

CFR 47 FCC PART 15 SUBPART E TEST REPORT

For

Facial Aesthetics Intelligent Trading Hub (FAITH)

MODEL NUMBER: DF1596-1-M

REPORT NUMBER: E04A24020093F00502

ISSUE DATE: July 9, 2024

FCC ID: 2BF7M-DF1596

Prepared for

Guangzhou Aimira Innovation Limited
Room902, 9F,Bldg 6 ,No.6, Nanjiang Second Road, Zhujiang Street, Nansha
District, Guangzhou Guangdong Province,China

Prepared by

Guangdong Global Testing Technology Co., Ltd.

Room 101-105, 203-210, Building 1, No.2, Keji 8 Road, Songshan Lake Park, Dongguan city, Guangdong, People's Republic of China, 523808

This report is based on a single evaluation of the submitted sample(s) of the above mentioned Product, it does not imply an assessment of the production of the products.

This report shall not be reproduced, except in full, without the written approval of Guangdong Global Testing Technology Co., Ltd.

TRF No.: 04-E001-0B TRF Originator: GTG TRF Date: 2023-12-13 Web: www.gtggroup.com E-mail: info@gtggroup.com Tel.: 86-400 755 8988

REPORT NO.: E04A24020093F00502 Page 2 of 56

Revision History

Rev.	Issue Date	Revisions	Revised By
V0	July 9, 2024	Initial Issue	

REPORT NO.: E04A24020093F00502 Page 3 of 56

Summary of Test Results

Test Item Clause		Limit/Requirement	Result
ON TIME AND DUTY CYCLE	ANSI C63.10-2013, Clause 12.2	None; for reporting purposes only.	Pass
6dB AND 26dB EMISSION BANDWIDTH AND 99% OCCUPIED BANDWIDTH	KDB 789033 D02 v02r01 Section C.1	FCC Part 15.407 (a)(2)(5)	Pass
CONDUCTED OUTPUT POWER	KDB 789033 D02 v02r01 Section E.3.a (Method PM)	FCC 15.407 (a)	Pass
POWER SPECTRAL DENSITY	KDB 789033 D02 v02r01 Section F	FCC 15.407 (a)	Pass
AC Power Line Conducted Emission	ANSI C63.10-2013, Clause 6.2.	FCC 15.207	Pass
Radiated Emissions and Band Edge Measurement	KDB 789033 D02 v02r01 Section G.3, G.4, G.5, and G.6	FCC 15.407 (b) FCC 15.209 FCC 15.205	Pass
FREQUENCY STABILITY	N/A	FCC 15.407 (g)	Pass
Dynamic Frequency Selection (Master)	KDB 905462 D02 UNII DFS Compliance Procedures New Rules v02	FCC Part 15.407 (h)	N/A
Antenna Requirement	N/A	FCC 47 CFR Part 15.203/ 15.407(a)(1) (2)	Pass

^{*}This test report is only published to and used by the applicant, and it is not for evidence purpose in China.

^{*}The measurement result for the sample received is <Pass> according to <CFR 47 FCC PART 15 SUBPART E> when <Accuracy Method> decision rule is applied.

CONTENTS

1.	ATTES'	TATION OF TEST RESULTS	5
2.	TEST N	IETHODOLOGY	6
3.	FACILI	TIES AND ACCREDITATION	6
4.	CALIBE	RATION AND UNCERTAINTY	7
	4.1.	MEASURING INSTRUMENT CALIBRATION	7
	4.2.	MEASUREMENT UNCERTAINTY	7
5.	EQUIP	MENT UNDER TEST	8
	5.1.	DESCRIPTION OF EUT	8
	5.2.	CHANNEL LIST	9
	5.3.	MAXIMUM AVERAGE EIRP	9
	5.4.	THE WORSE CASE POWER SETTING PARAMETER	10
	5.5.	DESCRIPTION OF AVAILABLE ANTENNAS	11
	5.6.	SUPPORT UNITS FOR SYSTEM TEST	12
	5.7.	SETUP DIAGRAM	13
6.	MEASU	RING EQUIPMENT AND SOFTWARE USED	14
7.	ANTEN	NA PORT TEST RESULTS	16
	7.1.	ON TIME AND DUTY CYCLE	16
	7.2.	6dB AND 26dB EMISSION BANDWIDTH AND 99% OCCUPIED BANDWIDTH	17
	7.3.	CONDUCTED OUTPUT POWER	19
	7.4.	POWER SPECTRAL DENSITY	22
	7.5.	FREQUENCY STABILITY	24
8.	RADIA	FED TEST RESULTS	26
	8.1.	Radiated Emissions and Band Edge Measurement	34
9.	AC PO	WER LINE CONDUCTED EMISSION	50
10		ANTENNA REQUIREMENT	53
A F		DUOTO CDADUS OF TEST CONFIGURATION	- 4

REPORT NO.: E04A24020093F00502

Page 5 of 56

1. ATTESTATION OF TEST RESULTS

Applicant Information

Company Name: Guangzhou Aimira Innovation Limited

Address: Room902, 9F,Bldg 6 ,No.6, Nanjiang Second Road, Zhujiang

Street, Nansha District, Guangzhou Guangdong Province, China

Manufacturer Information

Company Name: Guangzhou Aimira Innovation Limited

Address: Room902, 9F,Bldg 6, No.6, Nanjiang Second Road, Zhujiang

Street, Nansha District, Guangzhou Guangdong Province, China

EUT Information

Product Description: Facial Aesthetics Intelligent Trading Hub (FAITH)

Model: DF1596-1-M

Brand: Aimira

Sample Received Date: May 6, 2024 Sample Status: Normal

Sample ID: A24020093 001

Date of Tested: May 6, 2024 to July 9, 2024

APPLICABLE STANDARDS			
STANDARD TEST RESULTS			
CFR 47 FCC PART 15 SUBPART E	Pass		

Prepared By:

Checked By:

Alan He

Laboratory Leader

San 2 Ge

Shawn Wen

proved By:

Laboratory Manager

REPORT NO.: E04A24020093F00502 Page 6 of 56

2. TEST METHODOLOGY

All tests were performed in accordance with the standard CFR 47 FCC PART 15 SUBPART E

3. FACILITIES AND ACCREDITATION

	A2LA (Certificate No.: 6947.01)
	Guangdong Global Testing Technology Co., Ltd.
	has been assessed and proved to be in compliance with A2LA.
	FCC (FCC Designation No.: CN1343)
	Guangdong Global Testing Technology Co., Ltd.
	has been recognized to perform compliance testing on equipment
Accreditation Certificate	subject to Supplier's Declaration of Conformity (SDoC) and
	Certification rules
	ISED (Company No.: 30714)
	Guangdong Global Testing Technology Co., Ltd.
	has been registered and fully described in a report filed with ISED.
	The Company Number is 30714 and the test lab Conformity
	Assessment Body Identifier (CABID) is CN0148.

Note: All tests measurement facilities use to collect the measurement data are located at Room 101-105, 203-210, Building 1, No.2, Keji 8 Road, Songshan Lake Park, Dongguan city, Guangdong, People's Republic of China, 523808

REPORT NO.: E04A24020093F00502 Page 7 of 56

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations and is traceable to recognized national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Test Items	k	Uncertainty	
Emission Bandwidth	1.96	±9.0 PPM	
Conduct Output Power	1.96	± 1.12 dB	
Power Spectral Density	1.96	± 2.1 dB	
Conducted Spurious Emission	1.96	9 kHz-30 MHz: ± 0.95 dB 30 MHz-1 GHz: ± 1.5 dB 1GHz-12.75GHz: ± 1.8 dB 12.75 GHz-26.5 GHz: ± 2.1dB 26.5 GHz-40 GHz: ± 2.6 dB	
Frequency Stability	1.96	±9.0 PPM	

Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

Test Item	Frequency Range	k	U(dB)
Conducted emissions from the AC mains power ports (AMN)	150 kHz ~ 30 MHz	2	3.37
Radiated emissions	9 kHz ~ 30 MHz	2	4.16
Radiated emissions	30 MHz ~ 1 GHz	2	3.79
Radiated emissions	1 GHz ~ 18 GHz	2	5.62
Radiated emissions	18 GHz ~ 40 GHz	2	5.54

Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

REPORT NO.: E04A24020093F00502 Page 8 of 56

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

EUT Name		Facial Aesthetics Intelligent Trading Hub (FAITH)	
Model		DF1596-1-M	
Hardware Version		V1.0	
Software Version		V1.0	
Ratings		AC 120V/60Hz	
Power Supply AC		120V	

Frequency Band:	5150 MHz to 5250 MHz (U-NII-1) 5725 MHz to 5850 MHz (U-NII-3)			
Frequency Range:	5180 MHz to 5240 MHz 5745 MHz to 5825 MHz			
Support Standards:	IEEE 802.11a/n/ac			
TPC Function:	Not support			
DFS Operational mode:	Not support			
Type of Modulation:	IEEE 802.11a: OFDM(64QAM, 16QAM, QPSK, BPSK) IEEE 802.11n: OFDM(64QAM, 16QAM, QPSK, BPSK) IEEE 802.11ac: OFDM(256QAM, 64QAM, 16QAM, QPSK, BPSK)			
Channel Spacing:	IEEE 802.11a/n HT20/ac VHT20: 20 MHz IEEE 802.11n HT40/ac VHT40: 40 MHz IEEE 802.11ac VHT80: 80 MHz			
Data Rate:	IEEE 802.11a: Up to 54 Mbps IEEE 802.11n HT20: Up to MCS15 IEEE 802.11n HT40: Up to MCS15 IEEE 802.11ac VHT20: Up to MCS9 IEEE 802.11ac VHT40: Up to MCS9 IEEE 802.11ac VHT80: Up to MCS9			
Number of Channels:	5150 MHz to 5250 MHz: 4 for IEEE 802.11a/n HT20/ac VHT20 2 for IEEE 802.11n HT40/ac VHT40 1 for IEEE 802.11ac VHT80 5725 MHz to 5850 MHz: 5 for IEEE 802.11a/n HT20/ac VHT20 2 for IEEE 802.11n HT40/ac VHT40 1 for IEEE 802.11ac VHT80			
Maximum conducted output power:	U-NII-1 IEEE 802.11a: 6.34 dBm IEEE 802.11n HT20: 5.77 dBm IEEE 802.11n HT40: 4.15 dBm IEEE 802.11ac VHT20: 4.35 dBm IEEE 802.11ac VHT40: 4.42 dBm IEEE 802.11ac VHT80: 2.83 dBm U-NII-3 IEEE 802.11a: 6.22 dBm IEEE 802.11n HT20: 5.05 dBm IEEE 802.11n HT40: 4.53 dBm IEEE 802.11ac VHT20: 4.99 dBm			

	IEEE 802.11ac VHT40: 4.51 dBm IEEE 802.11ac VHT80: 3.46 dBm		
Antenna Type: Internal Antenna			
Antenna Gain:	U-NII-1 3.7145 dBi for antenna 1 3.7145 dBi for antenna 2 U-NII-3 5.0078 dBi for antenna 1 5.0078 dBi for antenna 2		
EUT Test software:	AX Series MP Toolkit		

5.2. CHANNEL LIST

UNII-1		UNII-1		UNII-1		
(For Bandwidth	(For Bandwidth = 20 MHz)		(For Bandwidth = 40 MHz)		(For Bandwidth = 80 MHz)	
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	
36	5180	38	5190	42	5210	
40	5200	46	5230			
44	5220					
48	5240					

UNI	I-3	UNII-3		UNII-3	
(For Bandwid	dth=20MHz)	(For Bandwidth=40MHz)		(For Bandwidth=80MHz)	
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
149	5745	151	5755	155	5775
153	5765	159	5795		
157	5785				
161	5805				
165	5825				

5.3. MAXIMUM AVERAGE EIRP

UNII-1 BAND(FCC)

IEEE Std. 802.11	Frequency (MHz)	Maximum Average Conducted Power (dBm)
а		6.34
n HT20		5.77
n HT40	5150 ~ 5250	4.15
ac VHT20	0100 0200	4.35
ac VHT40		4.42
ac VHT80		2.83

REPORT NO.: E04A24020093F00502 Page 10 of 56

UNII-3 BAND(FCC)

IEEE Std. 802.11	Frequency (MHz)	Maximum Average Conducted Power(dBm)
а		6.22
n HT20		5.05
n HT40	5725 ~ 5850	4.53
ac VHT20	3723 3030	4.99
ac VHT40		4.51
ac VHT80		3.46

5.4. THE WORSE CASE POWER SETTING PARAMETER

The Worse Case Power Setting Parameter		
Test Software	AX Series MP Toolkit	

UNII-1

Mode	Rate	Channel	Soft se	et value
lviode	Rale	Channel	ANT 1	ANT 2
		36	7	7
11a	6M	40	7	7
		48	7	7
		36	2	2
11n HT20	MCS8	40	5	5
		48	3	3
11n UT10	MCS8	38	0	0
11n HT40	IVICSO	46	3.5	3.5
		36	1	1
11ac VHT20	MCS0	40	3.5	3.5
		48	2	2
11ac VHT40	MCS0	38	4.5	4.5
		46	2.5	2.5
11ac VHT80	MCS0	42	0	0

UNII-3

Mada	Doto	Channal	Soft set value	
Mode	Rate	Channel	ANT1	ANT 2
		149	3	7
11a	6M	157	6	7
		165	7	7
	MCS0	149	0	0
11n HT20		157	2.5	2.5
		165	1.5	1.5
11n HT40	MCS0	151	1	1
11n HT40		159	3	3
11ac VHT20		149	0	0
	MCS0	157	2.5	2.5
		165	1.5	1.5

TRF No.: 04-E001-0B

Global Testing, Great Quality.

REPORT NO.: E04A24020093F00502

Page 11 of 56

11ac VHT40	MCS0	151	1	1
	IVICSU	159	1.5	1.5
11ac VHT80	MCS0	155	2.5	2.5

THE WORSE CASE CONFIGURATIONS

The EUT was tested in the following configuration(s):

Controlled in test mode using a software application on the EUT supplied by customer. The application was used to enable a continuous transmission and to select the mode, test channels, bandwidth, data rates as required.

Test channels referring to section 5.4.

Maximum power setting referring to section 5.4.

Worst case Data Rates declared by the customer:

802.11a mode: 6 Mbps 802.11n HT20 mode: MCS8 802.11n HT40 mode: MCS8 802.11ac VHT20 mode: MCS0 802.11ac VHT40 mode: MCS0 802.11ac VHT80 mode: MCS0

5.5. DESCRIPTION OF AVAILABLE ANTENNAS

Antenna No.	Frequency Band	Antenna Type	Max Antenna Gain (dBi)
1	5150-5250	Internal Antenna	3.7145
2	5150-5250	Internal Antenna	3.7145
1	5725-5850	Internal Antenna	5.0078
2	5725-5850	Internal Antenna	5.0078

MIMO output power port and MIMO PSD port summing were performed in accordance with KDB 662911 D01. For the MIMO results the Directional Gain was calculated in accordance with the following mothed.

UNII-1

For output power measurements:

Directional gain = G_{ANT} + Array Gain = (3.7145 + 0) dBi = 3.7145dBi

Note:

G_{ANT}: Antenna gain.

Array Gain = 0 dB for $N_{ANT} \le 4$ when all antennas have the same gain.

N_{ANT}: the total number of antennas.

For power spectral density (PSD) measurements:

Directional gain = G_{ANT} + Array Gain = (3.7145 + 3.01) dBi = 6.7245dBi

TRF No.: 04-E001-0B Global Testing, Great Quality.

REPORT NO.: E04A24020093F00502 Page 12 of 56

Note:

G_{ANT}: Antenna gain.

Array Gain = $10\log(N_{ANT}/N_{SS}) dB = 10\log(2/1) dB = 3.01dB$.

UNII-3

For output power measurements:

Directional gain = G_{ANT} + Array Gain = (5.0078 + 0) dBi =5.0078dBi

Note:

G_{ANT}: Antenna gain.

Array Gain = 0 dB for N_{ANT}≤ 4 when all antennas have the same gain.

N_{ANT}: the total number of antennas.

For power spectral density (PSD) measurements:

Directional gain = G_{ANT} + Array Gain = (5.0078 + 3.01) dBi = 8.0178dBi

Note:

G_{ANT}: Antenna gain.

Array Gain = $10log(N_{ANT}/N_{SS}) dB = 10log(2/1) dB = 3.01dB$.

IEE Std. 802.11	Transmit and Receive Mode	Description
802.11a	⊠2TX, 2RX	ANT 1 and ANT 2 can be used as transmitting/receiving antenna.
802.11n HT20	⊠2TX, 2RX	ANT 1 and ANT 2 can be used as transmitting/receiving antenna.
802.11n HT40	⊠2TX, 2RX	ANT 1 and ANT 2 can be used as transmitting/receiving antenna.
802.11ac VHT20	⊠2TX, 2RX	ANT 1 and ANT 2 can be used as transmitting/receiving antenna.
802.11ac VHT40	⊠2TX, 2RX	ANT 1 and ANT 2 can be used as transmitting/receiving antenna.
802.11ac VHT80	⊠2TX, 2RX	ANT 1 and ANT 2 can be used as transmitting/receiving antenna.

Note: 1. WLAN 2.4G & WLAN 5G can't transmit simultaneously. (declared by client)

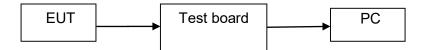
2. The value of the antenna gain was declared by customer.

5.6. SUPPORT UNITS FOR SYSTEM TEST

Equipment	Manufacturer	Model No.
PC	Lenovo	T14
Test board	1	1

REPORT NO.: E04A24020093F00502 Page 13 of 56

5.7. SETUP DIAGRAM


AC conducted emission:

Radiated Emission:

RF conducted:

REPORT NO.: E04A24020093F00502 Page 14 of 56

6. MEASURING EQUIPMENT AND SOFTWARE USED

Test Equipment of Conducted RF					
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date
Spectrum Analyzer	Rohde & Schwarz	FSV40	102257	2023/09/18	2024/09/17
Spectrum Analyzer	KEYSIGHT	N9020A	MY51285127	2023/09/18	2024/09/17
EXG Analog Signal Generator	KEYSIGHT	N5173B	MY61253075	2023/09/18	2024/09/17
Vector Signal Generator	Rohde & Schwarz	SMM100A	101899	2023/09/18	2024/09/17
RF Control box	MWRF-test	MW100-RFCB	MW220926GTG	2023/09/18	2024/09/17
Wideband Radio Communication Tester	Rohde & Schwarz	CMW270	102792	2023/09/18	2024/09/17
Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	103235	2023/09/18	2024/09/17
temperature humidity chamber	Espec	SH-241	SH-241-2014	2023/09/18	2024/09/17
RF Test Software	MWRF-test	MTS8310E (Ver. V2/0)	N/A	N/A	N/A

Test Equipment of Radiated emissions below 1GHz					
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date
3m Semi-anechoic Chamber	ETS	9m*6m*6m	Q2146	2022/08/30	2025/08/29
EMI Test Receiver	Rohde & Schwarz	ESCI3	101409	2023/09/18	2024/09/17
Spectrum Analyzer	KEYSIGHT	N9020A	MY51283932	2023/09/18	2024/09/17
Pre-Amplifier	HzEMC	HPA-9K0130	HYPA21001	2023/09/18	2024/09/17
Biconilog Antenna	Schwarzbeck	VULB 9168	01315	2022/10/10	2025/10/09
Biconilog Antenna	ETS	3142E	00243646	2022/03/23	2025/03/22
Loop Antenna	ETS	6502	243668	2022/03/30	2025/03/29
Test Software	Farad	EZ-EMC (Ver.FA-03A2 RE)	N/A	N/A	N/A

Test Equipment of Radiated emissions above 1GHz					
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date
3m Semi-anechoic Chamber	ETS	9m*6m*6m	Q2149	2022/08/30	2025/08/29
Spectrum Analyzer	Rohde & Schwarz	FSV40	101413	2023/09/18	2024/09/17
Spectrum Analyzer	KEYSIGHT	N9020A	MY51283932	2023/09/18	2024/09/17
Pre-Amplifier	A-INFO	HPA-1G1850	HYPA21003	2023/09/18	2024/09/17
Horn antenna	A-INFO	3117	246069	2022/03/11	2025/03/10
Pre-Amplifier	ZKJC	HPA-184057	HYPA21004	2023/09/18	2024/09/17

REPORT NO.: E04A24020093F00502 Page 15 of 56

Horn antenna	ZKJC	3116C	246265	2022/03/29	2025/03/28
Test Software	Farad	EZ-EMC (Ver.FA-03A2 RE+)	N/A	N/A	N/A

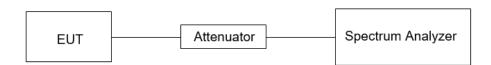
Test Equipment of Conducted emissions					
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date
Shielded Room	CHENG YU	8m*5m*4m	N/A	2022/10/29	2025/10/28
EMI Test Receiver	Rohde & Schwarz	ESR3	102647	2023/09/18	2024/09/17
LISN/AMN	Rohde & Schwarz	ENV216	102843	2023/09/18	2024/09/17
NNLK 8129 RC	Schwarzbeck	NNLK 8129 RC	5046	2023/09/18	2024/09/17
Test Software	Farad	EZ-EMC (Ver. EMC-con-3A1 1+)	N/A	N/A	N/A

REPORT NO.: E04A24020093F00502 Page 16 of 56

7. ANTENNA PORT TEST RESULTS

7.1. ON TIME AND DUTY CYCLE

LIMITS


None; for reporting purposes only.

TEST PROCEDURE

Refer to KDB 789033 D02 General U-NII Test Procedures New Rules v02r01 section II.B.

The zero-span mode on a spectrum analyzer or EMI receiver, if the response time and spacing between bins on the sweep are sufficient to permit accurate measurements of the on and off times of the transmitted signal. Set the center frequency of the instrument to the center frequency of the transmission. Set RBW \geq EBW if possible; otherwise, set RBW to the largest available value. Set VBW \geq RBW. Set detector = peak or average. The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T, where T is defined in II.B.1.a), and the number of sweep points across duration T exceeds 100. (For example, if VBW and/or RBW are limited to 3 MHz, then the zero-span method of measuring duty cycle shall not be used if T \leq 16.7 microseconds.)

TEST SETUP

TEST ENVIRONMENT

Temperature	21.4℃	Relative Humidity	53%
Atmosphere Pressure	101kPa		

TEST RESULTS

Please refer to section "Test Data" - Appendix A

REPORT NO.: E04A24020093F00502 Page 17 of 56

7.2. 6DB AND 26DB EMISSION BANDWIDTH AND 99% OCCUPIED BANDWIDTH

LIMITS

CFR 47 FCC Part15, Subpart E ISED RSS-247 ISSUE 3				
Test Item	Limit	Frequency Range (MHz)		
26 dB Emission Bandwidth	For reporting purposes only.	5150 ~ 5250		
26 dB Emission Bandwidth	For reporting purposes only.	5250 ~ 5350		
26 dB Emission Bandwidth	For reporting purposes only.	5470 ~ 5725 (For FCC) 5470 ~ 5600 (For ISED) 5650 ~ 5725 (For ISED)		
6 dB Emission Bandwidth	The minimum 6 dB emission bandwidth shall be 500 kHz.	5725 ~ 5850		
99 % Occupied Bandwidth	For reporting purposes only.	5150 ~ 5850 (For ISED)		

TEST PROCEDURE

Refer to KDB 789033 D02 General U-NII Test Procedures New Rules v02r01 section II.C1. for 26 dB Emission Bandwidth; section II.C2. for 6 dB Emission Bandwidth; section II.D. for 99 % Occupied Bandwidth.

Connect the EUT to the spectrum analyser and use the following settings:

Center Frequency	The center frequency of the channel under test
Detector	Peak
RBW	For 6 dB Emission Bandwidth: RBW=100 kHz For 26 dB Emission bandwidth: approximately 1 % of the EBW. For 99 % Occupied Bandwidth: approximately 1 % ~ 5 % of the OBW.
VBW	For 6 dB Bandwidth: ≥ 3*RBW For 26 dB Bandwidth: >3*RBW For 99 % Bandwidth: >3*RBW
Trace	Max hold
Sweep	Auto couple

a) Use the 99 % power bandwidth function of the instrument, allow the trace to stabilize and report the measured bandwidth.

b) Allow the trace to stabilize and measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6/26 dB relative to the maximum level measured in the fundamental emission.

REPORT NO.: E04A24020093F00502 Page 18 of 56

TEST SETUP

TEST ENVIRONMENT

Temperature	21.4℃	Relative Humidity	53%
Atmosphere Pressure	101kPa		

TEST RESULTS

Please refer to section "Test Data" - Appendix A

REPORT NO.: E04A24020093F00502 Page 19 of 56

7.3. CONDUCTED OUTPUT POWER

LIMITS

	CFR 47 FCC Part15, Subpart E		
Test Item	Limit	Frequency Range (MHz)	
Conducted	☐ Outdoor Access Point: 1 W (30 dBm) ☐ Outdoor Access Point: 1 W (30 dBm) ☐ Fixed Point-To-Point Access Points: 1 W (30 dBm) ☐ Client Devices: 250 mW (24 dBm)	5150 ~ 5250	
Output Power	Shall not exceed the lesser of 250 mW (24dBm) or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz.	5250 ~ 5350 5470 ~ 5725	
	Shall not exceed 1 Watt (30 dBm).	5725 ~ 5850	

	ISED RSS-247 ISSUE 3			
Test Item	Limit	Frequency Range (MHz)		
	The maximum e.i.r.p. shall not exceed 200 mW (23 dBm) or 10 + 10 log ₁₀ B, dBm, whichever power is less. B is the 99 % emission bandwidth in megahertz.	5150 ~ 5250		
Conducted Output	a. The maximum conducted output power shall not exceed 250 mW (24 dBm) or 11 + 10 log ₁₀ B dBm, whichever is less.			
Power or e.i.r.p.	b. The maximum e.i.r.p. shall not exceed 1.0 W (30 dBm) or 17 + 10 log ₁₀ B dBm, whichever is less. B is the 99 % emission bandwidth in megahertz. Note that devices with a maximum e.i.r.p. greater than 500 mW shall implement TPC in order to have the capability to operate at least 6 dB below the maximum permitted e.i.r.p. of 1 W.	5250 ~ 5350 5470 ~ 5600 5650 ~ 5725		
	Shall not exceed 1 Watt (30 dBm).	5725 ~ 5850		

Note:

The above limits are based upon the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

TEST PROCEDURE

Refer to KDB 789033 D02 General U-NII Test Procedures New Rules v02r01 section II.E.

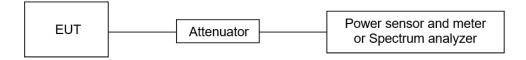
Method SA-1 (trace averaging with the EUT transmitting at full power throughout each sweep):

- (i) Set span to encompass the entire emission bandwidth (EBW) (or, alternatively, the entire 99% occupied bandwidth) of the signal.
- (ii) Set RBW = 1 MHz.
- (iii) Set VBW ≥ 3 MHz.

REPORT NO.: E04A24020093F00502 Page 20 of 56

- (iv) Number of points in sweep $\geq 2 \times \text{span} / \text{RBW}$. (This ensures that bin-to-bin spacing is $\leq \text{RBW}/2$, so that narrowband signals are not lost between frequency bins.)
- (v) Sweep time = auto.
- (vi) Detector = power averaging (rms), if available. Otherwise, use sample detector mode.
- (vii) If transmit duty cycle < 98 %, use a video trigger with the trigger level set to enable triggering only on full power pulses. Transmitter must operate at maximum power control level for the entire duration of every sweep. If the EUT transmits continuously (i.e., with no off intervals) or at duty cycle ≥ 98 %, and if each transmission is entirely at the maximum power control level, then the trigger shall be set to "free run."
- (viii) Trace average at least 100 traces in power averaging (rms) mode.
- (ix) Compute power by integrating the spectrum across the EBW (or, alternatively, the entire 99% occupied bandwidth) of the signal using the instrument's band power measurement function with band limits set equal to the EBW (or occupied bandwidth) band edges. If the instrument does not have a band power function, sum the spectrum levels (in power units) at 1 MHz intervals extending across the EBW (or, alternatively, the entire 99% occupied bandwidth) of the spectrum.

Method PM (Measurement using an RF average power meter):


- (i) Measurements may be performed using a wideband RF power meter with a thermocouple detector or equivalent if all of the following conditions are satisfied:
- a. The EUT is configured to transmit continuously or to transmit with a constant duty cycle.
- b. At all times when the EUT is transmitting, it must be transmitting at its maximum power control level.
- c. The integration period of the power meter exceeds the repetition period of the transmitted signal by at least a factor of five.
- (ii) If the transmitter does not transmit continuously, measure the duty cycle, x, of the transmitter output signal as described in II.B.
- (iii) Measure the average power of the transmitter. This measurement is an average over both the on and off periods of the transmitter.
- (iv) Adjust the measurement in dBm by adding 10 log (1/x) where x is the duty cycle (e.g., 10 log (1/0.25) if the duty cycle is 25 %).

Method PM-G (Measurement using a gated RF average power meter):

Measurements may be performed using a wideband gated RF power meter provided that the gate parameters are adjusted such that the power is measured only when the EUT is transmitting at its maximum power control level. Since the measurement is made only during the ON time of the transmitter, no duty cycle correction factor is required.

Straddle channel power was measured using spectrum analyzer.

TEST SETUP

TEST ENVIRONMENT

Temperature	21.4℃	Relative Humidity	53%
Atmosphere Pressure	101kPa		

REPORT NO.: E04A24020093F00502 Page 21 of 56

TEST RESULTS

Please refer to section "Test Data" - Appendix A

REPORT NO.: E04A24020093F00502 Page 22 of 56

7.4. POWER SPECTRAL DENSITY

LIMITS

	CFR 47 FCC Part15, Subpart E			
Test Item	Limit	Frequency Range (MHz)		
Power Spectral Density	☐ Outdoor Access Point: 17 dBm/MHz ☐ Outdoor Access Point: 17 dBm/MHz ☐ Fixed Point-To-Point Access Points: 17 dBm/MHz ☐ Client Devices: 11 dBm/MHz	5150 ~ 5250		
Donoity	11 dBm/MHz	5250 ~ 5350 5470 ~ 5725		
	30 dBm/500kHz	5725 ~ 5850		

ISED RSS-247 ISSUE 3		
Test Item	Limit	Frequency Range (MHz)
	The e.i.r.p. spectral density shall not exceed 10 dBm in any 1.0 MHz band.	5150 ~ 5250
Power Spectral Density	The power spectral density shall not exceed 11 dBm inany 1.0 MHz band.	5250 ~ 5350 5470 ~ 5600 5650 ~ 5725
	30 dBm / 500 kHz	5725 ~ 5850

Note:

The above limits are based upon the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

TEST PROCEDURE

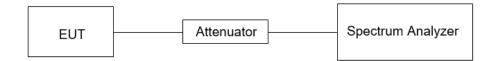
Refer to KDB 789033 D02 General U-NII Test Procedures New Rules v02r01 section II.F.

Connect the EUT to the spectrum analyser and use the following settings:

For U-NII-1, U-NII-2A and U-NII-2C band:

Center Frequency	The center frequency of the channel under test
Detector	RMS
RBW	1 MHz
VBW	≥3 × RBW
Span	Encompass the entire emissions bandwidth (EBW) of the signal
Trace	Max hold
Sweep time	Auto

For U-NII-3:


REPORT NO.: E04A24020093F00502 Page 23 of 56

Center Frequency	The center frequency of the channel under test
Detector	RMS
RBW	500 kHz
VBW	≥3 × RBW
Span	Encompass the entire emissions bandwidth (EBW) of the signal
Trace	Max hold
Sweep time	Auto

Allow trace to fully stabilize and Use the peak search function on the instrument to find the peak of the spectrum and record its value.

Add 10 log (1/x), where x is the duty cycle, to the peak of the spectrum, the result is the Maximum PSD over 1 MHz / 500 kHz reference bandwidth.

TEST SETUP

TEST ENVIRONMENT

Temperature	21.4℃	Relative Humidity	53%
Atmosphere Pressure	101kPa		

TEST RESULTS

Please refer to section "Test Data" - Appendix A

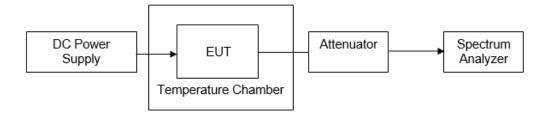
REPORT NO.: E04A24020093F00502 Page 24 of 56

7.5. FREQUENCY STABILITY

LIMITS

The frequency of the carrier signal shall be maintained within band of operation.

TEST PROCEDURE


- 1. The EUT was placed inside an environmental chamber as the temperature in the chamber was varied between -10 $^{\circ}$ C \sim 40 $^{\circ}$ C (declared by customer).
- 2. The temperature was incremented by 10 °C intervals and the unit allowed to stabilize at each temperature before each measurement. The center frequency of the transmitting channel was evaluated at each temperature and the frequency deviation from the channel's center frequency was recorded.
- 3. The primary supply voltage is varied from 85 % to 115 % of the nominal value for non hand-carried battery and AC powered equipment. For hand-carried, battery-powered equipment, primary supply voltage is reduced to the battery operating end point which shall be specified by the manufacturer.

Connect the EUT to the spectrum analyser and use the following settings:

Center Frequency	The center frequency of the channel under test
Detector	Peak
RBW	10 kHz
VBW	≥3 × RBW
Span	Encompass the entire emissions bandwidth (EBW) of the signal
Trace	Max hold
Sweep time	Auto

- 4. While maintaining a constant temperature inside the environmental chamber, turn the EUT on and record the operating frequency at startup, and at 2 minutes, 5minutes, and 10 minutes after the EUT is energized.
- 5. Allow the trace to stabilize, find the peak value of the power envelope and record the frequency, then calculated the frequency drift.

TEST SETUP

TEST ENVIRONMENT

Temperature	20 ℃	Relative Humidity	52%
Atmosphere Pressure	101kPa		

REPORT NO.: E04A24020093F00502 Page 25 of 56

TEST RESULTS

Please refer to section "Test Data" - Appendix A

REPORT NO.: E04A24020093F00502 Page 26 of 56

8. RADIATED TEST RESULTS

LIMITS

Refer to CFR 47 FCC §15.205, §15.209 and §15.407 (b).

Refer to ISED RSS-GEN Clause 8.9, Clause 8.10 and ISED RSS-247 6.2.

Radiation Disturbance Test Limit for FCC (Class B) (9 kHz ~ 1 GHz)

Emissions radiated outside of the specified frequency bands above 30 MHz			
Frequency Range	Field Strength Limit	Field Stren	gth Limit
(MHz)	(uV/m) at 3 m	(dBuV/m)	at 3 m
		Quasi-l	Peak
30 - 88	100	40	
88 - 216	150	43.	5
216 - 960	200	46	
Above 960	500	54	
Above 1000	500	Peak	Average
Above 1000	300	74	54

FCC Emissions radiated outside of the specified frequency bands below 30 MHz		
Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30

ISED General field strength limits at frequencies below 30 MHz

Table 6 – General field strength limits at frequencies below 30 MHz		
Frequency	Magnetic field strength (H-Field) (μA/m)	Measurement distance (m)
9 - 490 kHz ^{Note 1}	6.37/F (F in kHz)	300
490 - 1705 kHz	63.7/F (F in kHz)	30
1.705 - 30 MHz	0.08	30

Note 1: The emission limits for the ranges 9-90 kHz and 110-490 kHz are based on measurements employing a linear average detector.

ISED Restricted bands refer to ISED RSS-GEN Clause 8.10

MHz	MHz	GHz
0.090 - 0.110	149.9 - 150.05	9.0 - 9.2
0.495 - 0.505	158.52475 - 158.52525	9.3 - 9.5
2.1735 - 2.1905	156.7 - 156.9	10.6 - 12.7
3.020 - 3.028	182.0125 - 187.17	13.25 - 13.4
.125 - 4.128	167.72 - 173.2	14.47 - 14.5
1.17725 - 4.17775	240 – 285	15.35 - 16.2
.20725 - 4.20775	322 - 335.4	17.7 - 21.4
5.677 - 5.683	399.9 - 410	22.01 - 23.12
3.215 - 6.218	608 - 614	23.6 - 24.0
3.26775 - 6.26825	960 - 1427	31.2 - 31.8
3.31175 - 6.31225	1435 - 1626.5	36.43 - 36.5
3.291 - 8.294	1845.5 - 1848.5	Above 38.6
3.362 - 8.366	1880 - 1710	
3.37625 - 8.38675	1718.8 - 1722.2	
3.41425 - 8.41475	2200 - 2300	
12.29 - 12.293	2310 - 2390	
12.51975 - 12.52025	2483.5 - 2500	
12.57675 - 12.57725	2655 - 2900	
13.36 - 13.41	3260 - 3267	
16.42 - 16.423	3332 - 3339	
6.69475 - 16.69525	3345.8 - 3358	
6.80425 - 16.80475	3500 - 4400	
25.5 - 25.67	4500 - 5150	
7.5 - 38.25	5350 - 5460	
3 - 74.6	7250 - 7750	
74.8 - 75.2	8025 - 8500	
08 – 138		
	ds listed in table 7 and in bands above 38.6	

FCC Restricted bands of operation refer to FCC §15.205 (a):

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(²)
13.36-13.41			

Note: ¹Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

²Above 38.6c

Limits of unwanted/undesirable emission out of the restricted bands refer to CFR 47 FCC §15.407 (b) and ISED RSS-247 6.2.

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1GHz)

REPORT NO.: E04A24020093F00502 Page 28 of 56

PK: 110.8(dBµV/m) *3

PK: 122.2 (dBµV/m) *4

 Frequency Range (MHz)
 EIRP Limit
 Field Strength Limit (dBuV/m) at 3 m

 5150~5250 MHz
 PK: -27 (dBm/MHz)
 PK:68.2(dBμV/m)

 5470~5725 MHz
 PK: -27 (dBm/MHz) *1
 PK: 68.2(dBμV/m) *1

 5725~5850 MHz
 PK: 10 (dBm/MHz) *2
 PK: 105.2 (dBμV/m) *2

 PK: 10 (dBm/MHz) *2
 PK: 105.2 (dBμV/m) *2

Note:

- *1 beyond 75 MHz or more above of the band edge.
- *2 below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above.
- *3 below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above.

PK: 15.6 (dBm/MHz) *3

PK: 27 (dBm/MHz) *4

*4 from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.

TEST PROCEDURE

Below 30 MHz

The setting of the spectrum analyser

RBW	200 Hz (From 9 kHz to 0.15 MHz)/ 9 kHz (From 0.15 MHz to 30 MHz)
VBW	200 Hz (From 9 kHz to 0.15 MHz)/ 9 kHz (From 0.15 MHz to 30 MHz)
Sweep	Auto

- 1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.4.
- 2. The EUT was arranged to its worst case and then turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both Horizontal, Face-on and Face-off polarizations of the antenna are set to make the measurement.
- 3. The EUT was placed on a turntable with 80 cm above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a 1 m height antenna tower.
- 5. The radiated emission limits are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz Radiated emission limits in these three bands are based on measurements employing an average detector.
- 6. For measurement below 1 GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak and average detector mode remeasured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak and average detector and reported.
- 7. Although these tests were performed other than open field site, adequate comparison measurements were confirmed against 30m open field site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field site based on KDB 414788.
- 8. The limits in CFR 47, Part 15, Subpart C, paragraph 15.209 (a), are identical to those in RSS-GEN Section 8.9, Table 6, since the measurements are performed in terms of magnetic field

TRF No.: 04-E001-0B Global Testing, Great Quality.

REPORT NO.: E04A24020093F00502 Page 29 of 56

strength and converted to electric field strength levels (as reported in the table) using the free space impedance of 377Ω . For example, the measurement frequency X KHz resulted in a level of Y dBuV/m, which is equivalent to Y-51.5 = Z dBuA/m, which has the same margin, W dB, to the corresponding RSS-GEN Table 6 limit as it has to be 15.209(a) limit.

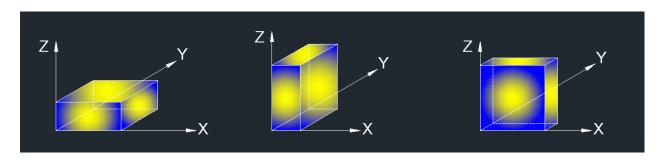
REPORT NO.: E04A24020093F00502 Page 30 of 56

Below 1 GHz and above 30 MHz

The setting of the spectrum analyser

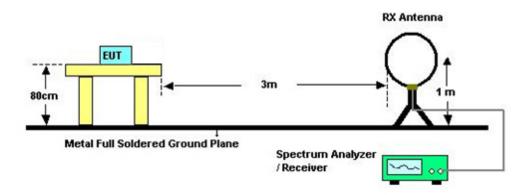
RBW	120 kHz
VBW	300 kHz
Sweep	Auto
Detector	Peak/QP
Trace	Max hold

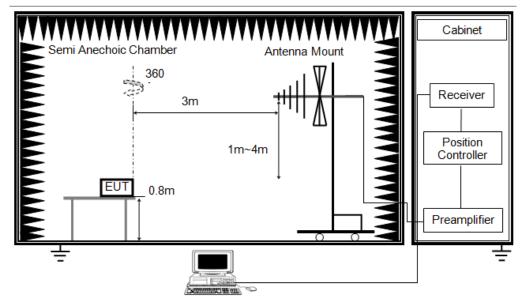
- 1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.5.
- 2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 3. The EUT was placed on a turntable with 80 cm above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 5. For measurement below 1 GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

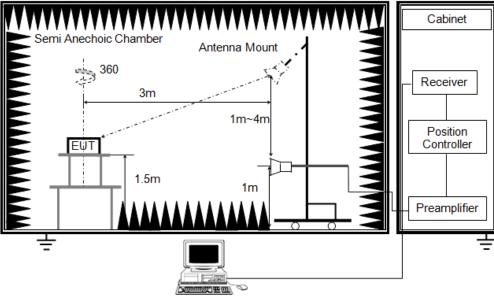

Above 1 GHz

The setting of the spectrum analyser

RBW	1 MHz
IV/BW	PEAK: 3 MHz AVG: see note 6
Sweep	Auto
Detector	Peak
Trace	Max hold


- 1. The testing follows the guidelines in KDB 789033 D02 General U-NII Test Procedures New Rules v02r01 section II.G.3 ~ II.G.6.
- 2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 3. The EUT was placed on a turntable with 1.5 m above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 5. For measurement above 1 GHz, the emission measurement will be measured by the peak detector. This peak level, once corrected, must comply with the limit specified in Section 15.209.
- 6. For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements and 1 MHz resolution bandwidth with 1/T video bandwidth with peak detector for average measurements. For the Duty Cycle please refer to clause 7.1.ON TIME AND DUTY CYCLE.


X axis, Y axis, Z axis positions:



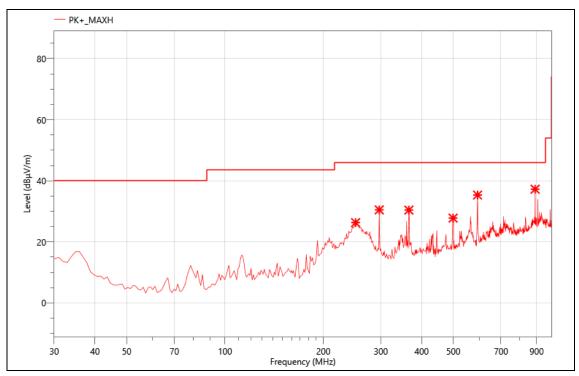
Note 1: For all radiated test, EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data recorded in the report.

TEST SETUP

REPORT NO.: E04A24020093F00502 Page 33 of 56

TEST ENVIRONMENT

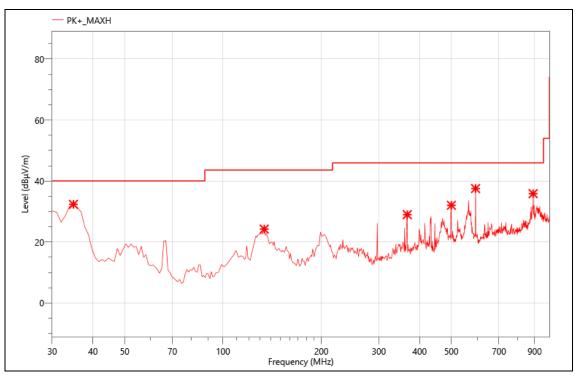
Temperature	24.3 ℃	Relative Humidity	51%
Atmosphere Pressure	101kPa		


TEST RESULTS

Please refer to section 8.1.

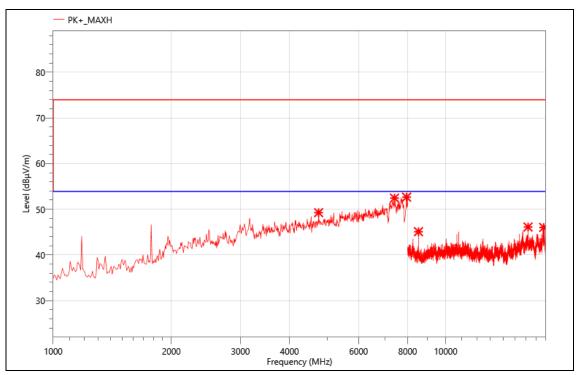
REPORT NO.: E04A24020093F00502 Page 34 of 56

8.1. RADIATED EMISSIONS AND BAND EDGE MEASUREMENT


Mode:	802.11a 5180MHz
Power:	AC 120V/60Hz
TE:	Berny
Date	2024/6/4
T/A/P	24.3°C/51%/101Kpa

Critical_Freqs

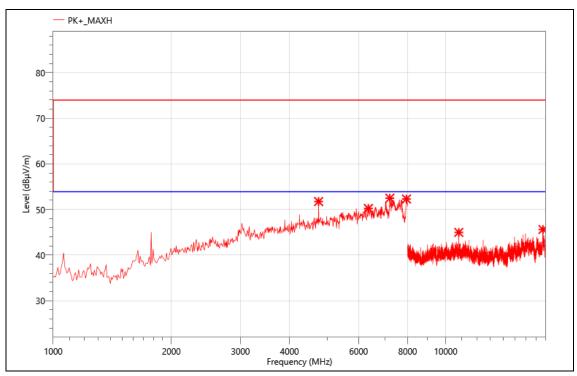
No.	Freq. (MHz)	Reading (dBµV)	Meas. (dBμV/m)	Limit (dBµV/m)	Margin (dBμV/m)	Det.	Pol.	Corr. (dB)
1	251.160	45.31	26.30	46.00	19.70	PK+	Н	-19.01
2	296.750	49.47	30.47	46.00	15.53	PK+	Н	-19
3	365.620	45.97	30.40	46.00	15.60	PK+	Н	-15.57
4	499.480	39.93	27.78	46.00	18.22	PK+	Н	-12.15
5	593.570	45.34	35.32	46.00	10.68	PK+	Н	-10.02
6	890.390	42.41	37.24	46.00	8.76	PK+	Н	-5.17


Mode:	802.11a 5180MHz
Power:	AC 120V/60Hz
TE:	Berny
Date	2024/6/4
T/A/P	24.3□/51%/101Kpa

Critical_Freqs

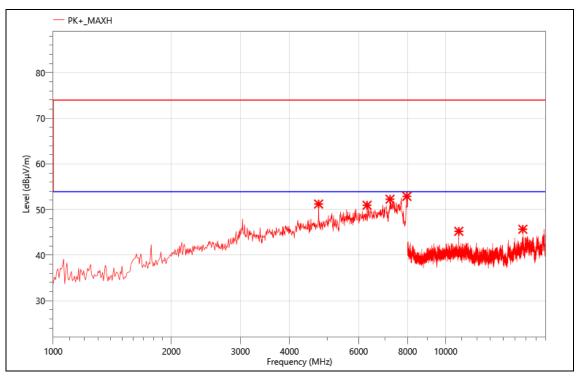
No.	Freq. (MHz)	Reading (dBµV)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dBµV/m)	Det.	Pol.	Corr. (dB)
1	34.850	49.49	32.35	40.00	7.65	PK+	V	-17.14
2	133.790	48.24	24.23	43.50	19.27	PK+	V	-24.01
3	366.590	44.51	28.97	46.00	17.03	PK+	V	-15.54
4	500.450	44.15	32.04	46.00	13.96	PK+	V	-12.11
5	593.570	47.56	37.54	46.00	8.46	PK+	V	-10.02
6	890.390	41.03	35.86	46.00	10.14	PK+	V	-5.17

Mode:	802.11a 5180MHz
Power:	AC 120V/60Hz
TE:	Berny
Date	2024/6/4
T/A/P	24.3°C/51%/101Kpa

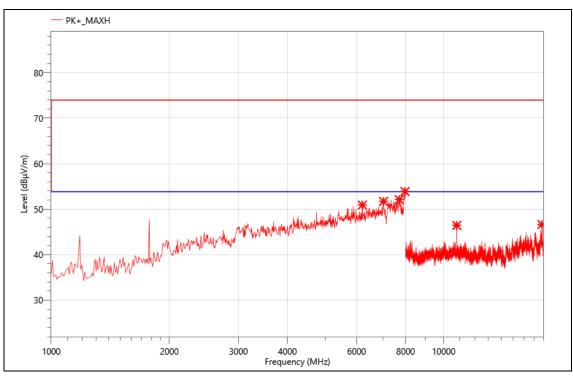


Critical_Freqs

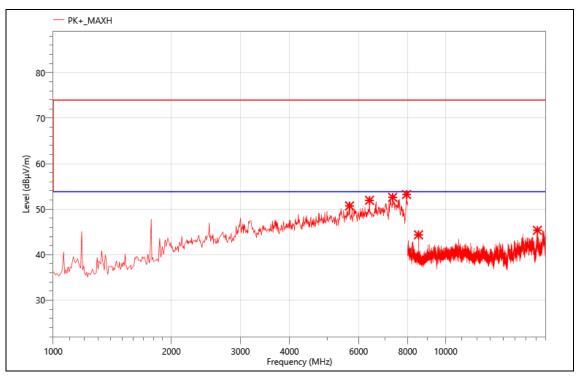
No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.
1	4745.000	51.45	-2.19	49.26	74.00	24.74	PK+	V
2	7405.000	41.10	11.34	52.44	74.00	21.56	PK+	V
3	7951.000	35.08	17.57	52.65	74.00	21.35	PK+	V
4	8527.000	53.16	-8.07	45.09	74.00	28.91	PK+	V
5	16214.000	46.95	-0.84	46.11	74.00	27.89	PK+	V
6	17773.000	46.28	-0.26	46.02	74.00	27.98	PK+	V


Note: [Margin=Limit-Meas.]; [Meas.=Reading+Corr.]

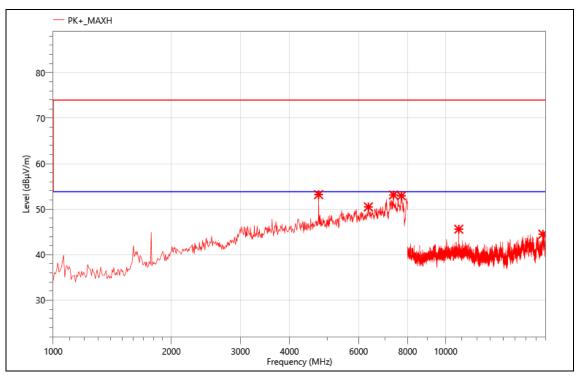
Mode:	802.11a 5180MHz
Power:	AC 120V/60Hz
TE:	Berny
Date	2024/6/4
T/A/P	24.3□/51%/101Kpa


No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.
1	4745.000	53.93	-2.19	51.74	74.00	22.26	PK+	Н
2	6355.000	46.58	3.65	50.23	74.00	23.77	PK+	Н
3	7209.000	41.39	11.09	52.48	74.00	21.52	PK+	Н
4	7944.000	34.82	17.48	52.30	74.00	21.70	PK+	Н
5	10800.000	49.97	-5	44.97	74.00	29.03	PK+	Н
6	17693.000	46.02	-0.41	45.61	74.00	28.39	PK+	Н

Mode:	802.11a 5200MHz
Power:	AC 120V/60Hz
TE:	Berny
Date	2024/6/4
T/A/P	24.3□/51%/101Kpa


No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.
1	4745.000	53.38	-2.19	51.19	74.00	22.81	PK+	Н
2	6306.000	48.04	2.89	50.93	74.00	23.07	PK+	Н
3	7216.000	41.11	11.14	52.25	74.00	21.75	PK+	Н
4	7965.000	35.75	17.12	52.87	74.00	21.13	PK+	Н
5	10800.000	50.21	-5	45.21	74.00	28.79	PK+	Н
6	15725.000	48.03	-2.37	45.66	74.00	28.34	PK+	Н

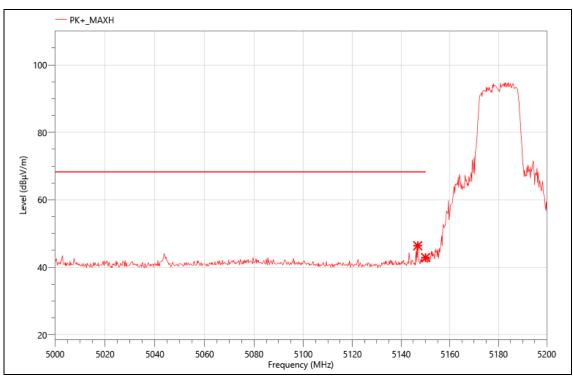
Mode:	802.11a 5200MHz
Power:	AC 120V/60Hz
TE:	Berny
Date	2024/6/4
T/A/P	24.3□/51%/101Kpa


No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.
1	6208.000	49.35	1.56	50.91	74.00	23.09	PK+	V
2	7027.000	42.28	9.42	51.70	74.00	22.30	PK+	V
3	7706.000	39.93	12.18	52.11	74.00	21.89	PK+	V
4	7972.000	36.99	16.89	53.88	74.00	20.12	PK+	V
5	10799.000	51.43	-5	46.43	74.00	27.57	PK+	V
6	17794.000	46.46	0.16	46.62	74.00	27.38	PK+	V

Mode:	802.11a 5240MHz
Power:	AC 120V/60Hz
TE:	Berny
Date	2024/6/4
T/A/P	24.3□/51%/101Kpa

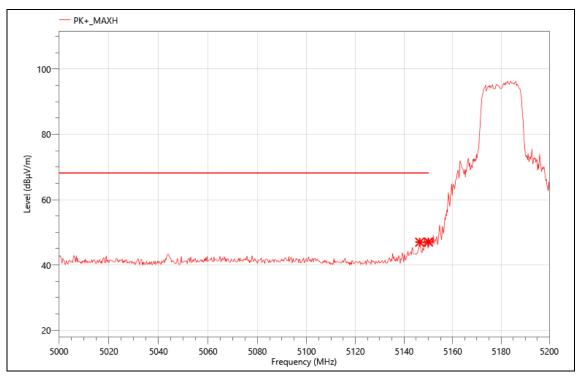
No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.
1	5690.000	51.34	-0.62	50.72	74.00	23.28	PK+	V
2	6397.000	47.66	4.28	51.94	74.00	22.06	PK+	V
3	7328.000	42.64	9.95	52.59	74.00	21.41	PK+	V
4	7951.000	35.66	17.57	53.23	74.00	20.77	PK+	V
5	8527.000	52.43	-8.07	44.36	74.00	29.64	PK+	V
6	17128.000	46.55	-1.19	45.36	74.00	28.64	PK+	V

Mode:	802.11a 5240MHz
Power:	AC 120V/60Hz
TE:	Berny
Date	2024/6/4
T/A/P	24.3□/51%/101Kpa

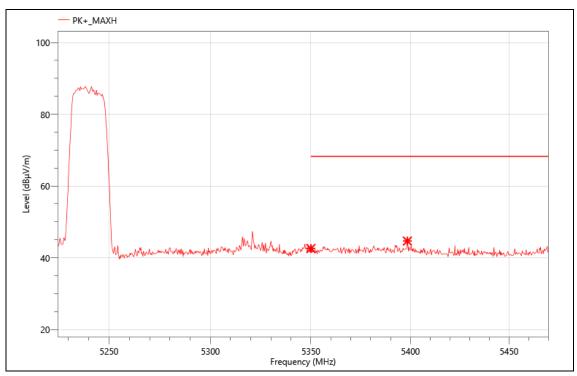


No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.
1	4745.000	55.40	-2.19	53.21	74.00	20.79	PK+	Н
2	6355.000	46.85	3.65	50.50	74.00	23.50	PK+	Н
3	7363.000	42.23	10.9	53.13	74.00	20.87	PK+	Н
4	7713.000	40.51	12.43	52.94	74.00	21.06	PK+	Н
5	10800.000	50.61	-5	45.61	74.00	28.39	PK+	Н
6	17686.000	44.92	-0.4	44.52	74.00	29.48	PK+	Н

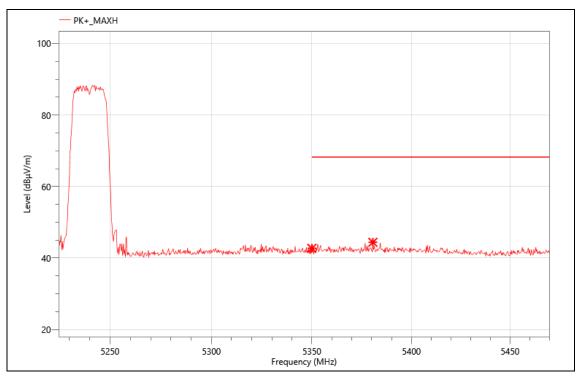
Note:


- 1. Measurement = Reading Level + Correct Factor.
- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.
- 5. The frequency, which started from 18 GHz to 40GHz, was pre-scanned and the result which was 20dB lower than the limit line was not reported.
- 6. 802.11a,802.11n HT20,802.11n HT40,802.11ac VHT20,802.11ac VHT40 and 802.11ac VHT80 were all tested, and only 802.11a was recorded in the report as the worst mode.
- 7. Band I (5.15-5.25GHz) and Band IV(5.725-5.85GHz) were all tested, and only Band I (5.15-5.25GHz) was recorded in the report as the worst mode.

Mode:	802.11a 5180MHz
Power:	AC 120V/60Hz
TE:	Berny
Date	2024/6/4
T/A/P	24.3°C/51%/101Kpa


No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.
1	5146.800	57.28	-10.88	46.40	68.20	21.80	PK+	Н
2	5150.000	53.72	-10.84	42.88	68.20	25.32	PK+	Н

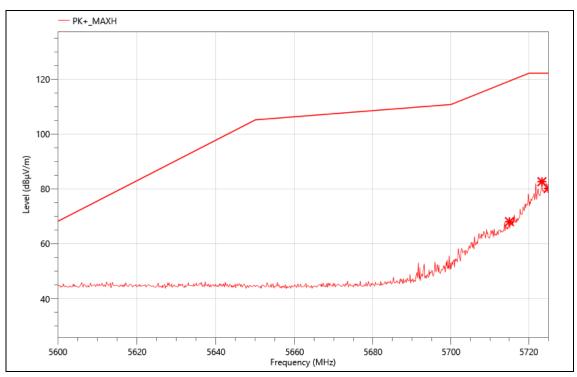
Mode:	802.11a 5180MHz
Power:	AC 120V/60Hz
TE:	Berny
Date	2024/6/4
T/A/P	24.3□/51%/101Kpa


No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.
1	5146.400	57.87	-10.88	46.99	68.20	21.21	PK+	V
2	5150.000	57.89	-10.84	47.05	68.20	21.15	PK+	V

Mode:	802.11a 5240MHz
Power:	AC 120V/60Hz
TE:	Berny
Date	2024/6/4
T/A/P	24.3□/51%/101Kpa

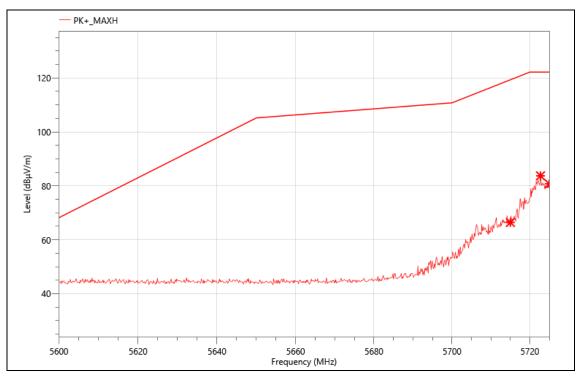
No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.
1	5350.000	52.62	-10.03	42.59	68.20	25.61	PK+	V
2	5398.460	54.46	-9.79	44.67	68.20	23.53	PK+	V

Mode:	802.11a 5240MHz
Power:	AC 120V/60Hz
TE:	Berny
Date	2024/6/4
T/A/P	24.3□/51%/101Kpa

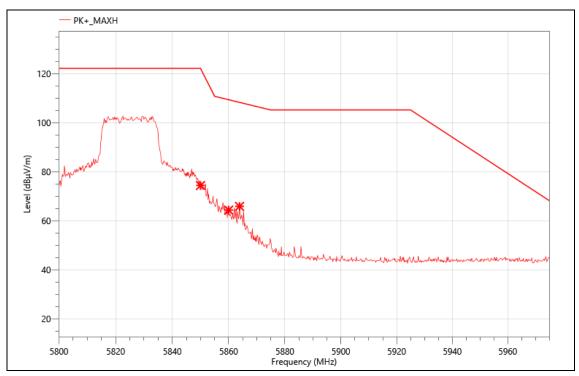


No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.
1	5350.000	52.76	-10.03	42.73	68.20	25.47	PK+	Н
2	5380.575	54.02	-9.61	44.41	68.20	23.79	PK+	Η

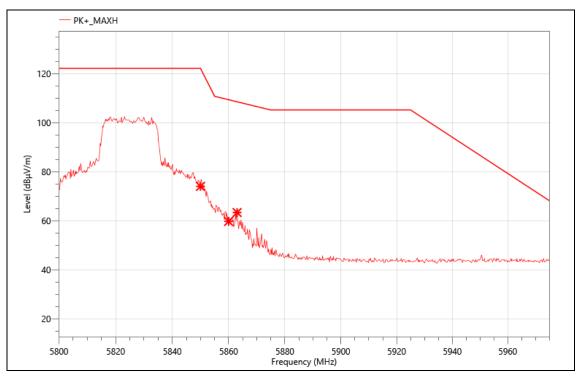
Note:


- 1. Measurement = Reading Level + Correct Factor.
- 2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Peak: Peak detector.
- 4. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.
- 5. 802.11a,802.11n HT20,802.11n HT40,802.11ac VHT20,802.11ac VHT40 and 802.11ac VHT80 were all tested, and only 802.11a was recorded in the report as the worst mode.

Mode:	802.11a 5745MHz
Power:	AC 120V/60Hz
TE:	Big
Date	2024/7/9
T/A/P	23.3°C/51%/101Kpa


No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.
1	5715.000	77.78	-9.71	68.07	119.35	51.28	PK+	V
2	5723.375	92.47	-9.83	82.64	122.20	39.56	PK+	V
3	5725.000	90.01	-9.85	80.16	122.20	42.04	PK+	V

Mode:	802.11a 5745MHz
Power:	AC 120V/60Hz
TE:	Big
Date	2024/7/9
T/A/P	23.3℃/51%/101Kpa


No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.
1	5715.000	76.14	-9.71	66.43	119.35	52.92	PK+	Η
2	5722.750	93.55	-9.82	83.73	122.20	38.47	PK+	Η
3	5725.000	90.60	-9.85	80.75	122.20	41.45	PK+	Н

Mode:	802.11a 5825MHz
Power:	AC 120V/60Hz
TE:	Big
Date	2024/7/9
T/A/P	23.3℃/51%/101Kpa

No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.
1	5850.000	83.81	-9.45	74.36	122.20	47.84	PK+	Η
2	5860.000	73.72	-9.39	64.33	109.40	45.07	PK+	Η
3	5863.875	75.25	-9.41	65.84	108.31	42.47	PK+	Η

Mode:	802.11a 5825MHz
Power:	AC 120V/60Hz
TE:	Big
Date	2024/7/9
T/A/P	23.3℃/51%/101Kpa

No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.
1	5850.000	83.44	-9.45	73.99	122.20	48.21	PK+	V
2	5860.000	69.07	-9.39	59.68	109.40	49.72	PK+	V
3	5863.000	72.74	-9.41	63.33	108.56	45.23	PK+	V

Note:

- 1. Measurement = Reading Level + Correct Factor.
- 2. Peak: Peak detector.
- 3. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.
- 4. 802.11a,802.11n HT20,802.11n HT40,802.11ac VHT20,802.11ac VHT40 and 802.11ac VHT80 were all tested, and only 802.11a was recorded in the report as the worst mode.

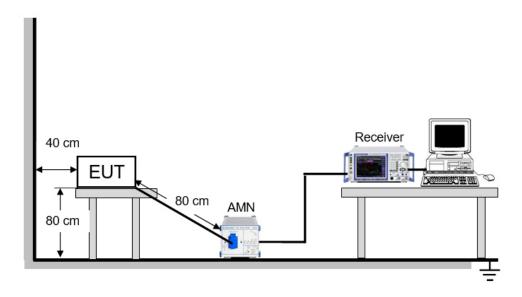
REPORT NO.: E04A24020093F00502 Page 50 of 56

9. AC POWER LINE CONDUCTED EMISSION

LIMITS

Please refer to CFR 47 FCC §15.207 (a) and ISED RSS-Gen Clause 8.8

FREQUENCY (MHz)	Quasi-peak	Average	
0.15 -0.5	66 - 56 *	56 - 46 *	
0.50 -5.0	56.00	46.00	
5.0 -30.0	60.00	50.00	

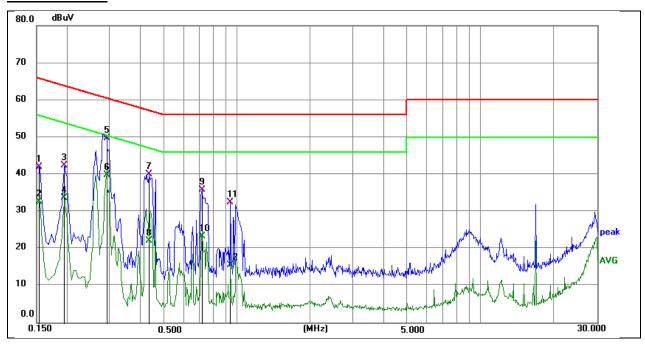

TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 6.2.

The EUT is put on a table of non-conducting material that is 80 cm high. The vertical conducting wall of shielding is located 40 cm to the rear of the EUT. The power line of the EUT is connected to the AC mains through a Artificial Mains Network (A.M.N.). A EMI Measurement Receiver (R&S Test Receiver ESR3) is used to test the emissions from both sides of AC line. According to the requirements in Section 6.2 of ANSI C63.10-2013. Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode. The bandwidth of EMI test receiver is set at 9 kHz.

The arrangement of the equipment is installed to meet the standards and operating in a manner, which tends to maximize its emission characteristics in a normal application.

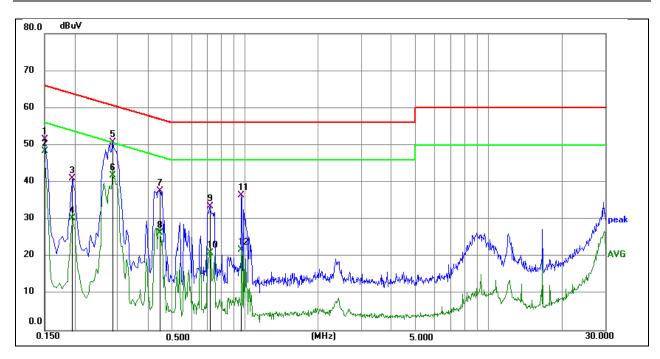
TEST SETUP



TEST ENVIRONMENT

Temperature	24.2 ℃	Relative Humidity	54%
Atmosphere Pressure	101kPa		

REPORT NO.: E04A24020093F00502 Page 51 of 56


TEST RESULTS

Phase: L1 Mode: 802.11a 5180MHz

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)	
1	0.1539	32.13	9.85	41.98	65.79	-23.81	QP
2	0.1539	22.74	9.85	32.59	55.79	-23.20	AVG
3	0.1949	32.57	9.79	42.36	63.83	-21.47	QP
4	0.1949	23.92	9.79	33.71	53.83	-20.12	AVG
5	0.2894	39.73	10.02	49.75	60.54	-10.79	QP
6	0.2894	29.72	10.02	39.74	50.54	-10.80	AVG
7	0.4334	30.17	9.81	39.98	57.19	-17.21	QP
8	0.4334	12.40	9.81	22.21	47.19	-24.98	AVG
9	0.7170	26.07	9.84	35.91	56.00	-20.09	QP
10	0.7170	13.56	9.84	23.40	46.00	-22.60	AVG
11	0.9420	22.54	9.82	32.36	56.00	-23.64	QP
12	0.9420	5.74	9.82	15.56	46.00	-30.44	AVG

REPORT NO.: E04A24020093F00502 Page 52 of 56

Phase: N	Mode: 802.11a 5180MHz

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)	
1	0.1500	41.57	9.91	51.48	66.00	-14.52	QP
2	0.1500	38.39	9.91	48.30	56.00	-7.70	AVG
3	0.1949	31.20	9.88	41.08	63.83	-22.75	QP
4	0.1949	20.34	9.88	30.22	53.83	-23.61	AVG
5	0.2850	40.85	9.86	50.71	60.67	-9.96	QP
6	0.2850	31.88	9.86	41.74	50.67	-8.93	AVG
7	0.4470	27.85	9.82	37.67	56.93	-19.26	QP
8	0.4470	16.54	9.82	26.36	46.93	-20.57	AVG
9	0.7170	23.60	9.91	33.51	56.00	-22.49	QP
10	0.7170	11.04	9.91	20.95	46.00	-25.05	AVG
11	0.9645	26.48	9.94	36.42	56.00	-19.58	QP
12	0.9645	11.77	9.94	21.71	46.00	-24.29	AVG

Note: 1. Result = Reading + Correct Factor.

- 2. If QP Result complies with AV limit, AV Result is deemed to comply with AV limit.
- 3. Test setup: RBW: 200 Hz (9 kHz ~ 150 kHz), 9 kHz (150 kHz ~ 30 MHz).
- 4. Step size: 80 Hz (0.009 MHz ~ 0.15 MHz), 4 kHz (0.15 MHz ~ 30 MHz), Scan time: auto.

Note: All the modes have been tested, only the worst data was recorded in the report.

REPORT NO.: E04A24020093F00502 Page 53 of 56

10. ANTENNA REQUIREMENT

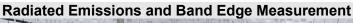
REQUIREMENT

Please refer to FCC §15.203

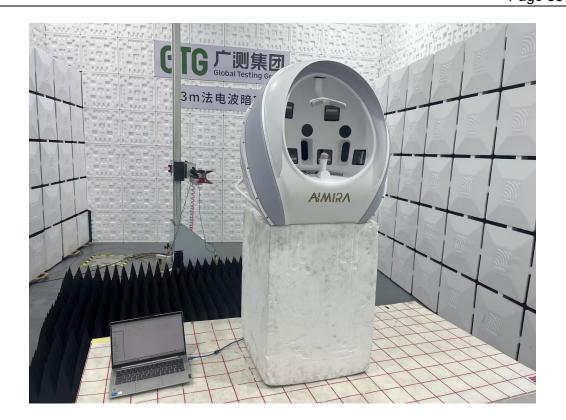
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Please refer to FCC §15.407(a)(1)(2)(3)

If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.


DESCRIPTION

Pass


REPORT NO.: E04A24020093F00502 Page 54 of 56

APPENDIX: PHOTOGRAPHS OF TEST CONFIGURATION

REPORT NO.: E04A24020093F00502 Page 56 of 56

END OF REPORT