Shenzhen, Guangdong, China

 Web: http://www.dace-lab.com
 Tel: +86-755-23010613
 E-mail: service@dace-lab.com

)De



C

6

## 2.5 Equipments Used During The Test

Conducted Emission a	at AC power line	200			
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
Power absorbing clamp	SCHWARZ BECK	MESS- ELEKTRONIK	1	2023-12-12	2024-12-11
Electric Network	SCHWARZ BECK	CAT5 8158	CAT5 8158#207	/	1
Cable	SCHWARZ BECK		1	2023-12-27	2024-12-26
Pulse Limiter	SCHWARZ BECK	VTSD 9561-F Pulse limiter 10dB Ateennator	561-G071	2023-12-12	2024-12-11
50ΩCoaxial Switch	Anritsu	MP59B	M20531	/	/
Test Receiver	Rohde & Schwarz	ESPI TEST RECEIVER	ID:1164.6607K 03-102109- MH	2023-06-13	2024-06-12
L.I.S.N	R&S	ESH3-Z5	831.5518.52	2023-12-12	2024-12-11

. 6

#### **Duty Cycle**

DVC

Maximum conducted output power

Power spectral density

Emission bandwidth and occupied bandwidth

			i	1	1
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
<b>RF</b> Test Software	TACHOY	RTS-01	V2.0.0.0	1	/ /
High Pass filter	ZHINAN	OQHPF1-M1.5- 18G-224	6210075		I
Power divider	MIDEWEST	PWD-2533	SMA-79	2023-05-11	2026-05-10
DC power	/ HP	66311B	38444359	1	1
RF Sensor Unit	Tachoy Information Technology(she nzhen) Co.,Ltd.	TR1029-2	000001	/	226
Wideband radio communication tester	R&S	CMW500	113410	2023-06-13	2024-06-12
Vector signal generator	Keysight	N5181A	MY48180415	2023-11-09	2024-11-08
Signal generator	Keysight	N5182A	MY50143455	2023-11-09	2024-11-08
Spectrum Analyzer	Keysight	N9020A	MY53420323	2023-12-12	2024-12-11
)Ae	2	Ae	1	AE	

102 Building H1 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao' an District, Shenzhen, Guangdong, ChinaWeb: http://www.dace-lab.comTel: +86-755-23010613E-mail: service@dace-lab.com

Report No.: DACE240224009RL004

C					
Band edge emissions Undesirable emission Undesirable emission	limits (below 1GH			AC	E
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
EMI Test software	Farad	EZ -EMC	V1.1.42	/	1
Positioning Controller	<u> </u>	MF-7802	<u>e</u> /	/	1
High Pass filter	ZHINAN	OQHPF1-M1.5- 18G-224	6210075	/	
Amplifier(18-40G)	COM-POWER	AH-1840	10100008-1	2022-04-05	2025-04-04
Horn antenna	COM-POWER	AH-1840 (18-40G)	10100008	2023-04-05	2025-04-04
Loop antenna	ZHINAN	ZN30900C	ZN30900C	2021-07-05	2024-07-04
Cable(LF)#2	Schwarzbeck	/	1.0	2024-02-19	2025-02-18
Cable(LF)#1	Schwarzbeck	/		2024-02-19	2025-02-18
Cable(HF)#2	Schwarzbeck	AK9515E	96250	2024-02-19	2025-02-18
Cable(HF)#1	Schwarzbeck	SYV-50-3-1	/	2024-02-19	2025-02-18
Power amplifier(LF)	Schwarzbeck	BBV9743	9743-151	2023-06-13	2024-06-12
Power amplifier(HF)	Schwarzbeck	BBV9718	9718-282	2023-06-13	2024-06-12
Wideband radio communication tester	R&S	CMW500	113410	2023-06-13	2024-06-12
Spectrum Analyzer	R&S	FSP30	1321.3008K40 -101729-jR	2023-06-14	2024-06-13
Horn Antenna	Sunol Sciences	DRH-118	A091114	2023-05-13	2025-05-12
Broadband Antenna	Sunol Sciences	JB6 Antenna	A090414	2023-05-21	2025-05-20
Test Receiver	R&S	ESCI	102109	2023-06-13	2024-06-12

)AC

NE

DAG

102 Building H1 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao' an District, Shenzhen, Guangdong, ChinaWeb: http://www.dace-lab.comTel: +86-755-23010613E-mail: service@dace-lab.com

)DE

VC.

ø

V1.0

DVC

1

.

DAG

DA

## 2.6 Statement Of The Measurement Uncertainty

Test Item	Measurement Uncertainty
Conducted Disturbance (0.15~30MHz)	±3.41dB
Duty cycle	±3.1%
RF conducted power	±0.733dB
RF power density	±0.234%
Occupied Bandwidth ±3.63%	
Radiated Emission (Above 1GHz)	±5.46dB
Radiated Emission (Below 1GHz)	±5.79dB
Noto: (1) This upportainty represents on expanded	upportainty expressed at approximately the 05%

Note: (1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

## 2.7 Identification of Testing Laboratory

Company Name:	Shenzhen DACE Testing Technology Co., Ltd.
	102 Building H1 & 1/F., Building H, Hongfa Science & Technology Park,
Address:	Tangtou, Shiyan, Bao' an District, Shenzhen, Guangdong, China
Phone Number:	+86-13267178997
Fax Number:	86-755-29113252
Identification of the Respons	ible Testing Location
Company Name:	Shenzhen DACE Testing Technology Co., Ltd.
Adduses	102 Building H1 & 1/F., Building H, Hongfa Science & Technology Park,
Address:	Tangtou, Shiyan, Bao′an District, Shenzhen, Guangdong, China
Phone Number:	+86-13267178997
Fax Number:	86-755-29113252
FCC Registration Number:	0032847402
Designation Number:	CN1342
Test Firm Registration Number:	778666
A2LA Certificate Number:	6270.01

## 2.8 Announcement

(1) The test report reference to the report template version v0.

(2) The test report is invalid if not marked with the signatures of the persons responsible for preparing, reviewing and approving the test report.

(3) The test report is invalid if there is any evidence and/or falsification.

(4) This document may not be altered or revised in any way unless done so by DACE and all revisions are duly noted in the revisions section.

(5) Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.

(6) The laboratory is only responsible for the data released by the laboratory, except for the part provided by the applicant.

 102 Building H1 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao' an District, Shenzhen, Guangdong, China

 Web: http://www.dace-lab.com
 Tel: +86-755-23010613
 E-mail: service@dace-lab.com

# 3 Evaluation Results (Evaluation)

## 3.1 Antenna requirement



DVC

Refer to 47 CFR Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

#### 3.1.1 Conclusion:



Report No.: DACE240224009RL004

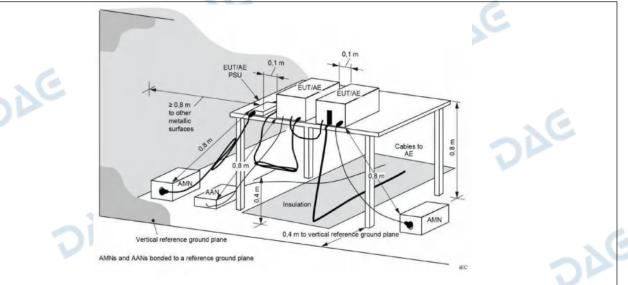
1

#### Radio Spectrum Matter Test Results (RF) 4

# 4.1 Conducted Emission at AC power line

Test Requirement:	47 CFR Part 15.207(a)		
Test Limit:	Frequency of emission (MHz)	Conducted limit (dBµV)	
	4	Quasi-peak	Average
DAC	0.15-0.5	66 to 56*	56 to 46*
	0.5-5	56	46
	5-30	60	50
	*Decreases with the logarithm of th	e frequency.	
Test Method:	ANSI C63.10-2013 section 6.2		
4.1.1 E.U.T. Operation	200		
Operating Environment	U-	10	

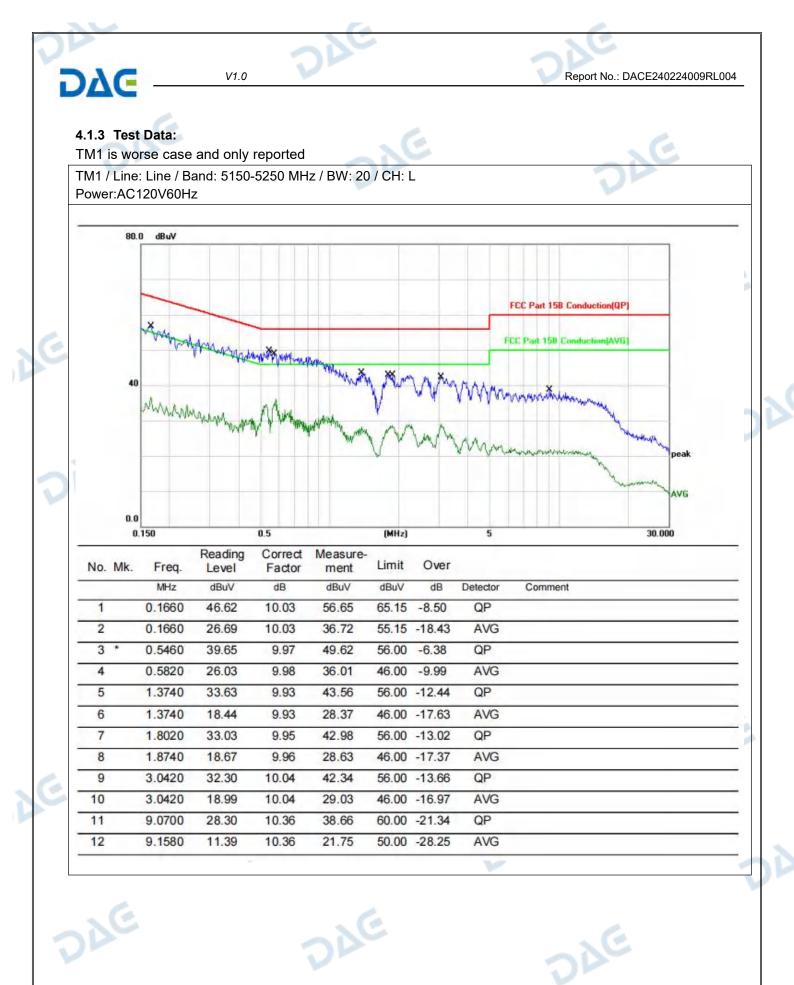
#### )perating Environment[.] 💧


DAG

Operating Envir	onment.						
Temperature:	23.9 °C		Humidity:	54 %	Atmospheric Pressure:	102 kPa	
Pretest mode:		TM1					
Final test mode:	1	TM1					
442 Test Cat							

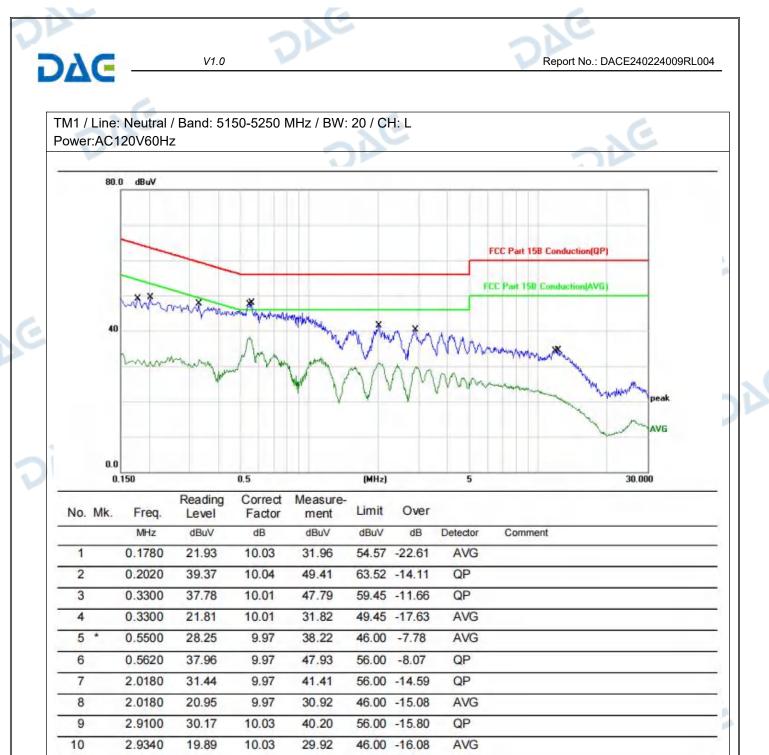
### 4.1.2 Test Setup Diagram:

1


DAG



102 Building H1 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao' an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com


26

,AC



102 Building H1 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao' an District, Shenzhen, Guangdong, ChinaWeb: http://www.dace-lab.comTel: +86-755-23010613E-mail: service@dace-lab.com





 11.8979
 11.38
 10.44
 21.82
 50.00
 -28.18
 AVG

 12.1899
 24.01
 10.44
 34.45
 60.00
 -25.55
 QP

11

12

DAG

102 Building H1 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao' an District, Shenzhen, Guangdong, ChinaWeb: http://www.dace-lab.comTel: +86-755-23010613E-mail: service@dace-lab.com

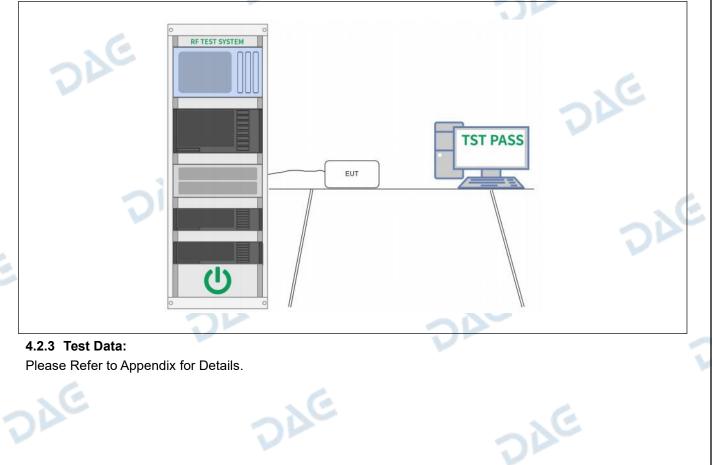
)De



DAG

# 4.2 Duty Cycle

DVC


Test Requirement:	All measurements are to be performed with the EUT transmitting at 100% duty cycle at its maximum power control level; however, if 100% duty cycle cannot be achieved, measurements of duty cycle, x, and maximum-power transmission duration, T, are required for each tested mode of operation.
Test Limit:	No limits, only for report use.
Test Method:	ANSI C63.10-2013 section 12.2 (b)
Procedure:	<ul> <li>i) Set the center frequency of the instrument to the center frequency of the transmission.</li> <li>ii) Set RBW &gt;= EBW if possible; otherwise, set RBW to the largest available value.</li> <li>iii) Set VBW &gt;= RBW.</li> <li>iv) Set detector = peak.</li> <li>v) The zero-span measurement method shall not be used unless both RBW and VBW are &gt; 50/T, where T is defined in item a1) of 12.2, and the number of sweep points across duration T exceeds 100.</li> </ul>

6

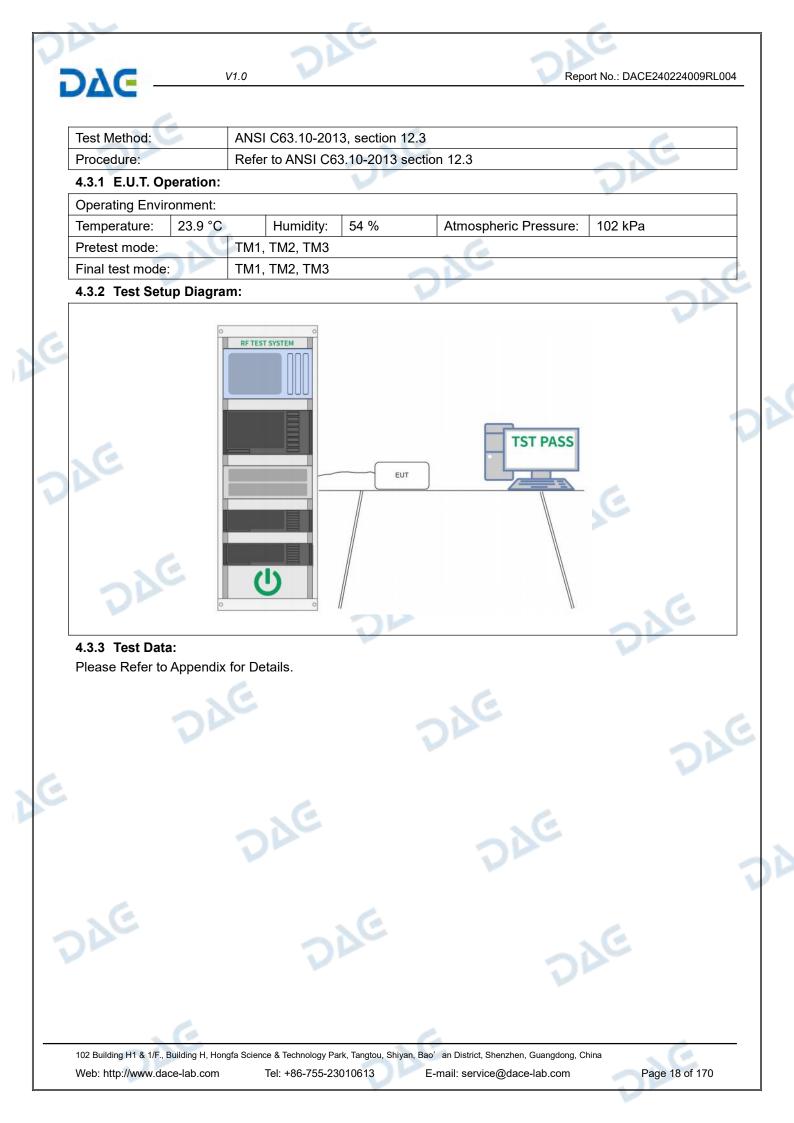
#### 4.2.1 E.U.T. Operation:

Operating Envir	onment:						
Temperature:	23.9 °C		Humidity:	54 %	Atmospheric Pressure:	102 kPa	
Pretest mode:		TM1,	TM2, TM3	C			
Final test mode	:	TM1,	TM2, TM3	C		6	

## 4.2.2 Test Setup Diagram:



102 Building H1 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao' an District, Shenzhen, Guangdong, ChinaWeb: http://www.dace-lab.comTel: +86-755-23010613E-mail: service@dace-lab.com

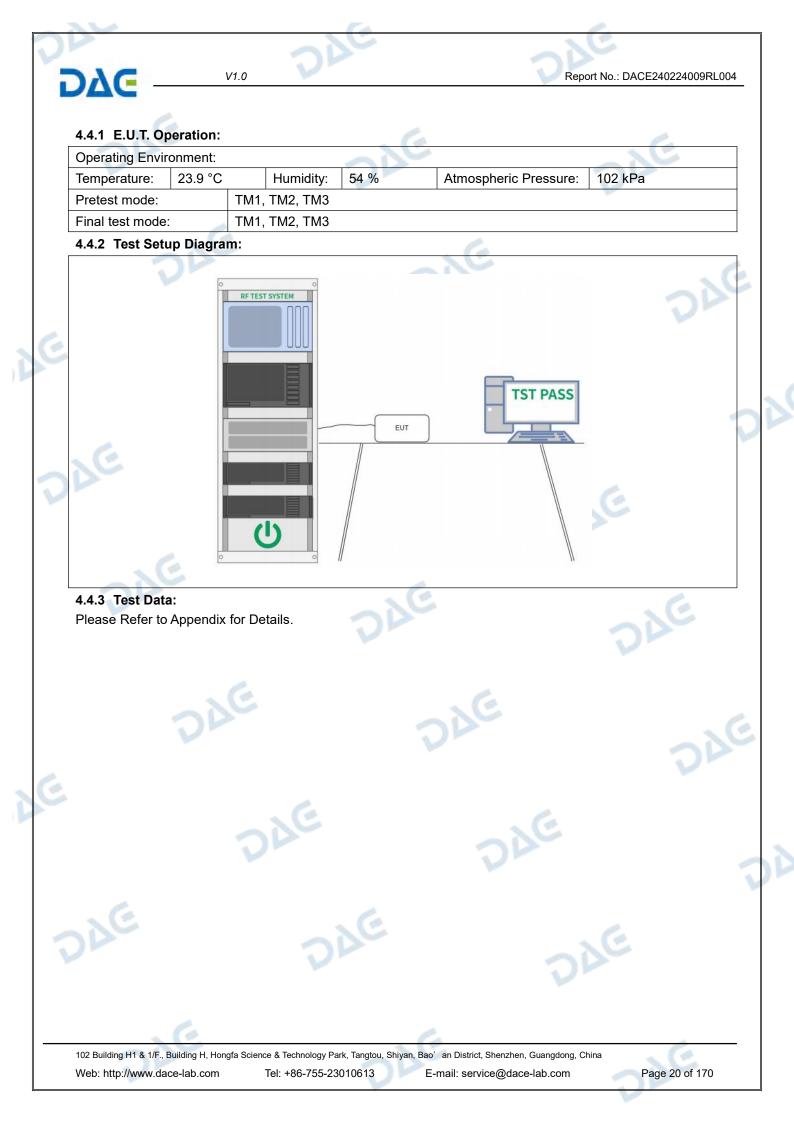



DΔC

Report No.: DACE240224009RL004

Test Requirement:	47 CFR Part 15.407(a)(1)(i) 47 CFR Part 15.407(a)(1)(ii) 47 CFR Part 15.407(a)(1)(iii) 47 CFR Part 15.407(a)(1)(iv) 47 CFR Part 15.407(a)(3)(i)
Test Limit:	For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 V provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).
	For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 V provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
	For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power.
	For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to- point operations.
	For client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
	<ul> <li>For the band 5.725-5.850 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W.</li> <li>If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.</li> <li>However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information.</li> </ul>
	The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.






### 4.4 Power spectral density

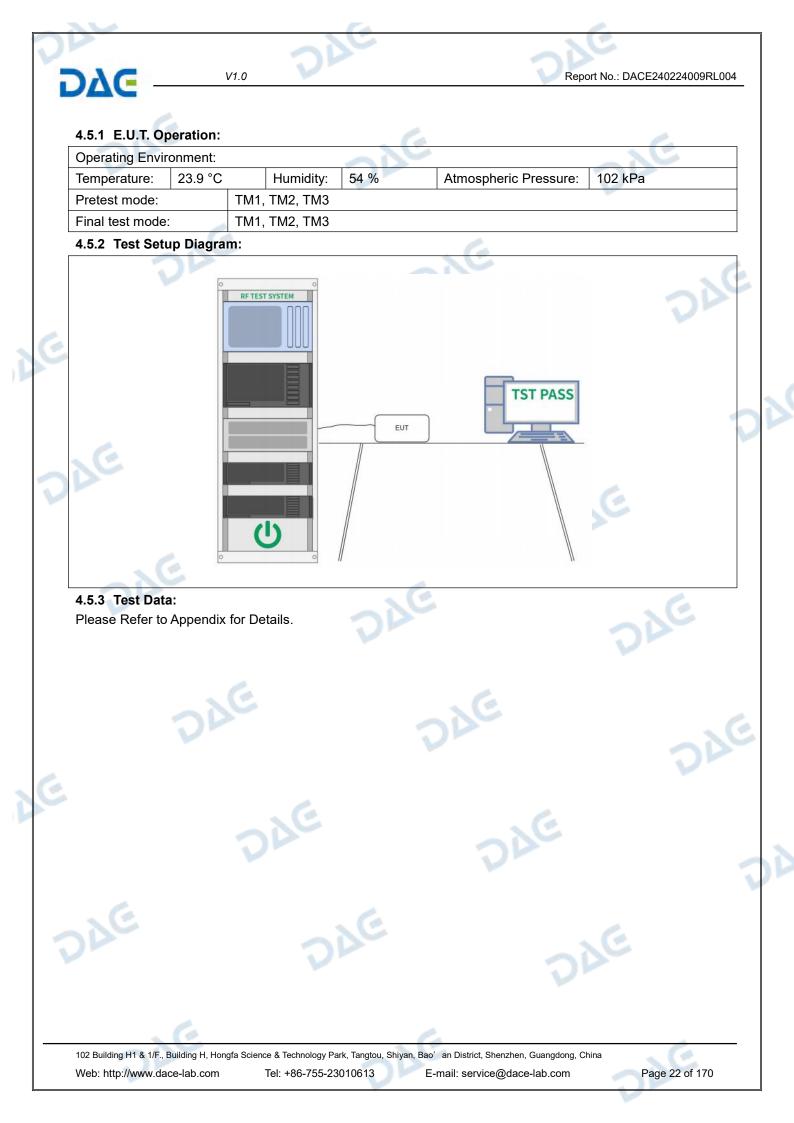
DAG

Test Requirement:	47 CFR Part 15.407(a)(1)(i) 47 CFR Part 15.407(a)(1)(ii) 47 CFR Part 15.407(a)(1)(iii) 47 CFR Part 15.407(a)(1)(iv) 47 CFR Part 15.407(a)(3)(i)	DAC
Test Limit:	For an outdoor access point operating in the power spectral density shall not exceed 17 o If transmitting antennas of directional gain g maximum power spectral density shall be re directional gain of the antenna exceeds 6 dB	dBm in any 1 megahertz band. reater than 6 dBi are used, the educed by the amount in dB that the
	For an indoor access point operating in the l power spectral density shall not exceed 17 of If transmitting antennas of directional gain g maximum power spectral density shall be re directional gain of the antenna exceeds 6 dE	dBm in any 1 megahertz band. reater than 6 dBi are used, the educed by the amount in dB that the
	For fixed point-to-point access points operat maximum power spectral density shall not e band. Fixed point-to-point U-NII devices may empl	xceed 17 dBm in any 1 megahertz
	23 dBi without any corresponding reduction For fixed point-to-point transmitters that emp than 23 dBi, a 1 dB reduction in maximum p each 1 dB of antenna gain in excess of 23 d	in the maximum power spectral density bloy a directional antenna gain greater ower spectral density is required for Bi.
	Fixed, point-to-point operations exclude the omnidirectional applications, and multiple co same information. The operator of the U-NII professionally installed, the installer, is respo employing high gain directional antennas are point operations.	bllocated transmitters transmitting the device, or if the equipment is possible for ensuring that systems
	For client devices in the 5.15-5.25 GHz band shall not exceed 11 dBm in any 1 megahertz If transmitting antennas of directional gain g maximum power spectral density shall be re directional gain of the antenna exceeds 6 dB	z band. reater than 6 dBi are used, the duced by the amount in dB that the
	For the band 5.725-5.850 GHz, the maximum exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain g maximum power spectral density shall be re directional gain of the antenna exceeds 6 dE devices operating in this band may employ t gain greater than 6 dBi without any correspon conducted power.	reater than 6 dBi are used, the educed by the amount in dB that the Bi. However, fixed point-to-point U-NII transmitting antennas with directional ponding reduction in transmitter
AE	Fixed, point-to-point operations exclude the omnidirectional applications, and multiple co same information. The operator of the U-NII professionally installed, the installer, is respo employing high gain directional antennas are point operations.	bllocated transmitters transmitting the device, or if the equipment is onsible for ensuring that systems
Test Method:	ANSI C63.10-2013, section 12.5	J.
Procedure:	Refer to ANSI C63.10-2013, section 12.5	

102 Building H1 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao' an District, Shenzhen, Guangdong, ChinaWeb: http://www.dace-lab.comTel: +86-755-23010613E-mail: service@dace-lab.com



DAG


Report No.: DACE240224009RL004

### 4.5 Emission bandwidth and occupied bandwidth

Test Requirement:	U-NII 1, U-NII 2A, U-NII 2C: No limits, only for report use. U-NII 3, U-NII 4: 47 CFR Part 15.407(e)
Test Limit:	U-NII 1, U-NII 2A, U-NII 2C: No limits, only for report use. U-NII 3, U-NII 4: Within the 5.725-5.850 GHz and 5.850-5.895 GHz bands, the minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz.
Test Method:	ANSI C63.10-2013, section 6.9 & 12.4 KDB 789033 D02, Clause C.2
Procedure:	<ul> <li>Emission bandwidth:</li> <li>a) Set RBW = approximately 1% of the emission bandwidth.</li> <li>b) Set the VBW &gt; RBW.</li> <li>c) Detector = peak.</li> <li>d) Trace mode = max hold.</li> <li>e) Measure the maximum width of the emission that is 26 dB down from the peak of the emission.Compare this with the RBW setting of the instrument. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1% Occupied bandwidth:</li> <li>a) The instrument center frequency is set to the nominal EUT channel center frequency 1.5</li> </ul>
	<ul> <li>frequency. The frequency span for the spectrum analyzer shall be between 1.5 times and 5.0 times the OBW.</li> <li>b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW,and VBW shall be approximately three times the RBW, unless otherwise specified by the applicable requirement.</li> <li>c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2.</li> </ul>
	<ul> <li>d) Step a) through step c) might require iteration to adjust within the specified range.</li> <li>e) Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used.</li> <li>f) Use the 99% power bandwidth function of the instrument (if available) and report the measured bandwidth.</li> <li>g) If the instrument does not have a 99% power bandwidth function, then the trace data points are recovered and directly summed in linear power terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached; that frequency is recorded as the</li> </ul>
	<ul> <li>lower frequency. The process is repeated until 99.5% of the total is reached; that frequency is recorded as the upper frequency. The 99% power bandwidth is the difference between these two frequencies.</li> <li>h) The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may be reported in addition to the plot(s).</li> </ul>
	<ul> <li>6 dB emission bandwidth:</li> <li>a) Set RBW = 100 kHz.</li> <li>b) Set the video bandwidth (VBW) ≥ 3 &gt;= RBW.</li> <li>c) Detector = Peak.</li> <li>d) Trace mode = max hold.</li> <li>e) Sweep = auto couple.</li> <li>f) Allow the trace to stabilize.</li> <li>g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.</li> </ul>

Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail:





DΔC

Report No.: DACE240224009RL004

٩

Test Requirement:	47 CFR Part 15.407(b)(1) 47 CFR Part 15.407(b)(4) 47 CFR Part 15.407(b)(10)						
Test Limit:	5.15-5.35 GHz ba For transmitters of All emissions sha or below the band below the band e linearly to a level	and sha operatin all be lin d edge edge, ar of 15.6 ve or be	ng in the 5.15-5.25 GHz b all not exceed an e.i.r.p. o ng solely in the 5.725-5.8 nited to a level of -27 dB increasing linearly to 10 nd from 25 MHz above or dBm/MHz at 5 MHz abo low the band edge increa- dge.	f –27 dBm/MHz. 50 GHz band: m/MHz at 75 MHz dBm/MHz at 25 MH below the band ec ve or below the ba	or more abov Iz above or Ige increasing nd edge, and		
	MHz		MHz	MHz	GHz		
	0.090-0.110		16.42-16.423	399.9-410	4.5-5.15		
	¹ 0.495-0.505		16.69475-16.69525	608-614	5.35-5.46		
	2.1735-2.1905		16.80425-16.80475	960-1240	7.25-7.75		
	4.125-4.128		25.5-25.67	1300-1427	8.025-8.5		
	4.17725-4.1777	'5	37.5-38.25	1435-1626.5	9.0-9.2		
	4.20725-4.2077	'5	73-74.6	1645.5-1646.5	9.3-9.5		
	6.215-6.218		74.8-75.2	1660-1710	10.6-12.7		
	6.26775-6.2682	25	108-121.94	1718.8-1722.2	13.25-13.4		
	6.31175-6.3122	25	123-138	2200-2300	14.47-14.5		
	8.291-8.294		149.9-150.05	2310-2390	15.35-16.2		
	8.362-8.366	~	156.52475-156.52525	2483.5-2500	17.7-21.4		
	8.37625-8.3867	′5	156.7-156.9	2690-2900	22.01-23.1		
	8.41425-8.4147	'5	162.0125-167.17	3260-3267	23.6-24.0		
	12.29-12.293		167.72-173.2	3332-3339	31.2-31.8		
	12.51975-12.52	2025	240-285	3345.8-3358	36.43-36.5		
	12.57675-12.57	725	322-335.4	3600-4400	(2)		
	13.36-13.41		OF C				
	¹ Until February 1 ² Above 38.6	, 1999,	this restricted band shall	be 0.490-0.510 MI	Hz. V		
	exceed the limits MHz, compliance measurement ins MHz, compliance on the average v these measurem Except as provide	shown with th strumen with th alue of ents. ed elsev	ssions appearing within t in § 15.209. At frequenci ie limits in § 15.209shall tation employing a CISP ie emission limits in § 15. the measured emissions where in this subpart, the	es equal to or less be demonstrated u R quasi-peak detec 209shall be demor . The provisions in e emissions from ar	than 1000 sing ctor. Above 10 nstrated base § 15.35apply n intentional		
Test Limit:	Frequency		I the field strength levels d strength	Measurement			
root Linnt.	(MHz)		provolts/meter)	(meters)			
	0.009-0.490	240	0/F(kHz)	300			
	0.490-1.705		00/F(kHz)	30			
	1.705-30.0	30		30			

J

DΔ

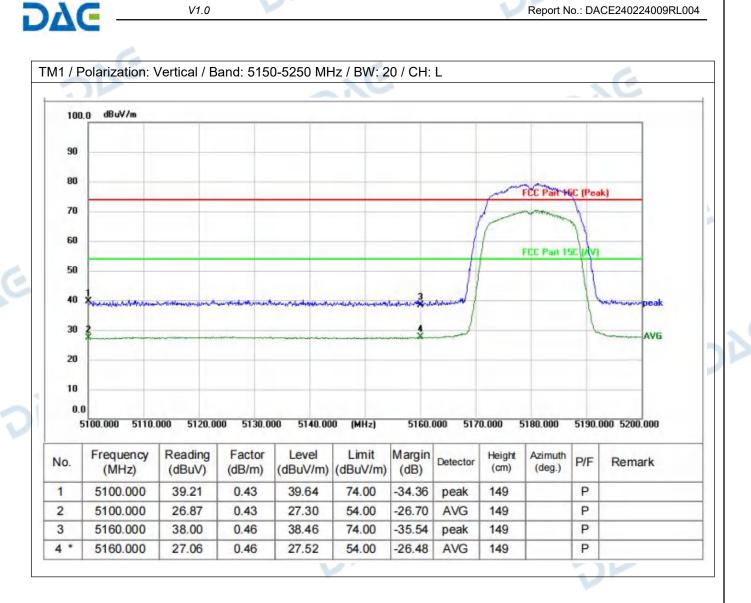
Report No.: DACE240224009RL004

30-88	100 **	3					
88-216	150 **	3					
216-960	200 **	3					
Above 960	500	3					
** Except as provided in paragraph (g), fundamental emissions from intentional							

radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241.

In the emission table above, the tighter limit applies at the band edges. The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9–90 kHz, 110–490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.

Test Method:	ANSI C63.10-2013, section 12.7.4, 12.7.6, 12.7.7
Procedure:	Above 1GHz:
	a. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
	b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
	c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
	<ul> <li>d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency</li> </ul>
	below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
	e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-
	tested one by one using peak or average method as specified and then reported in a data sheet.
	g. Test the EUT in the lowest channel, the middle channel, the Highest channel. h. The radiation measurements are performed in X, Y, Z axis positioning for
	Transmitting mode, and found the X axis positioning which it is the worst case. i. Repeat above procedures until all frequencies measured was complete.
	Remark: 1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor 2. Scan from 18GHz to 40GHz, the disturbance above 18GHz was very low. The
	points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious
	emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.
	3. As shown in this section, for frequencies above 1GHz, the field strength limits a based on average limits. However, the peak field strength of any emission shall no
	exceed the maximum permitted average limits specified above by more than 20 dl under any condition of modulation. For the emissions whose peak level is lower
	<ul> <li>than the average limit, only the peak measurement is shown in the report.</li> <li>4. The disturbance above 18GHz were very low and the harmonics were the highest point could be found when testing, so only the above harmonics had been displayed.</li> </ul>
	displayed.


Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

-	ing Environr			Į,						2	
Tempe Pretest	rature: 23 mode:	3.9 °C Т	Humi M1, TM2, ⁻	-	%	Atm	ospheric	: Pressi	ure: 10	)2 kP	a
	est mode:		M1, 1M2,								
TM1 is	<b>Fest Data:</b> worse case				MHz / BW	/: 20 / C	H: L				QQ
100	.0 dBuV/m				-		_		1	-	_
90	-			_		_	_			_	
80					_	_	_	1	m		
70								-	FCC Part 15	C (Pea	k)
							1	(		11	
60									FCC Part 15	CIAN	
50				_						11	
40	Xurennetrundo	denter and the second	with the second second	normal management	mishing	antice Bet	when and			1	mondation
30	2					4	mand		-	6	AVG
20									_	_	
10											
0.											
	5100.000 5110	.000 5120	.000 5130.0	00 5140.00	)0 (MHz)	5160.0	000 517	0.000 5	5180.000	5190.0	00 5200.000
No.	Frequency (MHz)	Reading (dBuV)	(dB/m)		Limit (dBuV/m)		Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1	5100.000	39.51	-0.04	39.47	74.00	-34.53	peak	149	-	P	
2	5100.000 5160.000	27.41 38.62	-0.04	27.37 38.69	54.00 74.00	-26.63	AVG peak	149 149		P	
4 *	5160.000	27.36	0.07	27.43	54.00	-26.57	AVG	149		P	
			21								

102 Building H1 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao' an District, Shenzhen, Guangdong, ChinaWeb: http://www.dace-lab.comTel: +86-755-23010613E-mail: service@dace-lab.com

Page 25 of 170

Report No.: DACE240224009RL004



DAE

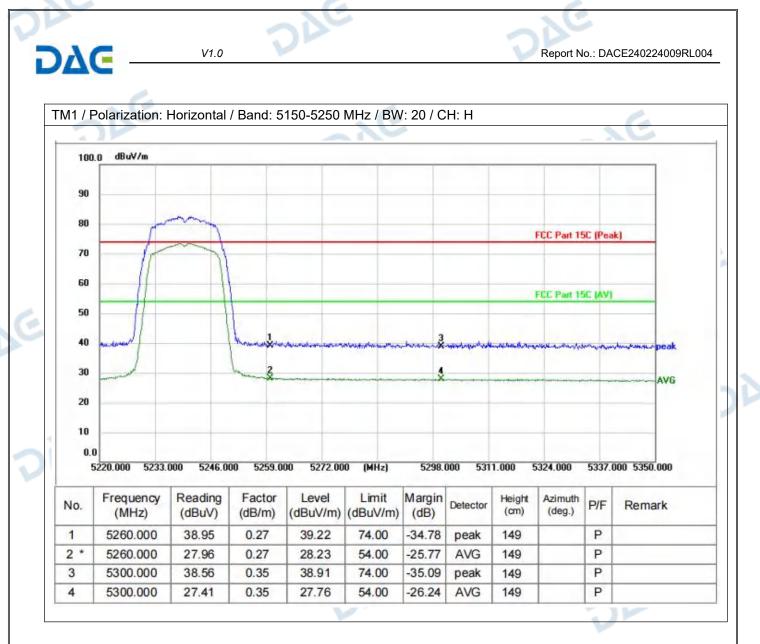
DAG

.

DAG

DAG

)AC


DAG

102 Building H1 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao' an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

DAG



NE



DAE

DAG

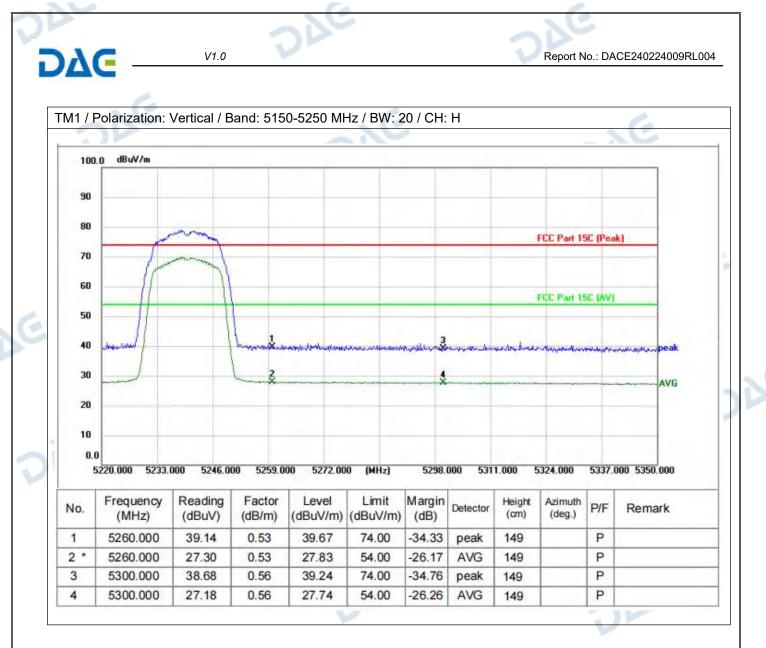
4

DAG

DAG

)AC

DAG


 102 Building H1 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao' an District, Shenzhen, Guangdong, China

 Web: http://www.dace-lab.com
 Tel: +86-755-23010613
 E-mail: service@dace-lab.com

DAG



NE



DAE

DAG

4

DAG

DAG

)AC

DAG

 102 Building H1 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao' an District, Shenzhen, Guangdong, China

 Web: http://www.dace-lab.com
 Tel: +86-755-23010613
 E-mail: service@dace-lab.com

DAG

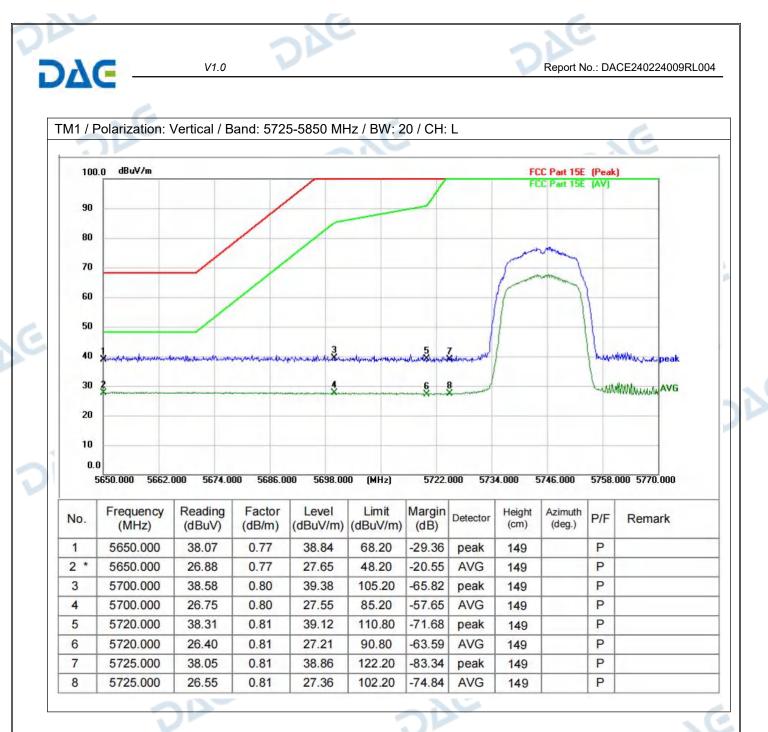
NE

DΔC V1.0 Report No.: DACE240224009RL004 TM1 / Polarization: Horizontal / Band: 5725-5850 MHz / BW: 20 / CH: L 100.0 dBu¥/m FCC Part 15E (Peak) FCC Part 15E (AV) 90 80 70 60 50 mappine 40 WALK AVG 30 6 20 10 0.0 5650.000 5662.000 5674.000 5686.000 5698.000 (MHz) 5722.000 5734.000 5746.000 5758.000 5770.000 Frequency Reading Factor Level Limit Height Margin Azimuth Detector No. P/F Remark (MHz) (dBuV) (dB/m)(dBuV/m) (dBuV/m) (dB) (cm) (deg.) 5650.000 38.49 0.89 39.38 68.20 -28.82 Ρ 1 peak 149 27.02 48.20 -20.29 Ρ 2 * 5650.000 0.89 27.91 AVG 149 3 5700.000 37.67 0.95 38.62 105.20 -66.58 peak 149 Ρ 4 5700.000 26.80 0.95 27.75 85.20 -57.45 AVG 149 P 5 5720.000 38.18 0.97 39.15 110.80 -71.65 peak P 149 5720.000 27.09 0.97 -62.74 P 28.06 90.80 AVG 149 6 7 5725.000 0.97 39.62 122.20 P 38.65 -82.58 149 peak 8 0.97 28.82 P 5725.000 27.85 102.20 -73.38 AVG 149

 102 Building H1 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao' an District, Shenzhen, Guangdong, China

 Web: http://www.dace-lab.com
 Tel: +86-755-23010613
 E-mail: service@dace-lab.com

)AC


DAG

DAG



)De

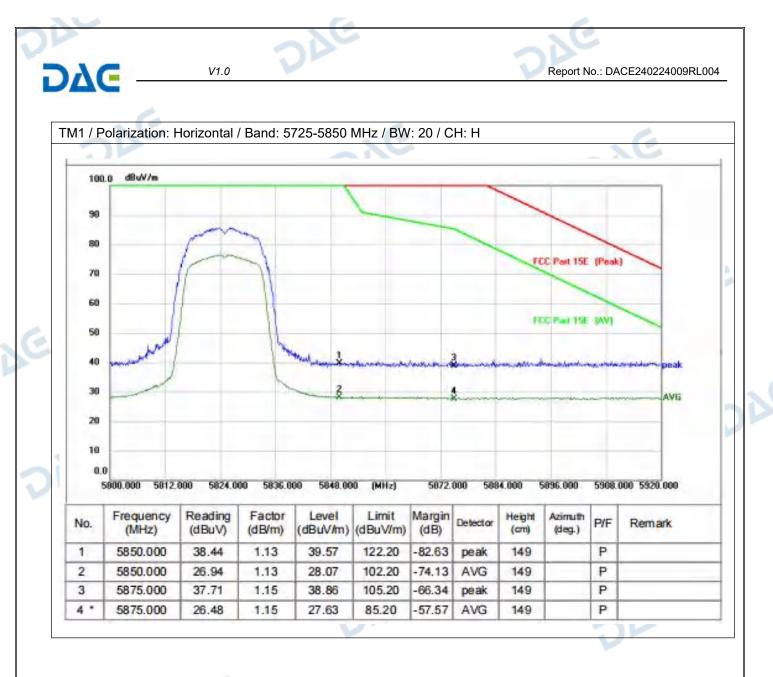
DAG



 102 Building H1 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao' an District, Shenzhen, Guangdong, China

 Web: http://www.dace-lab.com
 Tel: +86-755-23010613
 E-mail: service@dace-lab.com

)AC


DAG

DAG

Page 30 of 170

)De

DAG



DAG

DAG

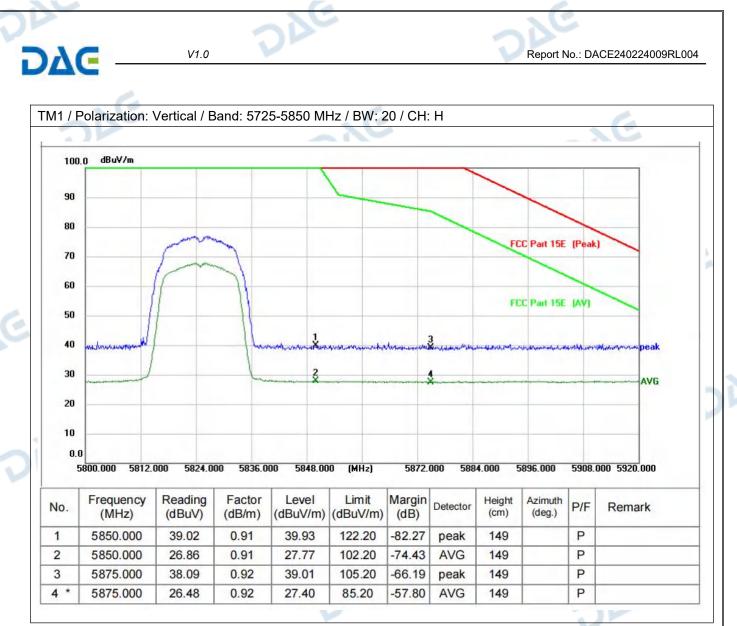
1

DAG

DAG

)AC

DAG


 102 Building H1 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao' an District, Shenzhen, Guangdong, China

 Web: http://www.dace-lab.com
 Tel: +86-755-23010613
 E-mail: service@dace-lab.com

DAE



DE



Note: The test software only records the worst height and cannot record the worst angle. Only the worst situation is displayed in the test report.

)DE

NE

)AC

102 Building H1 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao' an District, Shenzhen, Guangdong, ChinaWeb: http://www.dace-lab.comTel: +86-755-23010613E-mail: service@dace-lab.com

)De

NE

4

DAG



-

Report No.: DACE240224009RL004

DAG

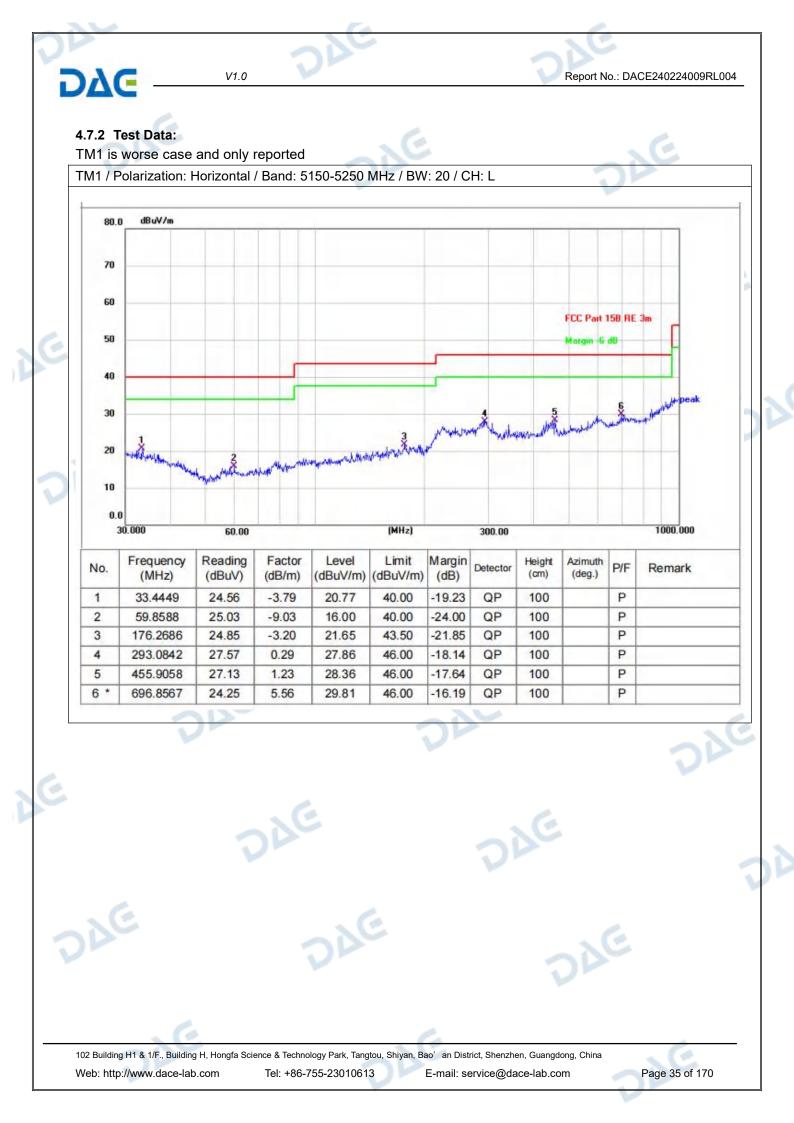
## 4.7 Undesirable emission limits (below 1GHz)

Test Requirement:	47 CFR Part 15.407(b)(9)						
Test Limit:	Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in § 15.209.						
	Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:						
	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)				
	0.009-0.490	2400/F(kHz)	300				
	0.490-1.705	24000/F(kHz)	30				
	1.705-30.0	30	30				
	30-88	100 **	3				
	88-216	150 **	3				
	216-960	200 **	3				
	Above 960	500	3				
	The emission limits shown employing a CISPR quasi- 110–490 kHz and above 10	e, the tighter limit applies at the l in the above table are based on peak detector except for the frec 000 MHz. Radiated emission lim ts employing an average detect	measurements quency bands 9–90 kHz, its in these three bands				
Test Method:	ANSI C63.10-2013, section						
Procedure:	above the ground at a 3 me degrees to determine the p b. The EUT was set 3 or 10 which was mounted on the c. The antenna height is va determine the maximum va polarizations of the antenna d. For each suspected emi the antenna was tuned to h below 30MHz, the antenna was turned from 0 degrees e. The test-receiver system Bandwidth with Maximum H f. If the emission level of th specified, then testing coul reported. Otherwise the em tested one by one using qu data sheet. g. Test the EUT in the lowe h. The radiation measurem Transmitting mode, and four	T was placed on the top of a rot eter semi-anechoic chamber. Th osition of the highest radiation. ) meters away from the interfere top of a variable-height antenna uried from one meter to four meter alue of the field strength. Both ho a are set to make the measurem ssion, the EUT was arranged to heights from 1 meter to 4 meters was tuned to heights 1 meter) a to 360 degrees to find the maxi was set to Peak Detect Function Hold Mode. e EUT in peak mode was 10dB d be stopped and the peak value hissions that did not have 10dB r lasi-peak method as specified an st channel, the middle channel, ents are performed in X, Y, Z ax and the X axis positioning which s until all frequencies measured	e table was rotated 360 nce-receiving antenna, a tower. ers above the ground to orizontal and vertical nent. its worst case and then (for the test frequency of and the rotatable table mum reading. on and Specified lower than the limit es of the EUT would be margin would be re- nd then reported in a the Highest channel. is positioning for it is the worst case.				
	Remark:	4					

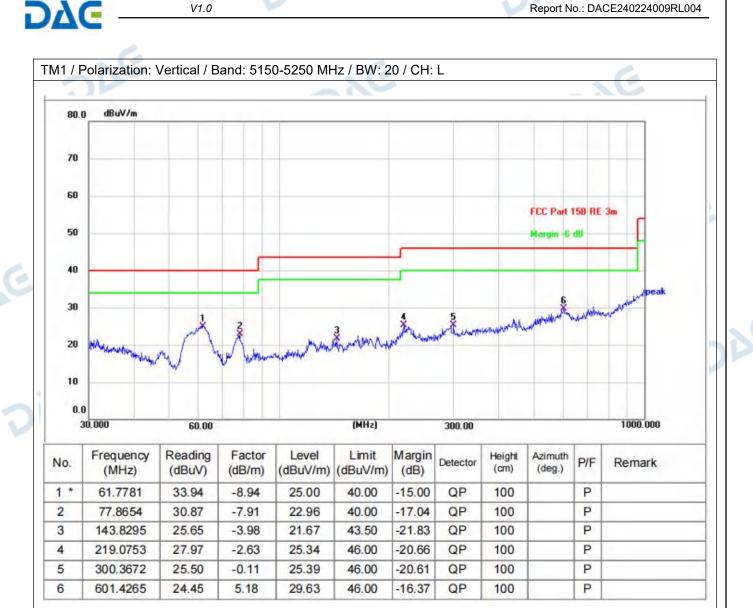
Tel: +86-755-23010613

Web: http://www.dace-lab.com

E-mail: service@dace-lab.com


Page 33 of 170

<b>ΟΔ</b> Ε —	V1.0	Report No.: DACE240224009R
Procedure:	1. Level= Read Level+ Cable L	oss+ Antenna Factor- Preamp Factor
		he disturbance below 30MHz was very low. The
		are the highest emissions could be found when
		ad been displayed. The amplitude of spurious
		ich are attenuated more than 20dB below the limit
		ch are allenualed more than 2000 below the limit
	need not be reported.	
		z was very low and the harmonics were the highes
		ing, so only the above harmonics had been
	displayed.	
	Above 1GHz:	
	a. For above 1GHz, the EUT wa	as placed on the top of a rotating table 1.5 meters
	above the ground at a 3 meter	fully-anechoic chamber. The table was rotated 360
	degrees to determine the positi	on of the highest radiation.
		way from the interference-receiving antenna, whic
	was mounted on the top of a va	
		from one meter to four meters above the ground t
		of the field strength. Both horizontal and vertical
		e set to make the measurement.
		n, the EUT was arranged to its worst case and the
		nts from 1 meter to 4 meters (for the test frequency
		s tuned to heights 1 meter) and the rotatable table
		360 degrees to find the maximum reading.
		s set to Peak Detect Function and Specified
	Bandwidth with Maximum Hold	
		JT in peak mode was 10dB lower than the limit
		stopped and the peak values of the EUT would be
		ons that did not have 10dB margin would be re-
		or average method as specified and then reported
	a data sheet.	
	g. Test the EUT in the lowest ch	nannel, the middle channel, the Highest channel.
	h. The radiation measurements	are performed in X, Y, Z axis positioning for
	Transmitting mode, and found t	the X axis positioning which it is the worst case.
		til all frequencies measured was complete.
	Remark:	
		oss+ Antenna Factor- Preamp Factor
		, the disturbance above 18GHz was very low. The
		are the highest emissions could be found when
		ad been displayed. The amplitude of spurious
		ich are attenuated more than 20dB below the limit
		in are allendated more than 200D below the limit
	need not be reported.	frequencies above 1047 the field strength limiter
		frequencies above 1GHz, the field strength limits a
		ver, the peak field strength of any emission shall n
		d average limits specified above by more than 20 c
		ion. For the emissions whose peak level is lower
	than the average limit, only the	peak measurement is shown in the report.
	4. The disturbance above 18GH	Iz were very low and the harmonics were the
		hen testing, so only the above harmonics had been
	displayed.	<u>.</u>


## 4.7.1 E.U.T. Operation:

Operating Environment:							
Temperature:	23.9 °C		Humidity:	54 %	Atmospheric Pressure:	102 kPa	
Pretest mode:		TM1,	TM2, TM3		V		
Final test mode		TM1					

102 Building H1 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao' an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com



Report No.: DACE240224009RL004



Note: The test software only records the worst height and cannot record the worst angle. Only the worst situation is displayed in the test report.

)De

)AC

102 Building H1 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao' an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

)De

DAG

DAG



DAG

Report No.: DACE240224009RL004

## 4.8 Undesirable emission limits (above 1GHz)

Test Requirement:	47 CFR Part 15.407(b)(1) 47 CFR Part 15.407(b)(4) 47 CFR Part 15.407(b)(10)						
Test Limit:	5.15-5.35 GHz ba For transmitters of All emissions shal or below the band below the band ed linearly to a level of	perating in the 5.15-5.25 Gl nd shall not exceed an e.i.r perating solely in the 5.725 I be limited to a level of $-27$ edge increasing linearly to dge, and from 25 MHz abov of 15.6 dBm/MHz at 5 MHz or below the band edge in pand edge.	p. of −27 dBm/MHz. 5.850 GHz band: ′ dBm/MHz at 75 MHz 10 dBm/MHz at 25 MH e or below the band ec above or below the ba	or more above Hz above or dge increasing nd edge, and			
	MHz	MHz	MHz	GHz			
	0.090-0.110	16.42-16.423	399.9-410	4.5-5.15			
	¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46			
	2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75			
	4.125-4.128	25.5-25.67	1300-1427	8.025-8.5			
	4.17725-4.17775	5 37.5-38.25	1435-1626.5	9.0-9.2			
	4.20725-4.20775	5 73-74.6	1645.5-1646.5	9.3-9.5			
	6.215-6.218	74.8-75.2	1660-1710	10.6-12.7			
	6.26775-6.26825	5 108-121.94	1718.8-1722.2	13.25-13.4 14.47-14.5			
	6.31175-6.31225	5 123-138	2200-2300				
	8.291-8.294	149.9-150.05	2310-2390	15.35-16.2			
	8.362-8.366	156.52475-156.5252	25 2483.5-2500	17.7-21.4			
	8.37625-8.38675	5 156.7-156.9	2690-2900	22.01-23.12			
	8.41425-8.41475	5 162.0125-167.17	3260-3267	23.6-24.0			
	12.29-12.293	167.72-173.2	3332-3339	31.2-31.8			
	12.51975-12.520	25 240-285	3345.8-3358	36.43-36.5			
	12.57675-12.577	725 322-335.4	3600-4400	(2)			
	13.36-13.41						
Test Limit:	¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. ² Above 38.6         The field strength of emissions appearing within these frequency bands shall not exceed the limits shown in § 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in § 15.209shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in § 15.209shall be demonstrated based on the average value of the measured emissions. The provisions in § 15.35apply to these measurements.         Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:         Frequency       Field strength						
	(MHz) 0.009-0.490	(microvolts/meter) 2400/F(kHz)	(meters) 300				
	0.490-1.705	24000/F(kHz)	30				
	1.705-30.0	30	30				
	30-88	100 **	3				
		1.50	Ŭ				

Web: http://www.dace-lab.com

Tel: +86-755-23010613

E-mail: service@dace-lab.com

DΔC

Report No.: DACE240224009RL004

	88-216	150 **	3	
JF JF	216-960	200 **	3	200
	Above 960	500	3	0 F
DAG	radiators opera 54-72 MHz, 76 these frequence and 15.241. In the emission The emission li employing a CI	ovided in paragraph (g), fu ting under this section sha -88 MHz, 174-216 MHz or y bands is permitted under table above, the tighter lin mits shown in the above ta SPR quasi-peak detector of nd above 1000 MHz. Radia	Il not be located in the 470-806 MHz. Howe other sections of the nit applies at the bar ble are based on me except for the freque	ne frequency bands ever, operation within is part, e.g., §§ 15.231 nd edges. easurements ncy bands 9–90 kHz,
		neasurements employing a		
Test Method:	ANSI C63.10-2	013, section 12.7.4, 12.7.6	, 12.7.7	
Procedure:	Above 1GHz:		1C	
AC	above the grou degrees to dete b. The EUT way was mounted of c. The antenna determine the r polarizations of d. For each sus the antenna way below 30MHz,	GHz, the EUT was placed and at a 3 meter fully-anech ermine the position of the h s set 3 meters away from t on the top of a variable-heig height is varied from one in maximum value of the field the antenna are set to ma spected emission, the EUT as tuned to heights from 1 in the antenna was tuned to 1 in 0 degrees to 360 degree	oic chamber. The tai ighest radiation. he interference-rece pht antenna tower. neter to four meters strength. Both horiz ke the measuremen was arranged to its neter to 4 meters (for heights 1 meter) and	ble was rotated 360 eiving antenna, which above the ground to ontal and vertical t. worst case and then or the test frequency o I the rotatable table
DAC	Bandwidth with f. If the emissio specified, then reported. Other tested one by c a data sheet. g. Test the EUT	eiver system was set to Pe Maximum Hold Mode. In level of the EUT in peak testing could be stopped a wise the emissions that die one using peak or average in the lowest channel, the	mode was 10dB low nd the peak values d not have 10dB ma method as specified middle channel, the	ver than the limit of the EUT would be rgin would be re- l and then reported in e Highest channel.
20	Transmitting me i. Repeat above Remark:	n measurements are perfor ode, and found the X axis e procedures until all freque Level+ Cable Loss+ Anter	positioning which it i encies measured wa	s the worst case. as complete.
	2. Scan from 18 points marked testing, so only emissions from need not be rep	8GHz to 40GHz, the distur on above plots are the high above points had been dis the radiator which are atte ported.	pance above 18GHz nest emissions could splayed. The amplitu enuated more than 2	z was very low. The I be found when Ide of spurious 0dB below the limit
AE	based on avera exceed the max under any cond than the averag 4. The disturba	this section, for frequencie age limits. However, the pe ximum permitted average I lition of modulation. For the ge limit, only the peak mea nce above 18GHz were ve build be found when testing	ak field strength of a imits specified abov e emissions whose p surement is shown i ry low and the harm	any emission shall not e by more than 20 dB beak level is lower n the report. onics were the

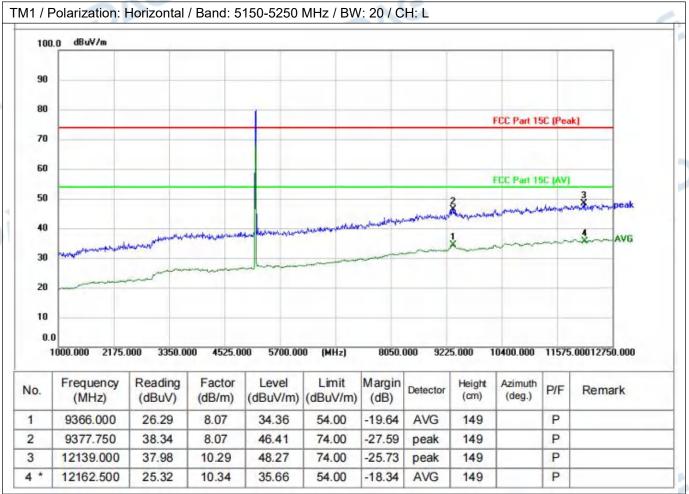
# 4.8.1 E.U.T. Operation:

**Operating Environment:** 

Web: http://www.dace-lab.com

102 Building H1 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao' an District, Shenzhen, Guangdong, China E-mail: service@dace-lab.com

Temperature: 23.9 °C	Humidity:	54 %	Atmospheric Pressure:	102 kPa
Pretest mode:	TM1, TM2, TM3	200		ANC A
Final test mode:	TM1	V		JF JF


### 4.8.2 Test Data:

1

DAG

DΔG

## TM1 is worse case and only reported



)De

DAG

 102 Building H1 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao' an District, Shenzhen, Guangdong, China

 Web: http://www.dace-lab.com
 Tel: +86-755-23010613
 E-mail: service@dace-lab.com

)De

DAE

Δ(	•	V1.0							Report N	0 DA	CE240224009F
	-										
<u>// / C</u>	Polarization:	/ortical / B	and: 515	0 5250 ML	17 / B\A/· 2		1				
/11 / F			anu. 515	0-5250 1011	12 / 800. 2	.07 CH.	L				
100	.0 dBuV/m			-		_			-		_
90											
30											
80									FCC Part 15	C (Dee	
70					_			-	rec rait is	AC II CO	
60							_		FCC Part 15		
50								3			3 peak
40				1.1.		and months	monorthan	Recepcideles	human	proposition	
40		mightmaking	have have been all the second	nor Western Them	- And the second of the second s			1	Lann	m	AVG
30	Margara and			mante		and the second					
20	-										
			_	_							
10											
0.	0 1000.000 2175.	000 3350.0	00 4525.0	00 5700.00	0 (MHz)	8050.	000 922	5.000 1	10400.000	11575	.00012750.000
_	-			1					-		
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1	9354.250	26.42	7.84	34.26	54.00	-19.74	AVG	149		P	
2	9366.000	39.54	7.85	47.39	74.00	-26.61	peak	149		Р	
3	12385.750	37.24	10.97	48.21	74.00	-25.79	peak	149		P	
4 *	12585.500	25.06	11.32	36.38	54.00	-17.62	AVG	149		P	

DAG

2

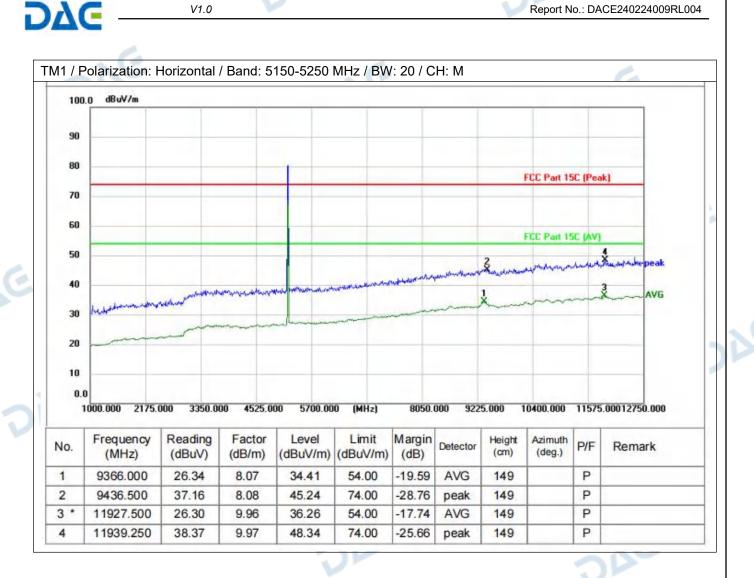
,AC

,AC

,DE

DAG

102 Building H1 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao' an District, Shenzhen, Guangdong, ChinaWeb: http://www.dace-lab.comTel: +86-755-23010613E-mail: service@dace-lab.com


DE

NE



Se

Report No.: DACE240224009RL004



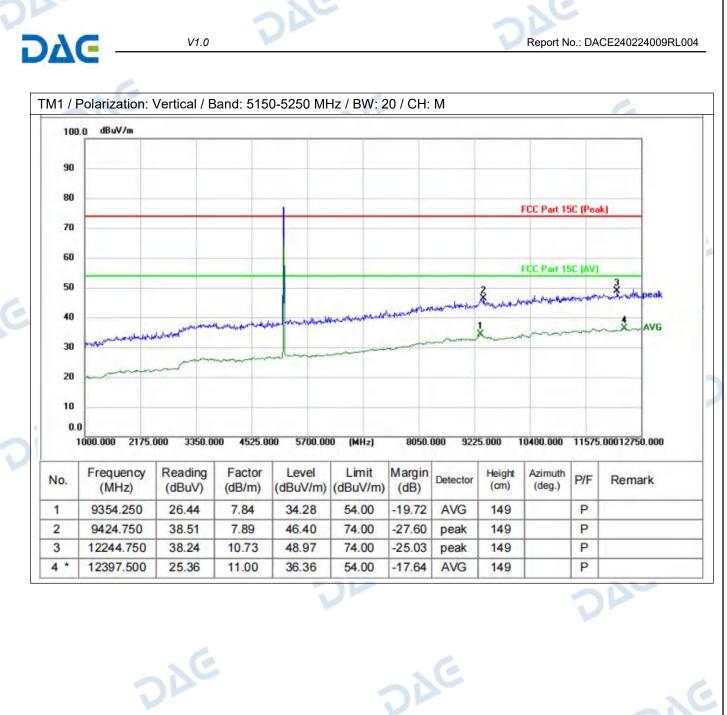
DAG

DAG

4

DAG

DAG


)AC

DAG

102 Building H1 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao' an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

)AC





DAG

)AC

DAG

102 Building H1 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao' an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

)AC

DAG

.

DAG



DΔG V1.0 Report No.: DACE240224009RL004 TM1 / Polarization: Horizontal / Band: 5150-5250 MHz / BW: 20 / CH: H 100.0 dBuV/m 90 80 FCC Part 15C (Peak) 70 60 FEC Part 15C (AV) 50 40 AVG 30 20 10 0.0 1000.000 2175.000 3350.000 4525.000 5700.000 (MHz) 8050.000 9225.000 10400.000 11575.00012750.000 Frequency Deading Factor Lovel 1 imit Margin Linight Animuth

No.	(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Detector	(cm)	(deg.)	P/F	Remark
1	9366.000	37.69	8.07	45.76	74.00	-28.24	peak	149		P	
2	9366.000	26.25	8.07	34.32	54.00	-19.68	AVG	149		P	
3	11939.250	38.31	9.97	48.28	74.00	-25.72	peak	149		P	
4 *	11951.000	26.43	9.97	36.40	54.00	-17.60	AVG	149		P	

DAE

)DE

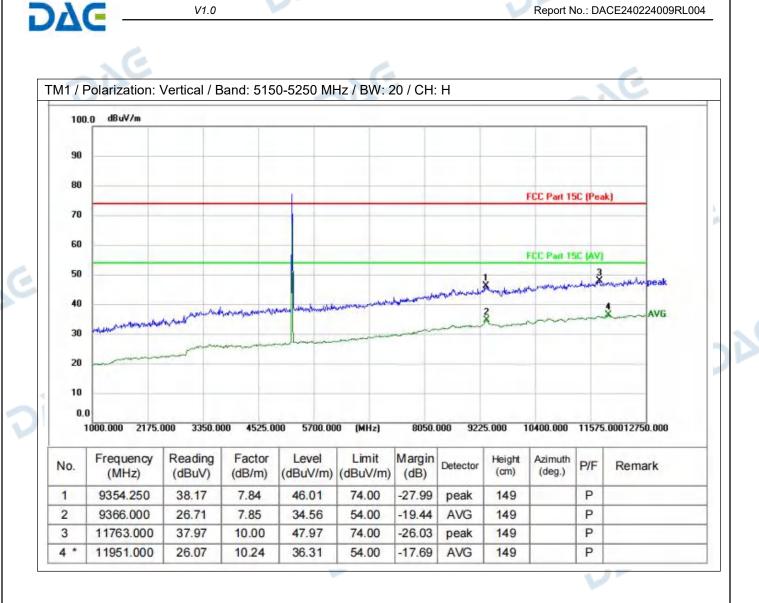
1

DAG

)De

)DE

DAG


102 Building H1 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao' an District, Shenzhen, Guangdong, ChinaWeb: http://www.dace-lab.comTel: +86-755-23010613E-mail: service@dace-lab.com

)AC



Se

Report No.: DACE240224009RL004



DAE

4

DAG

DAG

)DE

DAG

102 Building H1 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao' an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

)AC

)DE



AG

DΔC V1.0 Report No.: DACE240224009RL004 TM1 / Polarization: Horizontal / Band: 5725-5850 MHz / BW: 20 / CH: L dBuV/m 100.0 90 80 FCC Part 15E (Peak) 70 60 50 (AV) rt 15E 1 40 AVG 30 20 10 0.0 11575.00012750.000 1000.000 2175.000 3350.000 4525.000 5700.000 (MHz) 8050.000 9225.000 10400.000 Reading Frequency Factor Level Limit Margin Height Azimuth Detector P/F No. Remark (cm) (deg.) (MHz) (dBuV) (dB/m)(dBuV/m) (dBuV/m) (dB) P 1 9377.750 26.18 8.07 34.25 48.20 -13.95 AVG 149 9401.250 -22.01 P 2 38.11 8.08 46.19 68.20 149 peak P 3 11939.250 38.03 9.97 48.00 68.20 -20.20 149 peak 11951.000 26.18 9.97 48.20 -12.05 149 P 4 * 36.15 AVG

DAG

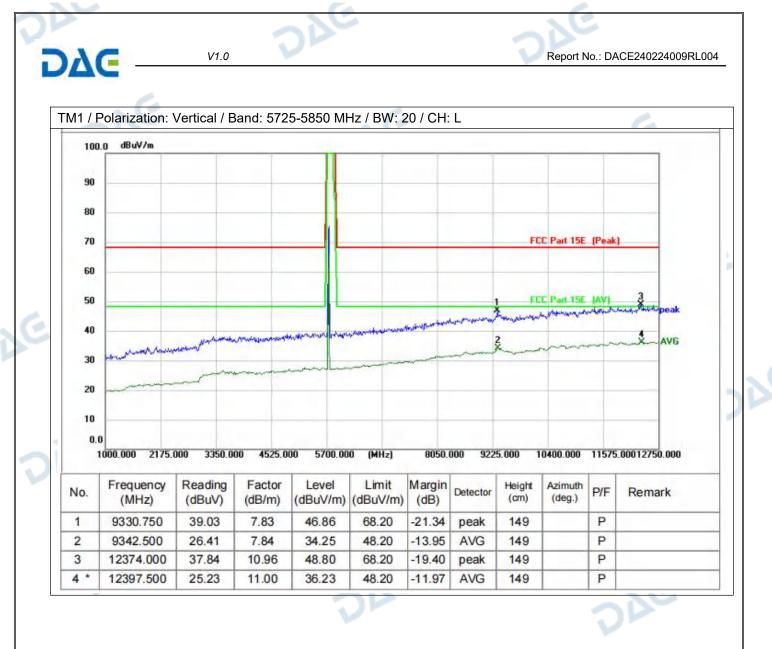
)AC

DAG

 102 Building H1 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao' an District, Shenzhen, Guangdong, China

 Web: http://www.dace-lab.com
 Tel: +86-755-23010613
 E-mail: service@dace-lab.com

)AC


DAE

DAG

4

DAG





DAG

DAG

4

DAG

DAG

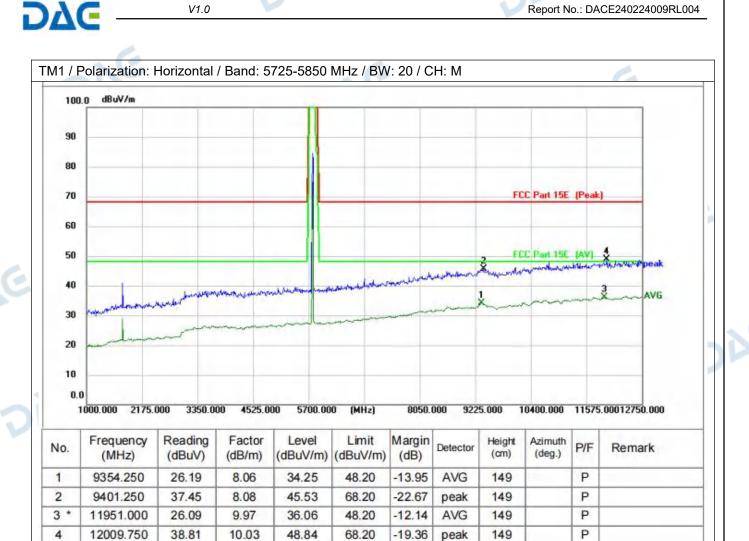
)DE

DAG

 102 Building H1 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao' an District, Shenzhen, Guangdong, China

 Web: http://www.dace-lab.com
 Tel: +86-755-23010613
 E-mail: service@dace-lab.com

DAG


DAE

DAG

4

DAG

#### Report No.: DACE240224009RL004



DAG

)AC

DAG

102 Building H1 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao' an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

)AC

Page 47 of 170

DΔC V1.0 Report No.: DACE240224009RL004 TM1 / Polarization: Vertical / Band: 5725-5850 MHz / BW: 20 / CH: M dBuV/m 100.0 90 80 FCC Part 15E (Peak) 70 60 50 LISE (AV) FCC F 40 AVG 2 30 20 10 0.0 1000.000 2175.000 3350.000 4525.000 5700.000 (MHz) 8050.000 9225.000 10400.000 11575.00012750.000 Frequency Reading Factor Level Limit Margin Height Azimuth Detector P/F Remark No. (dBuV) (dB/m)(dBuV/m) (dBuV/m) (cm) (deg.) (MHz) (dB) 1 9342.500 38.15 7.84 45.99 68.20 -22.21 149 P peak 2 9366.000 26.35 7.85 34.20 48.20 -14.00 AVG 149 P 3 11915.750 37.98 10.21 48.19 68.20 -20.01 149 P peak

DAG

-12.10

AVG

149

)AC

DAG

P

 102 Building H1 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao' an District, Shenzhen, Guangdong, China

 Web: http://www.dace-lab.com
 Tel: +86-755-23010613
 E-mail: service@dace-lab.com

DAG

11939.250

25.87

DAE

10.23

DAG

36.10

48.20

4 *

4

DAG



DΔC V1.0 Report No.: DACE240224009RL004 TM1 / Polarization: Horizontal / Band: 5725-5850 MHz / BW: 20 / CH: H dBuV/m 100.0 90 80 FCC Part 15E (Peak) 70 60 50 FCC P H 15E (AV) ALC: N 1 40 3 AVG 30 20 10 0.0 11575.00012750.000 1000.000 2175.000 3350.000 4525.000 5700.000 (MHz) 8050.000 9225.000 10400.000 Frequency Reading Factor Level Limit Margin Height Azimuth Detector P/F No. Remark (MHz) (dBuV) (dB/m)(dBuV/m) (dBuV/m) (dB)(cm) (deg.) 9366.000 26.21 8.07 34.28 48.20 -13.92 AVG P 1 149 9377.750 37.84 45.91 68.20 -22.29 P 2 8.07 peak 149 3 * 11927.500 26.35 9.96 36.31 48.20 -11.89 AVG 149 P peak 4 11951.000 37.60 9.97 47.57 68.20 -20.63 149 P

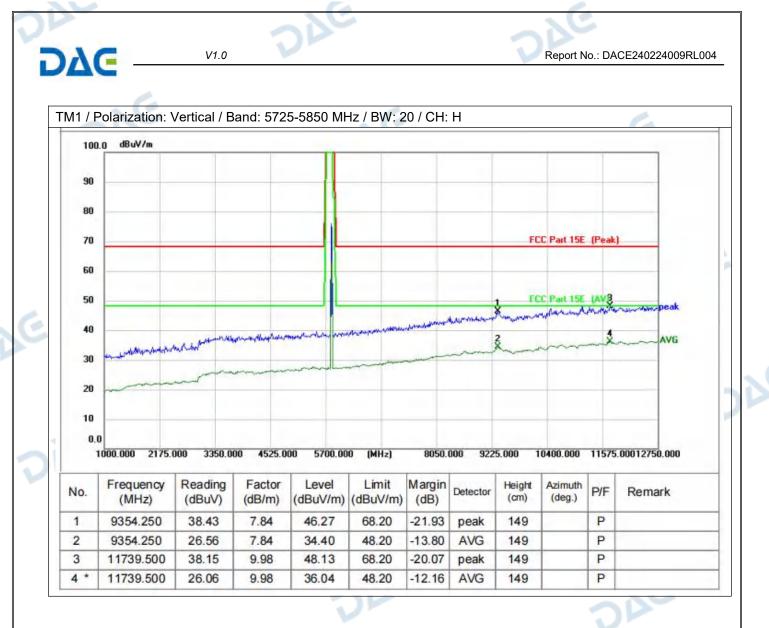
DAE

DAG

1

DAG

DAG


)AC

DAG

 102 Building H1 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao' an District, Shenzhen, Guangdong, China

 Web: http://www.dace-lab.com
 Tel: +86-755-23010613
 E-mail: service@dace-lab.com

DAG



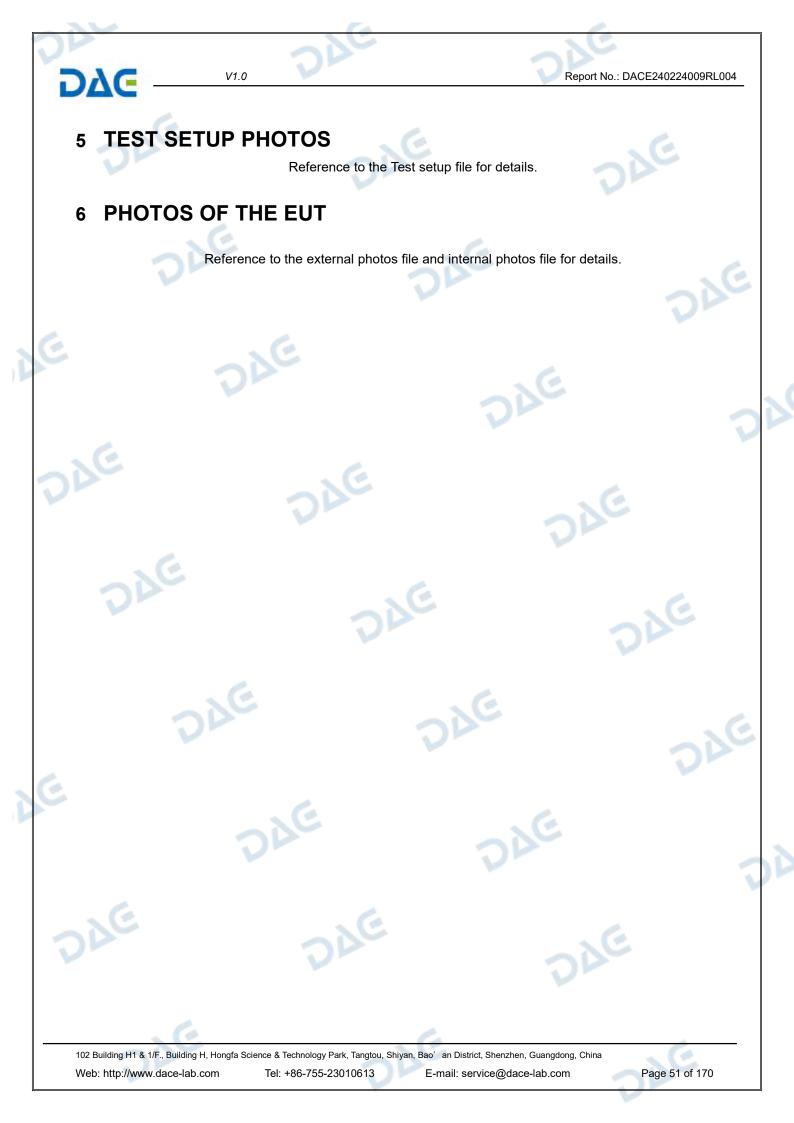
DAG

)AC

DAG

102 Building H1 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao' an District, Shenzhen, Guangdong, ChinaWeb: http://www.dace-lab.comTel: +86-755-23010613E-mail: service@dace-lab.com

DAG


DAE

DAG

-

DAG





DAC -	V1.0	Report N	lo.: DACE240224009RL004
DAC			
	Appendi	x-5.2GWIF	
			DAE
	ling H, Hongfa Science & Technology Park, Tangto	u, Shiyan, Bao′an District, Shenzhen, Guangdong, China	.6

# HT240224004--D115--5.2G--FCC FCC_5.2G_WIFI (Part15.407) Test Data

# 1. -26dB and 99% Emission Bandwidth

V1.0

DAG

1

DAG

Condition	Antenna	Modulation	Frequency(MHz)	-26dB_Emission_Bandwidth(MHz)	Occupied Bandwidth(MHz)
NVNT	ANT1	802.11a	5180.00	20.40	16.39
NVNT	ANT1	802.11a	5200.00	20.25	16.38
NVNT	ANT1	802.11a	5240.00	20.51	16.43
NVNT	ANT1	802.11n(HT20)	5180.00	20.58	17.52
NVNT	ANT1	802.11n(HT20)	5200.00	20.51	17.50
NVNT	ANT1	802.11n(HT20)	5240.00	20.44	17.52
NVNT	ANT1	802.11ac(VHT20)	5180.00	20.57	17.56
NVNT	ANT1	802.11ac(VHT20)	5200.00	20.61	17.51
NVNT	ANT1	802.11ac(VHT20)	5240.00	20.41	17.58
NVNT	ANT1	802.11n(HT40)	5190.00	41.76	36.08
NVNT	ANT1	802.11n(HT40)	5230.00	72.18	36.43
NVNT	ANT1	802.11ac(VHT40)	5190.00	41.32	35.96
NVNT	ANT1	802.11ac(VHT40)	5230.00	41.52	36.02
NVNT	ANT1	802.11ac(VHT80)	5210.00	106.34	76.07
NVNT	ANT1	802.11ac(VHT80)	5210.00	106.34	76.07



#### 99%_OCB_NVNT_ANT1_802_11a_5180

 102 Building H1 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao' an District, Shenzhen, Guangdong, China

 Web: http://www.dace-lab.com
 Tel: +86-755-23010613
 E-mail: service@dace-lab.com

26



)AC



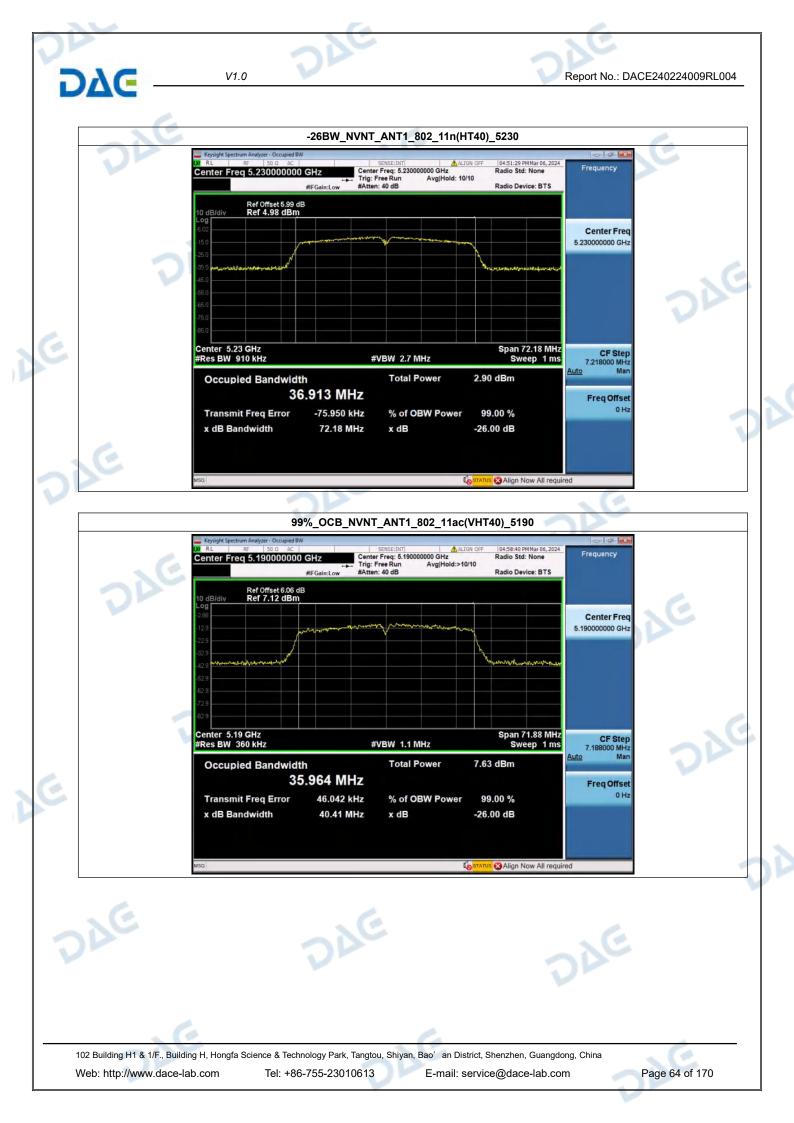




















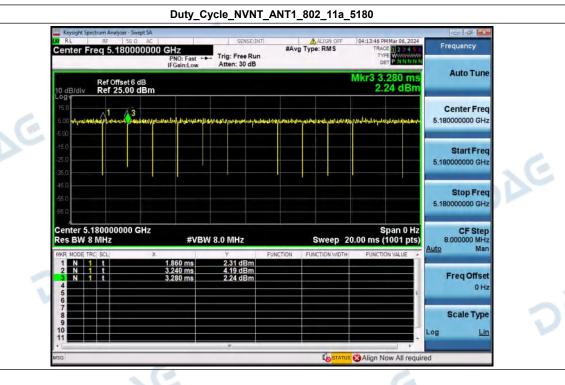







DAG -	V1.0	AC	Report N	o.: DACE240224009RL004
- NE		BW_NVNT_ANT1_802_11ac(VI		_ (c
VE	Keysight Spectrum Analyzer - Occupied BW K RL RF S0 Q AC Center Freq 5.210000000 GF	SENSE:INT ALIG Center Freq: 5.21000000 GHz Trig: Free Run Avg Hold: 10/1 #Atten: 40 dB	N OFF 09:30:22 AM Mar07, 2024 Radio Std: None Frequer	icy
	Ref Offset 6.29 dB           10 dB/div         Ref 9.58 dBm           Log         -0.42	and the said of		r Freq
2	-10.4 -20.4 -30.4 -30.4 -40		5.2100000	
	-40.4 -60.4 -70.4			DAG
3	-80.4 Center 5.21 GHz #Res BW 1.8 MHz	#VBW 6 MHz		= Step
	Occupied Bandwidth	Total Power	9.67 dBm	Man Offset
	Transmit Freq Error x dB Bandwidth	49.792 kHz % of OBW Power 106.3 MHz x dB	99.00 % -26.00 dB	0 Hz
E		2		
	MSG		STATUS	3
	VE			
102 Building H1 & 1/F., Build	ing H, Hongfa Science & Technolo	ogy Park, Tangtou, Shiyan, Bao′an Dist	rict, Shenzhen, Guangdong, China	E

Report No.: DACE240224009RL004

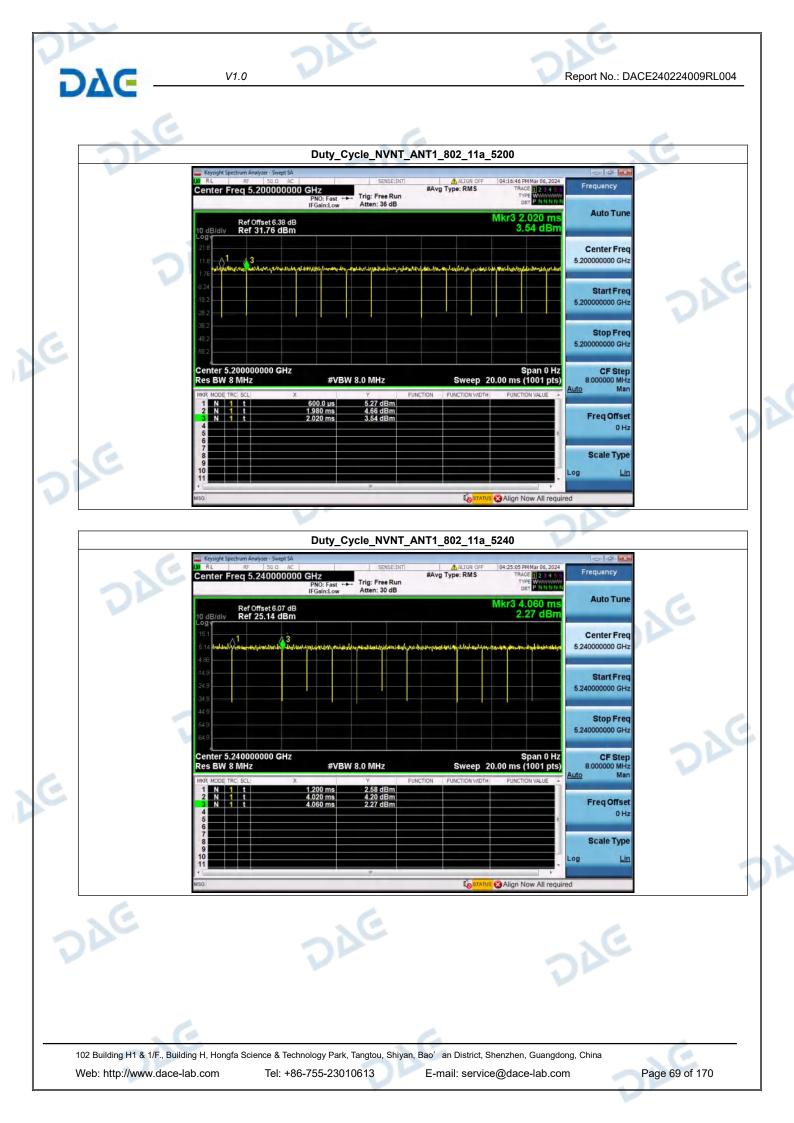

## 2. Duty Cycle

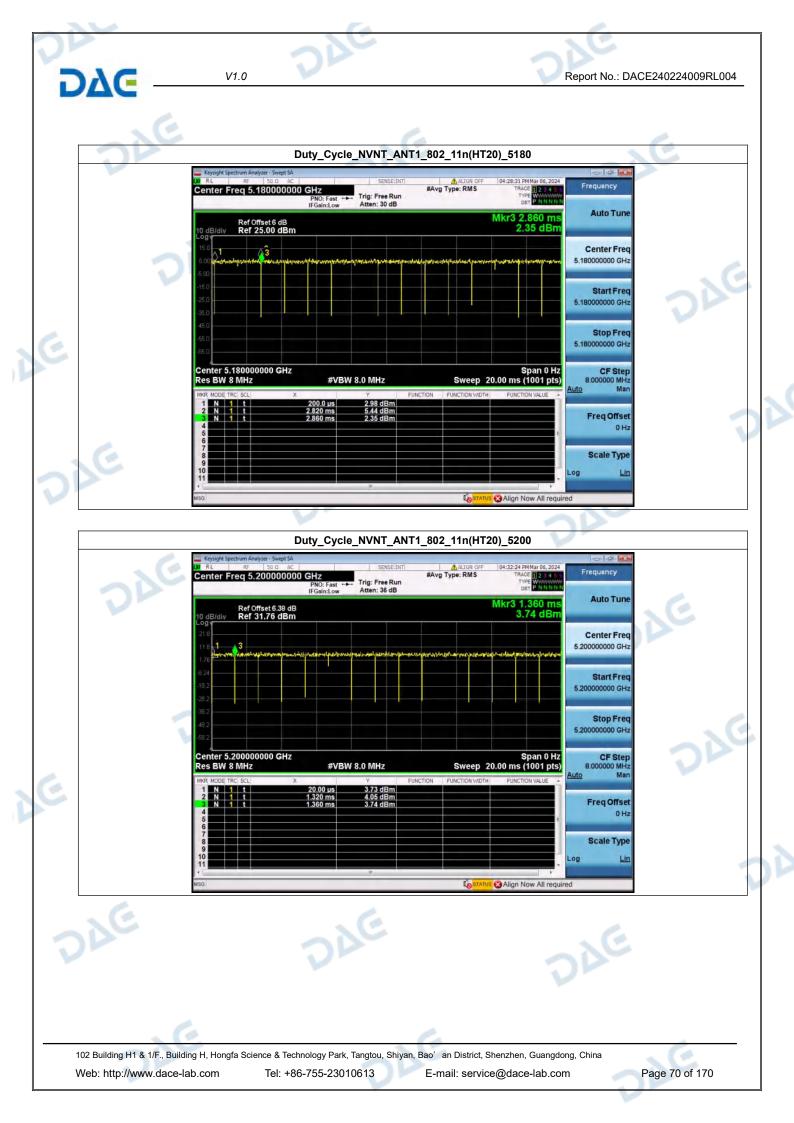
DVC

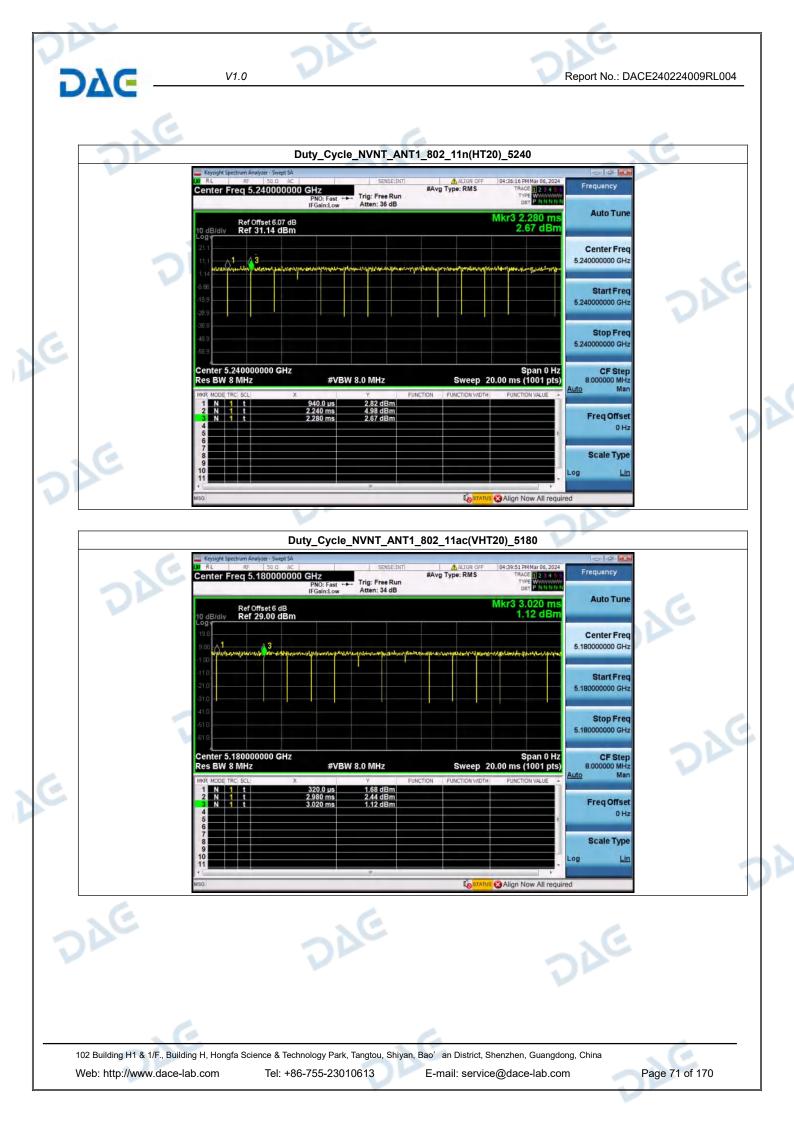
-

DAG

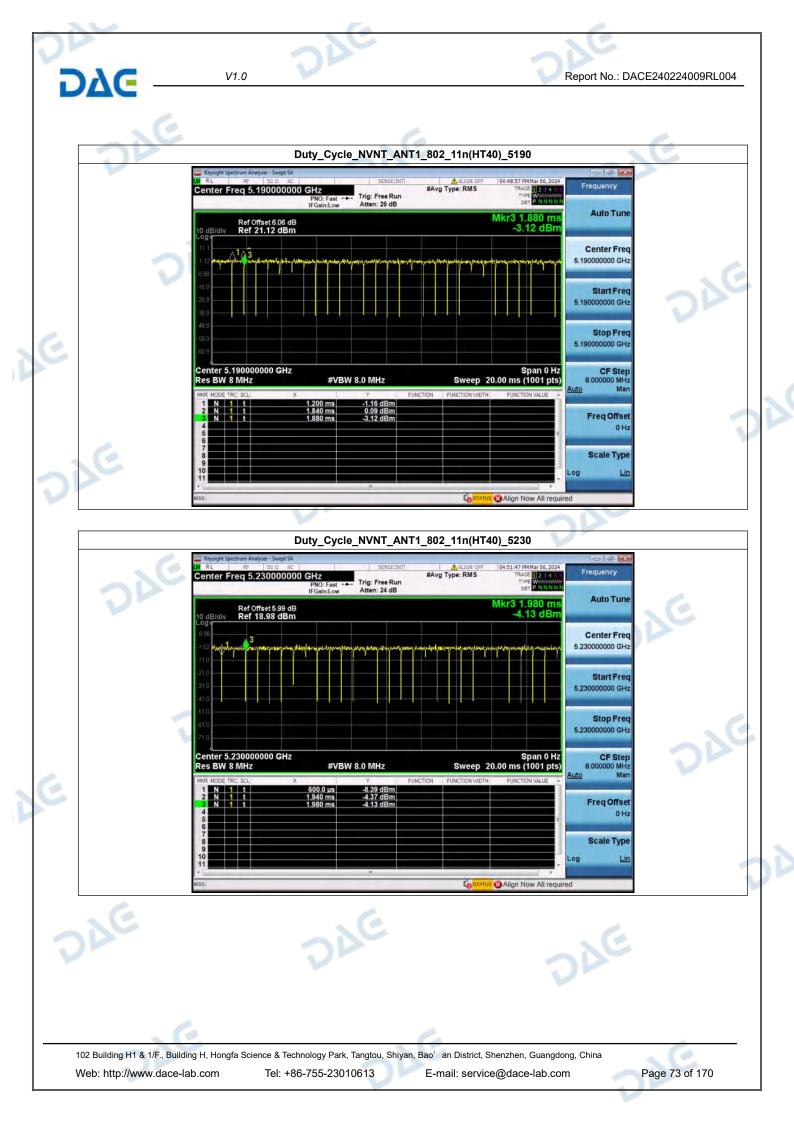
Condition	Antenna	Modulation	Frequency (MHz)	Duty cycle(%)	Duty_factor
NVNT	ANT1	802.11a	5180.00	97.18	0.12
NVNT	ANT1	802.11a	5200.00	97.18	0.12
NVNT	ANT1	802.11a	5240.00	98.60	0.00
NVNT	ANT1	802.11n(HT20)	5180.00	98.50	0.00
NVNT	ANT1	802.11n(HT20)	5200.00	97.01	0.13
NVNT	ANT1	802.11n(HT20)	5240.00	97.01	0.13
NVNT	ANT1	802.11ac(VHT20)	5180.00	98.52	0.00
NVNT	ANT1	802.11ac(VHT20)	5200.00	97.01	0.13
NVNT	ANT1	802.11ac(VHT20)	5240.00	97.01	0.13
NVNT	ANT1	802.11n(HT40)	5190.00	94.12	0.26
NVNT ANT1		802.11n(HT40)	5230.00	97.10	0.13
NVNT	ANT1	802.11ac(VHT40)	5190.00	94.29	0.26
NVNT	ANT1	802.11ac(VHT40)	5230.00	94.12	0.26
NVNT	ANT1	802.11ac(VHT80)	5210.00	88.89	0.51

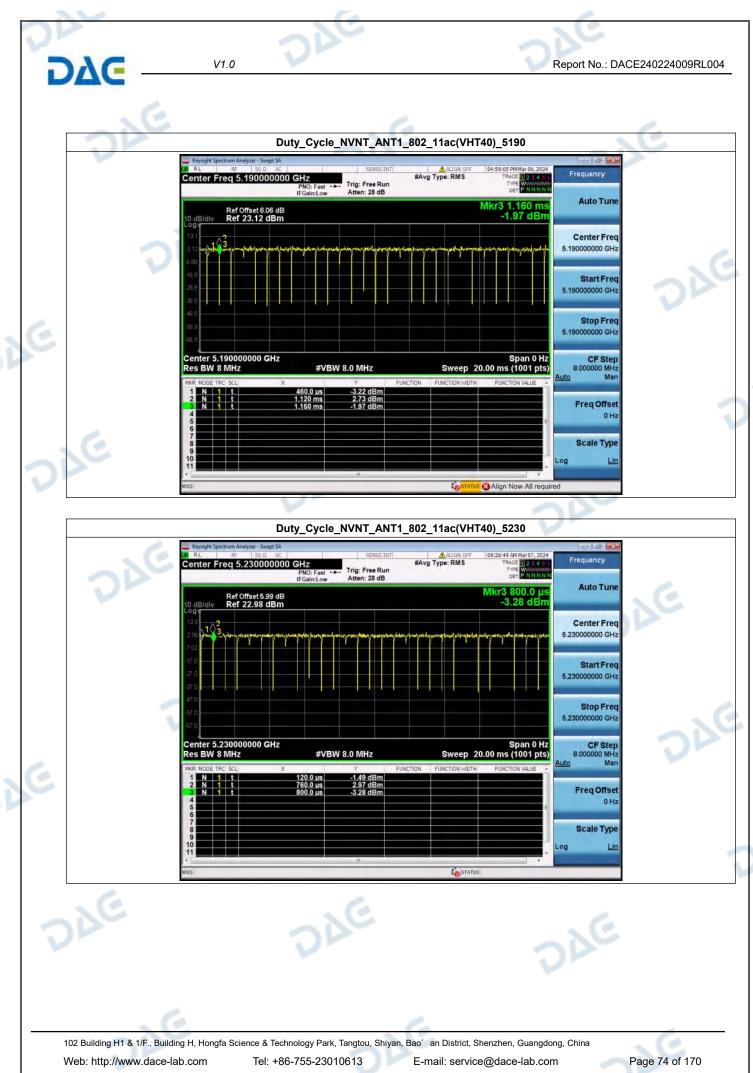




 102 Building H1 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao' an District, Shenzhen, Guangdong, China


 Web: http://www.dace-lab.com
 Tel: +86-755-23010613
 E-mail: service@dace-lab.com


)AC


DAG














D7€ –	V1.0		Report No.: DA	ACE240224009RL004
	Duty_	_Cycle_NVNT_ANT1_802_11ac(VH	IT80)_5210	E
	Keysight Spectrum Analyzer - Swept SA           RL         RF         50 Ω         AC           Center Freq 5.210000000 G		09:30:39 AM Mar07, 2024 TRACE U2:4 5 TYPE WYWWWWY DET PINNING	
	Ref Offset 6.29 dB	NO: Fast	Mkr3 540.0 µs -4.78 dBm	
	10 dB/div Ref 25.58 dBm		Center Freq 5.21000000 GHz	
V	4.42 14.4		Start Freq	
	-24,4		5.210000000 GHz	
	-44.4 -54.4 -54.4		Stop Freq 5.21000000 GHz	
	Center 5.210000000 GHz Res BW 8 MHz	#VBW 8.0 MHz Sweep	Span 0 Hz CF Step 20.00 ms (1001 pts) 8.000000 MHz	
	MKR         MODE         TRC         SCL         X           1         N         1         t         11           2         N         1         t         50	Y         FUNCTION         FUNCTION V//D           80.0 µs         -4.98 dBm         -4.78 dBm         -4.78 dBm	H FUNCTION VALUE Auto Man	
	3 N 1 t 54 4 5 6	40.0 µs -4.78 dBm	0 Hz	
JC.	9 10		Log Lin	
	MSG	" to sta	rus	

Report No.: DACE240224009RL004

DAG

)AC

NE

# 3. Maximum Conducted Output Power

DΔG

2

DAE

DAG

DAG

)AC

	Condition	Antenna	Modulation	Frequency (MHz)	Conducted Power(dBm)	Duty factor(dB)	Total Power(dBm)	limit(dBm)	Result
	NVNT	ANT1	802.11a	5180.00	-0.20	0.12	-0.08	24	Pass
	NVNT	ANT1	802.11a	5200.00	-0.68	0.12	-0.56	24	Pass
	NVNT	ANT1	802.11a	5240.00	-0.08	0.00	-0.08	24	Pass
	NVNT	ANT1	802.11n(HT20)	5180.00	-0.45	0.00	-0.45	24	Pass
	NVNT	ANT1	802.11n(HT20)	5200.00	-0.95	0.13	-0.82	24	Pass
	NVNT	ANT1	802.11n(HT20)	5240.00	-0.15	0.13	-0.02	24	Pass
	NVNT	ANT1	802.11ac(VHT20)	5180.00	-0.94	0.00	-0.94	24	Pass
	NVNT	ANT1	802.11ac(VHT20)	5200.00	-0.29	0.13	-0.16	24	Pass
k	NVNT	ANT1	802.11ac(VHT20)	5240.00	-1.37	0.13	-1.24	24	Pass
	NVNT	ANT1	802.11n(HT40)	5190.00	-1.17	0.26	-0.91	24	Pass
	NVNT	ANT1	802.11n(HT40)	5230.00	-1.20	0.13	-1.07	24	Pass
	NVNT	ANT1	802.11ac(VHT40)	5190.00	-1.07	0.26	-0.81	24	Pass
	NVNT	ANT1	802.11ac(VHT40)	5230.00	-0.83	0.26	-0.57	24	Pass
	NVNT	ANT1	802.11ac(VHT80)	5210.00	-0.73	0.51	-0.22	24	Pass
	1C			NE			. 6		

)De

)AC

)AC

DAG

102 Building H1 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao' an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

)AC

V1.0

Report No.: DACE240224009RL004

# 4. Power Spectral Density

DVC

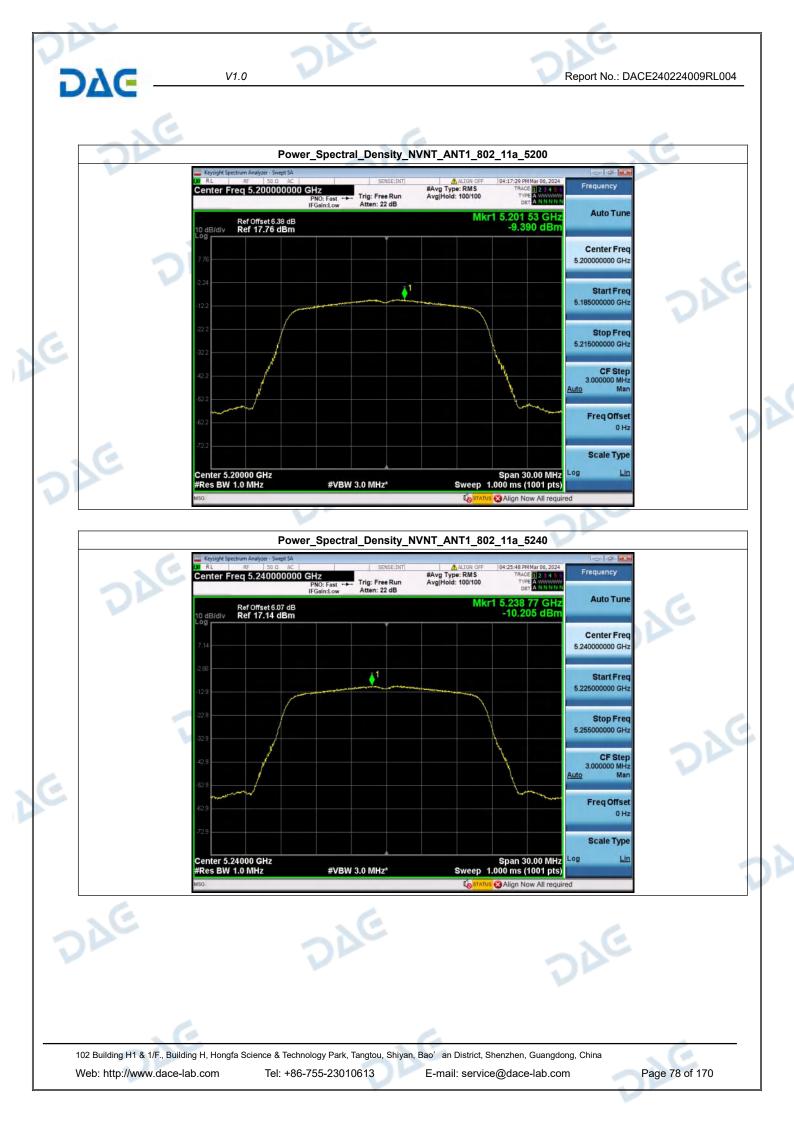

1

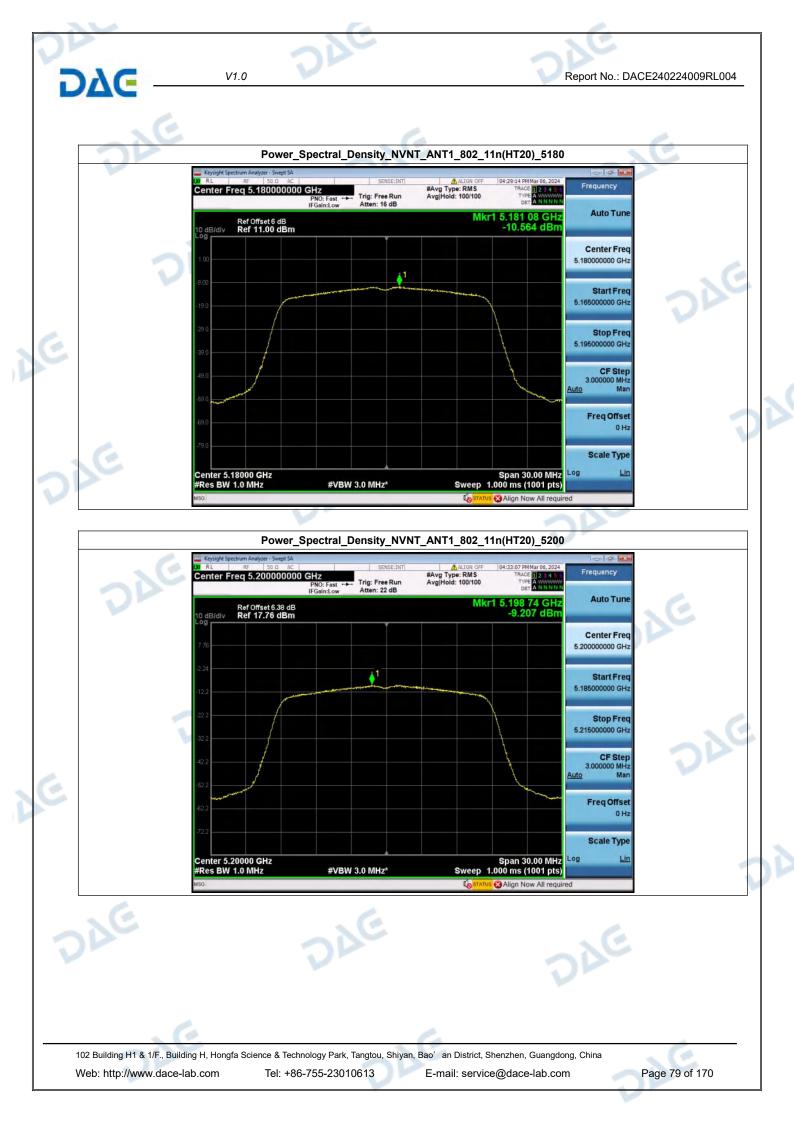
1

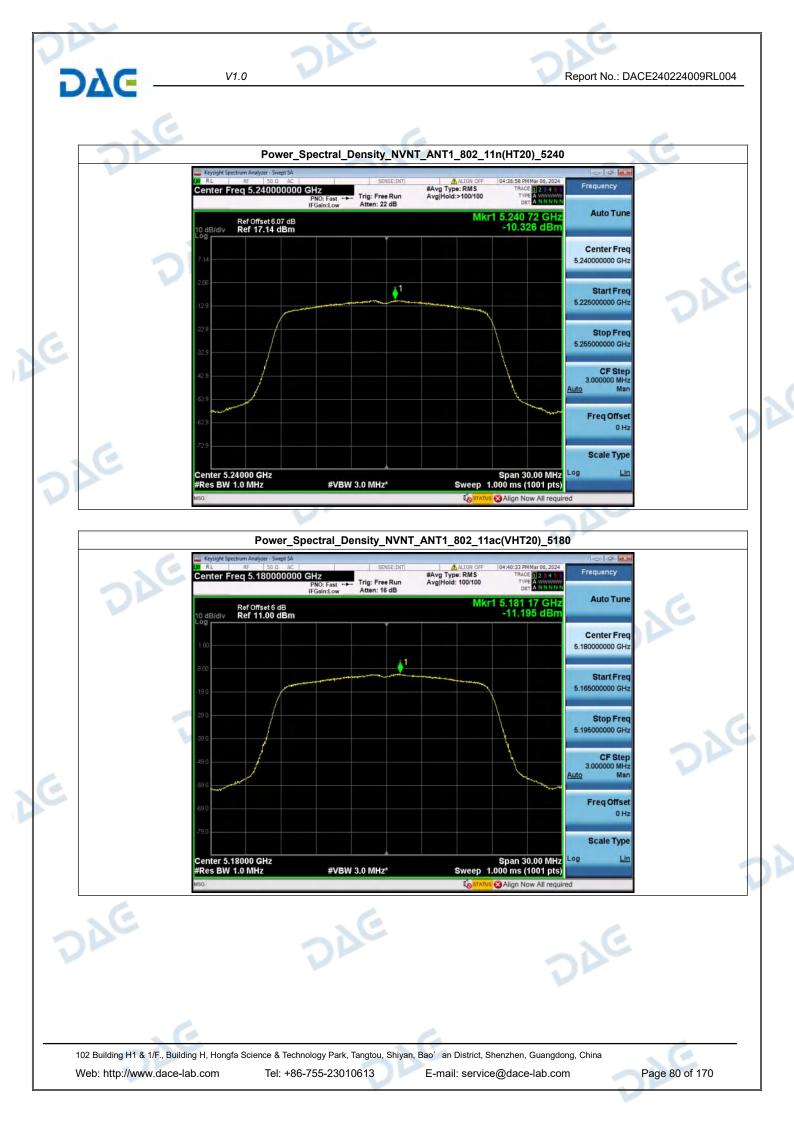
DAG

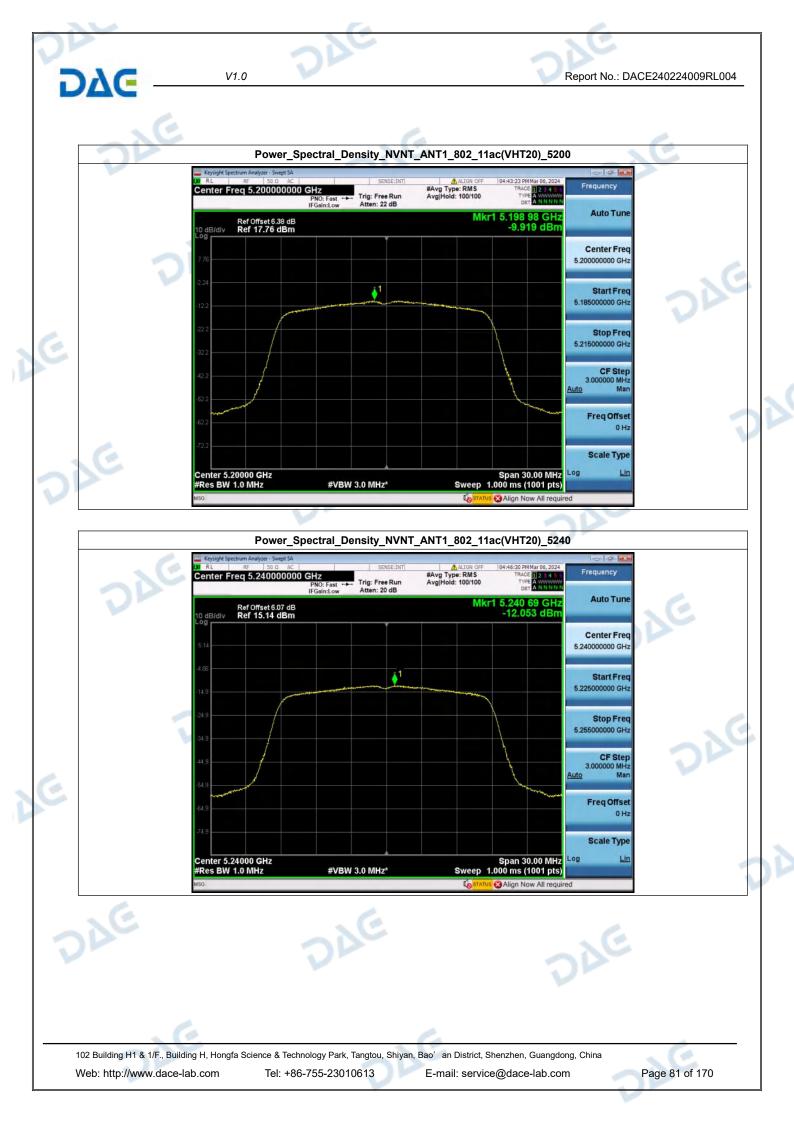
	-	•						
Condition	Antenna	Modulation	Frequency (MHz)	PSD(dBm/MHz)	Duty factor(dB)	Total PSD(dBm/MHz)	limit(dBm)	Result
NVNT	ANT1	802.11a	5180.00	-10.23	0.12	-10.11	11	Pass
NVNT	ANT1	802.11a	5200.00	-9.39	0.12	-9.27	11	Pass
NVNT	ANT1	802.11a	5240.00	-10.21	0.00	-10.21	11	Pass
NVNT	ANT1	802.11n(HT20)	5180.00	-10.56	0.00	-10.56	11	Pass
NVNT	ANT1	802.11n(HT20)	5200.00	-9.21	0.13	-9.08	11	Pass
NVNT	ANT1	802.11n(HT20)	5240.00	-10.33	0.13	-10.20	11	Pass
NVNT	ANT1	802.11ac(VHT20)	5180.00	-11.20	0.00	-11.20	11	Pass
NVNT	ANT1	802.11ac(VHT20)	5200.00	-9.92	0.13	-9.79	11 💟	Pass
NVNT	ANT1	802.11ac(VHT20)	5240.00	-12.05	0.13	-11.92	11	Pass
NVNT	ANT1	802.11n(HT40)	5190.00	-14.07	0.26	-13.81	11	Pass
NVNT	ANT1	802.11n(HT40)	5230.00	-17.03	0.13	-16.90	11	Pass
NVNT	ANT1	802.11ac(VHT40)	5190.00	-11.99	0.26	-11.73	11	Pass
NVNT	ANT1	802.11ac(VHT40)	5230.00	-12.10	0.26	-11.84	11	Pass
NVNT	ANT1	802.11ac(VHT80)	5210.00	-15.85	0.51	-15.34	11	Pass

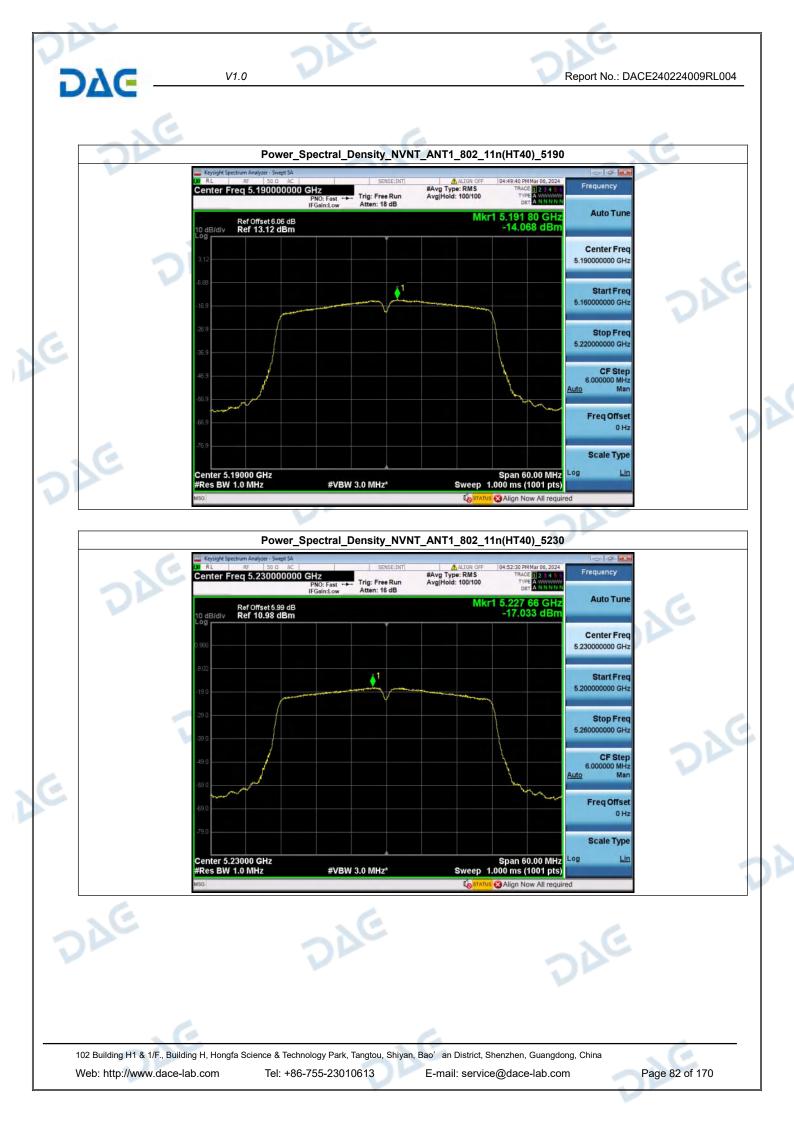
6

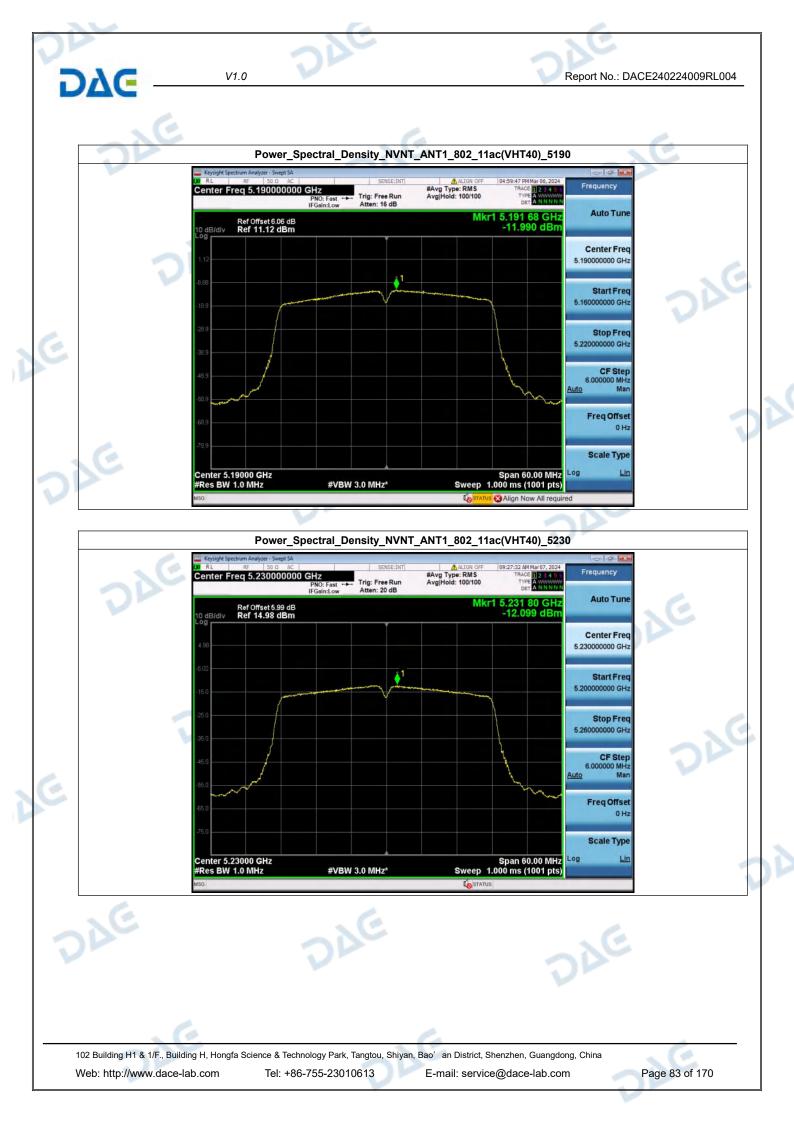




102 Building H1 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao' an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com


)AC


Page 77 of 170


DAE













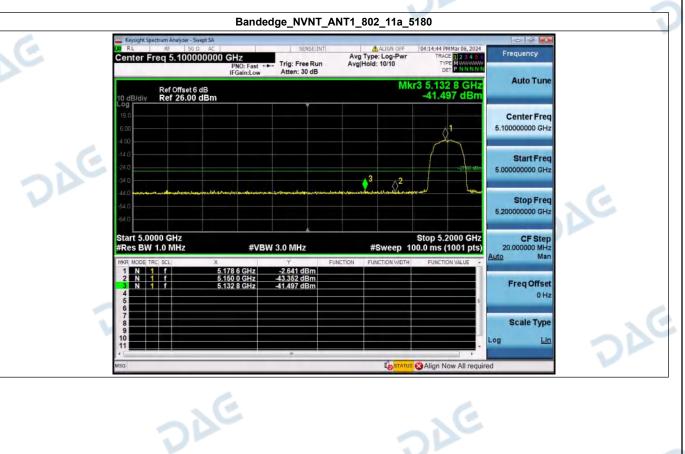

DAG -	V1.0	Report No.: DACE2402	24009RL004
Sie	Power Spectral Density N	VNT_ANT1_802_11ac(VHT80)_5210	
V	Keysight Spectrum Analyzer - Swept SA IX RL RF 50 Ω AC SENSE Center Freq 5.210000000 GHz PNO: Fast ↔→ IFGain:Low Arten: 12 di	INT         Align OFF         09:31:21 AM Mar07, 2024         Frequency           #Avg Type: RMS         TRACE D23 4 3         Frequency           un         Avg[Hold: 100/100         DFF ANNINN           B         DFF ANNINN	
~	Ref Offset 6.29 dB           10 dB/div         Ref 7.58 dBm           -2.42         -2.42	-15.851 dBm Center Freq 5.21000000 GHz	
V	-12.4	1 Start Freq 5.150000000 GHz	
E	-42.4	<b>Stop Freq</b> 5.270000000 GHz	
	62.4 62.4	CF Step 12.000000 MHz Auto Man	
6	-72.4	Freq Offset 0 Hz Scale Type	
DAG	Center 5.21000 GHz #Res BW 1.0 MHz #VBW 3.0 MHz*	Span 120.0 MHz Sweep 1.000 ms (1001 pts)	
		DAC	

#### V1.0

٩.

Report No.: DACE240224009RL004

### 5. Bandedge


DVC

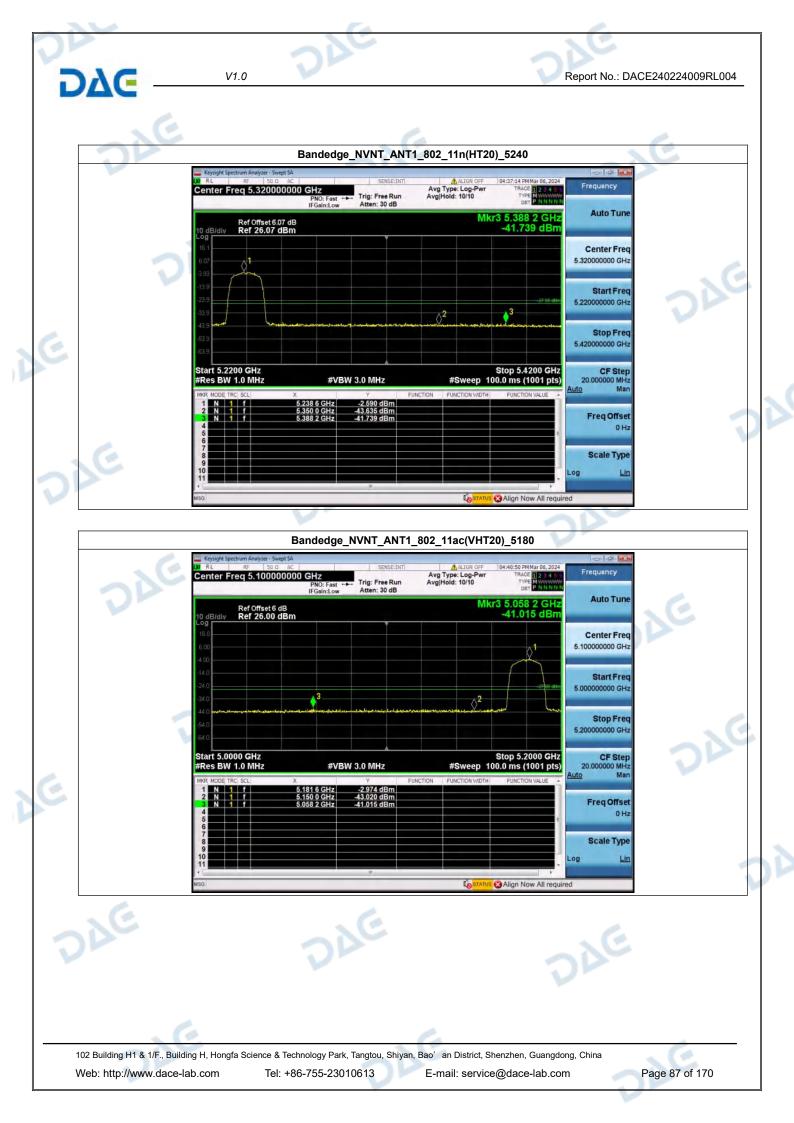
e

-

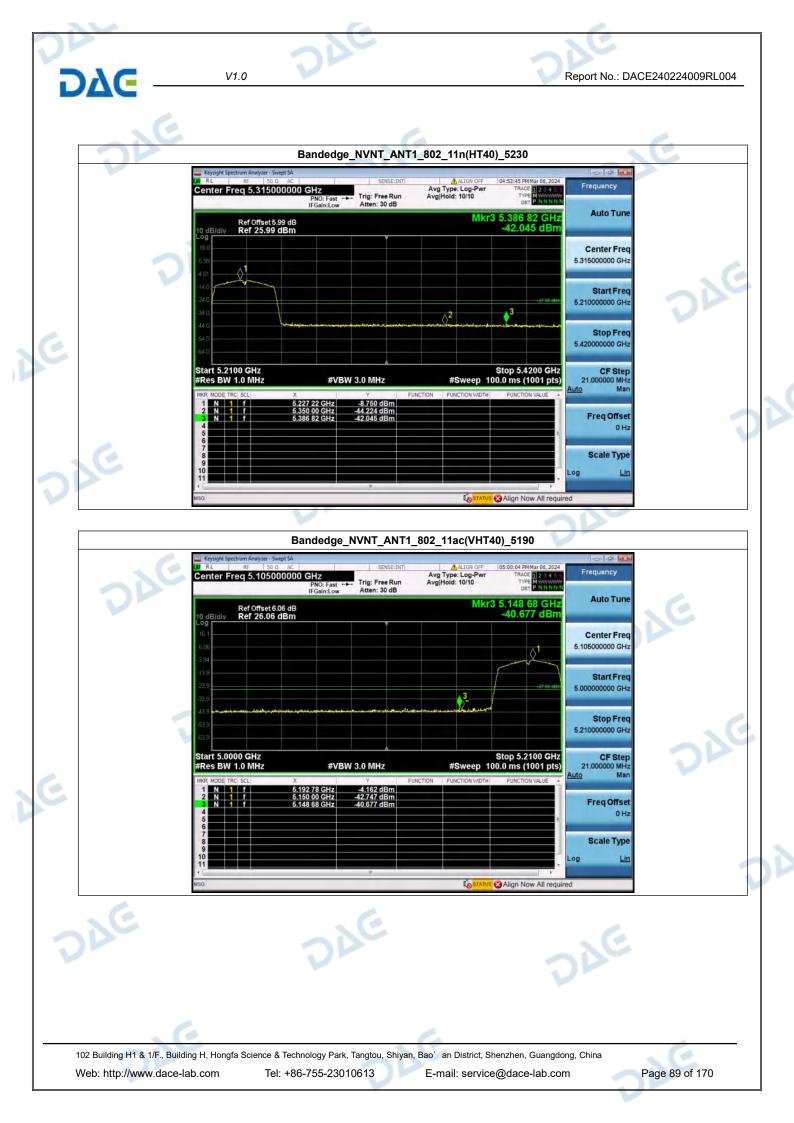
DAG

Condition	Antenna	Modulation	TX_Frequency (MHz)	Max. Mark Frequency(MHz)	Spurious level(dBm)	limit(dBm)	Result
NVNT	ANT1	802.11a	5180.00	5132.80	-41.50	-27	Pass
NVNT	ANT1	802.11a	5240.00	5382.80	-41.66	-27	Pass
NVNT	ANT1	802.11n(HT20)	5180.00	5114.20	-41.30	-27	Pass
NVNT	ANT1	802.11n(HT20)	5240.00	5388.20	-41.74	-27	Pass
NVNT	ANT1	802.11ac(VHT20)	5180.00	5058.20	-41.02	-27	Pass
NVNT	ANT1	802.11ac(VHT20)	5240.00	5383.60	-41.75	-27	Pass
NVNT	ANT1	802.11n(HT40)	5190.00	5116.76	-41.29	-27	Pass
NVNT	ANT1	802.11n(HT40)	5230.00	5386.82	-42.04	-27	Pass
NVNT	ANT1	802.11ac(VHT40)	5190.00	5148.68	-40.68	-27	Pass
NVNT	ANT1	802.11ac(VHT40)	5230.00	5354.27	-41.46	-27	Pass
NVNT	ANT1 🔰	802.11ac(VHT80)	5210.00	5094.08	-41.15	-27	Pass
NVNT	ANT1	802.11ac(VHT80)	5210.00	5396.06	-42.40	-27	Pass




 102 Building H1 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao' an District, Shenzhen, Guangdong, China

 Web: http://www.dace-lab.com
 Tel: +86-755-23010613
 E-mail: service@dace-lab.com


)AC


DAE











V1.0

Report No.: DACE240224009RL004

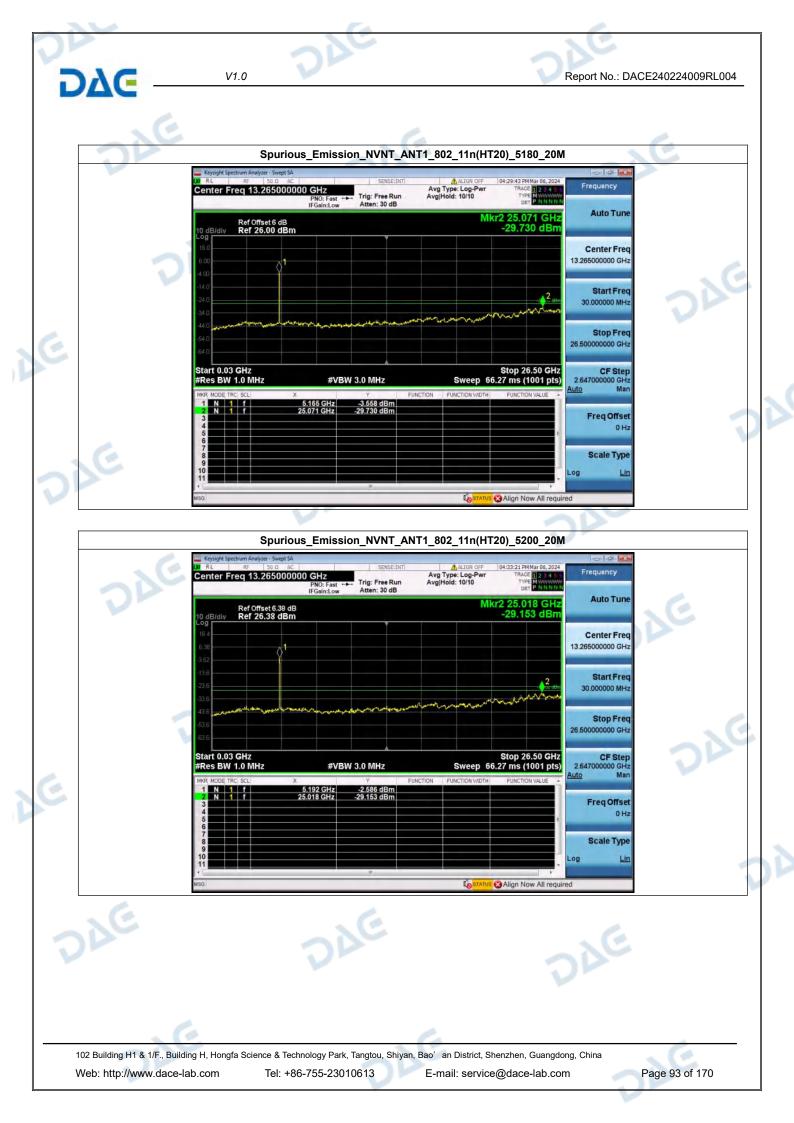
# 6. Spurious Emission

DVC

1

Condition	Antenna	Modulation	TX_Frequency (MHz)	Max. Mark Frequency(MHz)	Spurious level(dBm)	limit(dBm)	Result
NVNT	ANT1	802.11a	5180.00	25070.62	-29.68	-27	Pass
NVNT	ANT1	802.11a	5200.00	25017.68	-29.41	-27	Pass
NVNT	ANT1	802.11a	5240.00	24964.74	-29.20	-27	Pass
NVNT	ANT1	802.11n(HT20)	5180.00	25070.62	-29.73	-27	Pass
NVNT	ANT1	802.11n(HT20)	5200.00	25017.68	-29.15	-27	Pass
NVNT	ANT1	802.11n(HT20)	5240.00	25044.15	-29.07	-27	Pass
NVNT	ANT1	802.11ac(VHT20)	5180.00	24514.75	-28.10	-27	Pass
NVNT	ANT1	802.11ac(VHT20)	5200.00	25044.15	-29.39	-27	Pass
NVNT	ANT1	802.11ac(VHT20)	5240.00	25070.62	-29.81	-27	Pass
NVNT	ANT1	802.11n(HT40)	5190.00	24964.74	-29.47	-27	Pass
NVNT	ANT1 🔰	802.11n(HT40)	5230.00	25044.15	-28.86	-27	Pass
NVNT	ANT1	802.11ac(VHT40)	5190.00	25044.15	-29.23	-27	Pass
NVNT	ANT1	802.11ac(VHT40)	5230.00	24964.74	-29.77	-27	Pass
NVNT	ANT1	802.11ac(VHT80)	5210.00	25044.15	-29.60	-27	Pass

C




 102 Building H1 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao' an District, Shenzhen, Guangdong, China

 Web: http://www.dace-lab.com
 Tel: +86-755-23010613
 E-mail: service@dace-lab.com









