

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

TEST REPORT FCC Rules and Regulations Part PART 15.249

Report Reference No...... CTA24040700801

FCC ID...... 2BF7B-X28

Compiled by

CTATE (position+printed name+signature.. File administrators Jinghua Xiao

Supervised by

(position+printed name+signature.. Project Engineer Zoey Cao

(position+printed name+signature.. RF Manager Eric Wang

Date of issue...... Apr. 12, 2024

Testing Laboratory Name Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community,

Fuhai Street, Bao'an District, Shenzhen, China

Applicant's name...... Shantou Xintuo Intelligent Technology Co., Ltd.

Fengxiang Street, Donghu Qiaohong Road, Chenghai District, Shantou Address

City, China

Standard FCC Rules and Regulations PART 15.249

Shenzhen CTA Testing Technology Co., Ltd. All rights reserved.

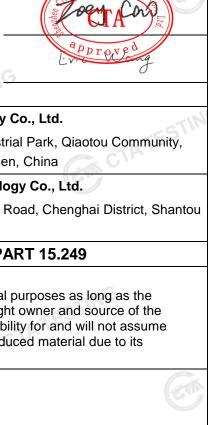
This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen CTA Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen CTA Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Trade Mark N/A

Manufacturer Shantou Xintuo Intelligent Technology Co., Ltd.

Model/Type reference......X28

X29, X30, X31, X36, X35, X60, X33, X66, X63, HK22, HK33, HK55, Listed Models


HK66

Modulation GFSK

Ratings DC 3.7V From battery and DC 5.0V From external circuit

Result......PASS

CTATESTIN

Page 2 of 28 Report No.: CTA24040700801

TEST REPORT

Quadcopters **Equipment under Test**

: X28 Model /Type

: X29, X30, X31, X36, X35, X60, X33, X66, X63, HK22, HK33, Listed Models

HK55, HK66

CTATESTING **Applicant** Shantou Xintuo Intelligent Technology Co., Ltd.

Address : Fengxiang Street, Donghu Qiaohong Road, Chenghai District,

Shantou City, China

Manufacturer Shantou Xintuo Intelligent Technology Co., Ltd.

: Fengxiang Street, Donghu Qiaohong Road, Chenghai District, Address

Address	Shantou City, China	
CTATES!	TESTING	
Test Res	pult: PASS	

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory. CTATESTING

Page 3 of 28 Report No.: CTA24040700801

Contents

		Contents	
		TEST STANDARDS TESTING	
		TEST STANDARDS	4
-	2 22 usel with	CAN	TING
2	2.	SUMMARY	5
=		C CV	
2	2.1.	General Remarks	5
	2.2.	Product Description	5 0
	2.3.	Equipment Under Test	5 5
	2.4.	Short description of the Equipment under Test (EUT)	5
	2.5.	EUT operation mode	6
	2.6.	Block Diagram of Test Setup	6
	2.7.	Modifications	6
•		THE CHIEF CONTROL OF THE CONTROL OF	J
3	<u>3.</u>	TEST ENVIRONMENT	<u>7</u>
		CIA	
•	3.1.	Address of the test laboratory	7 7 7 8
	3.1. 3.2.	Test Facility	TATES
	3.2. 3.3.	Environmental conditions	- C - 7
	3.4.	Summary of measurement results	
		Statement of the management uncertainty	8
	3.5.	Statement of the measurement uncertainty	8
•	3.6.	Equipments Used during the Test	8
4	<u>4 .</u>	TEST CONDITIONS AND RESULTS	10
		4.1. AC Power Conducted Emission	10
		4.2. Radiated Emission and Band Edges	13
		4.3. 20dB Bandwidth Measurement	10
		4.4. Antenna Requirement	21
		Tittorina requirementaminiminiminiminiminiminiminiminiminimin	
<u> </u>	<u>5.</u>	TEST SETUP PHOTOS OF THE EUT	
. Ci	6	TEST PHOTOS OF THE EUT	23
TE	<u> </u>	TEST PHOTOS OF THE EUT	
(P.			
rates		res'"	
		CTATESTING CTATESTING	

Report No.: CTA24040700801 Page 4 of 28

1. TEST STANDARDS

The tests were performed according to following standards:

FCC Rules Part 15.249: Operation within the bands 902 - 928 MHz, 2400 - 2483.5 MHz, 5725 -5875 MHz, and 24.0 - 24.25 GHz.

ANSI C63.10:2013: American National Standard for Testing Unlicensed Wireless Devices

Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40GHz
Range of 9 kHz to 40GHz Range of 9 kHz to 40GHz CTATESTING

Report No.: CTA24040700801

2. SUMMARY

2.1. General Remarks

2.1. General Remarks			
Date of receipt of test sample	:	Mar. 20, 2024	-ING
Testing commenced on	CI	Mar. 20, 2024	TATESTIN
Testing concluded on	:	Apr. 12, 2024	C
	1		

Name of EUT	Quadcopters
Model Number	X28
Power Rating	DC 3.7V From battery and DC 5.0V From external circuit
Adapter information (Auxiliary test supplied by test Lab):	Model: EP-TA20CBC Input: AC 100-240V 50/60Hz Output: DC 5V 2A
Hardware version	V1.0
Software version	V1.0
Sample ID	CTA240407008-1# (Engineer sample) CTA240407008-2# (Normal sample)
Operation frequency	2410-2470MHz
Modulation	GFSK
Antenna Type	Wire Antenna
Antenna Gain	0.17 dBi

2.3. Equipment Under Test

Power supply system utilised

Power supply voltage	:	С	230V / 50 Hz	(120V / 60Hz	
TING		С	12 V DC	(24 V DC	1
51		•	Other (specified in bl	lank belov	N)	

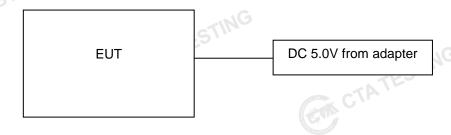
2.4. Short description of the Equipment under Test (EUT)

This is a Quadcopters.

For more details, refer to the user's manual of the EUT.

Page 6 of 28 Report No.: CTA24040700801

2.5. EUT operation mode


The Applicant use Key to control the EUT for staying in continuous transmitting and receiving mode for testing. There is 3 channels provided to the EUT. Channel Low, Mid and High was selected to test. CTATESTING

Operation Frequency:

	Channel	Frequency (MHz)
	1	2410
	2	2440
	3 3	2470
CTATE	Test frequency:	STING

Test frequency:	ATESTING	NG
Channel	Frequency (MHz)	TESTIN
Low	2410	K C/L
Mid	2440	
High	2470	

2.6. Block Diagram of Test Setup

2.7. **Modifications**

No modifications were implemented to meet testing criteria. CTATESTING

3. TEST ENVIRONMENT

3.1. Address of the test laboratory

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Baoʻan District, Shenzhen, China

3.2. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 517856 Designation Number: CN1318

Shenzhen CTA Testing Technology Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

Industry Canada Registration Number. Is: 27890 CAB identifier: CN0127

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing.

A2LA-Lab Cert. No.: 6534.01

Shenzhen CTA Testing Technology Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

3.3. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Radiated Emission:

Temperature:	23 ° C
Humidity:	48 %
NG	
Atmospheric pressure:	950-1050mbar

AC Main Conducted testing:

9	
Temperature:	24 ° C
G	
Humidity:	45 %
To make the second seco	Grand C
Atmospheric pressure:	950-1050mbar

Conducted testing:

24 ° C
45 %
950-1050mbar
TESTING
CTATE

Page 8 of 28 Report No.: CTA24040700801

3.4. Summary of measurement results

FCC PART 15.249		
FCC Part 15.249(a)	Field Strength of Fundamental	PASS
FCC Part 15.209	Spurious Emission	PASS
FCC Part 15.209	Band edge	PASS
FCC Part 15.215(c)	20dB bandwidth	PASS
FCC Part 15.207	Conducted Emission	PASS
FCC Part 15.203	Antenna Requirement	PASS

3.5. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the Shenzhen CTA Testing Technology Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device. Hereafter the best measurement capability for Shenzhen CTA Testing Technology Co., Ltd.:

ne best measurement capability for	Shelizhen CTA Testing T	echhology Co., Li	.u
Test	Range	Measurement Uncertainty	Notes
Radiated Emission	9KHz~30MHz	3.02 dB	(1)
Radiated Emission	30~1000MHz	4.06 dB	(1)
Radiated Emission	1~18GHz	5.14 dB	(1)
Radiated Emission	18-40GHz	5.38 dB	(1)
Conducted Disturbance	0.15~30MHz	2.14 dB	(1)
Output Peak power	30MHz~18GHz	0.55 dB	(1)
Power spectral density	1	0.57 dB	(1)
Spectrum bandwidth	/	1.1%	(1)
Radiated spurious emission (30MHz-1GHz)	30~1000MHz	4.10 dB	(1)
Radiated spurious emission (1GHz-18GHz)	1~18GHz	4.32 dB	(1)
Radiated spurious emission (18GHz-40GHz)	18-40GHz	5.54 dB	(1)

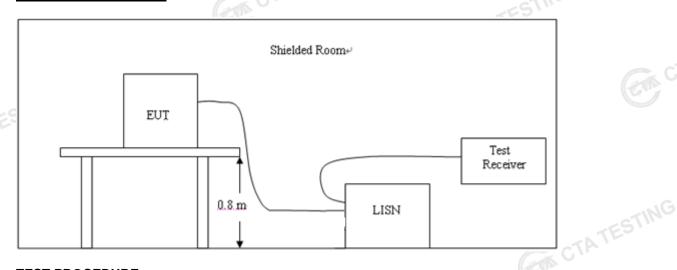
CTA TESTING (1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

3.6. Equipments Used during the Test

	Test Equipment	Manufacturer	Model No.	Equipment No.	Calibration Date	Calibration Due Date
	LISN	R&S	ENV216	CTA-308	2023/08/02	2024/08/01
	LISN	R&S	ENV216	CTA-314	2023/08/02	2024/08/01
	EMI Test Receiver	R&S	ESPI	CTA-307	2023/08/02	2024/08/01
	EMI Test Receiver	R&S	ESCI	CTA-306	2023/08/02	2024/08/01
	Spectrum Analyzer	Agilent	N9020A	CTA-301	2023/08/02	2024/08/01
	STING			1		To your wife
CTATE		TING				

			(EVA			TESI"
	Report No.: CTA2404	10700801			Page	e 9 of 28
	Spectrum Analyzer	R&S	FSP	CTA-337	2023/08/02	2024/08/01
	Vector Signal generator	Agilent	N5182A	CTA-305	2023/08/02	2024/08/01
	Analog Signal Generator	R&S	SML03	CTA-304	2023/08/02	2024/08/01
	WIDEBAND RADIO COMMUNICATION TESTER	CMW500	R&S	CTA-302	2023/08/02	2024/08/01
	Temperature and humidity meter	Chigo	ZG-7020	CTA-326	2023/08/02	2024/08/01
	Ultra-Broadband Antenna	Schwarzbeck	VULB9163	CTA-310	2023/10/17	2024/10/16
75	Horn Antenna	Schwarzbeck	BBHA 9120D	CTA-309	2023/10/13	2024/10/12
CTATE	Loop Antenna	Zhinan	ZN30900C	CTA-311	2023/10/17	2024/10/16
	Horn Antenna	Beijing Hangwei Dayang	OBH100400	CTA-336	2021/08/07	2024/08/06
	Amplifier	Schwarzbeck	BBV 9745	CTA-312	2023/08/02	2024/08/01
	Amplifier	Taiwan chengyi	EMC051845B	CTA-313	2023/08/02	2024/08/01
G	Directional coupler	NARDA	4226-10	CTA-303	2023/08/02	2024/08/01
	High-Pass Filter	XingBo	XBLBQ-GTA18	CTA-402	2023/08/02	2024/08/01
	High-Pass Filter	XingBo	XBLBQ-GTA27	CTA-403	2023/08/02	2024/08/01
	Automated filter bank	Tonscend	JS0806-F	CTA-404	2023/08/02	2024/08/01
	Power Sensor	Agilent	U2021XA	CTA-405	2023/08/02	2024/08/01
	Amplifier	Schwarzbeck	BBV9719	CTA-406	2023/08/02	2024/08/01

	Test Equipment	Manufacturer	Model No.	Version number	Calibration Date	Calibration Due Date
CTATE	EMI Test Software	Tonscend	TS®JS32-RE	5.0.0.2	N/A	N/A
C	EMI Test Software	Tonscend	TS®JS32-CE	5.0.0.1	N/A	N/A
	RF Test Software	Tonscend	TS®JS1120-3	3.1.65	N/A	N/A
	RF Test Software	Tonscend	TS®JS1120	3.1.46	N/A	N/A
			Townself .		CT	All
G						



Report No.: CTA24040700801 Page 10 of 28

4. TEST CONDITIONS AND RESULTS

4.1. AC Power Conducted Emission

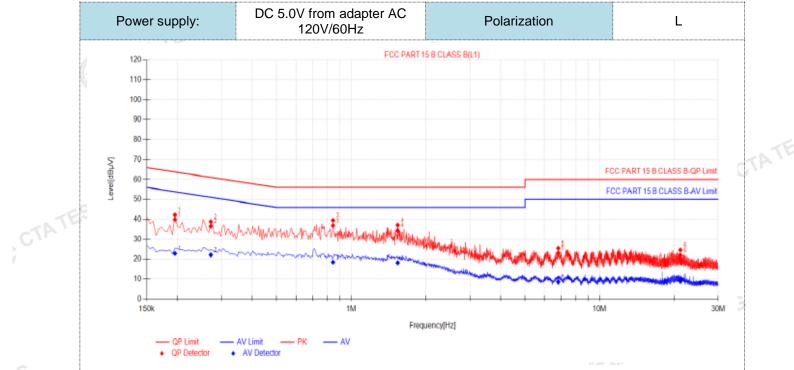
TEST CONFIGURATION

TEST PROCEDURE

- 1, The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10.
- 2, Support equipment, if needed, was placed as per ANSI C63.10.
- 3, All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10.
- 4, If a EUT received DC power from the USB Port of Notebook PC, the PC's adapter received power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5, All support equipments received AC power from a second LISN, if any.
- 6, The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7, Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.

AC Power Conducted Emission Limit

For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following:

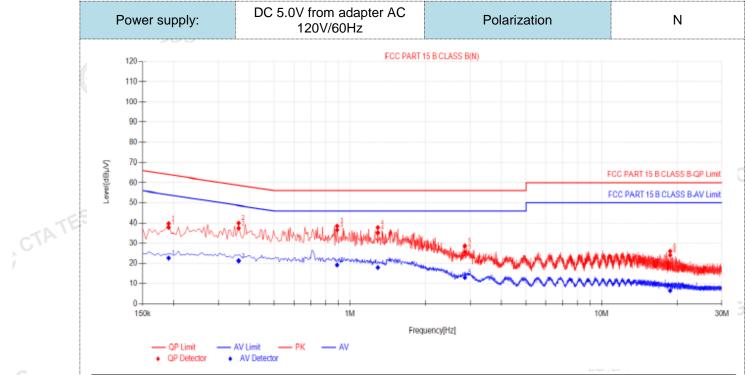

Fraguency range (MHz)	Limit (d	dBuV)
Frequency range (MHz)	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50
* Decreases with the logarithm of the freque	ency.	

TEST RESULTS

Remark:

- All modes of GFSK were tested at Low, Middle, and High channel; only the worst result of GFSK CH19
 was reported as below:
- Both 120 VAC, 50/60 Hz and 240 VAC, 50/60 Hz power supply have been tested, only the worst result
 of 120 VAC, 60 Hz was reported as below:.

Report No.: CTA24040700801 Page 11 of 28

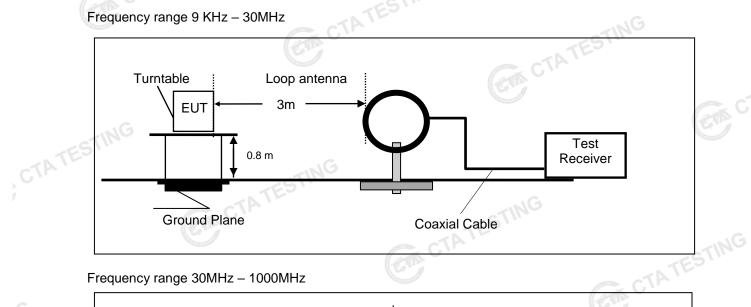


Fina	l Data Lis	st										
NO.	Freq. [MHz]	Factor [dB]	QP Reading[dB μV]	QP Value [dBµV]	QP Limit [dBµV]	QP Margin [dB]	AV Reading [dBμV]	AV Value [dBµV]	AV Limit [dBµV]	AV Margin [dB]	Verdict	
1	0.195	10.08	29.83	39.91	63.82	23.91	12.79	22.87	53.82	30.95	PASS	
2	0.2715	9.94	26.51	38.45	61.07	24.62	12.24	22.18	51.07	28.89	PASS	
3	0.843	10.00	26.84	36.84	56.00	19.16	8.49	18.49	46.00	27.51	PASS	
4	1.536	9.90	24.51	34.41	56.00	21.59	8.29	18.19	46.00	27.81	PASS	
5	6.8235	10.27	12.91	23.18	60.00	36.82	-1.69	8.58	50.00	41.42	PASS	
6	21.174	10.45	11.54	21.99	60.00	38.01	-1.57	8.88	50.00	41.12	PASS	
).QP Value ctor (dB)=ins	,		• .	,	` ,					CTA.	
4.11.4	Margin(dB)				, .	•						
.). AVI	Margin(dB)	= AV Lim	nt (dBuV)	- AV Val	ue (dBuV	['])						

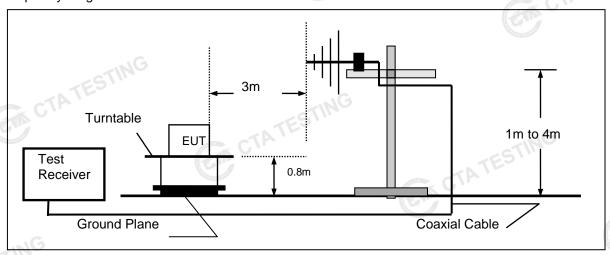
- 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)
- 3). $QPMargin(dB) = QP Limit (dB\mu V) QP Value (dB\mu V)$
- AV 4). AVMargin(dB) = AV Limit (dB μ V) - AV Value (dB μ V)

Report No.: CTA24040700801 Page 12 of 28

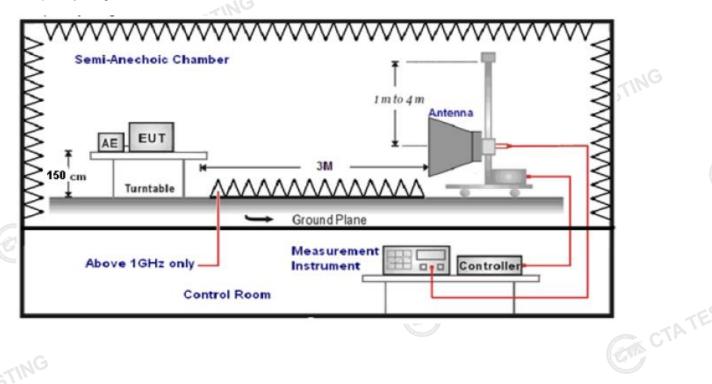
	Final	l Data Lis	t										
	NO.	Freq. [MHz]	Factor [dB]	QP Reading[dB μV]	QP Value [dBµV]	QP Limit [dBµV]	QP Margin [dB]	AV Reading [dBμV]	AV Value [dBµV]	AV Limit [dBµV]	AV Margin [dB]	Verdict	
	1	0.1905	9.99	27.82	37.81	64.01	26.20	12.62	22.61	54.01	31.40	PASS	
	2	0.3615	9.88	27.54	37.42	58.69	21.27	11.41	21.29	48.69	27.40	PASS	
	3	0.888	10.13	26.39	36.52	56.00	19.48	9.12	19.25	46.00	26.75	PASS	
	4	1.293	10.17	25.00	35.17	56.00	20.83	7.79	17.96	46.00	28.04	PASS	
	5	2.859	10.21	15.50	25.71	56.00	30.29	2.86	13.07	46.00	32.93	PASS	
	6	18.717	10.53	13.53	24.06	60.00	35.94	-3.94	6.59	50.00	43.41	PASS	
	,	.QP Value	,		• · ·	,	` ,					CAN C	AZ.
,		tor (dB)=ins			` ,		, ,						
3)	. QPN	/largin(dB)	= QP Lin	nit (dBµV)	- QP Va	lue (dBµ'	V)						
4)	. AVN	/largin(dB)	= AV Lim	it (dBµV)	- AV Val	ue (dBµV	')						


- 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)
- 3). QPMargin(dB) = QP Limit (dB μ V) QP Value (dB μ V)
- 4). $AVMargin(dB) = AV Limit (dB\mu V) AV Value (dB\mu V)$ AV 1

Page 13 of 28 Report No.: CTA24040700801


4.2. Radiated Emission and Band Edges

TEST CONFIGURATION


Frequency range 9 KHz - 30MHz

Frequency range 30MHz - 1000MHz

Frequency range above 1GHz-25GHz

Report No.: CTA24040700801

TEST PROCEDURE

- 1. The EUT was placed on a turn table which is 0.8m above ground plane when testing frequency range 9 KHz -25GHz.
- Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0°C to 360°C to acquire the highest emissions from EUT.
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 4. Repeat above procedures until all frequency measurements have been completed.
- The EUT minimum operation frequency was 26MHz and maximum operation frequency was 1910MHz.so radiated emission test frequency band from 9KHz to 25GHz.
- 6. The distance between test antenna and EUT as following table states:

Test Frequency range	Test Antenna Type	Test Distance
9KHz-30MHz	Active Loop Antenna	3
30MHz-1GHz	Ultra-Broadband Antenna	3
1GHz-18GHz	Double Ridged Horn Antenna	3
18GHz-25GHz	Horn Anternna	1

Setting test receiver/spectrum as following table states:

Test Frequency range	Test Receiver/Spectrum Setting	Detector
9KHz-150KHz	RBW=200Hz/VBW=3KHz,Sweep time=Auto	QP
150KHz-30MHz	RBW=9KHz/VBW=100KHz,Sweep time=Auto	QP
30MHz-1GHz	RBW=120KHz/VBW=1000KHz,Sweep time=Auto	QP
	Peak Value: RBW=1MHz/VBW=3MHz,	VIE
1GHz-40GHz	Sweep time=Auto	Peak
10112-400112	Average Value: RBW=1MHz/VBW=10Hz,	1 Cak
	Sweep time=Auto	

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG

Where FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)
RA = Reading Amplitude	AG = Amplifier Gain
AF = Antenna Factor	Carl C

Transd=AF +CL-AG

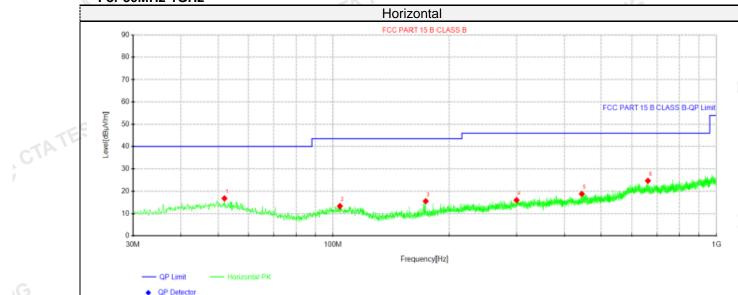
RADIATION LIMIT

According 15.249, the field strength of emissions from intentional radiators operated within 2400MHz-2483.5 MHz shall not exceed 94dBµV/m (50mV/m):

FCC PART 15.249(d) Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in §15.209, whichever is the lesser attenuation.

In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply CTATE with the radiated emission limits specified in §15.209(a)

Radiated emission limits

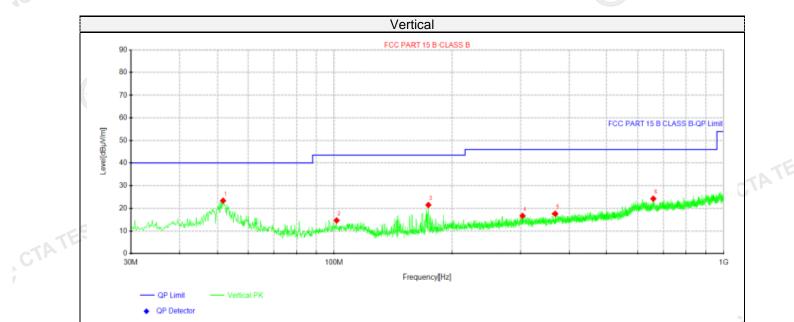

Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (µV/m)
0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)
0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)
1.705-30	3	20log(30)+ 40log(30/3)	30
30-88	3	40.0	100
88-216	3 614	43.5	150
216-960	3	46.0	200
Above 960	3	54.0	500

TEST RESULTS

Remark: .an

- This test was performed with EUT in X, Y, Z position and the worse case was found when EUT in X position.
- 2. Both modes of GFSK were tested at Low, Middle, and High channel and recorded worst mode at GFSK
- Radiated emission test from 9 KHz to 10th harmonic of fundamental was verified, and no emission found except system noise floor in 9 KHz to 30MHz and not recorded in this report.

For 30MHz-1GHz



Sus	pected Data	List							
NO	Freq. [MHz]	Reading [dBµV]	Level [dBµV/m]	Factor [dB/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity
1	51.9462	28.35	16.72	-11.63	40.00	23.28	100	190	Horizontal
2	104.326	26.68	13.26	-13.42	43.50	30.24	100	0	Horizontal
3	174.53	30.81	15.46	-15.35	43.50	28.04	100	246	Horizontal
4	300.145	27.30	15.93	-11.37	46.00	30.07	100	62	Horizontal
5	444.432	28.78	18.74	-10.04	46.00	27.26	100	223	Horizontal
6	661.712	29.91	24.68	-5.23	46.00	21.32	100	357	Horizontal
2). Fa	ctor(dB/m)=	uV/m)= Read Antenna Fad .imit (dBµV/n	tor (dB/m) -	+ Cable lo	(dB/m) oss (dB) - Pre	Amplifier g	ain (dB)		(EM)

3). Margin(dB) = Limit (dBµV/m) - Level (dBµV/m) CTA TESTING

CTATE

Report No.: CTA24040700801 Page 16 of 28

Susp	Suspected Data List											
NO	Freq.	Reading	Level	Factor	Limit	Margin	Height	Angle	Dalasita			
NO.	[MHz]	[dBµV]	[dBµV/m]	[dB/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity			
1	51.7038	34.97	23.36	-11.61	40.00	16.64	100	243	Vertical			
2	101.537	27.94	14.57	-13.37	43.50	28.93	100	352	Vertical			
3	174.53	36.81	21.46	-15.35	43.50	22.04	100	197	Vertical			
4	303.54	27.97	16.61	-11.36	46.00	29.39	100	162	Vertical			
5	368.045	28.45	17.54	-10.91	46.00	28.46	100	360	Vertical			
6	658.923	29.47	24.26	-5.21	46.00	21.74	100	174	Vertical			

Note:1).Level $(dB\mu V/m)$ = Reading $(dB\mu V)$ + Factor (dB/m)

2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB)

3). Margin(dB) = Limit (dBu\//m) - Level (dBu\//m)

3). Margin(dB) = Limit (dB μ V/m) - Level (dB μ V/m)

CTATE

Report No.: CTA24040700801

For 1GHz to 25GHz

GFSK (above 1GHz)

Freque	Frequency(MHz):			2410		Polarity:		HORIZONTAL		
Frequency (MHz)	_	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
2410.00	98.96	PK	114.00	15.04	110.24	27.48	3.43	42.19	-11.28	
2410.00	80.34	AV	94.00	13.66	91.62	27.48	3.43	42.19	-11.28	
4820.00	48.71	PK	74.00	25.29	52.96	32.34	5.16	41.75	-4.25	
4820.00	40.29	AV	54.00	13.71	44.54	32.34	5.16	41.75	-4.25	
7230.00	50.64	PK	74.00	23.36	51.17	36.61	6.52	43.66	-0.53	
7230.00	36.47	AV	54.00	17.53	37.00	36.61	6.52	43.66	-0.53	
G									E.	

G										
Freque	Frequency(MHz):			2410		Polarity:		VERTICAL		
Frequency (MHz)	Emis Le (dBu		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
2410.00	97.39	PK	114.00	16.61	108.67	27.48	3.43	42.19	-11.28	
2410.00	77.58	AV	94.00	16.42	88.86	27.48	3.43	42.19	-11.28	
4820.00	46.49	PK	74.00	27.51	50.74	32.34	5.16	41.75	-4.25	
4820.00	38.44	AV	54.00	15.56	42.69	32.34	5.16	41.75	-4.25	
7230.00	48.83	PK	74.00	25.17	49.36	36.61	6.52	43.66	-0.53	
7230.00	34.70	AV	54.00	19.30	35.23	36.61	6.52	43.66	-0.53	

Freque	Frequency(MHz):			2440		Polarity:		HORIZONTAL		
Frequency (MHz)	Emis Le (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
2440.00	98.29	PK	114.00	15.71	109.54	27.52	3.45	42.22	-11.25	
2440.00	79.33	AV	94.00	14.67	90.58	27.52	3.45	942.22	-11.25	
4880.00	51.87	PK	74.00	22.13	55.75	32.6	5.34	41.82	-3.88	
4880.00	44.88	AV	54.00	9.12	48.76	32.6	5.34	41.82	-3.88	
7320.00	48.80	PK	74.00	25.20	48.91	36.8	6.81	43.72	-0.11	
7320.00	38.75	AV	54.00	15.25	38.86	36.8	6.81	43.72	-0.11	

Freque	ency(MHz)	:	2440		Polarity:		VERTICAL			
Frequency (MHz)	_	ssion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
2440.00	96.48	PK	114.00	17.52	107.73	27.52	3.45	42.22	-11.25	
2440.00	77.81	AV	94.00	16.19	89.06	27.52	3.45	42.22	-11.25	
4880.00	49.14	PK	74.00	24.86	53.02	32.6	5.34	41.82	-3.88	
4880.00	42.99	AV	54.00	11.01	46.87	32.6	5.34	41.82	-3.88	
7320.00	46.63	PK	74.00	27.37	46.74	36.8	6.81	43.72	-0.11	
7320.00	37.17	AV	54.00	16.83	37.28	36.8	6.81	43.72	-0.11	

					Harris William					
Freque	ncy(MHz)):	2470		Polarity:		HORIZONTAL			
Frequency (MHz)	Emission Level (dBuV/m)		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
2470.00	97.74	PK	114.00	16.26	107.88	27.67	4.47	42.28	-10.14	
2470.00	80.78	AV	94.00	13.22	90.92	27.67	4.47	42.28	-10.14	
4940.00	52.37	PK	74.00	21.63	55.47	32.71	5.66	41.47	-3.1	
4940.00	45.93	AV	54.00	8.07	49.03	32.71	5.66	41.47	-3.1	
7410.00	51.07	PK	74.00	22.93	50.64	37.02	7.25	43.84	0.43	
7410.00	40.33	AV	54.00	13.67	39.90	37.02	7.25	43.84	0.43	

TESTING

Report No.: CTA24040700801 Page 18 of 28

Frequei	ncy(MHz)	:	2470		Polarity:		VERTICAL			
Frequency (MHz)	Emis Lev (dBu)		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
2470.00	95.93	PK	114.00	18.07	106.07	27.67	4.47	42.28	-10.14	
2470.00	78.39	AV	94.00	15.61	88.53	27.67	4.47	42.28	-10.14	
4940.00	50.04	PK	74.00	23.96	53.14	32.71	5.66	41.47	-3.1	
4940.00	43.67	AV	54.00	10.33	46.77	32.71	5.66	41.47	-3.1	
7410.00	49.23	PK	74.00	24.77	48.80	37.02	7.25	43.84	0.43	
7410.00	38.60	AV	54.00	15.40	38.17	37.02	7.25	43.84	0.43	
REMARKS: 1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction 2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable 3. Margin value = Limit value- Emission level.					e Factor (dB)- P	re-amplifier			CTP CTP	

REMARKS:

- Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
- Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)- Pre-amplifier
- Margin value = Limit value- Emission level.
- -- Mean the PK detector measured value is below average limit.
- The other emission levels were very low against the limit.

Results of Band Edges Test (Radiated)

Freque	ncy(MHz)	:	24	10	Pola	rity:	н	HORIZONTAL	
Frequency (MHz)	Emis Le (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2390.00	61.13	PK	74	12.87	71.55	27.42	4.31	42.15	-10.42
2390.00	43.16	AV	54	10.84	53.58	27.42	4.31	42.15	-10.42
Freque	ncy(MHz)	:	24	10	Pola	arity:		VERTICAL	
Frequency (MHz)	Emis Le (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2390.00	59.46	PK	74	14.54	69.88	27.42	4.31	42.15	-10.42
2390.00	41.50	AV	54	12.50	51.92	27.42	4.31	42.15	-10.42
Freque	ncy(MHz)	:	2470		Polarity:		н	ORIZONTA	۱L
Frequency (MHz)	Emis Le (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2483.50	60.68	PK	74	13.32	70.79	27.7	4.47	42.28	-10.11
2483.50	44.09	AV	54	9.91	54.20	27.7	4.47	42.28	-10.11
Freque	Frequency(MHz):		24	70	Pola	arity:	VERTICAL		
Frequency (MHz)	Emis Le (dBu		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2483.50	58.93	PK	74	15.07	69.04	27.7	4.47	42.28	-10.11
2483.50	41.59	AV	54	12.41	51.70	27.7	4.47	42.28	-10.11

Note:

- Emission level (dBuV/m) = Meter Reading+ antenna Factor+ cable loss- preamp factor. 1)
- 2) Margin value = Limits-Emission level.
- 3) -- Mean the PK detector measured value is below average limit.
- 4) The other emission levels were very low against the limit.
- RBW1MHz VBW3MHz Peak detector is for PK value; RBW 1MHz VBW10Hz Peak detector is for AV value.

Page 19 of 28 Report No.: CTA24040700801

4.3. 20dB Bandwidth Measurement

TEST CONFIGURATION

TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 30KHz RBW and 300KHz VBW.


The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus CTATESTING 20dB.

LIMIT

TEST RESULTS

<u>LIMIT</u>		CTAT!		
N/A				
TEST RESULTS			GTA CTA	
Modulation	Channel	20dB bandwidth (MHz)	Result	
CTATE	Low	1.209		
GFSK	Mid	1.211	PASS	
	High	1.210	CTING	
Note: 1.The test res	sults including the ca	ble lose.	CTATES!	

Report No.: CTA24040700801 Page 20 of 28

Page 21 of 28 Report No.: CTA24040700801

4.4. Antenna Requirement

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

And according to FCC 47 CFR Section 15.247 (c), if transmitting antennas of directional gain greater than CTATE 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

The maximum gain of antenna was 0.17 dBi.

Remark:The anter Remark: The antenna gain is provided by the customer, if the data provided by the customer is not accurate, Shenzhen CTA Testing Technology Co., Ltd. does not assume any responsibility. CTATES!