

FCC Test Report

Application No.:	DNT240707R1213-2156		
Applicant:	Zhongshan Haoshi Electronics Co., LTD		
Address of	No.5-8 card,2nd floor,Building 9, No. 33-35, East Jucheng Avenue,		
Applicant:	Xiaolan Town, Zhongshan City		
EUT Description:	Portable karaoke speaker		
Model No.:	W6		
FCC ID:	2BF5H-W6		
Power Supply:	DC 7.4V From Battery; DC 5V From Adapter Input 100-240V,50/60Hz		
Charging Voltage:	DC 5V/2A		
Trade Mark:			
	47 CFR FCC Part 2, Subpart J		
Standards:	47 CFR Part 15, Subpart C		
	ANSI C63.10: 2013		
Date of Receipt:	2024/4/19		
Date of Test:	2024/4/20 to 2024/4/25		
Date of Issue:	2024/4/26		
Test Result:	PASS *		

Prepared By: **Reviewed By:** Approved By:

Wayne Jon	(Testing Engineer)
Pencils chen	(Project Engineer)
Wick Feng	(Manager)

Note: If there is any objection to the results in this report, please submit a written inquiry to the company within 15 days from the date of receiving the report. The test report is effective only with both signature and specialized stamp, and is issued by the company in accordance with the requirements of the "Conditions of Issuance of Test Reports" printed in the attached page. Unless otherwise stated, the results presented in this report only apply to the samples tested this time. Partial reproduction of this report is not allowed unless approved by the company in writing.

Dongguan DN Testing Co., Ltd.

 Add: No. 1, West Fourth Street, Xingfa South Road, Wusha Community, Chang 'an Town, Dongguan City, Guangdong P.R.China

 Web: www.dn-testing.com

 Tel:+86-769-88087383

 E-mail: service@dn-testing.com

Date: April 26, 2024 Page: 2 / 66

Report Revise Record

Report Version	Revise Time	Issued Date Valid Version		Notes
V1.0		Apr.26, 2024	Valid	Original Report

1

Report No.: DNT240707R1213-2156

Date: April 26, 2024

Page: 3/66

Test Summary

Test Item	Test Requirement	Test Method	Test Result	Result
Antenna Requirement	15.203/247(b)		Clause 3.1	PASS
20dB Emission Bandwidth	15.247 (a)(1)	ANSI C63.10 (2013)	Clause 3.2	PASS
Conducted Peak Output Power	15.247 (b)(1)	ANSI C63.10 (2013)	Clause 3.3	PASS
Carrier Frequencies Separation	15.247 (a)(1)	ANSI C63.10 (2013)	Clause 3.4	PASS
Dwell Time	15.247 (a)(1)	ANSI C63.10 (2013)	Clause 3.5	PASS
Hopping Channel Number	15.247 (a)(1)	ANSI C63.10 (2013)	Clause 3.6	PASS
Band-edge for RF Conducted Emissions	15.247(d)	ANSI C63.10 (2013)	Clause 3.7	PASS
RF Conducted Spurious Emissions	15.247(d)	ANSI C63.10 (2013)	Clause 3.8	PASS
Radiated Spurious emissions	15.247(d); 15.205/15.209	ANSI C63.10 (2013)	Clause 3.9	PASS
Restricted bands around fundamental frequency (Radiated Emission)	15.247(d); 15.205/15.209	ANSI C63.10 (2013)	Clause 3.10	PASS
AC Power Line Conducted Emission	15.207	ANSI C63.10 (2013)	Clause 3.11	PASS

Note:

1. "N/A" denotes test is not applicable in this test report.

Date: April 26, 2024

Page: 4/66

Contents

1 <	Test Su	ummary	
2	Genera	al Information	5
	2.1	Test Location	
	2.2	General Description of EUT	6
	2.3	Channel List	7
	2.4	Test Environment and Mode	
	2.5	Power Setting of Test Software	9
	2.6	Description of Support Units	
	2.7	Test Facility	
	2.8	Measurement Uncertainty (95% confidence levels, k=2)	
	2.9	Equipment List	11
	2.10	Assistant equipment used for test	
3 <	Test re	esults and Measurement Data	
	3.1	Antenna Requirement	
	3.2	20dB Emission Bandwidth	
	3.3	Conducted Output Power	15
	3.4	Carrier Frequencies Separationy	
	3.5	Dwell Time	
	3.6	Hopping Channel Number	
	3.7	Band-edge for RF Conducted Emissions	19
	3.8	RF Conducted Spurious Emissions	
	3.9	Radiated Spurious Emissions	21
	3.10	Restricted bands around fundamental frequency	29
	3.11	AC Power Line Conducted Emissions	
4	Append	dix	
	Append	dix A: 20dB Emission Bandwidth	
	Append	dix B: Maximum conducted output power	
	Append	dix C: Carrier frequency separation	
	Append	dix D: Dwell Time	
	Append	dix F: Number of hopping channels	50
	Append	dix F: Band edge measurements	
	Append	dix F: Conducted Spurious Emission	

Date: April 26, 2024

Page: 5/66

2 General Information

2.1 Test Location

Company:	Dongguan DN Testing Co., Ltd		
Address:	No. 1, West Fourth Street, South Xinfa Road, Wusha Liwu, Chang ' an Town, Dongguan City, Guangdong P.R.China		
Test engineer:	Wayne Lin		

Date: April 26, 2024

Page: 6/66

2.2 General Description of EUT

Manufacturer:	Zhongshan Haoshi Electronics Co., LTD				
Address of Manufacturer:	No.5-8 card,2nd floor,Building 9, No. 33-35, East Jucheng Avenue, Xiaolan Town, Zhongshan City				
Test EUT Description:	Portable karaoke speaker				
Model No.:	W6				
Additional Model(s):					
Chip Type:	BP1048B2				
Serial number:	PR240707R1213				
Power Supply:	DC 7.4V From Battery; DC 5V From Adapter Input 100-240V,50/60Hz				
Charging Voltage:	DC 5V/2A				
Trade Mark:	1				
Hardware Version:	V1.0				
Software Version:	V1.0				
Operation Frequency:	2402 MHz to 2480 MHz				
Modulation Technique:	Frequency Hopping Spread Spectrum(FHSS)				
Type of Modulation:	GFSK,π/4-DQPSK,8DPSK				
Sample Type:	Portable Device, Module, Mobile Device				
Antenna Type:	□ External, ⊠ Integrated				
Antenna Ports:	🖂 Ant 1, 🗌 Ant 2, 🗌 Ant 3				
Antenna Gain*:	Provided by applicant				
-0.58dBi					
	Provided by applicant				
RF Cable*: 0.5dB(0.6~1GHz); 0.8dB(1.4~2GHz); 1.0dB(2.1~2.7GHz); 1.5dB(3~4G 1.8dB(4.4~6GHz);					

Remark:

*Since the above data and/or information is provided by the applicant relevant results or conclusions of this report are only made for these data and/or information, DNT is not responsible for the authenticity, integrity and results of the data and information and/or the validity of the conclusion.

Date: April 26, 2024

Page: 7/66

2.3 Channel List

		Opera	ation Frequenc	y of each cl	nannel		
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz
1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz
2	2404MHz	22	2424MHz	42	2444MHz	62	2464MHz
/ 3	2405MHz	23	2425MHz	43	2445MHz	63	2465MHz
4	2406MHz	24	2426MHz	44	2446MHz	64	2466MHz
5	2407MHz	25	2427MHz	45	2447MHz	65	2467MHz
6	2408MHz	26	2428MHz	46	2448MHz	66	2468MHz
7	2409MHz	27	2429MHz	47	2449MHz	67	2469MHz
8	2410MHz	28	2430MHz	48	2450MHz	68	2470MHz
9	2411MHz	29	2431MHz	49	2451MHz	69	2471MHz
10	2412MHz	30	2432MHz	50	2452MHz	70	2472MHz
11	2413MHz	31	2433MHz	51	2453MHz	71	2473MHz
_ 12	2414MHz	32	2434MHz	52	2454MHz	72	2474MHz
13	2415MHz	33	2435MHz	53	2455MHz	73	2475MHz
14	2416MHz	34	2436MHz	54	2456MHz	74	2476MHz
15	2417MHz	35	2437MHz	55	2457MHz	75	2477MHz
16	2418MHz	36	2438MHz	56	2458MHz	76	2478MHz
17	2419MHz	37	2439MHz	57	2459MHz	77	2479MHz
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz
19	2421MHz	39	2441MHz	59	2461MHz	\mathbf{r}	

Remark:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The Lowest channel	2402MHz
The Middle channel	2441MHz
The Highest channel	2480MHz

Date: April 26, 2024

Page: 8/66

2.4 5Test Environment and Mode

Operating Environment:				
Temperature:	20~25.0 °C			
Humidity:	45~56 % RH			
Atmospheric Pressure:	101.0~101.30 KPa			
Test mode:				
Transmitting mode: Keep the EUT in transmitting mode with all kind of modulation and all kind of data rate.				

Date: April 26, 2024 Page: 9 / 66

2.5 Power Setting of Test Software

Software Name	\mathcal{O} , \mathcal{O} ,	FrequencyTool_v0.3.2	\mathcal{O} \mathcal{O} \mathcal{O}
Frequency(MHz)	2402	2441	2480
GFSK Setting	4	4	4
π/4-DQPSK Setting	4	4	4
8DPSK	4	4	4

2.6 Description of Support Units

The EUT has been tested independent unit.

2.7 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

Lab A:

• FCC, USA

Designation Number: CN1348

A2LA (Certificate No. 7050.01)

DONGGUAN DN TESTING CO., LTD. is accredited by the American Association for Laboratory Accreditation(A2LA). Certificate No. 7050.01.

Innovation, Science and Economic Development Canada

DONGGUAN DN TESTING CO., LTD. EMC Laboratory has been recognized by ISED as an accredited testing laboratory.

IC#: 31026.

Date: April 26, 2024

Page: 10/66

2.8 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	20dB Emission Bandwidth	±0.0196%
2	Carrier Frequency Separation	±1.9%
3	Number of Hopping Channel	±1.9%
4	Time of Occupancy	±0.028%
5	Max Peak Conducted Output Power	±0.743 dB
6	Band-edge Spurious Emission	±1.328 dB
7	Conducted RF Spurious Emission	9KHz-1GHz:±0.746dB 1GHz-26GHz:±1.328dB

No.	Item	Measurement Uncertainty
1	Conduction Emission	± 3.0dB (150kHz to 30MHz)
O,	O O O O O O	± 4.8dB (Below 1GHz)
0	Dedicted Enviroing	± 4.8dB (1GHz to 6GHz)
2	Radiated Emission	± 4.5dB (6GHz to 18GHz)
		± 5.02dB (Above 18GHz)

2.9 Equipment List

	For Connect	ct EUT Anteni	na Terminal	Test	
Description	Manufacturer	Model	Serial Number	Cal date	Due date
Signal Generator	Keysight	N5181A-6G	MY48180415	2023-10-25	2024-10-24
Signal Generator	Keysight	N5182B	MY57300617	2023-10-25	2024-10-24
Power supply	Keysight	E3640A	ZB2022656	2023-10-25	2024-10-24
Radio Communication Tester	R&S	CMW500	105082	2023-10-25	2024-10-24
Spectrum Analyzer	Aglient	N9010A	MY52221458	2023-10-25	2024-10-24
BT/WIFI Test Software	Tonscend	JS1120 V3.1.83	NA	NA	NA
RF Control Unit	Tonscend	JS0806-2	22F8060581	NA	NA
Power Sensor	Anritsu	ML2495A	2129005	2023-10-25	2024-10-24
Pulse Power Sensor	Anritsu	MA2411B	1911397	2023-10-25	2024-10-24
temperature and humidity box	SCOTEK	SCD-C40-80PRO	6866682020008	2023-10-25	2024-10-24

	Test Equipment for Conducted Emission							
Description Manufacturer Model Serial Number Cal Date Due Da								
Receiver	R&S	ESCI3	101152	2023-10-24	2024-10-23			
LISN	R&S	ENV216	102874	2023-10-24	2024-10-23			
ISN	R&S	ENY81-CA6	1309.8590.03	2023-10-24	2024-10-23			

Test Ec	quipment for F	Radiated Emis	sion(30MHz	-1000MH	z)
Description	Manufacturer	Model	Serial Number	Cal Date	Due Date
Receiver	R&S	ESR7	102497	2023-10-24	2024-10-23
Test Software	ETS-LINDGREN	TILE-FULL	NA	NA	NA
RF Cable	ETS-LINDGREN	RFC-NMS-100- NMS-350-IN	NA	2023-10-24	2024-10-23
Log periodic antenna	ETS-LINDGREN	VULB 9168	01475	2023-10-24	2024-10-23
Pre-amplifier	Schwarzbeck	BBV9743B	00423	2023-10-24	2024-10-23

Date: April 26, 2024

Page: 12/66

Test E	quipment for F	Radiated Emis	ssion(Above	1000MHz	<u>z)</u>
Description	Manufacturer	Model	Serial Number	Cal Date	Due Date
Frequency analyser	Keysight	N9010A	MY52221458	2023-10-24	2024-10-23
RF Cable	ETS-LINDGREN	RFC-NMS-100- NMS-350-IN	NA	2023-10-24	2024-10-23
Horn Antenna	ETS-LINDGREN	3117	00252567	2023-10-24	2024-10-23
Double ridged waveguide antenna	ETS-LINDGREN	3116C	00251780	2023-10-24	2024-10-23
Test Software	ETS-LINDGREN	TILE-FULL	NA	NA	NA
Pre-amplifier	ETS-LINDGREN	3117-PA	252567	2023-10-24	2024-10-23
Pre-amplifier	ETS-LINDGREN	3116C-PA	251780	2023-10-24	2024-10-23

2.10 Assistant equipment used for test

Code	Equipment	Manufacturer	Model No.	Equipment No.
_1	Computer	acer	N22C8	EMC notebook01
2	Adapter	HUAWEI	HW-100225C00	NA

3 Test results and Measurement Data

3.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)

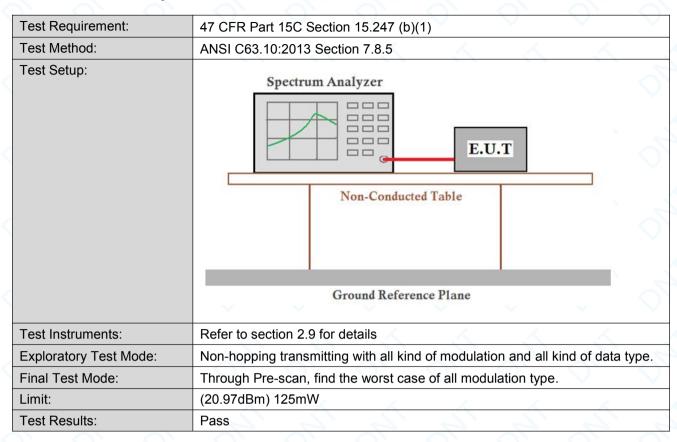
15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

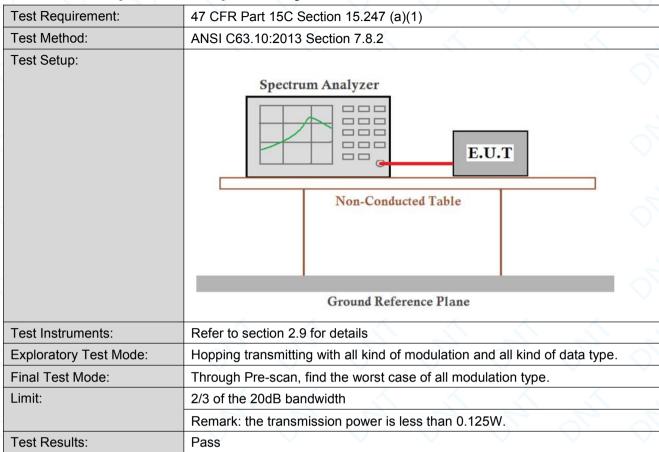
The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is -0.58dBi.


3.2 20dB Emission Bandwidth

	Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)
	Test Method:	ANSI C63.10:2013 Section 7.8.7
	Test Setup:	Spectrum Analyzer E.U.T
		Non-Conducted Table
		Ground Reference Plane
	Instruments Used:	Refer to section 2.9 for details
	Exploratory Test Mode:	Non-hopping transmitting with all kind of modulation and all kind of data type.
\langle	Final Test Mode:	Through Pre-scan, find the worst case of all modulation type.
	Limit:	NA
	Test Results:	Pass

The detailed test data see: Appendix A


3.3 Conducted Output Power

The detailed test data see: Appendix B

3.4 Carrier Frequencies Separationy

The detailed test data see: Appendix C

3.5 Dwell Time

Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)		
Test Method:	ANSI C63.10:2013 Section 7.8.4	<u> </u>	
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table		0 0
	Ground Reference Plane	Ś.	
Instruments Used:	Refer to section 2.9 for details		$\mathbf{\mathbf{\mathcal{S}}}$
Test Mode:	Hopping transmitting with all kind of modulation and all kind of dat	a type.	-
Limit:	0.4 Second		
Test Results:	Pass	7	5

The detailed test data see: Appendix D

3.6 Hopping Channel Number

Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)		
Test Method:	ANSI C63.10:2013 Section 7.8.3		
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table	The share	0, 0, 0,
	Ground Reference Plane	\rightarrow	
Instruments Used:	Refer to section 2.9 for details		\sim
Test Mode:	Hopping transmitting with all kind of modulation		
Limit:	At least 15 channels		
Test Results:	Pass	2	~

The detailed test data see: Appendix E

Report No.: DNT240707R1213-2156 Date: April 26, 2024

Page: 19/66

3.7 Band-edge for RF Conducted Emissions

Test Requirement:	47 CFR Part 15C Section 15.247 (d)
Test Method:	ANSI C63.10:2013 Section 7.8.6
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table
	Ground Reference Plane
Instruments Used:	Refer to section 2.9 for details
Exploratory Test Mode:	Hopping and Non-hopping transmitting with all kind of modulation and all kind of data type.
Final Test Mode:	Through Pre-scan, find the worst case of all modulation type.
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test Results:	Pass

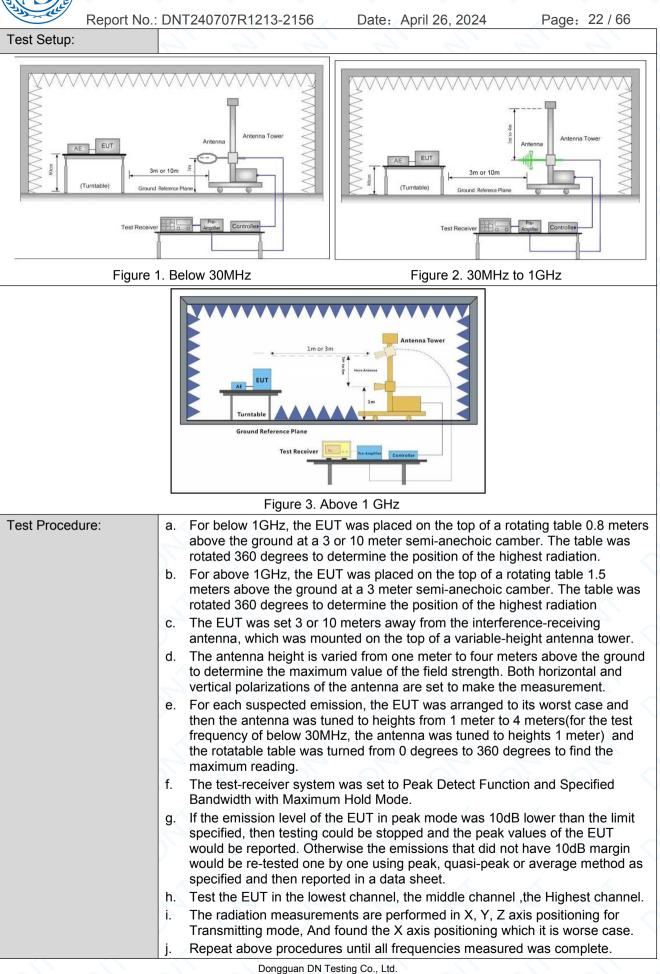
The detailed test data see: Appendix F

Page: 20/66

3.8 RF Conducted Spurious Emissions

Test Requirement:	47 CFR Part 15C Section 15.247 (d)
Test Method:	ANSI C63.10: 2013 Section 11.11
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Instruments Used:	Refer to section 2.9 for details
Exploratory Test Mode:	Transmitting with all kind of modulations, data rates
Final Test Mode:	Through Pre-scan, find the worst case of all modulation type.
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.
Test Results:	Pass

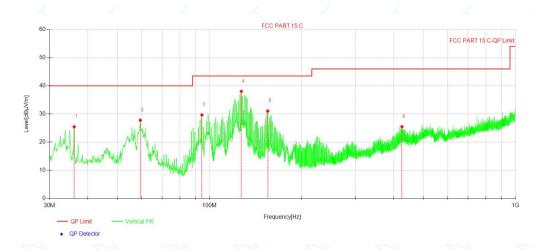
The detailed test data see: Appendix G


Date: April 26, 2024

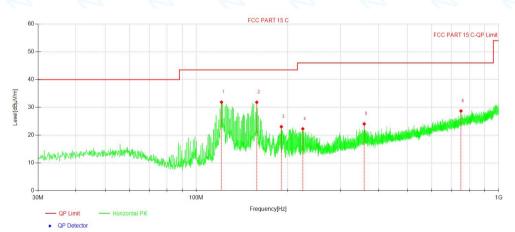
Page: 21/66

3.9 Radiated Spurious Emissions

Test Requirement:	47 CFR Part 15C Sectio	n 15.209 and 15.20)5					
Test Method:	ANSI C63.10: 2013 Section 11.12							
Test Site:	Measurement Distance:	3m or 10m (Semi-A	Anechoic Ch	amber)	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark			
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak			
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average			
	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak			
	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak			
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average			
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak			
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak			
		Peak	1MHz	3MHz	Peak			
	Above 1GHz	Peak	1MHz	10Hz (DC≥0.98)	Average			
	A. A.	<u> </u>	$\langle \langle \rangle$	≥1/T (DC<0.98)				
Limit:	Frequency	Field strength (microvolt/meter)	Limit (dBuV/m)	Remark	Measuremen distance (m)			
	0.009MHz-0.490MHz	2400/F(kHz)	- 🔨	~	300			
	0.490MHz-1.705MHz	24000/F(kHz)		~	30			
	1.705MHz-30MHz	30	$\overline{\mathbf{O}}$	\bigcirc	30			
	30MHz-88MHz	100	40.0	Quasi-peak	3			
	88MHz-216MHz	150	43.5	Quasi-peak	3			
	216MHz-960MHz	200	46.0	Quasi-peak	3			
	960MHz-1GHz	500	54.0	Quasi-peak	3			
	Above 1GHz	500	54.0	Average	3			
	Remark: 15.35(b),Unless emissions is 20dB above applicable to the equipm emission level radiated b	e the maximum per ent under test. This	mitted avera	ge emission lir	nit			



Report No.	DNT240707R1213-2156 Date: April 26, 2024 Page: 23 / 66
Test Configuration:	Measurements Below 1000MHz• RBW = 120 kHz• VBW = 300 kHz• Detector = Peak• Trace mode = max holdPeak Measurements Above 1000 MHz• RBW = 1 MHz• VBW \ge 3 MHz• Detector = Peak• Sweep time = auto• Trace mode = max holdAverage Measurements Above 1000MHz• RBW = 1 MHz• VBW \ge 10 Hz, when duty cycle is no less than 98 percent.• VBW \ge 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.
Exploratory Test Mode:	Transmitting with all kind of modulations, data rates. Charge+Transmitting mode.
Final Test Mode:	Pretest the EUT at Transmitting mode. Through Pre-scan, find the DH5 of data type is the worst case of All modulation type.
Instruments Used:	Refer to section 2.9 for details
Test Results:	Pass


Test data For 30-1000MHz

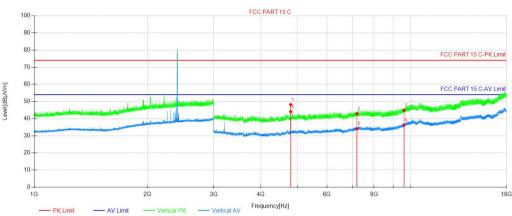
Vertical:

	NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/ m]	Margin [dB]	Height [cm]	Angle [°]	Remark
	1	36.11	34.69	-9.24	25.45	40.00	14.55	100	228	QP
	2	59.39	36.47	-8.70	27.77	40.00	12.23	100	179	QP
	3	94.41	43.09	-13.44	29.65	43.50	13.85	100	119	QP
	4	127.00	47.73	-9.70	38.03	43.50	5.47	100	359	QP
	5	155.04	38.82	-7.79	31.03	43.50	12.47	100	282	QP
1	6	425.60	29.03	-3.54	25.49	46.00	20.51	100	355	QP

Horizontal :

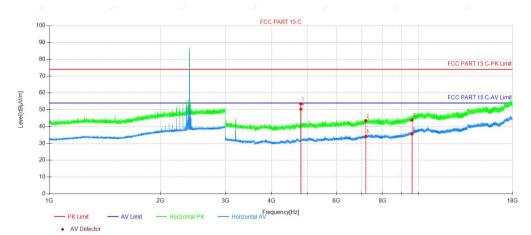
NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark
1	121.18	42.07	-10.18	31.89	43.50	11.61	100	119	QP
2	158.53	39.64	-7.80	31.84	43.50	11.66	100	352	QP
3	191.13	33.66	-10.62	23.04	43.50	20.46	100	51	QP
4	225.08	33.24	-10.96	22.28	46.00	23.72	100	27	QP
5	359.15	29.60	-5.56	24.04	46.00	21.96	100	42	QP
6	750.10	25.28	3.41	28.69	46.00	17.31	100	11	QP

Dongguan DN Testing Co., Ltd.


 Add: No. 1, West Fourth Street, Xingfa South Road, Wusha Community, Chang 'an Town, Dongguan City, Guangdong P.R.China

 Web: www.dn-testing.com
 Tel:+86-769-88087383
 E-mail: service@dn-testing.com

For above 1GHz DH5 2402MHz


Vertical:

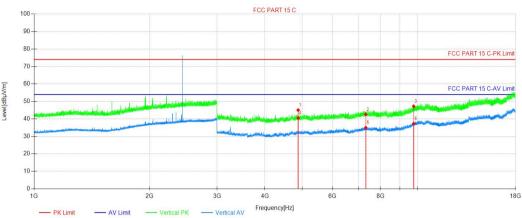
AV Detector

	NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Heigh t [cm]	Angle [°]	Remark
	1	4804.59	52.76	-4.61	48.15	74.00	25.85	150	182	Peak
$\overline{\}$	2	7206.21	44.62	-1.76	42.86	74.00	31.14	150	4	Peak
	3	9608.58	44.02	0.88	44.90	74.00	29.10	150	57	Peak
	4	4804.59	48.70	-4.61	44.09	54.00	9.91	150	169	AV
~	5	7206.21	35.92	-1.76	34.16	54.00	19.84	150	155	AV
	6	9608.58	35.41	0.88	36.29	54.00	17.71	150	115	AV

Horizontal:

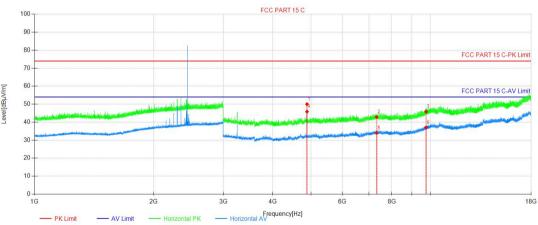
NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark
1	4803.84	58.07	-4.61	53.46	74.00	20.54	150	70	Peak
2	7206.21	45.19	-1.76	43.43	74.00	30.57	150	166	Peak
3	9608.58	42.89	0.88	43.77	74.00	30.23	150	70	Peak
4	4804.59	54.96	-4.61	50.35	54.00	3.65	150	56	AV
5	7206.21	35.84	-1.76	34.08	54.00	19.92	150	281	AV
6	9608.58	34.71	0.88	35.59	54.00	18.41	150	29	AV

Dongguan DN Testing Co., Ltd.


 Add: No. 1, West Fourth Street, Xingfa South Road, Wusha Community, Chang 'an Town, Dongguan City, Guangdong P.R.China

 Web: www.dn-testing.com
 Tel:+86-769-88087383
 E-mail: service@dn-testing.com

DH5 2441MHz


Vertical:

AV Detector

	NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark
	1	4881.84	49.76	-4.72	45.04	74.00	28.96	150	180	Peak
	2	7323.21	44.09	-1.49	42.60	74.00	31.40	150	266	Peak
	3	9764.58	45.60	1.64	47.24	74.00	26.76	150	358	Peak
\checkmark	4	4882.59	45.21	-4.72	40.49	54.00	13.51	150	180	AV
	5	7323.21	36.45	-1.49	34.96	54.00	19.04	150	180	AV
	6	9764.58	35.66	1.64	37.30	54.00	16.70	150	336	AV

Horizontal:

٠	AV Detector

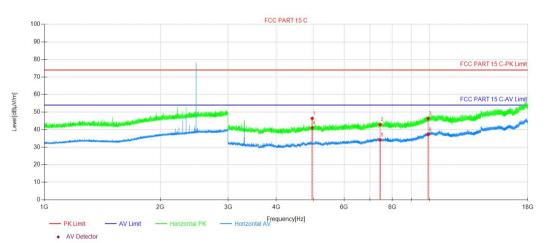
NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark
1	4882.59	54.76	-4.72	50.04	74.00	23.96	150	73	Peak
2	7323.21	44.33	-1.49	42.84	74.00	31.16	150	144	Peak
3	9764.58	44.19	1.64	45.83	74.00	28.17	150	266	Peak
4	4882.59	50.59	-4.72	45.87	54.00	8.13	150	45	AV
5	7323.21	35.49	-1.49	34.00	54.00	20.00	150	101	AV
6	9764.58	35.38	1.64	37.02	54.00	16.98	150	321	AV

Dongguan DN Testing Co., Ltd.


 Add: No. 1, West Fourth Street, Xingfa South Road, Wusha Community, Chang 'an Town, Dongguan City, Guangdong P.R.China

 Web: www.dn-testing.com
 Tel:+86-769-88087383
 E-mail: service@dn-testing.com

DH5 2480MHz


Vertical:

AV Detector

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark
1	4959.84	49.67	-4.86	44.81	74.00	29.19	150	263	Peak
2	7440.22	44.76	-1.34	43.42	74.00	30.58	150	28	Peak
3	9920.59	43.67	2.27	45.94	74.00	28.06	150	250	Peak
4	4960.59	42.87	-4.86	38.01	54.00	15.99	150	180	AV
5	7440.22	35.49	-1.34	34.15	54.00	19.85	150	42	AV
6	9920.59	35.47	2.27	37.74	54.00	16.26	150	194	AV

Horizontal:

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark
1	4959.84	51.25	-4.86	46.39	74.00	27.61	150	29	Peak
2	7440.22	44.21	-1.34	42.87	74.00	31.13	150	339	Peak
3	9920.59	44.06	2.27	46.33	74.00	27.67	150	227	Peak
4	4960.59	45.93	-4.86	41.07	54.00	12.93	150	84	AV
5	7440.22	35.41	-1.34	34.07	54.00	19.93	150	57	AV
6	9920.59	34.95	2.27	37.22	54.00	16.78	150	98	AV

Dongguan DN Testing Co., Ltd.

 Add: No. 1, West Fourth Street, Xingfa South Road, Wusha Community, Chang 'an Town, Dongguan City, Guangdong P.R.China

 Web: www.dn-testing.com
 Tel:+86-769-88087383
 E-mail: service@dn-testing.com

Note:

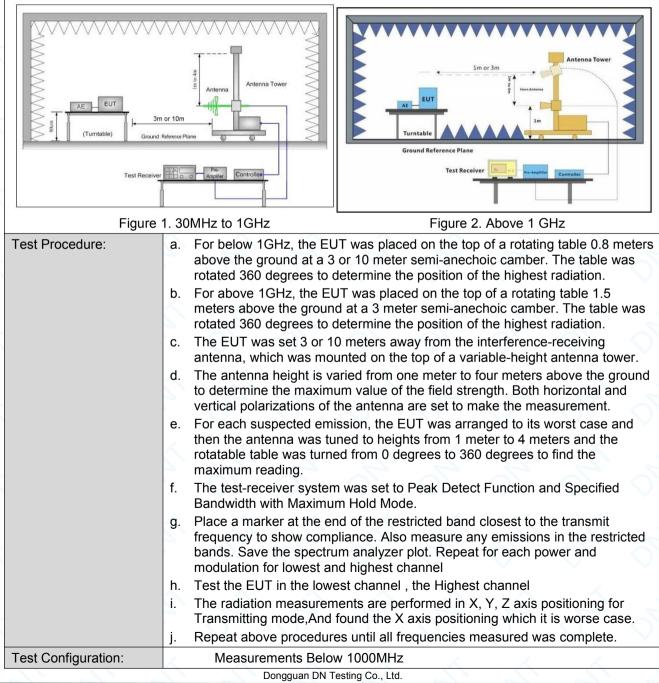
1. The Measurement (Result Level) is calculated by Reading Level adding the Correct Factor(maybe including Ant.Factor and the Cable Factor etc.), The basic equation is as follows:

Result Level= Reading Level + Correct Factor(including Ant.Factor, Cable Factor etc.)

2. The amplitude of 9KHz to 30MHz spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.

3. The amplitude of 18GHz to 25GHz spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be report.

4. All channels had been pre-test, DH5 is the worst case. only the worst case was reported.



Report No.: DNT240707R1213-2156 Date: April 26, 2024 Page: 29 / 66

3.10 Restricted bands around fundamental frequency

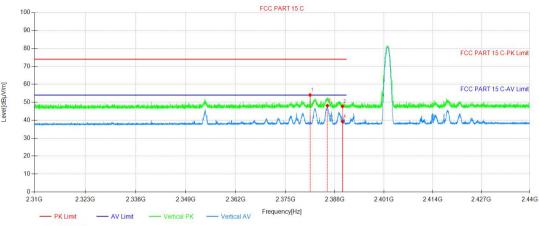
Test Requirement:	47 CFR Part 15C Section 1	47 CFR Part 15C Section 15.209 and 15.205						
Test Method:	ANSI C63.10: 2013 Section	11.12	, ,					
Test Site:	Measurement Distance: 3m	or 10m (Semi-Anechoic 0	Chamber)					
Limit:	Frequency	Limit (dBuV/m)	Remark					
	30MHz-88MHz	40.0	Quasi-peak					
	88MHz-216MHz	43.5	Quasi-peak					
	216MHz-960MHz	46.0	Quasi-peak					
	960MHz-1GHz	54.0	Quasi-peak					
		54.0	Average Value					
	Above 1GHz	74.0	Peak Value					

Test Setup:

 Add: No. 1, West Fourth Street, Xingfa South Road, Wusha Community, Chang 'an Town, Dongguan City, Guangdong P.R.China

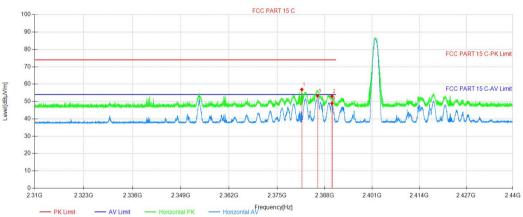
 Web: www.dn-testing.com
 Tel:+86-769-88087383

 E-mail: service@dn-testing.com



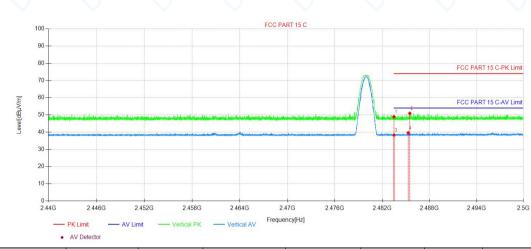
NT240707R1213-2156 Date: April 26, 2024 Page: 30 / 66
• RBW = 120 kHz
• VBW = 300 kHz
 Detector = Peak
Trace mode = max hold
Peak Measurements Above 1000 MHz
• RBW = 1 MHz
• VBW \ge 3 MHz
Detector = Peak
Sweep time = auto
Trace mode = max hold
Average Measurements Above 1000MHz
• RBW = 1 MHz
• VBW = 10 Hz, when duty cycle is no less than 98 percent.
• VBW \ge 1/T, when duty cycle is less than 98 percent where T is the
minimum
transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.
Transmitting with all kind of modulations, data rates. Transmitting mode.
Pretest the EUT Transmitting mode.
Through Pre-scan, find the DH5 of data type is the worst case of all modulation
type.
Only the worst case is recorded in the report.
Refer to section 2.9 for details
Pass

Test Date DH5 2402MHz

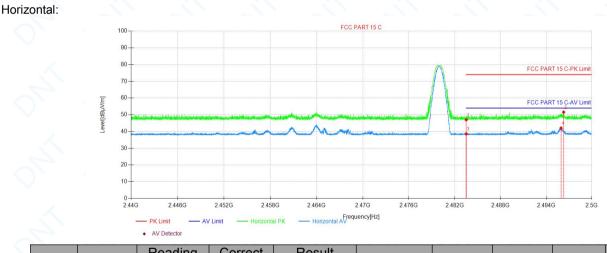

Vertical:

AV Detector

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	AV Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark
1	2381.46	54.88	-0.83	54.05	74.00	19.95	150	276	Peak
2	2390.01	48.51	-0.80	47.71	74.00	26.29	150	298	Peak
3	2386.01	48.95	-0.81	48.14	54.00	5.86	150	276	AV
4	2390.01	40.14	-0.80	39.34	54.00	14.66	150	49	AV



AV Detector


NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	AV Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark
1	2381.75	57.70	-0.83	56.87	74.00	17.13	150	109	Peak
2	2390.01	53.87	-0.80	53.07	74.00	20.93	150	40	Peak
3	2386.08	54.06	-0.81	53.25	54.00	0.75	150	120	AV
4	2390.01	49.73	-0.80	48.93	54.00	5.07	150	40	AV

DH5 2480MHz Vertical:

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark
1	2483.50	49.25	-0.29	48.96	74.00	25.04	150	169	Peak
2	2485.51	51.15	-0.27	50.88	74.00	23.12	150	169	Peak
3	2483.50	38.52	-0.29	38.23	54.00	15.77	150	72	AV
4	2485.31	39.86	-0.27	39.59	54.00	14.41	150	191	AV

NO.	Freq. [MHz]	Reading Level [dBµV]	Correct Factor [dB/m]	Result Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Remark
1	2483.50	47.29	-0.29	47.00	74.00	27.00	150	234	Peak
2	2496.29	51.76	-0.19	51.57	74.00	22.43	150	19	Peak
3	2483.50	38.88	-0.29	38.59	54.00	15.41	150	304	AV
4	2495.96	42.25	-0.20	42.05	54.00	11.95	150	122	AV

Note:

1. The Measurement (Result Level) is calculated by Reading Level adding the Correct Factor(maybe

including Ant.Factor and the Cable Factor etc.), The basic equation is as follows:

Result Level= Reading Level + Correct Factor(including Ant.Factor, Cable Factor etc.

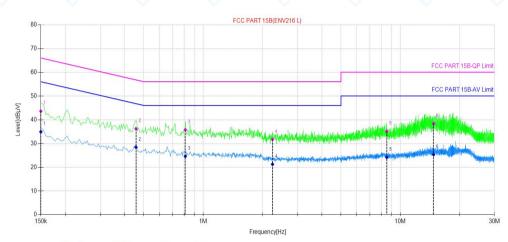
2.All channels had been pre-test, DH5 is the worst case. only the worst case was reported.

Test Requirement:	47 CFR Part 15C Section 1	5.207			
Test Method:	ANSI C63.10: 2013	1 1 1 1			
Test Frequency Range:	150kHz to 30MHz				
Limit:		🔨 📈 Limit (dł	BuV)		
	Frequency range (MHz)	Quasi-peak	Average		
	0.15-0.5	66 to 56*	56 to 46*		
	0.5-5	0.5-5 56			
	5-30	60	50		
	* Decreases with the logari	thm of the frequency.			
Test Procedure:	 The mains terminal distance. The EUT was connected Impedance Stabilization Netion impedance. The power cab a second LISN 2, which was plane in the same way as the multiple socket outlet stripted single LISN provided the rational 3) The tabletop EUT was performed of the EUT shall be 0.4 m for vertical ground reference performed of the EUT shall be 0.4 m for vertical ground reference performed in unit under test and bonded mounted on top of the group between the closest points the EUT and associated equipment ANSI C63.10 2013 on conditional processing the second second and the second second second and the second second second second and the second second second second second second and the second second second second second second second and the second second second second second second second and the second second	d to AC power source throu etwork) which provides a 50 bles of all other units of the l is bonded to the ground refi- the LISN 1 for the unit being was used to connect multip ting of the LISN was not ex- blaced upon a non-metallic ad for floor-standing arrange bund reference plane, with a vertical ground refer rom the vertical ground refer lane was bonded to the hor 1 was placed 0.8 m from the to a ground reference plane and reference plane. This di of the LISN 1 and the EUT puipment was at least 0.8 m m emission, the relative pos-	igh a LISN 1 (Line $0\Omega/50\mu$ H + 5Ω linear EUT were connected erence measured. A le power cables to a acceeded. table 0.8m above the ement, the EUT was rence plane. The rear erence plane. The rear erence plane. The izontal ground he boundary of the e for LISNs stance was . All other units of from the LISN 2. sitions of		
Test Setup:	Shielding Room	AE B B C Ground Reference Plane	Test Receiver		
Exploratory Test Mode:	Transmitting with all kind of highest channel. Charge + Transmitting mod		lowest, middle and		

3.11 AC Power Line Conducted Emissions

 Add: No. 1, West Fourth Street, Xingfa South Road, Wusha Community, Chang 'an Town, Dongguan City, Guangdong P.R.China

 Web: www.dn-testing.com
 Tel:+86-769-88087383
 E-mail: service@dn-testing.com


Date: April 26, 2024

Final Test Mode:	Through Pre-scan, find the the worst case.
Instruments Used:	Refer to section 2.9 for details
Test Results:	PASS

Measurement Data

An initial pre-scan was performed on the live and neutral lines with peak detector. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission were detected.

Live Line:

QP Limit QP Detect AV Limit AV De

NO.	Freq. [MHz]	Correct Factor [dB]	QP Reading Level [dBµV]	QP Result Level [dBµV]	QP Limit [dBµV]	QP Margin [dB]	AV Reading Level [dBµV]	AV Result Level [dBµV]	AV Limit [dBµV]	AV Margin [dB]
1	0.15	9.89	33.73	43.62	66.00	22.38	25.03	34.92	56.00	21.08
2	0.45	9.83	26.42	36.25	56.77	20.52	18.57	28.40	46.77	18.37
3	0.81	9.75	26.05	35.80	56.00	20.20	14.87	24.62	46.00	21.38
4	2.24	9.73	22.04	31.77	56.00	24.23	11.52	21.25	46.00	24.75
5	8.53	9.87	25.29	35.16	60.00	24.84	14.28	24.15	50.00	25.85
6	14.75	9.98	28.44	38.42	60.00	21.58	15.32	25.30	50.00	24.70

QP Limit — AV Limit — PK —
 QP Detector
 AV Detector

NO.	Freq. [MHz]	Correct Factor [dB]	QP Reading Level [dBµV]	QP Result Level [dBµV]	QP Limit [dBµV]	QP Margin [dB]	AV Reading Level [dBµV]	AV Result Level [dBµV]	AV Limit [dBµV]	AV Margin [dB]
1	0.19	9.86	31.65	41.51	63.63	22.12	21.68	31.54	53.63	22.09
2	0.64	9.82	26.62	36.44	56.00	19.56	17.69	27.51	46.00	18.49
3	1.63	9.74	22.44	32.18	56.00	23.82	14.75	24.49	46.00	21.51
4	4.06	9.96	23.61	33.57	56.00	22.43	14.32	24.28	46.00	21.72
5	8.41	9.90	25.19	35.09	60.00	24.91	15.41	25.31	50.00	24.69
6	20.01	10.07	27.85	37.92	60.00	22.08	16.17	26.24	50.00	23.76

Remark:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. The Measurement (Result Level) is calculated by Reading Level adding the Correct Factor(maybe

including LISN Factor and the Cable Factor etc.), The basic equation is as follows:

Result Level= Reading Level + Correct Factor(including LISN Factor, Cable Factor etc

4 Appendix


Appendix A: 20dB Emission Bandwidth

Test Result	\mathbf{O}	\bigcirc		\cap			
Test Mode	Antenna	Freq(MHz)	20dB EBW[MHz]	FL[MHz]	FH[MHz]	Limit[MHz]	Verdict
		2402	1.008	2401.478	2402.486	🔨	<
DH5	Ant1	2441	1.020	2440.484	2441.504		
		2480	1.065	2479.469	2480.534		
		2402	1.269	2401.358	2402.627		
2DH5	Ant1	2441	1.278	2440.361	2441.639		
		2480	1.263	2479.361	2480.624	🔨	
í d'	~	2402	1.278	2401.364	2402.642		
3DH5	Ant1	2441	1.296	2440.355	2441.651	<u> </u>	
		2480	1.275	2479.346	2480.621		

Page: 37 / 66

Test Graphs

Dongguan DN Testing Co., Ltd.

 Add: No. 1, West Fourth Street, Xingfa South Road, Wusha Community, Chang 'an Town, Dongguan City, Guangdong P.R.China

 Web: www.dn-testing.com
 Tel:+86-769-88087383

 E-mail: service@dn-testing.com

Report No.: DNT240707R1213-2156 Date:

Date: April 26, 2024

Page: 38/66

2DH5_Ant1_2480

Freq Offse

🛿 Align Now, All requ

2.440 361 GHz 2.440 997 GHz 1.278 MHz (Δ)

(A)

-20.160 dBr 0.049 dBr -0.335 d

Report No.: DNT240707R1213-2156 Date:

Date: April 26, 2024

Page: 39/66

3DH5_Ant1_2441

3DH5_Ant1_2480

Dongguan DN Testing Co., Ltd.

 Add: No. 1, West Fourth Street, Xingfa South Road, Wusha Community, Chang 'an Town, Dongguan City, Guangdong P.R.China

 Web: www.dn-testing.com
 Tel:+86-769-88087383
 E-mail: service@dn-testing.com

Date: April 26, 2024

Page: 40 / 66

Appendix B: Maximum conducted output power

Test Result					
Test Mode	Antenna	Freq(MHz)	Conducted Peak Powert[dBm]	Conducted Limit[dBm]	Verdict
		2402	3.05	≤20.97	PASS
DH5	Ant1	2441	0.52	≤20.97	PASS
		2480	-1.46	≤20.97	PASS
		2402	4.64	≤20.97	PASS
2DH5	Ant1	2441	2.84	≤20.97	PASS
		2480	0.1	≤20.97	PASS
		2402	5.59	≤20.97	PASS
3DH5	Ant1	2441	2.76	≤20.97	PASS
		2480	0.61	≤20.97	PASS

Page: 41/66

Test Graphs

Dongguan DN Testing Co., Ltd.

 Add: No. 1, West Fourth Street, Xingfa South Road, Wusha Community, Chang 'an Town, Dongguan City, Guangdong P.R.China

 Web: www.dn-testing.com
 Tel:+86-769-88087383
 E-mail: service@dn-testing.com