

FCC TEST REPORT

On Behalf of FCC ID.:2BF7Y-VBM002T

Shenzhen Umbra Technology Co., Ltd.

Jartoo Baby Camera

Model No.: JT-VBM002

Prepared for	: Shenzhen Umbra Technology Co., Ltd.
Address	. Room 702,Building 11,Tianan Yungu Industrial Park, Longgang District, Shenzhen.

Prepared By	: Shenzhen Huaxin Information Technology Service Co., Ltd
Address	: 101, R & D Building, No.3 guansheng 4th Road, Luhu Community · Guanhu Street, Longhua District, Shenzhen, Guangdong, China

Report Number	:	HX240514R002
Date of Receipt	:	Apr 26th,2024
Date of Test	:	Apr 27th,2024 ~ May 14th,2024
Date of Report	:	May 14th, 2024
Version Number	:	V0

Shenzhen Huaxin Information Technology Service Co.,Ltd

101,R&D Building,No.3 guansheng 4th Road,Luhu Community,Guanhu Street,LonghuaDistrict,Shenzhen,Guangdong,China
Tel:+86-755-21018313Http://www.tecovo.net

1. SUMMARY OF TEST RESULTS	5
1.1 TEST FACTORY	6
1.2 MEASUREMENT UNCERTAINTY	6
2. GENERAL INFORMATION	7
2.1 GENERAL DESCRIPTION OF THE EUT	7
2.2 DESCRIPTION OF THE TEST MODES	9
2.3 ACCESSORIES OF DEVICE (EUT)	10
2.4 TESTED SUPPORTING SYSTEM DETAILS	10
2.5 TEST SOFTWARE AND POWER LEVEL	10
2.6 EQUIPMENTS LIST FOR ALL TEST ITEMS	11
3. EMC EMISSION TEST	12
3.1 CONDUCTED EMISSION MEASUREMENT	12
4. CONDUCTED SPURIOUS & BAND EDGE EMISSION	23
4.1 LIMIT	
4.2 TEST PROCEDURE	23
4.3 DEVIATION FROM STANDARD	
4.4 TEST SETUP	
4.5 EUT OPERATION CONDITIONS	
4.6 TEST RESULTS	24
5. POWER SPECTRAL DENSITY TEST	
5.1 LIMIT	
5.2 TEST PROCEDURE	31
5.3 DEVIATION FROM STANDARD	31
5.4 TEST SETUP	
5.5 EUT OPERATION CONDITIONS	31
5.6 TEST RESULTS	32
6. BANDWIDTH TEST	
6.1 LIMIT	
6.2 TEST PROCEDURE	
6.3 DEVIATION FROM STANDARD	
6.4 TEST SETUP	
6.5 EUT OPERATION CONDITIONS	
6.6 TEST RESULTS	
7. PEAK OUTPUT POWER TEST	43

7.1 LIMIT	. 43
7.2 TEST PROCEDURE	. 43
7.3 DEVIATION FROM STANDARD	43
7.4 TEST SETUP	. 43
7.5 EUT OPERATION CONDITIONS	. 43
7.6 TEST RESULTS	44
8. ANTENNA REQUIREMENT	. 49
8.1 STANDARD REQUIREMENT	49
8.2 RESULT	49
APPENDIX I AND APPENDIX II : EUT PHOTOS	50

TEST REPORT DECLARATION

Applicant	:	Shenzhen Umbra Technology Co., Ltd.
Address	:	Room 702,Building 11,Tianan Yungu Industrial Park, Longgang District, Shenzhen.
Manufacturer	:	Shenzhen Umbra Technology Co., Ltd.
Address	:	Room 702,Building 11,Tianan Yungu Industrial Park, Longgang District, Shenzhen.
EUT Description	:	Jartoo Baby Camera
		(A) Model No. : JT-VBM002

Trademark (B) : Jartoo

Measurement Standard Used:

FCC Part 15: 2021 Subpart C 15.247

ANSI C63.10-2013

The device described above is tested by Shenzhen Huaxin Information Technology Service Co., Ltd. to determine the maximum emission levels emanating from the device. The test results are contained in this test report and Shenzhen Huaxin Information Technology Service Co., Ltd. is assumed of full responsibility for the accuracy and completeness of these tests.

After the test, our opinion is that EUT compliance with the requirement of the above standards.

This report applies to above tested sample only. This report shall not be reproduced in parts without written approval of Shenzhen Huaxin Information Technology Service Co., Ltd.

Tested by (name + signature).....

Eason Tan **Project Engineer**

Approved by (name + signature).....:

Michael Wu **Project Manager** Eason Tay Michael Wu

Date of issue.....

May 14th, 2024

Revision History

Revision	Issue Date	Revisions	Revised By
V0	May 14th, 2024	Initial released Issue	Eason Tan

1. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards:

KDB 558074 D01 15.247 Meas Guidance v05r02.

FCC Part 15.247,Subpart C				
Standard Section	Test Item	Judgment	Remark	
15.207	Conducted Emission	PASS		
15.247 (a)(2)	6dB Bandwidth	PASS		
15.247 (b)(3)	Output Power	PASS		
15.209	Radiated Spurious Emission	PASS		
15.247 (d)	Conducted Spurious & Band Edge Emission	PASS		
15.247 (e)	Power Spectral Density	PASS		
15.203	Antenna Requirement	PASS		

NOTE:

(1) 'N/A' denotes test is not applicable in this Test Report.

(2) According to FCC OET KDB 558074, the report use radiated

measurements in the restricted frequency bands. In addition, the radiated test is also performed to ensure the emissions emanating from the device cabinet also comply with the applicable limits.

1.1 TEST FACTORY

Company Name:	Shenzhen Huaxin Information Technology Service Co., Ltd	
Address:101, R & D Building, No.3 guansheng 4th Road, Luhu Communit Guanhu Street, Longhua District, Shenzhen, Guangdong, China		
Telephone:	0775-21018313	
Fax:	0775-21018313	
FCC Test Firm Registration Number: 932271 Designation Number: CN1344 CAB ID : CN0147		

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $\mathbf{y} \pm \mathbf{U}$, where expended uncertainty \mathbf{U} is based on a standard uncertainty multiplied by a coverage factor of **k=2**, providing a level of confidence of approximately **95** %.

Item	MU	Remark
Conducted Emission (9K ~ 0.15MHz)	2.18dB	
Conducted Emission (0.15M~30MHz)	2.17dB	
Rediction Emission 2m (20MHz 10Hz)	4.45 dB	Polarize: V
Radiation Emission ,3m (30MHz ~ 1GHz)	2.76 dB	Polarize: H
Radiation Emission, 3m (1GHz ~ 6GHz)	4.02 dB	
Radiation Emission ,3m (6GHz ~ 18GHz)	4.30 dB	
RF output power (conducted)	0.41 dB	
Power Spectral Density (conducted)	0.39 dB	
Spurious emissions (conducted)	0.59 dB	
Occupied Channel Bandwidth (conducted)	4.22%	

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF THE EUT

Characteristics	Description
Product Name	Jartoo Baby Camera
Model number	JT-VBM002
IEEE 802.11 WLAN Mode Supported	802.11ah(2MHz channel bandwidth)
Data Rate	802.11ah:150Kbps,32.5Mbps;
Modulation	OFDM with BPSK/QPSK/16QAM/64QAM
Operating Frequency Range	905-925MHz for 802.11ah(2MHz channel bandwidth);
Number of Channels	5 Channels for 802.11ah(2MHz channel bandwidth);
Transmit Power Max	802.11ah(2MHz channel bandwidth):26.29 dBm
Antenna:	External Antenna
Antenna Gain:	0.7dBi
Test Voltage:	DC 5V 1.2A
Temperature Range	0°C ~ +40 ∘ C

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the User Manual.

2.

Test Frequency and channel for 802.11ah(2MHz channel bandwidth):

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	905	5	913	9	921
3	909	7	917		

Note:

The antenna information refer the manufacturer provide report, applicable only to the tested sample identified in the report.

2.2 DESCRIPTION OF THE TEST MODES

The EUT has been tested under its typical operating condition.

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner which intends to maximize its emission characteristics in a continuous normal application.

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.

Those data rates (802.11ah:150Kbps,32.5Mbps) were used for all test.

Pre-defined engineering program for regulatory testing used to control the EUT for staying in continuous transmitting and receiving mode is programmed.

Frequency and Channel list for 802.11ah(2MHz channel bandwidth):

Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	905	9	921
3	909	/	1
5	913	/	/
7	917	/	/

Note:

(1) The measurements are performed at all Bit Rate of Transmitter, the worst data was reported.

2.3 ACCESSORIES OF DEVICE (EUT)

Accessories	:	AC Power Adapter
Manufacturer	:	TEKA
Model	:	TEKA-UCA12US
Input	:	100-240V~50/60Hz 0.2A MAX
Output	:	5.0V-1.2A

2.4 TESTED SUPPORTING SYSTEM DETAILS

No.	Description	Manufacturer	Model	Serial Number	Certification or SDOC
1	Laptop	Lenovo	ThinkPad E460	/	1

2.5 TEST SOFTWARE AND POWER LEVEL

During testing channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level.

Test software version:	SecureCRT
power level	20

2.6 EQUIPMENTS LIST FOR ALL TEST ITEMS

Equipment	Manufacturer	Model No.	Firmware version	Serial No.	Last cal.	Cal. Due day
9*6*6 anechoic chamber	Mao Rui	9*6*6m	/	N/A	2022.06.15	2025.06.14
EMI receiver	R&S	ESR7	5.812	102543	2024.04.14	2025.04.15
Spectrum analyzer	R&S	FSV40-N	V7.0-4-62	101795	2024.04.14	2025.04.15
Pre-amplifier	HP	8447D	1	1616A02061	2024.04.14	2025.04.15
Pre-amplifier	Agilent	8449B	/	9008A00551	2024.04.14	2025.04.15
Bilog Antenna	Schwarzbeck	VULB 9168	/	/	2024.04.14	2025.04.15
Horn antenna	A.H. System, Inc	SAS-571	/	915	2024.04.14	2025.04.15
Loop Antenna	Schwarzbeck	FMZB 1519B	/	/	2024.04.14	2025.04.15
LISN	R&S	ENV216		101291	2024.04.14	2025.04.15
LISN	R&S	ESH3-Z5		894981/024	2024.04.14	2025.04.15
Analog signal Generato	Agilent	N5181A	A.01.87	MY47421151	2024.04.14	2025.04.15
Vector Signal Generator	Keysight	N5182A	A.01.87	MY50140428	2024.04.14	2025.04.15
Wideband Radio communication tester	R&S	CMW500	V3.7.22	157762	2024.04.14	2025.04.15
Spectrum analyzer	Agilent	N9020A	A.14.16	MY51280803	2024.04.14	2025.04.15
RF Cable	/	(10G)9m	/	/	2024.04.14	2025.04.15
RF Cable	/	(10G)10m	/	/	2024.04.14	2025.04.15
RF Cable	/	(18G)10m	/	/	2024.04.14	2025.04.15
attenuation pad	/	6dB	/	/	2024.04.14	2025.04.15
attenuation pad	/	10dB	/	16280012	2024.04.14	2025.04.15
RF Control Unit	Tehcy	TR1029-1	/	20220428C009	2024.04.14	2025.04.15

Software Information						
Test Item Software Name Manufacturer Version						
RE	EMC-I	SKET	V1.4.0.1			
CE	EMC-I	SKET	V1.4.0.1			
RF-CE	RF Test Software	TACHOY	V1.0.0			

3. EMC EMISSION TEST

3.1 CONDUCTED EMISSION MEASUREMENT

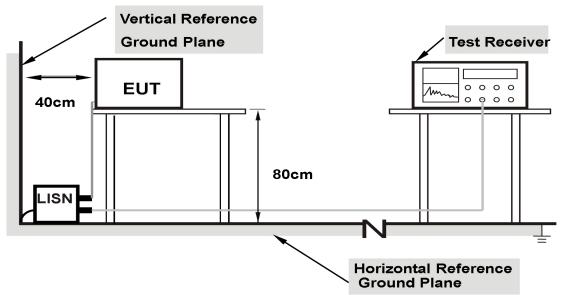
3.1.1 POWER LINE CONDUCTED EMISSION LIMITS

The radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table.

	Conducted Emissionlimit (dBuV)		
FREQUENCY (MHz)	Quasi-peak	Average	
0.15 -0.5	66 – 56 *	56 – 46 *	
0.50 -5.0	56.00	46.00	
5.0 -30.0	60.00	50.00	

Note:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

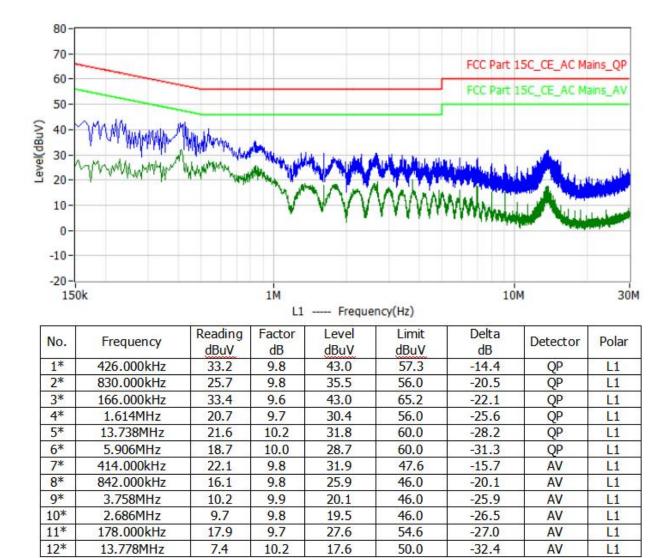

The following table is the setting of the receiver

Receiver Parameters	Setting	
Attenuation	10 dB	
Start Frequency	0.15 MHz	
Stop Frequency	30 MHz	
IF Bandwidth	9 kHz	

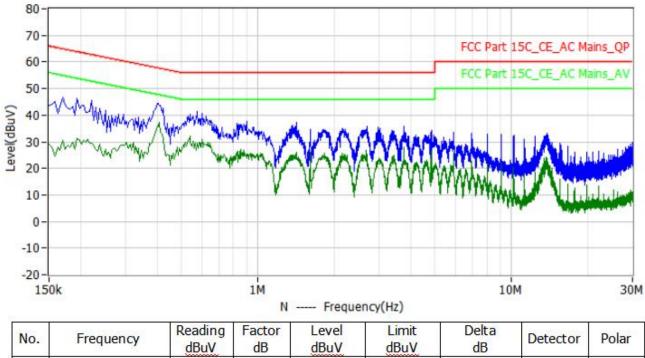
- 3.1.2 TEST PROCEDURE
- a. The EUT is 0.8 m from the horizontal ground plane and 0.4 m from the vertical ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments are powered from additional LISN(s). The LISN provides 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN is at least 80 cm from the nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item –EUT Test Photos.

3.1.3 TEST SETUP

Note: 1. Support units were connected to second LISN.


2. Both of LISNs (AMN) are 80 cm from EUT and at least 80 cm from other units and other metal planes support units.

3.1.4 EUT OPERATING CONDITIONS


The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

3.1.5 TEST RESULT

No.	Frequency	Reading dBuV	Factor dB	dBuV	dBuV	dB Delta	Detector	Polar
1*	402.000kHz	34.8	9.8	44.6	57.8	-13.3	QP	N
2*	170.000kHz	36.9	9.9	46.8	65.0	-18.2	QP	Ν
3*	902.000kHz	28.0	9.6	37.6	56.0	-18.4	QP	N
4*	2.686MHz	26.1	9.7	35.8	56.0	-20.2	QP	Ν
5*	13.786MHz	23.0	10.2	33.2	60.0	-26.8	QP	N
6*	10.202MHz	22.4	9.9	32.3	60.0	-27.7	QP	N
7*	410.000kHz	27.7	9.8	37.5	47.6	-10.2	AV	Ν
8*	3.754MHz	18.0	9.8	27.8	46.0	-18.2	AV	N
9*	1.610MHz	16.3	9.6	25.9	46.0	-20.1	AV	Ν
10*	194.000kHz	21.3	9.9	31.2	53.9	-22.7	AV	N
11*	13.654MHz	13.9	10.2	24.1	50.0	-25.9	AV	N
12*	9.118MHz	12.2	9.9	22.1	50.0	-27.9	AV	N

3.2 RADIATED EMISSION MEASUREMENT

3.2.1 RADIATED EMISSION LIMITS

In any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the Restricted band specified on Part15.205(a)&209(a) limit in the table and according to ANSI C63.10-2013 below has to be followed.

LIMITS OF RADIATED EMISSION MEASUREMENT (0.009MHz - 1000MHz)

Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

LIMITS OF RADIATED EMISSION MEASUREMENT (1000MHz-25GHz)

	(dBuV/m) (at 3M)		
FREQUENCY (MHz)	PEAK	AVERAGE	
Above 1000	74	54	

Notes:

(1) The limit for radiated test was performed according to FCC PART 15C.

- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

LIMITS OF RESTRICTED FREQUENCY BANDS

FREQUENCY (MHz)	FREQUENCY (MHz)	FREQUENCY (MHz)	FREQUENCY (GHz)
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	Above 38.6
13.36-13.41			

Shenzhen Huaxin Information Technology Service Co., Ltd

101,R&D Building,No.3 guansheng 4th Road,Luhu Community,Guanhu Street,LonghuaDistrict,Shenzhen,Guangdong,China
Tel:+86-755-21018313Http://www.tecovo.net

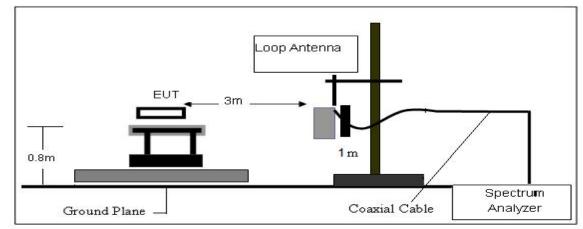
For Radiated Emission

Spectrum Parameter	Setting				
Attenuation	Auto				
Detector	Peak/QP/AV				
Start Frequency	9 KHz/150KHz(Peak/QP/AV)				
Stop Frequency	150KHz/30MHz(Peak/QP/AV)				
	200Hz (From 9kHz to 0.15MHz)/				
RB / VB (emission in restricted	9KHz (From 0.15MHz to 30MHz);				
band)	200Hz (From 9kHz to 0.15MHz)/				
	9KHz (From 0.15MHz to 30MHz)				

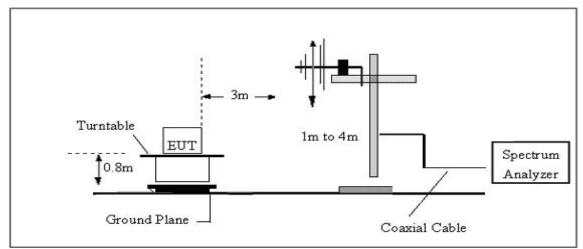
Spectrum Parameter	Setting				
Attenuation	Auto				
Detector	Peak/QP				
Start Frequency	30 MHz(Peak/QP)				
Stop Frequency	1000 MHz (Peak/QP)				
RB / VB (emission in restricted	120 KHz / 300 KHz				
band)	120 KHZ / 300 KHZ				

Spectrum Parameter	Setting
Attenuation	Auto
Detector	Peak/AV
Start Frequency	1000 MHz(Peak/AV)
Stop Frequency	10th carrier hamonic(Peak/AV)
RB / VB (emission in restricted	1 MHz / 3 MHz(Peak)
band)	1 MHz/1/T MHz(AVG)

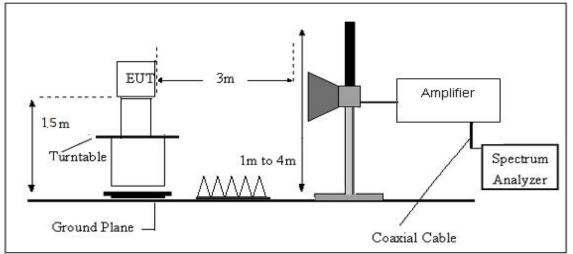
3.2.2 TEST PROCEDURE


- a. The measuring distance at 3 m shall be used for measurements at frequency 0.009MHz up to 1GHz, and above 1GHz.
- b. The EUT was placed on the top of a rotating table 0.8 m (above 1GHz is 1.5 m) above the ground at a 3 m anechoic chamber test site. The table was rotated 360 degree to determine the position of the highest radiation.
- c. The height of the equipment shall be 0.8 m (above 1GHz is 1.5 m); the height of the test antenna shall vary between 1 m to 4 m. Horizontal and vertical polarization of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and QuasiPeak detector mode will be re-measured.
- e. If the Peak Mode measured value is compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and no additional QP Mode measurement was performed.
- f. For the actual test configuration, please refer to the related Item –EUT Test Photos. Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported.



3.2.3 TEST SETUP


(A) Radiated Emission Test-Up Frequency Below 30MHz

(B) Radiated Emission Test-Up Frequency 30MHz~1GHz

(C) Radiated Emission Test-Up Frequency Above 1GHz

3.2.4 EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

3.2.5 FIELD STRENGTH CALCULATION

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor (if any) from the measured reading. The basic equation with a sample calculation is as follows: FS = RA + AF + CL - AG

Where

FS = Field Strength

CL = Cable Attenuation Factor (Cable Loss)

RA = Reading Amplitude

AG = Amplifier Gain

AF = Antenna Factor

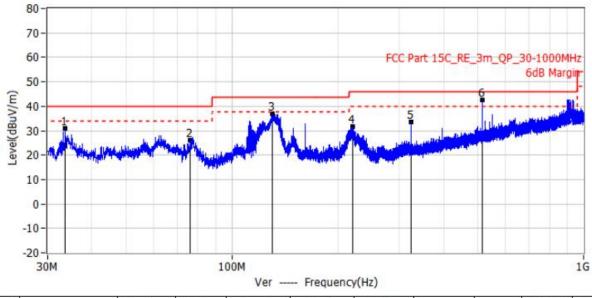
For example

Frequency	FS	RA	AF	CL	AG	Factor
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(dB)	(dB)	(dB)
300	40	58.1	12.2	1.6	31.9	-18.1

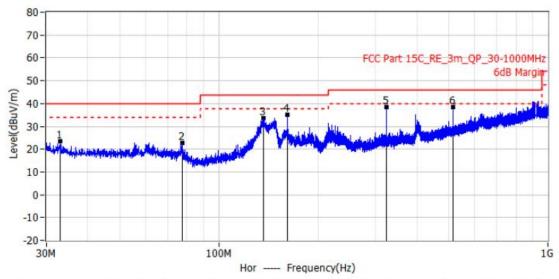
3.2.6 TEST RESULT

We have scanned the 10th harmonic from 9KHz to the EUT's highest frequency.

From 9KHz to 30MHz Conclusion: PASS


Note: The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

30M-1G Remark: All modes have been tested, and only worst data of 802.11 ah mode, Channel 921MHz was listed in this report.


1-25G Remark: All modes have been tested, and only worst data of 802.11 ah mode, was listed in this report.

From 30M-1GHz:

No.	Frequency	Reading dBuV	Factor dB/m	Level dBuV/m	Limit dBuV/m	Delta dB	Detector	Polar	Height cm	Angle deg
1*	33.600MHz	17.5	13.4	30.9	40.0	-9.1	QP	Ver	100.0	0.0
2*	76.320MHz	15.6	10.5	26.1	40.0	-13.9	QP	Ver	100.0	0.0
3*	130.500MHz	23.8	13.3	37.1	43.5	-6.4	QP	Ver	100.0	70.0
4*	221.040MHz	19.4	12.3	31.7	46.0	-14.3	QP	Ver	100.0	0.0
5*	324.000MHz	17.3	16.2	33.5	46.0	-12.5	QP	Ver	100.0	84.0
6*	514.320MHz	21.6	20.8	42.4	46.0	-3.6	QP	Ver	100.0	258.0

No.	Frequency	Reading dBuV	Factor dB/m	Level dBuV/m	Limit dBuV/m	Delta dB	Detector	Polar	Height cm	Angle deg
1*	33.060MHz	10.1	13.3	23.4	40.0	-16.6	QP	Hor	100.0	296.0
2*	77.400MHz	12.5	10.2	22.7	40.0	-17.3	QP	Hor	100.0	159.0
3*	136.680MHz	19.8	13.7	33.5	43.5	-10.0	QP	Hor	100.0	210.0
4*	162.000MHz	20.7	14.4	35.1	43.5	-8.4	QP	Hor	100.0	178.0
5*	324.000MHz	22.3	16.2	38.5	46.0	-7.5	QP	Hor	100.0	336.0
6*	514.320MHz	17.6	20.8	38.4	46.0	-7.6	QP	Hor	100.0	21.0

Shenzhen Huaxin Information Technology Service Co.,Ltd

101,R&D Building,No.3 guansheng 4th Road,Luhu Community,Guanhu Street,LonghuaDistrict,Shenzhen,Guangdong,China
Tel:+86-755-21018313Http://www.tecovo.net

From 1G-25GHz:

Test mode: 802	2.11ah 2M		Frequency:	Channel 1:905MHz				
Freq.	Ant.Pol.		Emission Level(dBuV/m)		(dBuV/m)	Over(dB)		
(MHz)	H/V	PK AV		PK	AV	PK	AV	
1807.00	V	55.63	32.16	74	54	- 18.37	-21.84	
2711.50	V	55.66	34.15	74	54	- 18.34	- 19.85	
3613.00	V	54.62	30.62	74	54	- 19.38	-23.38	
1807.00	Н	64.27	40.33	74	54	-9.73	- 13.67	
2711.50	Н	61.38	35.28	74	54	- 12.62	- 18.72	
3613.00	Н	62.59 38.64		74	54	- 11.41	- 15.36	

Test mode:	802.	11ah 2M	Fr	equency:	Channel 5:913MHz			
Freq.	Ant.Pol.	Emis Level(d	\perp Limit 3m(dBuV/m)			Over(dB)		
(MHz)	H/V	PK	AV	PK AV		PK	AV	
1828.00	V	55.29	34.56	74	54	- 18.71	- 19.44	
2745.40	V	53.46	31.29	74	54	-20.54	-22.71	
3658.00	V	51.57	33.67	74	54	-22.43	- 18.33	
1828.00	Н	62.39	41.47	74	54	- 11.61	- 12.53	
2745.40	Н	61.51	35.32	74	54	- 12.49	- 18.68	
3658.00	Н	60.12	30.62	74	54	- 13.88	-23.38	

Test mode:

802.11ah 2M

Frequency:

Channel 9:921MHz

Freq.	Ant Pol		ssion dBuV/m)	Limit 3m((dBuV/m)	Over(dB)		
(MHz)	H/V	PK	AV	PK	AV	PK	AV	
1854.45	V	56.14	35.55	74	54	- 17.86	- 18.45	
2779.50	V	56.23	31.29	74	54	- 17.77	-22.71	
3705.00	V	53.24	30.64	74	54	-20.76	-23.36	
1854.45	Н	61.59	40.15	74	54	- 12.41	- 13.85	
2779.50	Н	60.93	38.59	74	54	- 13.07	- 15.41	
3705.00	Н	54.18	35.64	74	54	- 19.82	- 18.36	

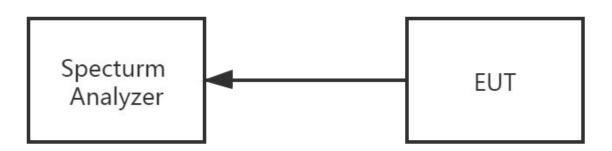
4. CONDUCTED SPURIOUS & BAND EDGE EMISSION

4.1 LIMIT

According to FCC section 15.247(d), in any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

4.2 TEST PROCEDURE

Spectrum Parameter	Setting
Detector	Peak
Start/Stop Frequency	30 MHz to 10th carrier harmonic
RB / VB (emission in restricted band)	100 KHz/300 KHz
Trace-Mode:	Max hold


For Band edge

Spectrum Parameter	Setting			
Detector	Peak			
	Lower Band Edge: 905 MHz			
Start/Stop Frequency	Upper Band Edge: 921 MHz			
RB / VB (emission in restricted band)	100 KHz/300 KHz			
Trace-Mode:	Max hold			

4.3 DEVIATION FROM STANDARD No deviation.

no deviation.

4.4 TEST SETUP

The EUT is connected to the Spectrum Analyzer; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. In order to make an accurate measurement, set the span greater than RBW.

Shenzhen Huaxin Information Technology Service Co.,Ltd

101,R&D Building,No.3 guansheng 4th Road,Luhu Community,Guanhu Street,LonghuaDistrict,Shenzhen,Guangdong,China
Tel:+86-755-21018313Http://www.tecovo.net

4.5 EUT OPERATION CONDITIONS Please refer to section 3.1.4 of this report.

4.6 TEST RESULTS

Spectrum									Ē
Ref Level	26.50 c	dBm Offset 1	.50 dB 😑	RBW 100 kHz	:				
👄 Att)dB SWT 2	260 ms 😑	VBW 300 kHz	Mode	Auto Swe	еер		
Count 60/10	10								
●1Pk View				-1	1000				
20 dBm					M	2[1]			41.24 dBm
M1					M	1[1]			.81010 GHz 12.69 dBm
10 dBm						1[1]			03.80 MHz
						1	Ĩ		
0 dBm									
	1 -7.31	10.d8m							
-10 dBm	1 -7.51								
-20 dBm									
-30 dBm									
-40 dBr									
	and the second second				المليحين والمتار ويتدرون	all matters	A A BELLA MARCHINE	and a sublic states of	and the second
					and the state of the		A. A had a distribution		And the second second
-60 dBm									
-70 dBm									
CF 13.015 G	iHz			10001	. pts			Span :	25.97 GHz
Marker	1				1				
Type Ref		X-value	.8 MHz	<u>Y-value</u> 12.69 dBr	Func	tion	Fund	ction Result	
M1 M2	1		.8 MHZ D1 GHZ	-41.24 dBr					
(1 -	1.010		11,21 00					16.05.2024
					Me.a			4/4	

Spectrum									
Ref Level Att				RBW 100 kHz	Mode /	Auto Swe	ep		
Count 56/10)0								
●1Pk View			_						
					M	2[1]			-41.54 dBm
20 dBm					212			6	.89710 GHz
					M	1[1]			14.57 dBm
10 dBm						I	ĩ	I II	909.00 MHz
-10 dBm)1 -5.4	30 dBm							
-10 0.011									
-20 dBm									
-20 00111									
-30 dBm									
oo abiii									
-40 dBm		M2							
		المحادثة والمحادثة والمحادثة والمرا		28.8	and the second	والمعالم فارتال		an a subhara an	م والال الأسريك ال
المراجع والمرجع				والتراثير المرفية ويتقافك فالأطر		Mark Comp			
a second and the second			1000000000000000	33 20 2030 22					
-60 dBm									
-70 dBm				_					
CF 13.015 C	GHz			10001	pts			Span	25.97 GHz
Marker									
Type Ref	Trc	X-value	e	Y-value	Func	tion	Fund	ction Result	t
M1	1		.0 MHz	14.57 dBm	1				
M2	1	6.89	71 GHz	-41.54 dBm	1				
)[Mea	suring		4,40	06.05.2024

Spectrum									
Ref Level Att	40			RBW 100 kHz VBW 300 kHz	Mode /	Auto Swei	эр		
Count 66/10	10								,
OIPK VIEW					5.0	2[1]			-41.16 dBm
20 /d Bm——			-			2[1]			.93340 GHz
T					M	1[1]			15.33 dBm
10 dBm									911.60 MHz
0 dBm									
	1 -4.6	70 dBm							
-10 dBm									-
-20 dBm									-
-30 dBm									
-30 0.0111									
-40 dBm		M2							
	1000	Mary Mary and Harry	15	a. a s	and the last	A Constant	hallow to the state	and the second	
	a fa Barris an an		Street Hillyth	an de la constante de la const Constante de la constante de la		A CARGE AND A			Marth And
		Constant of Constant	100000-00000	12 200 200 L					
-60 dBm									
-70 dBm									-
Start 30.0 M	1Hz		1	10001	ots	1	•	Stop	26.0 GHz
Marker									
Type Ref	Trc	X-value		Y-value	Func	tion	Fun	ction Result	t
M1	1		.6 MHz	15.33 dBm					
M2	1	6.93	34 GHz	-41.16 dBm					
1					Mea	suring		4/4	06.05.2024

Spectrum									
Ref Level	26.50	dBm Offset 1	50 dB 🍯	• RBW 100 kHz					
🖷 Att		db SWT :	260 ms 🧉	• VBW 300 kHz	Mode /	Auto Swe	ер		
Count 67/10	00								
😑 1Pk Max				<u> </u>					
00.45.5					M	2[1]			41.34 dBm
20 dBm									86850 GHz
10 dBm					M.	1[1]			13.19 dBm 16.80 MHz
						I	1	1	10.00 MHZ
0 dBm									
		1000							
-10 dBm	01 -6.8	60 dBm							
-20 dBm									
-30 dBm									
		M2							
-40 dBm		and a second sec				1.1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	ente ottata a states.		73
and the states of	and the state of the	and the second second	alasta sublicitada da	ويسابعه وجرام حاصل وألموس	And the second second	A STATE OF THE STA		الافراد المقدمة المحدان المعا	A state of a state of
The world				and the second					
-60 dBm									
-70 dBm									
Start 30.0 M	/Hz			10001	pts			Stop	26.0 GHz
Marker									
Type Ref	_	X-value		Y-value	Funct	tion	Fund	tion Result	
M1 M2	1		.8 MHz 35 GHz	13.19 dBm -41.34 dBm					
L MZ	1	0,80;	oo GHZ	-41,34 aBM					
	Л				Mela			4/4	15.05.2024

Spectrun	ī								
Ref Leve			1.50 dB 😑	RBW 100 kHz					`````````````````````````````````
Att		odb SWT	260 ms 👄	VBW 300 kHz	Mode .	Auto Sw	еер		
Count 13/:	100								
⊖1Pk View									
20 dBm					M	2[1]			40.88 dBm
20 dBm					5.0	1[1]			88150 GHz 13.25 dBm
10 dBm					171	1[1]			22.00 MHz
						1	Ĩ	1	22.00 MHZ
0 dBm									
-10 dBm	D1 -6./	750 dBm							
-20 dBm									
-30 dBm	7								
		M2							
-40 dBm		IN Z		_					
		A CONTRACTOR OF THE OWNER				hat the	A. Market Market .	. I	ور والطريقان والله والله وال
	All and the second states				and a set of the later		A REAL PROPERTY AND		and party is a line, the first of the
1 to 1									
-60 dBm									
-70 dBm—									
Start 30.0	Start 30.0 MHz 10001 pts Stop 26.0 GHz								
Marker									
Type Re	f Trc	X-value	e	Y-value	Func	tion	Fund	ction Result	
M1	1	922	.0 MHz	13.25 dBn	n				
M2	1	6.88	15 GHz	-40.88 dBn	1]
					Mea	suring		1/1	6.05.2024

Spectr	um								
Ref Lev Att		45 c			RBW 100 kHz VBW 300 kHz	Mode A	uto FFT		· · · ·
Count 3		00							
	- **					M	2[1]		-36.54 dBm
20 dBm-							1[1]		902.000000 MHz M1 13.93 dBm
10 dBm-						2	i	-	- XaQAABAQ338 MHz
0 dBm—									
		1 -6.07) dBm						
-10 dBm									1
-20 dBm									
-30 dBm	+				M2	~~~	\sim	~~~~	
-40 dBm	~	\sim		J.m.		- T			
-50 dBm									
-60 dBm									
CF 902.12 MHz 10001 pts Span 8.0 MHz									
Marker									
	Ref	Trc	X-value		Y-value	Func	tion	Fund	tion Result
M1		1	904.8093		13.93 dBm				
M2		1	902	.0 MHz	-36.54 dBm				
		Π				Mela			06.05.2024

5. POWER SPECTRAL DENSITY TEST

5.1 LIMIT

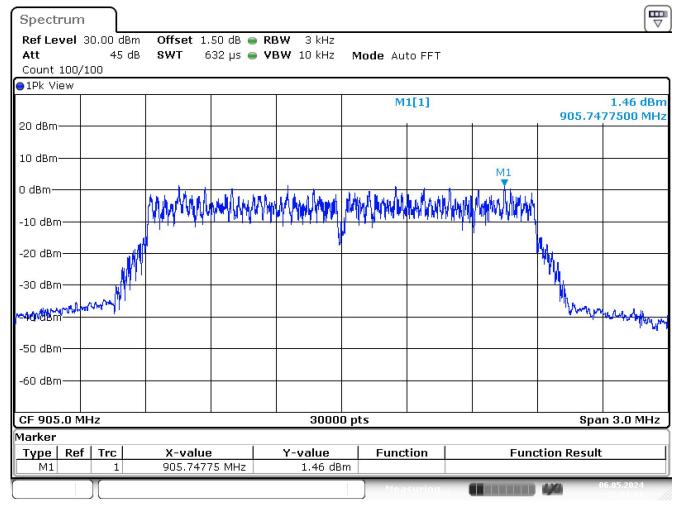
FCC Part15.247 , Subpart C								
Section	Test Item	Limit	Frequency Range (MHz)	Result				
15.247(e)	Power Spectral Density	≤8 dBm (RBW ≥3KHz)	905-921	PASS				

5.2 TEST PROCEDURE

- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to 1.5 times the DTS channel bandwidth.
- 3. Set the 100 kHz \geq RBW \geq 3 kHz.
- 4. Set the VBW \geq 3 x RBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

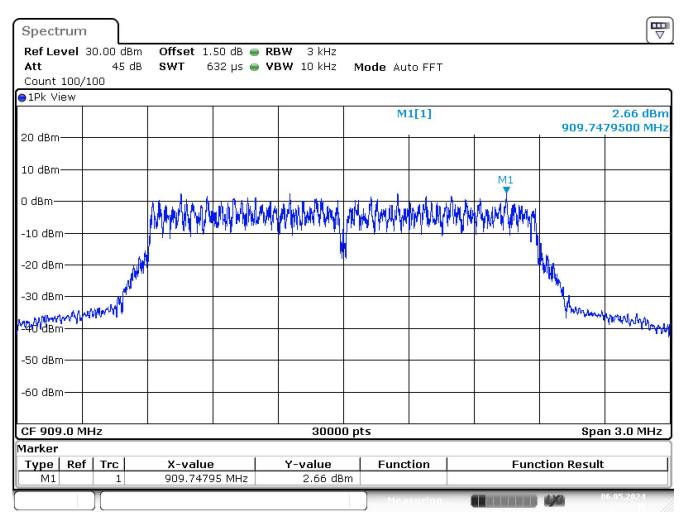
5.3 DEVIATION FROM STANDARD No deviation.

5.4 TEST SETUP

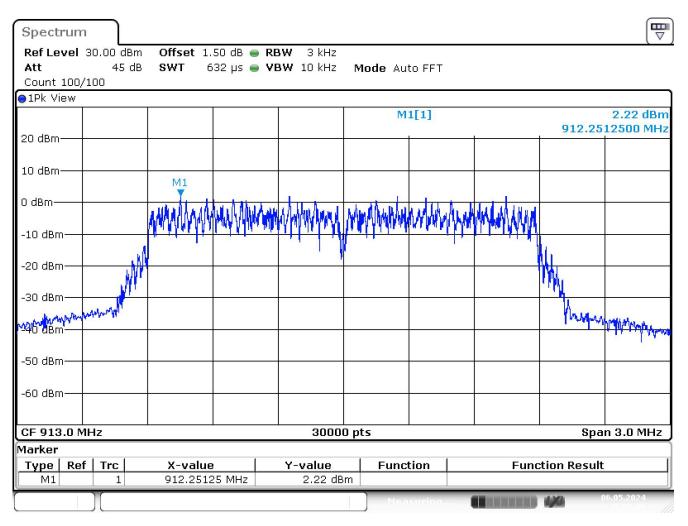


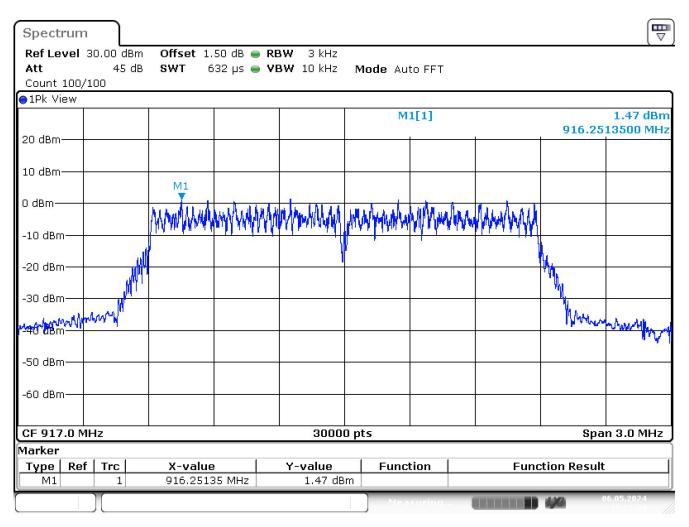
5.5 EUT OPERATION CONDITIONS Please refer to section 3.1.4 of this report.

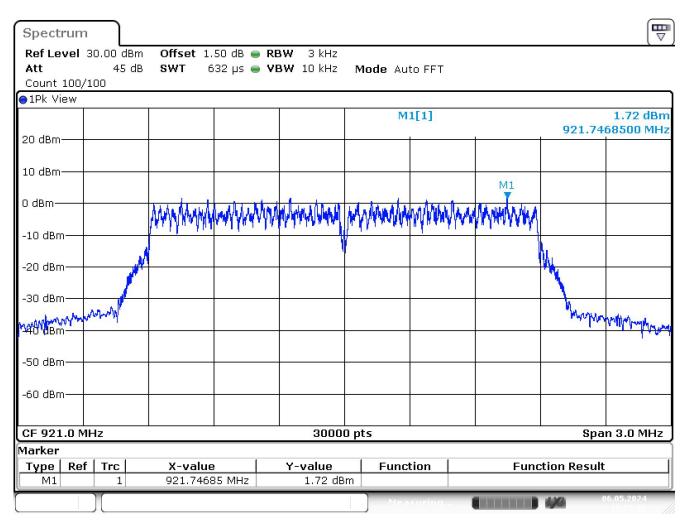
5.6 TEST RESULTS


Operation Mode	Channel Number	Channel Frequency (MHz)	Measurement Level (dBm/3kHz)	Limit (dBm/3kHz)	Verdict
	1	905	1.46	8	PASS
	3	909	2.66	8	PASS
802.11ah	5	913	2.22	8	PASS
2M	7	917	1.47	8	PASS
	9	921	1.72	8	PASS

Date: 6.MAY.2024 16:01:02


Shenzhen Huaxin Information Technology Service Co.,Ltd101,R&D Building,No.3 guansheng 4th Road,Luhu Community,Guanhu Street,LonghuaDistrict,Shenzhen,Guangdong,ChinaTel:+86-755-21018313Http://www.tecovo.net


```
Date: 6.MAY.2024 15:58:47
```



```
Date: 6.MAY.2024 15:57:39
```



```
Date: 6.MAY.2024 15:56:24
```



```
Date: 6.MAY.2024 15:55:01
```


6. BANDWIDTH TEST

6.1 LIMIT

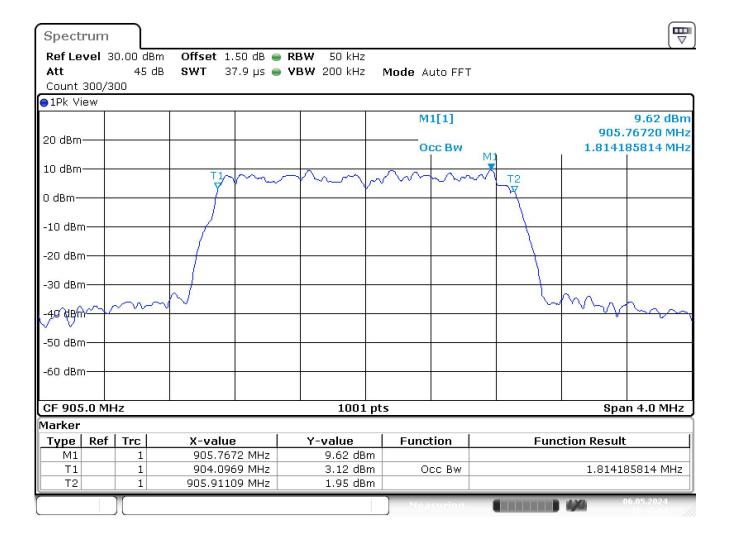
FCC Part15.247,Subpart C						
Section	Test Item	Frequency Range (MHz)	Result			
15.247(a)(2)	Bandwidth	≥500KHz (6dB bandwidth)	905-921	PASS		

6.2 TEST PROCEDURE

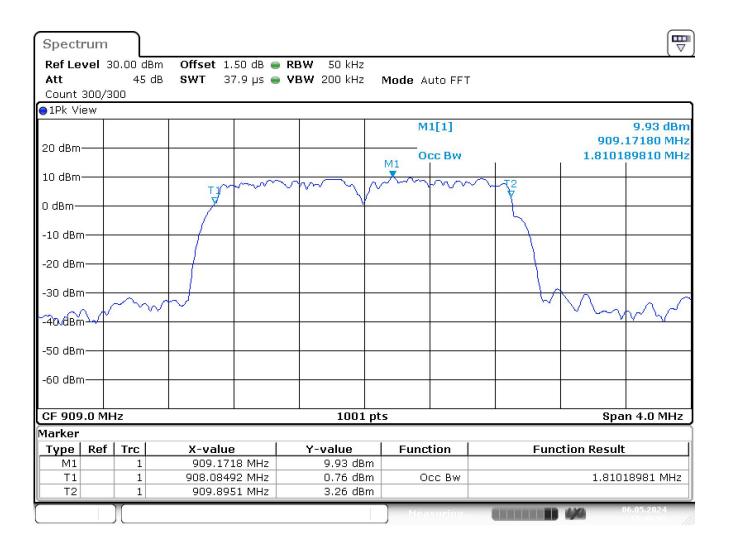
The automatic bandwidth measurement capability of an instrument may be employed using the X dB bandwidth mode with X set to 6 dB, if the functionality described above (i.e., RBW = 100 kHz, VBW \geq 3RBW, peak detector with maximum hold) is implemented by the instrumentation function. When using this capability, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the fundamental emission that might be \geq 6 dB.

6.3 DEVIATION FROM STANDARD No deviation.

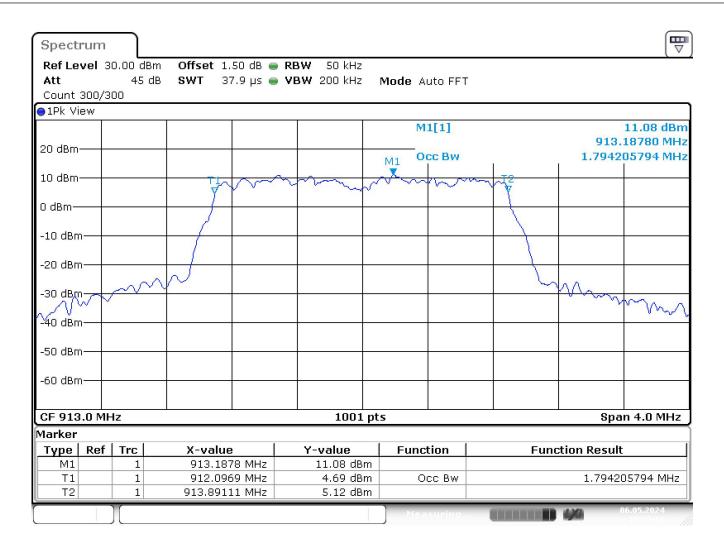
6.4 TEST SETUP

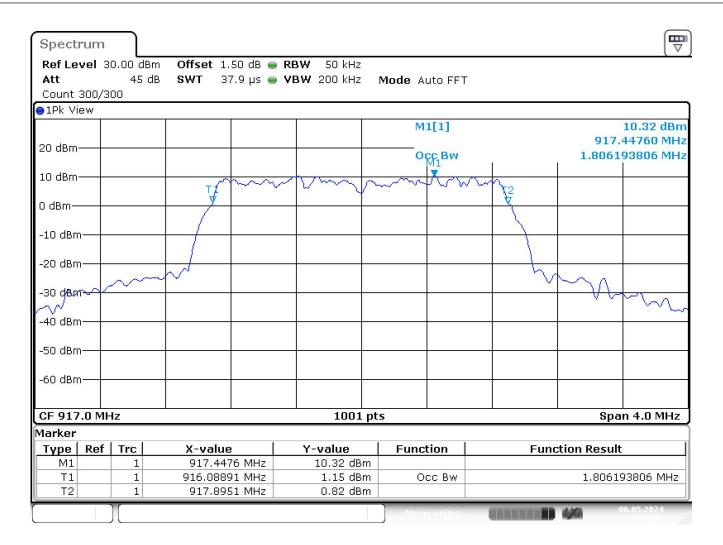


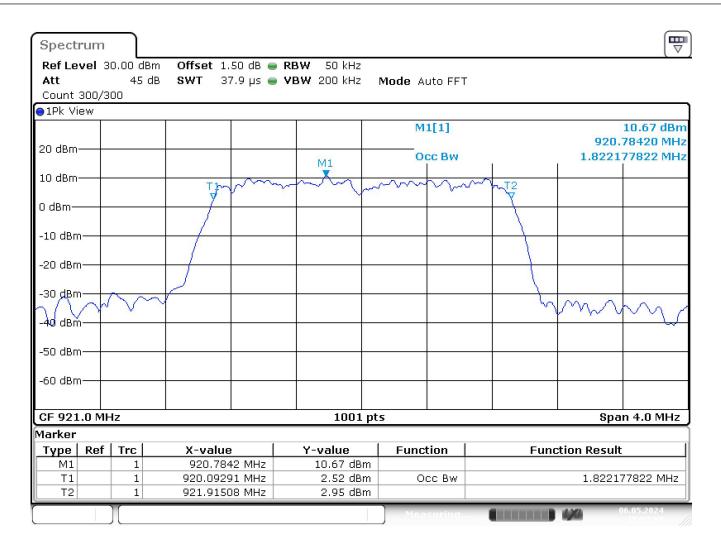
6.5 EUT OPERATION CONDITIONS Please refer to section 3.1.4 of this report.



6.6 TEST RESULTS


Operation Mode	Channel Number	Channel Frequency (MHz)	6 dB Bandwidth (kHz)	Limit (kHz)	Verdict
	1	905	1814.2	>500	PASS
	3	909	1810.2	>500	PASS
802.11ah	5	913	1794.0	>500	PASS
2M	7	917	1806.2	>500	PASS
	9	921	1822.2	>500	PASS





7. PEAK OUTPUT POWER TEST

7.1 LIMIT

FCC Part15.247,Subpart C						
Section Test Item Limit Frequency Range (MHz) Res						
15.247(b)(3)	Output Power	1 watt or 30dBm	905-921	PASS		

7.2 TEST PROCEDURE

One of the following procedures may be used to determine the maximum peak conducted output power of a DTS EUT.

RBW ≥ DTS bandwidth

The following procedure shall be used when an instrument with a resolution bandwidth that is greater than the DTS bandwidth is available to perform the measurement:

a) Set the RBW \geq DTS bandwidth.

b) Set VBW \geq [3 × RBW]. c) Set span \geq [3 × RBW].

d) Sweep time = auto couple.

e) Detector = peak.

f) Trace mode = max hold.

g) Allow trace to fully stabilize.

h) Use peak marker function to determine the peak amplitude level.

Integrated band power method:

The following procedure can be used when the maximum available RBW of the instrument is less than the

DTS bandwidth:

a) Set the RBW = 1 MHz.

b) Set the VBW \geq [3 \times RBW].

c) Set the span \geq [1.5 × DTS bandwidth].

d) Detector = peak.

e) Sweep time = auto couple.

f) Trace mode = max hold.

g) Allow trace to fully stabilize.

h) Use the instrument's band/channel power measurement function with the band limits set equal to the DTS bandwidth edges (for some instruments, this may require a manual override to select the peak detector). If the instrument does not have a band power function, then sum the spectrum levels (in linear power units) at intervals equal to the RBW extending across the DTS channel bandwidth.

PKPM1 Peak power meter method:

The maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall use a fast-responding diode detector.

7.3 DEVIATION FROM STANDARD No deviation.

7.4 TEST SETUP

7.5 EUT OPERATION CONDITIONS Please refer to section 3.1.4 of this report.

Shenzhen Huaxin Information Technology Service Co.,Ltd

101,R&D Building,No.3 guansheng 4th Road,Luhu Community,Guanhu Street,LonghuaDistrict,Shenzhen,Guangdong,China Tel:+86-755-21018313 Http://www.tecovo.net

7.6 TEST RESULTS

Operation Mode	Channel Number	Channel Frequency (MHz)	Measurement Level (dBm)	Limit (dBm)	Verdict
	1	905	25.21	30	PASS
	3	909	26.29	30	PASS
802.11ah	5	913	25.53	30	PASS
2M	7	917	24.25	30	PASS
	9	921	26.11	30	PASS

Spectrum					
Ref Level 31.50 dBm Att 65 dB Count 100/100		RBW 3 MHz VBW 10 MHz	Mode Auto FFT		
●1Pk View					
		M1	M1[1]		25.21 dBn <u>904.94790 MH</u>
20 dBm					
10 dBm					
0 dBm					
-10 dBm					
-20 dBm					
-30 dBm					
-40 dBm					
-50 dBm					
-60 dBm					
CF 905.0 MHz		691 pt	s	_i	Span 6.0 MHz
Marker					
TypeRefTrcM11	X-value 904.9479 MHz	Y-value 25.21 dBm	Function	Funct	ion Result
			Measuring		06.05.2024

Spectrum						
● Att Count 100/	31.50 dBm 65 dB 100	Offset 1.50 dB (SWT 1.2 μs (Mode Auto FF	Т	
⊖1Pk View						
20 dBm			- MI	M1[1]		26.29 dBm 908.69610 MHz
10 dBm						
0 dBm						
-10 dBm						
-20 dBm						
-40 dBm						
-50 dBm						
-60 dBm						
CF 909.0 M	CF 909.0 MHz 691 pts Span 6.0 MHz					
Marker						
8	Trc	X-value	Y-value	Function	Function R	esult
M1	1	908.6961 MHz	26.29 dBm			
				Measuring.	1000 AMA	06.05.2024

Spectrum						
Ref Level	31.50 dBm 65 dB				.	
Att Count 100/:		3WI 1.2 µS	🔵 VBW 10 MHz	Mode Auto FF	Ι	
●1Pk View						
				M1[1]		25.53 dBm 913.29520 MHz
20 dBm						
10 dBm						1943
0 dBm						
-10 dBm						
-20 dBm						
-30 dBm						
-40 dBm						
-50 dBm						
-60 dBm						
CF 913.0 M	CF 913.0 MHz 691 pts Span 6.0 MHz					
Marker						
Type Ref	Trc	X-value 913.2952 MHz	Y-value 25.53 dBm	Function	Function R	esult
		913.2932 MHZ	25.55 UBM	Measuring		06.05.2024

Spectrum						
Att Count 100/	l 31.50 dBm 65 dB /100			Mode Auto FF	Т	, , , , , , , , , , , , , , , , , , ,
●1Pk View						
20 dBm				M1 M1[1]		24.25 dBm 917.29520 MHz
10 dBm						
0 dBm						
-10 dBm						
-20 dBm						
-40 dBm						
-50 dBm						
-60 dBm						
CF 917.0 M	1Hz		691 pts	i		Span 6.0 MHz
Marker						
Type Ret	f Trc 1	X-value 917.2952 MHz	Y-value 24.25 dBm	Function	Functio	on Result
	1			Measuring.		06.05.2024

Spectrum	Γ					
Ref Level	I 31.50 dBm	Offset 1.50 dB (BRBW 3 MHz			
🖷 Att	65 dB	SWT 1.2 μs (🛢 VBW 10 MHz	Mode Auto FF	Т	
Count 100,	/100					
⊖1Pk View						
				M1[1]		26.11 dBm
			/			921.29520 MHz
20 dBm						
10 dBm						
0 dBm						
-10 dBm—						
-20 dBm						
-30 dBm						
-40 dBm—						
-50 dBm						
-60 dBm						
CF 921.0 N	/IHz		691 pts	;		Span 6.0 MHz
Marker						
Type Re	f Trc	X-value	Y-value	Function	Function R	esult
M1	1	921.2952 MHz	26.11 dBm			
	1			Measuring	1	06.05.2024

8. ANTENNA REQUIREMENT

8.1 STANDARD REQUIREMENT

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible partyshall be used with the device.

8.2 RESULT

The EUT antenna is External Antenna. It comply with the standard requirement.

APPENDIX I AND APPENDIX II : EUT Photos

Please refer to separated files for APPENDIX I and APPENDIX II EUT Photos.

APPENDIX III : Test Setup Photos

Please refer to separated files for APPENDIX III Test Setup Photos.

* * * * * END OF THE REPORT * * * * *