

FCC TEST REPORT

On Behalf of FCC ID.:2BF7Y-VBM002R

Shenzhen Umbra Technology Co., Ltd.

Jartoo Baby Monitor

Model No.: JT-VBM002

Prepared for	:	Shenzhen Umbra Technology Co., Ltd.
Address	:	Room 702,Building 11,Tianan Yungu Industrial Park, Longgang District, Shenzhen.

Prepared By	: Shenzhen Huaxin Information Technology Service Co., Ltd
Address	101, R & D Building, No.3 guansheng 4th Road, Luhu Community
	Guanhu Street, Longhua District, Shenzhen, Guangdong, China

Report Number	:	HX240514R001
Date of Receipt	:	Apr 26th,2024
Date of Test	:	Apr 27th,2024 ~ May 14th,2024
Date of Report	:	May 14th, 2024
Version Number	:	V0

Shenzhen Huaxin Information Technology Service Co.,Ltd

101,R&D Building,No.3 guansheng 4th Road,Luhu Community,Guanhu Street,LonghuaDistrict,Shenzhen,Guangdong,China
Tel:+86-755-21018313Http://www.tecovo.net

1. SUMMARY OF TEST RESULTS	5
1.1 TEST FACTORY	6
1.2 MEASUREMENT UNCERTAINTY	6
2. GENERAL INFORMATION	7
2.1 GENERAL DESCRIPTION OF THE EUT	7
2.2 DESCRIPTION OF THE TEST MODES	9
2.3 ACCESSORIES OF DEVICE (EUT)	10
2.4 TESTED SUPPORTING SYSTEM DETAILS	10
2.5 TEST SOFTWARE AND POWER LEVEL	10
2.6 EQUIPMENTS LIST FOR ALL TEST ITEMS	11
3. EMC EMISSION TEST	12
3.1 CONDUCTED EMISSION MEASUREMENT	12
4. CONDUCTED SPURIOUS & BAND EDGE EMISSION	23
4.1 LIMIT	23
4.2 TEST PROCEDURE	23
4.3 DEVIATION FROM STANDARD	23
4.4 TEST SETUP	23
4.5 EUT OPERATION CONDITIONS	24
4.6 TEST RESULTS	24
5. POWER SPECTRAL DENSITY TEST	31
5.1 LIMIT	31
5.2 TEST PROCEDURE	31
5.3 DEVIATION FROM STANDARD	31
5.4 TEST SETUP	31
5.5 EUT OPERATION CONDITIONS	31
5.6 TEST RESULTS	32
6. BANDWIDTH TEST	37
6.1 LIMIT	37
6.2 TEST PROCEDURE	
6.3 DEVIATION FROM STANDARD	
6.4 TEST SETUP	37
6.5 EUT OPERATION CONDITIONS	37
6.6 TEST RESULTS	38
7. PEAK OUTPUT POWER TEST	43

7.1 LIMIT	
7.2 TEST PROCEDURE	43
7.3 DEVIATION FROM STANDARD	43
7.4 TEST SETUP	
7.5 EUT OPERATION CONDITIONS	43
7.6 TEST RESULTS	44
8. ANTENNA REQUIREMENT	49
8.1 STANDARD REQUIREMENT	49
8.2 RESULT	49
APPENDIX I AND APPENDIX II : EUT PHOTOS	
APPENDIX III : TEST SETUP PHOTOS	

TEST REPORT DECLARATION

Applicant	:	Shenzhen Umbra Technology Co., Ltd.
Address	:	Room 702, Building 11, Tianan Yungu Industrial Park, Longgang District, Shenzhen.
Manufacturer	:	Shenzhen Umbra Technology Co., Ltd.
Address	:	Room 702, Building 11, Tianan Yungu Industrial Park, Longgang District, Shenzhen.
EUT Description	:	Jartoo Baby Monitor
		(A) Model No. : JT-VBM002

(B) Trademark Jartoo

Measurement Standard Used:

FCC Part 15: 2021 Subpart C 15.247

ANSI C63.10-2013

The device described above is tested by Shenzhen Huaxin Information Technology Service Co., Ltd. to determine the maximum emission levels emanating from the device. The test results are contained in this test report and Shenzhen Huaxin Information Technology Service Co., Ltd. is assumed of full responsibility for the accuracy and completeness of these tests.

After the test, our opinion is that EUT compliance with the requirement of the above standards.

This report applies to above tested sample only. This report shall not be reproduced in parts without written approval of Shenzhen Huaxin Information Technology Service Co., Ltd.

Tested by (name + signature).....

Eason Tan **Project Engineer**

Approved by (name + signature).....:

Michael Wu **Project Manager** Eason Tay Michael Wu

Date of issue.....

May 14th, 2024

Revision History

Revision	Issue Date	Revisions	Revised By
V0	May 14th, 2024	Initial released Issue	Eason Tan

1. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards:

KDB 558074 D01 15.247 Meas Guidance v05r02.

FCC Part 15.247,Subpart C					
Standard Section	Test Item	Judgment	Remark		
15.207	Conducted Emission	PASS			
15.247 (a)(2)	6dB Bandwidth	PASS			
15.247 (b)(3)	Output Power	PASS			
15.209	Radiated Spurious Emission	PASS			
15.247 (d)	Conducted Spurious & Band Edge Emission	PASS			
15.247 (e)	Power Spectral Density	PASS			
15.203	Antenna Requirement	PASS			

NOTE:

(1) 'N/A' denotes test is not applicable in this Test Report.

(2) According to FCC OET KDB 558074, the report use radiated

measurements in the restricted frequency bands. In addition, the radiated test is also performed to ensure the emissions emanating from the device cabinet also comply with the applicable limits.

1.1 TEST FACTORY

Company Name:	Shenzhen Huaxin Information Technology Service Co., Ltd	
Address:	101, R & D Building, No.3 guansheng 4th Road, Luhu Community [,] Guanhu Street, Longhua District, Shenzhen, Guangdong, China	
Telephone:	0775-21018313	
Fax:	0775-21018313	
FCC Test Firm Registration Number: 932271 Designation Number: CN1344 CAB ID : CN0147		

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $\mathbf{y} \pm \mathbf{U}$, where expended uncertainty \mathbf{U} is based on a standard uncertainty multiplied by a coverage factor of **k=2**, providing a level of confidence of approximately **95** %.

Item	MU	Remark
Conducted Emission ($9K \sim 0.15MHz$)	2.18dB	
Conducted Emission (0.15M ~ 30MHz)	2.17dB	
	4.45 dB	Polarize: V
Radiation Emission ,3m (30MHZ~1GHZ)	2.76 dB	Polarize: H
Radiation Emission, 3m (1GHz ~ 6GHz)	4.02 dB	
Radiation Emission ,3m (6GHz ~ 18GHz)	4.30 dB	
RF output power (conducted)	0.41 dB	
Power Spectral Density (conducted)	0.39 dB	
Spurious emissions (conducted)	0.59 dB	
Occupied Channel Bandwidth (conducted)	4.22%	

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF THE EUT

Characteristics	Description
Product Name	Jartoo Baby Monitor
Model number	JT-VBM002
IEEE 802.11 WLAN Mode Supported	802.11ah(2MHz channel bandwidth)
Data Rate	802.11ah:150Kbps,32.5Mbps;
Modulation	OFDM with BPSK/QPSK/16QAM/64QAM
Operating Frequency Range	905-925MHz for 802.11ah(2MHz channel bandwidth);
Number of Channels	5 Channels for 802.11ah(2MHz channel bandwidth);
Transmit Power Max	802.11ah(2MHz channel bandwidth):27.97 dBm
Antenna:	External Antenna
Antenna Gain:	2.15 dBi
Test Voltage:	DC 5V 2A
Temperature Range	0°C ~ +40 ° C

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the User Manual.

2.

Test Frequency and channel for 802.11ah(2MHz channel bandwidth):

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	905	5	913	9	921
3	909	7	917		

Note:

The antenna information refer the manufacturer provide report, applicable only to the tested sample identified in the report.

2.2 DESCRIPTION OF THE TEST MODES

The EUT has been tested under its typical operating condition.

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner which intends to maximize its emission characteristics in a continuous normal application.

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.

Those data rates (802.11ah:150Kbps,32.5Mbps) were used for all test.

Pre-defined engineering program for regulatory testing used to control the EUT for staying in continuous transmitting and receiving mode is programmed.

Frequency and Channel list for 802.11ah(2MHz channel bandwidth):

Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	905	9	921
3	909	/	/
5	913	/	/
7	917	/	/

Note:

(1) The measurements are performed at all Bit Rate of Transmitter, the worst data was reported.

2.3 ACCESSORIES OF DEVICE (EUT)

Accessories	:	AC Power Adapter
Manufacturer	:	ТЕКА
Model	:	TEKA-UCA20US
Input	:	100-240V~50/60Hz 0.35A MAX
Output	:	5.0V-2.0A

2.4 TESTED SUPPORTING SYSTEM DETAILS

No.	Description	Manufacturer	Model	Serial Number	Certification or SDOC
1	Laptop	Lenovo	ThinkPad E460	/	/

2.5 TEST SOFTWARE AND POWER LEVEL

During testing channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level.

Test software version:	SecureCRT
power level	20

2.6 EQUIPMENTS LIST FOR ALL TEST ITEMS

Equipment	Manufacturer	Model No.	Firmware version	Serial No.	Last cal.	Cal. Due day
9*6*6 anechoic chamber	Mao Rui	9*6*6m	/	N/A	2022.06.15	2025.06.14
EMI receiver	R&S	ESR7	5.812	102543	2024.04.14	2025.04.15
Spectrum analyzer	R&S	FSV40-N	V7.0-4-62	101795	2024.04.14	2025.04.15
Pre-amplifier	HP	8447D	/	1616A02061	2024.04.14	2025.04.15
Pre-amplifier	Agilent	8449B	/	9008A00551	2024.04.14	2025.04.15
Bilog Antenna	Schwarzbeck	VULB 9168	/	/	2024.04.14	2025.04.15
Horn antenna	A.H. System, Inc	SAS-571	/	915	2024.04.14	2025.04.15
Loop Antenna	Schwarzbeck	FMZB 1519B	/	/	2024.04.14	2025.04.15
LISN	R&S	ENV216		101291	2024.04.14	2025.04.15
LISN	R&S	ESH3-Z5		894981/024	2024.04.14	2025.04.15
Analog signal Generato	Agilent	N5181A	A.01.87	MY47421151	2024.04.14	2025.04.15
Vector Signal Generator	Keysight	N5182A	A.01.87	MY50140428	2024.04.14	2025.04.15
Wideband Radio communication tester	R&S	CMW500	V3.7.22	157762	2024.04.14	2025.04.15
Spectrum analyzer	Agilent	N9020A	A.14.16	MY51280803	2024.04.14	2025.04.15
RF Cable	/	(10G)9m	/	/	2024.04.14	2025.04.15
RF Cable	/	(10G)10m	/	/	2024.04.14	2025.04.15
RF Cable	/	(18G)10m	/	/	2024.04.14	2025.04.15
attenuation pad	/	6dB	/	/	2024.04.14	2025.04.15
attenuation pad	/	10dB	/	16280012	2024.04.14	2025.04.15
RF Control Unit	Tehcy	TR1029-1	1	20220428C009	2024.04.14	2025.04.15

Software Information			
Test Item	Software Name	Manufacturer	Version
RE	EMC-I	SKET	V1.4.0.1
CE	EMC-I	SKET	V1.4.0.1
RF-CE	RF Test Software	TACHOY	V1.0.0

3. EMC EMISSION TEST

3.1 CONDUCTED EMISSION MEASUREMENT

3.1.1 POWER LINE CONDUCTED EMISSION LIMITS

The radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table.

	Conducted Emissionlimit (dBuV)		
FREQUENCY (MHZ)	Quasi-peak	Average	
0.15 -0.5	66 – 56 *	56 – 46 *	
0.50 -5.0	56.00	46.00	
5.0 -30.0	60.00	50.00	

Note:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

The following table is the setting of the receiver

Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz

- 3.1.2 TEST PROCEDURE
- a. The EUT is 0.8 m from the horizontal ground plane and 0.4 m from the vertical ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments are powered from additional LISN(s). The LISN provides 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN is at least 80 cm from the nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item –EUT Test Photos.

3.1.3 TEST SETUP

Note: 1. Support units were connected to second LISN.

2. Both of LISNs (AMN) are 80 cm from EUT and at least 80 cm from other units and other metal planes support units.

3.1.4 EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

3.1.5 TEST RESULT

3.2 RADIATED EMISSION MEASUREMENT

3.2.1 RADIATED EMISSION LIMITS

In any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the Restricted band specified on Part15.205(a)&209(a) limit in the table and according to ANSI C63.10-2013 below has to be followed.

LIMITS OF RADIATED EMISSION MEASUREMENT (0.009MHz - 1000MHz)

Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

LIMITS OF RADIATED EMISSION MEASUREMENT (1000MHz-25GHz)

	(dBuV/m) (at 3M)		
FREQUENCT (MIDZ)	PEAK	AVERAGE	
Above 1000	74	54	

Notes:

(1) The limit for radiated test was performed according to FCC PART 15C.

- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

LIMITS OF RESTRICTED FREQUENCY BANDS

FREQUENCY (MHz)	FREQUENCY (MHz)	FREQUENCY (MHz)	FREQUENCY (GHz)
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	Above 38.6
13.36-13.41			

Shenzhen Huaxin Information Technology Service Co., Ltd

101,R&D Building,No.3 guansheng 4th Road,Luhu Community,Guanhu Street,LonghuaDistrict,Shenzhen,Guangdong,China
Tel:+86-755-21018313Http://www.tecovo.net

For Radiated Emission

Spectrum Parameter	Setting
Attenuation	Auto
Detector	Peak/QP/AV
Start Frequency	9 KHz/150KHz(Peak/QP/AV)
Stop Frequency	150KHz/30MHz(Peak/QP/AV)
	200Hz (From 9kHz to 0.15MHz)/
RB / VB (emission in restricted	9KHz (From 0.15MHz to 30MHz);
band)	200Hz (From 9kHz to 0.15MHz)/
	9KHz (From 0.15MHz to 30MHz)

Spectrum Parameter	Setting				
Attenuation	Auto				
Detector	Peak/QP				
Start Frequency	30 MHz(Peak/QP)				
Stop Frequency	1000 MHz (Peak/QP)				
RB / VB (emission in restricted	120 KHz / 200 KHz				
band)					

Spectrum Parameter	Setting					
Attenuation	Auto					
Detector	Peak/AV					
Start Frequency	1000 MHz(Peak/AV)					
Stop Frequency	10th carrier hamonic(Peak/AV)					
RB / VB (emission in restricted	1 MHz / 3 MHz(Peak)					
band)	1 MHz/1/T MHz(AVG)					

3.2.2 TEST PROCEDURE

- a. The measuring distance at 3 m shall be used for measurements at frequency 0.009MHz up to 1GHz, and above 1GHz.
- b. The EUT was placed on the top of a rotating table 0.8 m (above 1GHz is 1.5 m) above the ground at a 3 m anechoic chamber test site. The table was rotated 360 degree to determine the position of the highest radiation.
- c. The height of the equipment shall be 0.8 m (above 1GHz is 1.5 m); the height of the test antenna shall vary between 1 m to 4 m. Horizontal and vertical polarization of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and QuasiPeak detector mode will be re-measured.
- e. If the Peak Mode measured value is compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and no additional QP Mode measurement was performed.
- f. For the actual test configuration, please refer to the related Item –EUT Test Photos. Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported.

3.2.3 TEST SETUP

(A) Radiated Emission Test-Up Frequency Below 30MHz

(B) Radiated Emission Test-Up Frequency 30MHz~1GHz

(C) Radiated Emission Test-Up Frequency Above 1GHz

3.2.4 EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

3.2.5 FIELD STRENGTH CALCULATION

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor (if any) from the measured reading. The basic equation with a sample calculation is as follows: FS = RA + AF + CL - AG

Where

FS = Field Strength

CL = Cable Attenuation Factor (Cable Loss)

RA = Reading Amplitude

AG = Amplifier Gain

AF = Antenna Factor

For example

Frequency	FS	RA	AF	CL	AG	Factor
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	(dB)	(dB)	(dB)
300	40	58.1	12.2	1.6	31.9	-18.1

3.2.6 TEST RESULT

We have scanned the 10th harmonic from 9KHz to the EUT's highest frequency.

From 9KHz to 30MHz Conclusion: PASS

Note: The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

30M-1G Remark: All modes have been tested, and only worst data of 802.11 ah mode, Channel 921MHz was listed in this report.

1-25G Remark: All modes have been tested, and only worst data of 802.11 ah mode, was listed in this report.

From 30M-1GHz:

No.	Frequency	Reading dBuV	Factor dB/m	Level dBuV/m	Limit dBuV/m	Delta dB	Detector	Polar	Height cm	Angle deg
1*	32.820MHz	17.3	13.3	30.6	40.0	-9.4	QP	Ver	100.0	281.0
2*	180.000MHz	17.6	12.4	30.0	43.5	-13.5	QP	Ver	100.0	239.0
3*	540.000MHz	19.1	21.6	40.7	46.0	-5.3	QP	Ver	100.0	6.0
4*	705.240MHz	15.5	24.7	40.2	46.0	-5.8	QP	Ver	100.0	334.0
5*	968.280MHz	19.8	28.4	48.2	54.0	-5.8	QP	Ver	100.0	356.0

No.	Frequency	Reading dBuV	Factor dB/m	Level dBuV/m	Limit dBuV/m	Delta dB	Detector	Polar	Height cm	Angle deg
1*	33.060MHz	14.3	13.3	27.6	40.0	-12.4	QP	Hor	100.0	111.0
2*	180.000MHz	22.3	12.4	34.7	43.5	-8.8	QP	Hor	100.0	256.0
3*	324.000MHz	23.3	16.2	39.5	46.0	-6.5	QP	Hor	100.0	121.0
4*	396.000MHz	19.3	18.0	37.3	46.0	-8.7	QP	Hor	100.0	194.0
5*	969.300MHz	14.0	28.4	42.4	54.0	-11.6	QP	Hor	100.0	71.0

Shenzhen Huaxin Information Technology Service Co., Ltd

101,R&D Building,No.3 guansheng 4th Road,Luhu Community,Guanhu Street,LonghuaDistrict,Shenzhen,Guangdong,ChinaTel:+86-755-21018313Http://www.tecovo.net

From 1G-25GHz:

Test mode: 802	2.11ah 2M		Frequency:	Channel 1:905MHz				
Freq. (MHz)	Ant.Pol.	Emi Level(d	ission dBuV/m)	Limit 3m((dBuV/m)	Over(dB)		
(IVITZ)	H/V	PK	AV	PK	AV	PK	AV	
1808.00	V	54.63	32.16	74	54	- 19.37	-21.84	
2711.50	V	55.66	34.15	74	54	- 18.34	- 19.85	
3614.00	V	54.62	30.62	74	54	- 19.38	-23.38	
1808.00	Н	64.27	40.33	74	54	-9.73	- 13.67	
2711.50	Н	61.38	35.28	74	54	- 12.62	- 18.72	
3614.00	H	62.59	38.64	74	54	- 11.41	- 15.36	

Test mode: 802.11ah 2M			Fr	equency:	Channel 5:913MHz		
Freq.	Ant.Pol.	Emis Level(d	ssion BuV/m)	Limit 3m((dBuV/m)	Over(dB)	
(IVIHZ)	H/V	PK	AV	PK	AV	PK	AV
1829.00	V	55.29	34.56	74	54	- 18.71	- 19.44
2745.50	V	53.46	31.29	74	54	-20.54	-22.71
3658.00	V	51.57	34.67	74	54	-22.43	- 19.33
1829.00	Н	62.39	41.47	74	54	- 11.61	- 12.53
2745.50	Н	61.51	35.32	74	54	- 12.49	- 18.68
3658.00	Н	60.12	30.62	74	54	- 13.88	-23.38

Test mode:

802.11ah 2M

Frequency:

Channel 9:921MHz

Freq.	Ant.Pol.	Emi Level(d	ssion dBuV/m)	Limit 3m(dBuV/m)	Over(dB)		
(IVIHZ)	H/V	PK	AV	PK	AV	PK	AV	
1854.00	V	57.14	35.55	74	54	- 16.86	- 18.45	
2779.50	V	56.23	31.29	74	54	- 17.77	-22.71	
3705.00	V	53.24	30.64	74	54	-20.76	-23.36	
1854.00	Н	61.59	40.15	74	54	- 12.41	- 13.85	
2779.50	Н	60.93	38.59	74	54	- 13.07	- 15.41	
3705.00	Н	54.18	35.64	74	54	- 19.82	- 18.36	

4. CONDUCTED SPURIOUS & BAND EDGE EMISSION

4.1 LIMIT

According to FCC section 15.247(d), in any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

4.2 TEST PROCEDURE

Spectrum Parameter	Setting				
Detector	Peak				
Start/Stop Frequency	30 MHz to 10th carrier harmonic				
RB / VB (emission in restricted band)	100 KHz/300 KHz				
Trace-Mode:	Max hold				

For Band edge

Spectrum Parameter	Setting			
Detector	Peak			
Start/Stan Eraguanay	Lower Band Edge: 905 MHz			
Start/Stop Frequency	Upper Band Edge: 921 MHz			
RB / VB (emission in restricted band)	100 KHz/300 KHz			
Trace-Mode:	Max hold			

4.3 DEVIATION FROM STANDARD No deviation.

no deviation.

4.4 TEST SETUP

The EUT is connected to the Spectrum Analyzer; the RF load attached to the EUT antenna terminal is 500hm; the path loss as the factor is calibrated to correct the reading. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. In order to make an accurate measurement, set the span greater than RBW.

Shenzhen Huaxin Information Technology Service Co., Ltd

101,R&D Building,No.3 guansheng 4th Road,Luhu Community,Guanhu Street,LonghuaDistrict,Shenzhen,Guangdong,China
Tel:+86-755-21018313Http://www.tecovo.net

4.5 EUT OPERATION CONDITIONS Please refer to section 3.1.4 of this report.

4.6 TEST RESULTS

Spectrun	n								
Ref Level Att Count 13/3	30.00 d 45 300	Bm Offset 1. dB SWT 2	50 dB 👄 R 60 ms 👄 V	BW 100 kHz BW 300 kHz	Mode At	uto Sweep			
●1Pk View									
20 dBm					M:	2[1]		6	-34.31 dBm .82960 GHz
M1 10 dBm						.[1]	1	9	906.40 MHz
0 dBm									
-10 dBm	D1 -9.7	50 dBm							
-20 dBm—									
-30 dBm	to the second second	M2							
-40 dBm		Yest	lang anipping	an product in a state of the	والمتناف والمتناوله ومر	Animan	approxim.	A MARCA	and the second second
-60 dBm									
Start 30.0	MHz			10001 p	ts			Stop	26.0 GHz
Marker	f Tro	V_uslue	. 1	Y-ualuo	- Euro	ion	Eusy	tion Docul	- 1
M1 M2		906	,4 MHz 96 GHz	10.25 dBm -34.31 dBm	Funci		Funi	LION RESUL	L
)[0.02			Mea	suring		4,40	06.05.2024

Spect	rum									
Ref Le Att Count	vel : 93/31	30.00 d 45 20	Bm Offset dB SWT	1.50 dB 👄 260 ms 👄	RBW 100 kHz VBW 300 kHz	Mode A	uto Swee	эр		
😑 1Pk Vi	iew									
						М	2[1]		6	-35.27 dBm .84000 GHz
						M	1[1]		ļ	11.73 dBm 909.00 MHz
-10 dBo	(01 -8.2	70 dBm							
-20 dBn	n									
-30 dBn	n									
-40 dBn	O <mark>rain a</mark> ti	Linderd	Manager and Street and Street				al a chailte an ann an		tet a confliction that the	l and the second
-50 dBn	n		4	terenden alteret						
-60 dBn	n									
Start 3	0.0 M	٩Hz			10001	pts			Stop	26.0 GHz
Marker		1 - 1		1		1 -				
Туре	Ret	Trc	X-val		Y-value	Func	tion	Fun	ction Result	
M2		1	91	6.84 GHz	-35.27 dBm	1				
						Mea	suring		4/4	06.05.2024

Spect	rum											
Ref Le Att Count	vel 68/3	30.00 d 45 00	Bm Offse dB SWT	t 1.50 dB 🖷 260 ms 🖷	• RBW 100 kH • VBW 300 kH	z z Mo	ode A	uto Swe	зер			
😑 1Pk Vi	iew											
20 dBm							M	2[1]			6	33.70 dBm .98540 GHz
							М	1[1]			ç	13.64 dBm)14.20 MHz
0 dBm-												
		D1 6 3	60 d0m									
-10 dBn		DI -0.3										
-20 dBn	n-+											
-30 dBn	n	-		12								
-40 dBn				Land Burk Indered		-				Mithing	ANUMAN	
-50 dBn	n-+			all second strategy of the						2		
-60 dBn	n											
Start 3	0.0	MHz	1	I	1000)1 pts		1	1		Stop	26.0 GHz
Marker												
Туре	Ref	Trc	X-v	alue	Y-value		Func	tion		Func	tion Result	:
M1		1		914.2 MHz	13.64 d	Bm						
M2		1		5.9854 GHz	-33.70 d	Bm						
	Ĩ	\mathbf{I}					Mela	suring.			4,70	06.05.2024

Spect	rum											₽
Ref Le Att Count	e vel (63/30	30.00 di 45 30	Bm Offset 1. dB SWT 2	50 dB 👄 60 ms 👄	RBW 100 kHz VBW 300 kHz	M	ode A	uto Swe	ер			
● 1Pk Vi	iew											
20 dBm							M	2[1]			6	-34.77 dBm .79580 GHz 12.32 dBm
10 dBm								-[-]	1			916.80 MHz
0 dBm–						-						
-10 dBn	n – L	JI -7.08										
-20 dBn	n											
-30 dBn	n — +											
-40 aBn				iting of departing		aukin			www.	MAN NA	a partitive and	ryland data
-60 dBn	n											
Start 3	30.0 M	٩Hz			1000:	1 pts					Sto	26.0 GHz
Marker	Pof	Tro	V_ualue	. 1	Y-ualue	1	Euro	tion		Euer	tion Pocul	+ 1
M1 M2	NCI	1	916	, .8 MHz 58 GHz	12.32 dB	m m	Tunt					<u> </u>
		Ϋ́, Τ	5.17		0		Mela	suring			4,40	06.05.2024

Spect	rum											
Ref Le	vel	30.00 di	Bm Offset	t 1.50 dB 🖷	RBW 1	.00 kHz	Mada A					
Count	59/3	43 00		200 1115	YDYY 3		Moue A	ulu SWB	aeh			
😑 1Pk Vi	iew]
							M	2[1]			24	34.50 dBm
											6.	84250 GHz
24 dBm							M	1[1]				13.55 dBm
											9	22.00 MHz
TO aBM												
0 dBm-												
		51 E 48										
-10 dBn	n —	JI -0,4.										
-20 dBn	n											
-30 dBn	n——		MS	,								
			2 C									
-40 dBn	n —	a support	And the second second						5 (01) 1 (1) (1) (1) (1)			THE SECTOR
In the second second				والملاء والمانية والماري	a la sala sala	التدريل والدوادين	and the second			No.		and a strength
-50 dBn	n			Service and service of the last	AND DESCRIPTION OF		N. W. C.				and a second	
-60 dBn	n — —											
Start 3	0.0 N	MHz				10001 p	ots				Stop	26.0 GHz
Marker						· · ·					•	
Туре	Ref	Trc	X-va	alue	Y-V	alue	Func	tion		Funct	ion Result	1
M1		1		922.0 MHz	13	3.55 dBm						
M2		1	6	.8425 GHz	-34	4.50 dBm						
(][Mea	suring			iya.	6.05.2024

Specti	rum											
Ref Le	vel 3	30.00 dB	m Offset 1.	.50 dB 🧉	RBW	100 kHz						
Att		45 c	IB SWT	19 µs 🥃	VBW	300 kHz	Μ	ode A	uto FFT			
Count	300/3	300										
😑 1Pk Vi	ew											
								M	2[1]		52	-34.26 dBm
20 dBm-											902.0	00000 MHz
20 ubiii								M	1[1]			13/99 dBm
10 dBm-										~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	18850 MHz
TO GDIII											2	1
0 dBm—							8					
o abiii												1
-10 dBm)1 -6.010	D aBW									
10 abii												1
-20 dBm	<u> </u>											3
20 001												1
-30 dBm	<u> </u>					M2				and		
00 001					0	~	and	\sim	m	~ ~ ~		
-40 dBm	n			and	- V	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~ .					
m	~	\sim	m m	1 A A A A A A A A A A A A A A A A A A A	<u>10</u> 3							
-50 dBm	1										_	· · · · ·
-60 dBm	1—						5					
CF 902	.12	MHz				1000	1 pts				Spa	in 8.0 MHz
Marker												
Type	Ref	Trc	X-value	9	Y	-value		Func	tion	Fun	ction Result	t
M1		1	905.6188	35 MHz		13.99 dB	m					
<u>M2</u>		1	902	.U MHz		-34.26 dB	m					
	Ĩ							Mea	suring		4,74	06.05.2024

5. POWER SPECTRAL DENSITY TEST

5.1 LIMIT

	FCC Part15.247 , Subpart C											
Section	Test Item	Limit	Frequency Range (MHz)	Result								
15.247(e)	Power Spectral Density	≤8 dBm (RBW ≥3KHz)	905-921	PASS								

5.2 TEST PROCEDURE

- 1. Set analyzer center frequency to DTS channel center frequency.
- 2. Set the span to 1.5 times the DTS channel bandwidth.
- 3. Set the 100 kHz \geq RBW \geq 3 kHz.
- 4. Set the VBW \geq 3 x RBW.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum amplitude level.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

5.3 DEVIATION FROM STANDARD No deviation.

5.4 TEST SETUP

5.5 EUT OPERATION CONDITIONS Please refer to section 3.1.4 of this report.

5.6 TEST RESULTS

Operation Mode	Channel Number	Channel Frequency (MHz)	Measurement Level (dBm/3kHz)	Limit (dBm/3kHz)	Verdict
	1	905	1.56	8	PASS
	3	909	2.01	8	PASS
802.11ah	5	913	2.33	8	PASS
2M	7	917	1.95	8	PASS
	9	921	2.35	8	PASS

6. BANDWIDTH TEST

6.1 LIMIT

	FCC Part15.247,Subpart C											
Section	Test Item	Limit	Frequency Range (MHz)	Result								
15.247(a)(2)	Bandwidth	≥500KHz (6dB bandwidth)	905-921	PASS								

6.2 TEST PROCEDURE

The automatic bandwidth measurement capability of an instrument may be employed using the X dB bandwidth mode with X set to 6 dB, if the functionality described above (i.e., RBW = 100 kHz, VBW \geq 3RBW, peak detector with maximum hold) is implemented by the instrumentation function. When using this capability, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the fundamental emission that might be \geq 6 dB.

6.3 DEVIATION FROM STANDARD No deviation.

6.4 TEST SETUP

6.5 EUT OPERATION CONDITIONS Please refer to section 3.1.4 of this report.

6.6 TEST RESULTS

Operation Mode	Channel Number	Channel Frequency (MHz)	6 dB Bandwidth (kHz)	Limit (kHz)	Verdict
	1	905	1826.2	>500	PASS
	3	909	1794.2	>500	PASS
802.11ah	5	913	1806.2	>500	PASS
2M	7	917	1834.2	>500	PASS
	9	921	1806.2	>500	PASS

Spect	rum									
Ref Le	vel 2	5.00 dBm	Offset 1.	50 dB 👄 F	RBW 50 kHz	Na-d- (
●1Pk Vi	ew	4 0 uB	3991 3	(ha 🕋 🖊		Moue #	AULU FFI			
20 dBm						N	11[1]			11.01 dBm
20 0011							M1		905.	48350 MHz
10 dBm				m	mon	~~~~		~1079	1.8261	73826 MHz
					in description i			- Y		
0 dBm—										2 2
-10 dBm										
10 001										
-20 dBm)—————————————————————————————————————									
-30 dBm		nn							nn	
-40 dBm		$\sqrt{2}$	<u>()</u>				-		- ~	mm
-50 dBm	י—ר					e				
60 ID										
-60 aBM	1									
-70 dBm)									
CE 005		47			1001	nts	4		 Sna	n 4.0 MHz
Marker		12			1001	. pcs				11 4.0 ((11)2
Туре	Ref	Trc	X-value		Y-value	Fund	tion	Fund	ction Result	:
M1		1	905.483	35 MHz	11.01 dB	m				
T1		1	904.0929	91 MHz	2.70 dB	m C	Dec Bw		1.8261	73826 MHz
			905,9190		4.U7 UB					16.05.2024
L		Л				Me.			4/4	14:38:09

Spect	rum										
Ref Le	vel 2	25.00 dBm	Offset 1	.50 dB	RBW	50 kHz					
Att		40 dB	SWT 3	7.9 µs 🥃	VBW	200 kHz	Mod	e Auto FFT			
😑 1Pk Vi	ew										
20 dBm								M1[1]			12.45 dBm
20 UBIII						M1				908.	92410 MHz
10 dBm			T 4	20		X		Occ Bw		1.7942	05794 MHz
TO GDIII			₹	10000	~m				T2 €		
0 dBm—											
-10 dBm	<u> </u>		<u> </u>								
-20 dBm	n										
-30 dBr	n +	77	h						~	m n	$\overline{\mathbf{A}}$
w.	m									~ × ×	$\sim \sim \sim$
-40 dBm	י										
-50 dBr	1 <u> </u>										
-60 dBr) — [-										
-70 aBn											
CF 909	.0 MI	Hz				1001	pts			Spa	n 4.0 MHz
Marker											
Туре	Ref	Trc	X-valu	e	Y-	-value	F	unction	Fund	ction Result	
M1		1	908.92	41 MHz		12.45 dB	m				
T1		1	908.10	09 MHz		5.66 dB	m	Occ Bw		1.79420	15794 MHz
<u> </u>			909.89	SI MHZ		4.31 QB	m				
		Л								4,70	6.05.2024

Spectrum									
Ref Level 2	25.00 dBm	o Offset 1.50 d	IB RBW	50 kHz					
Att	40 dE	ы SWT 37.9 µ	is 🔵 VBW	200 kHz	Mode 🥡	Auto FFT			
⊖1Pk View									
20. dBm-					N	/1[1]		É	13.06 dBm
20 ubiii				M1				912.	90010 MHz
10 dBm		T ID		. A	mad	CC BW		1.8061	93806 MHz
TO UBIII		A m	and the	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	V AR	~ ~ ~	MAS .		
o abin		1					1		
-10 dBm									
10 0.0111									
-20 dBm									
Lo dom							- P		
-30 dBm								A -	
man	\mathcal{N}						~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Vmr	$\sim \sim$
-40 dBm	Ф.								~ ~
-50 dBm									
-60 dBm									
-70 dBm									
				1001					- 4 0 MU-
CF 913.0 MI	HZ			1001	pts			ъра	11 4.0 MHZ
Marker	1 - 1		1		1 =		-		
		X-Value	<u>Y</u> ·	-value	- Fun	ction	Fund	tion Result	
	1	912,9001 MI	п <u>и</u> Н7	13.00 UBI	u n (1 80610	3806 MH7
T2	1	913,91109 M	Hz	4.90 dBr	n	500 DW		1,00011	2000 11112
	<u>, -,</u>							4.54%	6 05 2024
					Me			10	

Spectru	n)											
Ref Level	l 25.00	dBm	Offset	1.50 dB	RBW	50 kHz							· · · ·
Att	2	40 dB	SWT	37.9 µs 🧉	VBW	200 kHz	M	ode Au	uto FFT				
⊖1Pk View													,
20 dBm								<u>M</u> :	[1]			916	11.74 dBm 79620 MHz
10 dBm				dra	~~~~~~	M1	~	0	C BW	-A		1.8341	65834 MHz
					12 B 2290	~ ~ ~	1		~ \$	Y Y			
o ubili													
-10 dBm—													
-20 dBm—			-								\uparrow		
-30 dBm	\checkmark	\sim	\checkmark								h		~~~
-40 dBm—													X
-50 dBm—													
-60 d8m													
-00 0011													
-70 dBm—													
CF 917.0	MHz				•	1001	pts					Spa	n 4.0 MHz
Marker													
Type R	ef Tro		X-val	ue	Y-	value		Funct	ion		Func	tion Result	
M1		1	916.7	7962 MHz		11.74 dB	m	_					
T2		1	916.08	3092 MHZ 1508 MHZ		2.87 dB 3.59 dB	m m	00	C BW			1.83410	55834 MHZ
								Mela	suring			4/4	16.05.2024

Spectr	um											
Ref Lev	el 2	:5.00 dBm	Offset 1.	50 dB	RBW	50 kHz						
Att		40 dB	SWT 33	7.9 µs 🧉	VBW	200 kHz	N	1ode Al	uto FFT			
🔵 1Pk Vie	W											
20 dBm-				M1				M	1[1]		920.	11.65 dBm 25670 MHz
10 dBm-				Å	~~~	m	25			পদ্দ	1.8061	93806 MHz
0 dBm—			<u> </u>		_	2	2			<u> </u>		
-10 dBm-												
-20 dBm-										+		
-38-d8m	4		<u> </u>									\sim
-40 dBm-												
-50 dBm-							-					
-60 dBm-												
-70 dBm-												
CF 921.	0 MH	Ηz				1001	pts				Spa	n 4.0 MHz
Marker												
Type	Ref	Trc	X-value		۲·	value		Funct	ion	Fun	ction Result	:]
M1		1	920.256	67 MHz		11.65 dB	m					
T1		1	920.104	19 MHz		4.44 dB	m	0	cc Bw		1.8061	93806 MHz
T2		1	921.9110	9 MHz		4.72 dB	m					
	1							Mea	suring		1/4	06.05.2024

7. PEAK OUTPUT POWER TEST

7.1 LIMIT

FCC Part15.247,Subpart C									
Section	Test Item	Limit	Frequency Range (MHz)	Result					
15.247(b)(3)	Output Power	1 watt or 30dBm	905-921	PASS					

7.2 TEST PROCEDURE

One of the following procedures may be used to determine the maximum peak conducted output power of a DTS EUT.

RBW ≥ DTS bandwidth

The following procedure shall be used when an instrument with a resolution bandwidth that is greater than the DTS bandwidth is available to perform the measurement:

a) Set the RBW \geq DTS bandwidth.

b) Set VBW \geq [3 × RBW]. c) Set span \geq [3 × RBW].

d) Sweep time = auto couple.

e) Detector = peak.

f) Trace mode = max hold.

g) Allow trace to fully stabilize.

h) Use peak marker function to determine the peak amplitude level.

Integrated band power method:

The following procedure can be used when the maximum available RBW of the instrument is less than the

DTS bandwidth:

a) Set the RBW = 1 MHz.

b) Set the VBW \geq [3 \times RBW].

c) Set the span \geq [1.5 × DTS bandwidth].

d) Detector = peak.

e) Sweep time = auto couple.

f) Trace mode = max hold.

g) Allow trace to fully stabilize.

h) Use the instrument's band/channel power measurement function with the band limits set equal to the DTS bandwidth edges (for some instruments, this may require a manual override to select the peak detector). If the instrument does not have a band power function, then sum the spectrum levels (in linear power units) at intervals equal to the RBW extending across the DTS channel bandwidth.

PKPM1 Peak power meter method:

The maximum peak conducted output power may be measured using a broadband peak RF power meter. The power meter shall have a video bandwidth that is greater than or equal to the DTS bandwidth and shall use a fast-responding diode detector.

7.3 DEVIATION FROM STANDARD No deviation.

7.4 TEST SETUP

7.5 EUT OPERATION CONDITIONS Please refer to section 3.1.4 of this report.

Shenzhen Huaxin Information Technology Service Co.,Ltd

101,R&D Building,No.3 guansheng 4th Road,Luhu Community,Guanhu Street,LonghuaDistrict,Shenzhen,Guangdong,China Tel:+86-755-21018313 Http://www.tecovo.net

7.6 TEST RESULTS

Operation Mode	Channel Number	Channel Frequency (MHz)	Measurement Level (dBm)	Limit (dBm)	Verdict
	1	905	24.83	30	PASS
	3	909	25.59	30	PASS
802.11ah	5	913	27.97	30	PASS
2M	7	917	27.53	30	PASS
	9	921	24.76	30	PASS

Spectrum						
Ref Level 3 Att	31.50 dBm 50 dB	Offset 1.50 dB 🖷 SWT 1.3 µs 🖷	RBW 3 MHz VBW 10 MHz	Mode Auto FFT		
●1Pk View						
			M1	M1[1]		24.83 dBm 904.69990 MHz
20 dBm						
10 dBm						
0 dBm						
-10 dBm						
-20 dBm						
-30 dBm						
-40 dBm						
-50 dBm						
-60 dBm						
CF 905.0 M	Hz	· ·	691 pt	is ,	· ·	Span 6.1 MHz
Marker	1 1			1		1
M1	1 1	X-value 904.6999 MHz	Y-value 24.83 dBm	Function	Function F	lesult
	Υ			Measuring	444	25.04.2024

Spectru	m	ſ										
Ref Leve	el 31.5	0 dBm	Offset 1.9	50 dB 🧉	RBW	3 MHz						· · · ·
Att		50 dB	SWT 1	.3 µs 🧉	VBW	10 MHz	Mode	Auto FFT				
⊖1Pk View	/											
					_		MI	M1[1]			909.	25.59 dBm 30010 MHz
20 dBm—						~						/
10 dBm—												
0 dBm												
-10 dBm—												
-20 dBm—												
-30 dBm—												
-40 dBm—												
-50 dBm—												
-60 dBm—												
CF 909.0	MHz					691	pts				Spa	n 6.1 MHz
Marker												
Type R	lef Ti	rc 📃	X-value		Y-	value	F u	nction		Funct	ion Result	
M1		1	909.300	1 MHz	2	25.59 dB	m					
								leasuring	-		1.20	5.04.2024

Spectru	ım									
Ref Leve	Ref Level 31.50 dBm Offset 1.50 dB 🖷 RBW 3 MHz									
Att		50 dB	SWT 1	.3 µs 🔵 '	VBW 10 MHz	Mode Au	uto FFT			
⊖1Pk Viev	W									
						MM	1[1]		913	27.97 dBm .30010 MHz
20 dBm—	-					1				
10 dBm—										
0 dBm										
-10 dBm—										
-20 dBm—	-									
-30 dBm—	2									
-40 dBm—										
-50 dBm—										
-60 dBm—										
CF 913.0	CF 913.0 MHz 691 pts Span 6.1 MHz									
Marker										
Type F	Ref 1	Trc	X-value		Y-value	Func	tion	Fu	unction Resul	t 🔤
M1		1	913.300:	1 MHz	27.97 dB	m]
						Mea	suring	Concession in the local division of the loca	B 4.84	25.04.2024

Spectru	m													
Ref Leve	el 31.50	dBm C	offset 1	.50 dB 🧉	RBW	3 MHz								· · · ·
All	. 5	J UB 5	WI	1.3 µs 🖷	VBW	TO MHZ	IM	ode Al	ITO FF I					
	r 							M	1[1]				2	27.53 dBm
						-M1			+[+]			9	16.6	9990 MHz
20 dBm-		_					\checkmark							
10 dBm—										_				
0 dBm														
-10 dBm—														
-20 dBm—										_				
-30 dBm—														
-40 dBm—														
-50 dBm—														
-60 dBm—														
CF 917.0	CF 917.0 MHz 691 pts Span 6.1 MHz													
Marker														
Type R	tef Trc		X-valu		<u> </u>	-value		Func	tion		Fun	ction Re	sult	
			AT0'0A	99 MIUS		27.53 UB		Mara				4.944	2	5.04.2024

Spectrun	n D									
Ref Level	31.50 dBm	Offset 1.50 dB 👄	RBW 3 MHz							
	50 dB	SWI 1.3 µs 👄	VBW 10 MHz P	Mode Auto FFT)				
TLK NGW				M1 M1[1]		24.76 dBm				
20 dBm						921.30900 MHZ				
10 dBm										
0 dBm										
-10 dBm—										
-20 dBm—										
-30 dBm—										
-40 dBm—										
-50 dBm—										
-60 dBm—										
CF 921.0 M	CF 921.0 MHz 691 pts Span 6.1 MHz									
Marker	f	V-usluo I	V_ualuo	Eunction	Eurotics D	ocult I				
M1	1	921.309 MHz	24.76 dBm	Function	Function K	esuit				
)[Measuring	434	25.04.2024				

8. ANTENNA REQUIREMENT

8.1 STANDARD REQUIREMENT

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible partyshall be used with the device.

8.2 RESULT

The EUT antenna is External Antenna. It comply with the standard requirement.

APPENDIX I AND APPENDIX II : EUT Photos

Please refer to separated files for APPENDIX I and APPENDIX II EUT Photos.

APPENDIX III : Test Setup Photos

Please refer to separated files for APPENDIX III Test Setup Photos.

* * * * * END OF THE REPORT * * * * *