

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240300038701 Page: 1 of 26

TEST REPORT

Application No.:	KSCR2403000387AT
FCC ID:	2BF56-TRFK345S0066
Applicant:	Toplight Sensor Technology (Xiamen) Co., Ltd.
Address of Applicant:	Unit 301, No. 52, Huli Industrial Park, Meixi Road, Tongan District, Xiamen, Fujian, China.
Manufacturer:	Toplight Sensor Technology (Xiamen) Co., Ltd.
Address of Manufacturer:	Unit 301, No. 52, Huli Industrial Park, Meixi Road, Tongan District, Xiamen, Fujian, China.
Factory:	Toplight Sensor Technology (Xiamen) Co., Ltd.
Address of Factory:	Unit 301, No. 52, Huli Industrial Park, Meixi Road, Tongan District, Xiamen, Fujian, China.
Equipment Under Test (EU	T):
EUT Name:	24GHz radar module
Model No.:	TRFK345S0066
Standard(s) :	47 CFR Part 15, Subpart C 15.249
Date of Receipt:	2024-03-12
Date of Test:	2024-03-27 to 2024-03-29
Date of Issue:	2024-03-29
Test Result:	Pass*

* In the configuration tested, the EUT complied with the standards specified above.

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions.aspx and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at http://www.sgs.com/en/Terms-and-Conditions/Terms-e-Document.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 30 days only.

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240300038701 Page: 2 of 26

	Revision Record						
Version	Description	Date	Remark				
00	Original	2024-03-29	/				

Authorized for issue by:		
Tested By	Damon zhou	
	Damon_Zhou/Project Engineer	
Approved By	Verry Hon	
	Terry Hou /Reviewer	

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240300038701 Page: 3 of 26

2 Test Summary

Radio Spectrum Technical Requirement					
Item	Item FCC Requirement Method Result				
Antenna Requirement	47 CFR Part 15, Subpart C 15.249	N/A	Pass		

N/A: Not applicable

Radio Spectrum Matter Part						
Item	FCC Requirement	Method	Result			
20dB Emission bandwidth	47 CFR Part 15, Subpart C 15.249	ANSI C63.10 (2013) Section 6.9	Pass			
Filed strength of fundamental	47 CFR Part 15, Subpart C 15.249	ANSI C63.10 (2013) Section 6.6	Pass			
Radiation Spurious Emission	47 CFR Part 15, Subpart C 15.249	ANSI C63.10 (2013) Section 6.6	Pass			
Radiated Emissions which fall in the restricted bands	47 CFR Part 15, Subpart C 15.249	ANSI C63.10 (2013) Section 6.10	Pass			

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240300038701 Page: 4 of 26

3 Contents

			Page
1	COV	ER PAGE	1
2	Test	Summary	3
3	Conf	tents	4
4	Gen	eral Information	5
	4.1	Details of E.U.T.	
	4.2	Description of Support Units	
	4.3	Measurement Uncertainty	
	4.4	Test Location	
	4.5	Test Facility	
	4.6	Deviation from Standards	
	4.7	Abnormalities from Standard Conditions	6
5	Equi	ipment List	7
6	Radi	io Spectrum Technical Requirement	9
	6.1	Antenna Requirement	9
7	Radi	io Spectrum Matter Test Results	10
	71	20dB Bandwidth	10
	7.2	Filed Strength of Fundamental and Radiation Spurious Emission	
	7.3	Radiated Emissions which fall in the restricted bands	
8	Test	Setup Photo	26
9	EUT	Constructional Details (EUT Photos)	
-			

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240300038701 Page: 5 of 26

4 General Information

4.1 Details of E.U.T.

Power supply:	DC 5V
Test voltage:	DC 5V
Operation Frequency Range:	24.00GHz to 24.25GHz
Modulation:	FSK
Antenna type:	PCB Antenna

4.2 Description of Support Units

Description	Manufacturer	Model No.	Serial No.
DC Power supply	/	/	/

4.3 Measurement Uncertainty

No.	Item	Measurement Uncertainty
1	Radio Frequency	8.4 x 10 ⁻⁸
2	Occupied Bandwidth	3%
2	PE Padiated Power	5.2dB (Below 1GHz)
3 RF Radiated Power		5.9dB (Above 1GHz)
		4.2dB (Below 30MHz)
4	Redicted Sourious Emission Test	4.5dB (30MHz-1GHz)
4	Radiated Spurious Emission Test	5.1dB (1GHz-18GHz)
		5.4dB (Above 18GHz)
5	Temperature Test	1°C
6	Humidity Test	3%
7	Supply Voltages	1.5%
8	Time	3%

Note: The measurement uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240300038701 Page: 6 of 26

4.4 Test Location

All tests were performed at:

Compliance Certification Services (Kunshan) Inc.

No.10 Weiye Rd, Innovation park, Eco&Tec, Development Zone, Kunshan City, Jiangsu, China. Tel: +86 512 5735 5888 Fax: +86 512 5737 0818

No tests were sub-contracted.

Note:

1.SGS is not responsible for wrong test results due to incorrect information (e.g. max. clock frequency, highest internal frequency, antenna gain, cable loss, etc.) is provided by the applicant. (if applicable).

2.SGS is not responsible for the authenticity, integrity and the validity of the conclusion based on results of the data provided by applicant. (if applicable).

3. Sample source: sent by customer.

4.5 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• A2LA

Compliance Certification Services (Kunshan) Inc. is accredited by the American Association for Laboratory Accreditation (A2LA). Certificate No. 2541.01.

• FCC

Compliance Certification Services (Kunshan) Inc. has been recognized as an accredited testing laboratory. Designation Number: CN1172.

• ISED

Compliance Certification Services (Kunshan) Inc. has been recognized by Innovation, Science and Economic Development Canada (ISED) as an accredited testing laboratory. Company Number: 2324E

• VCCI

The 3m and 10m Semi-anechoic chamber and Shielded Room of Compliance Certification Services (Kunshan) Inc. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-20134, R-11600, C-11707, T-11499, G-10216 respectively.

4.6 Deviation from Standards

None

4.7 Abnormalities from Standard Conditions

None

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240300038701 Page: 7 of 26

5 Equipment List

ltem	Equipment	Manufacturer	Model	Inventory No	Cal Date	Cal. Due Date
1	Spectrum Analyzer	R&S	FSV40	KUS1806E003	08/24/2023	08/23/2024
2	PXA Spectrum Analyzer	KEYSIGHT	N9030B	KSEM021-1	01/15/2024	01/14/2025
3	Signal Generator	Agilent	E8257C	KS301066	08/24/2023	08/23/2024
4	Loop Antenna	COM-POWER	AL-130R	KUS1806E001	03/18/2023	03/17/2025
5	Bilog Antenna	TESEQ	CBL 6112D	KUS1806E005	06/29/2023	06/28/2025
6	Amplifier(30MHz~18GHz)	PANSHAN TECHNOLOGY	LNA:1~18G	KSEM010-1	01/15/2024	01/14/2025
7	Horn-antenna(1-18GHz)	ETS-LINDGREN	3117	KS301186	04/07/2023	04/06/2025
8	Horn-antenna(1-18GHz)	Schwarzbeck	BBHA9120D	KS301079	08/24/2023	08/23/2024
9	Amplifier(18~40GHz)	PANSHAN TECHNOLOGY	LNA180400G40	KSEM038	08/24/2023	08/23/2024
10	Horn Antenna(18-40GHz)	Schwarzbeck	BBHA9170	CZ301058	01/07/2024	01/06/2026
11	Horn-antenna(40-60GHz)	ERAVANT	SAZ-2410-19-S1	KSEM003-1	02/02/2021*	02/01/2031**
12	Horn-antenna(50-75GHz)	ERAVANT	SAZ-2410-15-S1	KSEM003-2	02/02/2021*	02/01/2031**
13	Horn-antenna(50-75GHz)	ERAVANT	SAZ-2410-15-S1	KSEM003-7	12/14/2022*	12/13/2032**
14	Horn-antenna(60-90GHz)	ERAVANT	SAZ-2410-12-S1	KSEM003-8	12/14/2022*	12/13/2032**
15	Horn-antenna(75-110GHz)	ERAVANT	SAZ-2410-10-S1	KSEM003-3	02/02/2021*	02/01/2031**
16	Horn-antenna(90-140GHz)	ERAVANT	SAZ-2410-08-S1	KSEM003-9	12/14/2022*	12/13/2032**
17	Horn-antenna(110-170GHz)	ERAVANT	SAZ-2410-06-S1	KSEM003-4	02/02/2021*	02/01/2031**
18	Horn-antenna(140-220GHz)	ERAVANT	SAZ-2410-05-S1	KSEM003-5	02/02/2021*	02/01/2031**
19	Horn-antenna(140-220GHz)	ERAVANT	SAZ-2410-05-S1	KSEM003-10	12/14/2022*	12/13/2032**
20	Horn-antenna(220-325GHz)	ERAVANT	SAR-2309-03- S2	KSEM003-6	02/02/2021*	02/01/2031**
21	Extended waveguide(40- 60GHz)	ERAVANT	SWG-19025-FB	KSEM004-1	02/02/2021*	02/01/2031**
22	Extended waveguide(50- 75GHz)	ERAVANT	SWG-15025-FB	KSEM004-2	02/02/2021*	02/01/2031**
23	Extended waveguide(50- 75GHz)	ERAVANT	SWG-15025-FB	KSEM004-7	12/14/2022*	12/13/2032**
24	Extended waveguide(60- 90GHz)	ERAVANT	SWG-12025-FB	KSEM004-8	12/14/2022*	12/13/2032**
25	Extended waveguide(75- 110GHz)	ERAVANT	SWG-10025-FB	KSEM004-3	02/02/2021*	02/01/2031**
26	Extended waveguide(90- 140GHz)	ERAVANT	SWG-08025-FB	KSEM004-9	12/14/2022*	12/13/2032**
27	Extended waveguide(110- 170GHz)	ERAVANT	SWG-06025-FB	KSEM004-4	02/02/2021*	02/01/2031**
28	Extended waveguide(140- 220GHz)	ERAVANT	SWG-05025-FB	KSEM004-5	02/02/2021*	02/01/2031**
29	Extended waveguide(140- 220GHz)	ERAVANT	SWG-05025-FB	KSEM004-10	12/14/2022*	12/13/2032**
30	Extended waveguide(220- 325GHz)	ERAVANT	SWG-03025-FB	KSEM004-6	02/02/2021*	02/01/2031**
31	Harmonic mixer(40-60GHz)	ERAVANT	STH-19SF-S1	KSEM005-2	10/01/2020*	09/30/2030**
32	Harmonic Mixer(50-75GHz)	VDI	SAX WR15	KSEM007-1	08/23/2023*	08/23/2033**
33	Harmonic Mixer(60-90GHz)	VDI	SAX WR12	KSEM007-2	08/23/2023*	08/23/2033**
34	Harmonic mixer(90- 140GHz)	VDI	SAX WR8.0	KSEM007-3	08/23/2023*	08/23/2033**
35	Harmonic mixer(140- 220GHz)	VDI	SAX WR5.1	KSEM007-4	08/23/2023*	08/23/2033**

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240300038701 Page: 8 of 26

36	Harmonic mixer(220- 325GHz)	ERAVANT	HM 220-325	KSEM005-4	04/20/2021*	04/19/2031**	
37	Upconverter	Talent	TMAM-060090- 0612-12-AC	KSEM043	01/18/2022*	01/17/2032**	
38	RE Test Cable	ERAVANT MICROWAVE	/	CZ301097	11/10/2023	11/09/2024	
39	Temperature & Humidity Recorder	Renke Control	RS-WS-N01-6J	KSEM024-4	03/19/2024	03/18/2025	
40	Software	Faratronic	EZ_EMC-v 3A1	/	NCR	NCR	
41	Software	ESE	E3_V 6.111221a	/	NCR	NCR	
*Calibration of	*Calibration date provided by the equipment manufacturer.						

**Calibration every ten years. During this period, there will be daily check files for the equipment and the requirements for operators will be clearly defined through SOP.

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240300038701 Page: 9 of 26

6 Radio Spectrum Technical Requirement

6.1 Antenna Requirement

6.1.1 Test Requirement:

47 CFR Part 15, Subpart C 15.203; RSS-Gen Section 6.8

6.1.2 Conclusion

Standard Requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit permanently attached antenna or of an so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

EUT Antenna:

The antenna is PCB Antenna and no consideration of replacement.

Antenna location: Refer to EUT Photos.

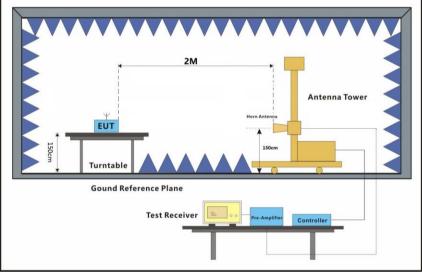
CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240300038701 Page: 10 of 26

7 Radio Spectrum Matter Test Results

7.1 20dB Bandwidth

Test Requirement

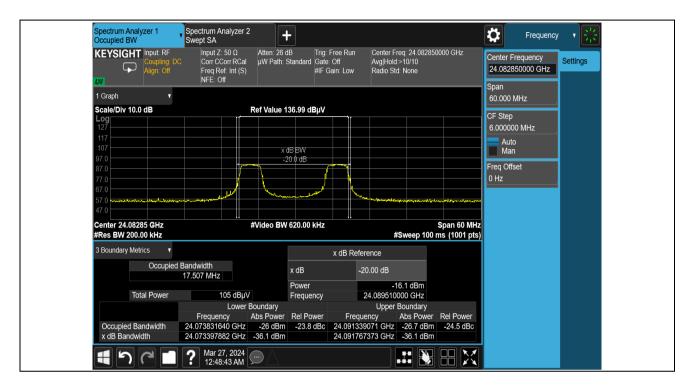

47 CFR Part 15, Subpart C 15.215& RSS-210 Issue 10 Amendment (April 2020) Annex B 10 ANSI C63.10 (2013) Section 6.9

Test Method: 7.1.1 E.U.T. Operation

Operating Environment:

Temperature:22 °CHumidity:50 % RHAtmospheric Pressure:1002 mbarTest Mode:a: TX mode _ Keep the EUT in continuously transmitting mode.

7.1.2 Test Setup Diagram


7.1.3 Measurement Procedure and Data

- 1) Place the EUT on the table and set it in the transmitting mode
- 2) SA set RBW=1%~5% OBW, VBW=3RBW and Detector=Peak
- 3) Measure and record the result of 20dB bandwidth

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240300038701 Page: 11 of 26

Low Frequency (GHz)	Limit (GHz)	High Frequency (GHz)	Limit (GHz)	20db Bandwidth(MHz)	Result
24.073398	24.00	24.09177	24.25	17.057	Pass

Remark:

Center Frequency(GHz)= (High Frequency(GHz)+ Low Frequency(GHz))/2=24.0825(GHz)

20db Bandwidth(MHz)= (High Frequency(GHz)- Low Frequency(GHz)*1000=17.057(MHz)

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240300038701 Page: 12 of 26

7.2 Filed Strength of Fundamental and Radiation Spurious Emission

Test Requirement47 CFR Part 15, Subpart C 15.249(a); RSS-210 Issue 10 Amendment
(April 2020) Annex B 10Test Method:ANSI C63.10 (2013) Section 6.6Limit:Ansi C63.10 (2013) Section 6.6

(1) The field strength of emissions from intentional radiators operated within these frequency bands shall comply with the following:

Fundamental frequency (MHz)	Field strength of fundamental (millivolts/meter)	Field strength of harmonics (microvolts/meter)
2400-2483.5	50	500
5725-5875	50	500
24000-24250	250	2500

* Field strength limits are specified at a distance of 3 meters.

Fundamental Limit Conversion						
Average (mV/m) Average (dBuV/m) Average (dBuV/m) Peak (dBuV/m)						
at 3M	at 3M	at 1M	at 1M			
250	107.9588	117.50	137.50			
* (Limit 107.0599 + 201.00(2(1) 117.50 dPu)/(m)						

f (Limit = 107.9588 + 20LOG(3/1) = 117.50 dBuV/m)

Harmonic Limit Conversion						
Average (uV/m) Average (dBuV/m) Average (dBuV/m) Peak (dBuV/m)						
at 3M	at 3M	at 1M	at 1M			
2500	67.9588	77.50	97.50			

*(Limit=67.9588+20LOG(3/1)=77.50 dBuV/m)

(2) Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits (follow the table), whichever is the lesser attenuation.

Below 30MHz

Frequency	Field Strength (µA/m)	Magnetic field strength (H-Field) (μΑ/m)	Measurement Distance (metres)
9-490 kHz	2,400/F (F in kHz)	2,400/F (F in kHz)	300
490-1,705 kHz	24,000/F (F in kHz)	24,000/F (F in kHz)	30
1.705-30 MHz	30	N/A	30

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

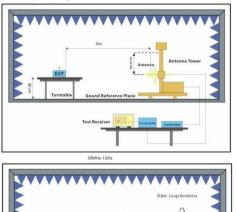
Report No.: KSCR240300038701 Page: 13 of 26

Above 30MHz

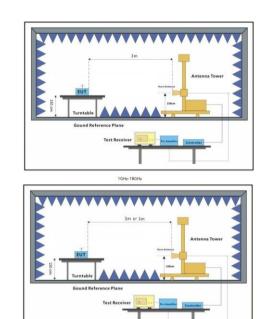
Frequency (MHz)	Field Strength microvolts/m at 3 metres (watts, e.i.r.p.)		
	Transmitters	Receivers	
30-88	100 (3 nW)	100 (3 nW)	
88-216	150 (6.8 nW)	150 (6.8 nW)	
216-960	200 (12 nW)	200 (12 nW)	
Above 960	500 (75 nW)	500 (75 nW)	

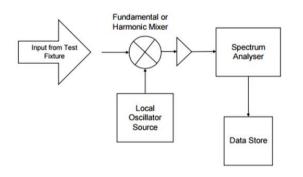
Frequency	Field Strength microvolts	s/m at specific distance
	Peak	AVG
18-40GHz	74dBuV/m@3m	54dBuV/m@3m
Above 40GHz	83.5dBuV/m @1m	63.5dBuV/m @1m

CCSEM-TRF-001 Rev. 02 Sep 01, 2023


Report No.: KSCR240300038701 Page: 14 of 26

7.2.1 E.U.T. Operation


Operating Environment:


Temperature:22 °CHumidity:50 % RHAtmospheric Pressure:1002mbarTest Mode:a: TX mode _ Keep the EUT in continuously transmitting mode.

7.2.2 Test Setup Diagram

Dalam 200

Above 40GHz

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240300038701 Page: 15 of 26

7.2.3 Measurement Procedure and Data

a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 or 10 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. For 1-18GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. For 18-40GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 2 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.

b. For above 40GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 2 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation

d. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.

f. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

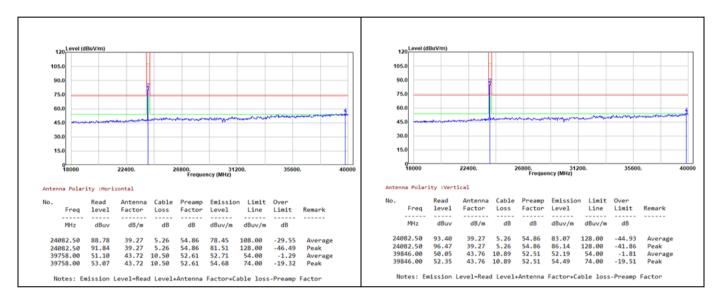
g. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.

j. Repeat above procedures until all frequencies measured was complete.

Remark 1: Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor

Remark 2: For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.

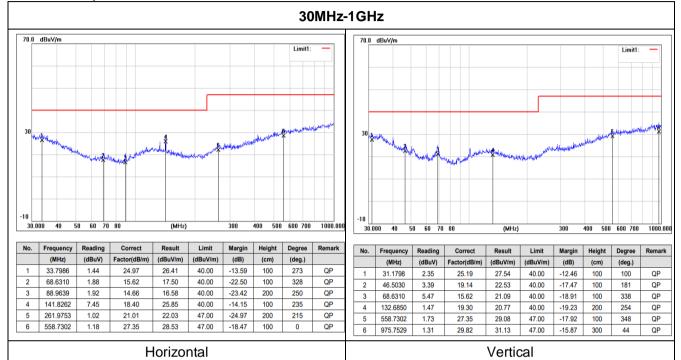

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

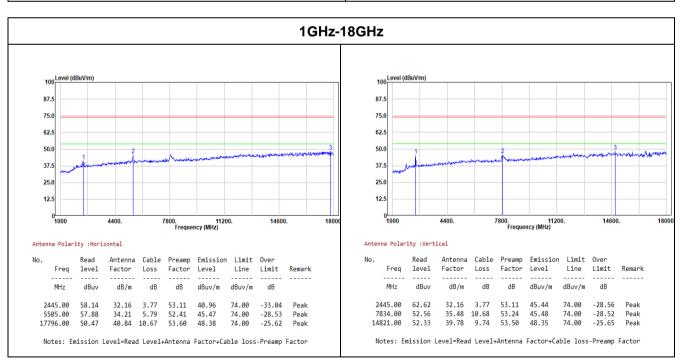
Report No.: KSCR240300038701 Page: 16 of 26

Test Data for Omnidirectional radar:

Filed Strength of Fundamental

Frequency (GHz)	Distance (m)	Polarity	dBuV/m	Limit	Result	Remark
24.0825	3	Horizontal	81.51	128	Pass	Peak
24.0825	3	Horizontal	78.45	108	Pass	AVG
24.0825	3	Vertical	86.14	128	Pass	Peak
24.0825	3	Vertical	83.07	108	Pass	AVG

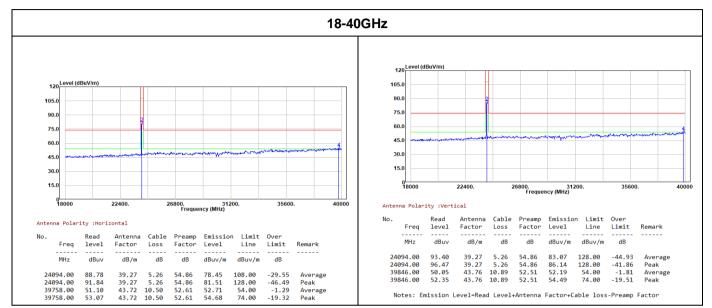




CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240300038701 Page: 17 of 26

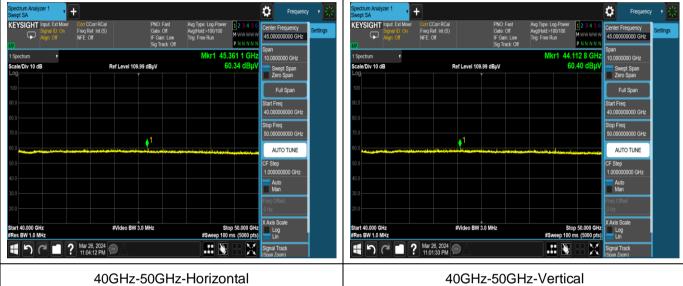
Radiation Spurious Emission



CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240300038701 Page: 18 of 26

Notes: Emission Level=Read Level+Antenna Factor+Cable loss-Preamp Factor

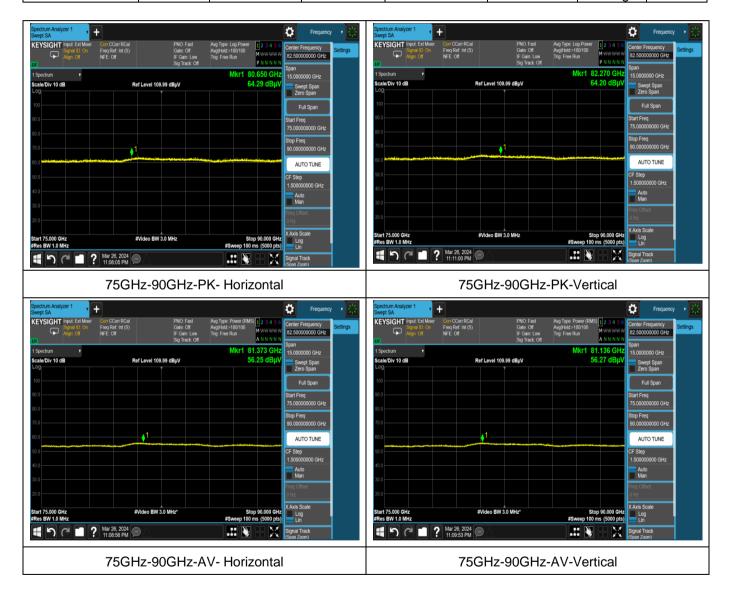


CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240300038701 Page: 19 of 26

Frequency Range (GHz)	Distance (m)	Frequency (GHz)	Peak Value (dBuv/m)	Limit (dBuv/m)	Polarization	Detector mode	Result
40-50	1	45.3611	60.34	83.5	Horizontal	Peak	Pass
	1	44.1128	60.40	83.5	Vertical	Peak	Pass
E0 7E	1	72.4940	62.12	83.5	Horizontal	Peak	Pass
50-75	1	67.5940	62.15	83.5	Vertical	Peak	Pass

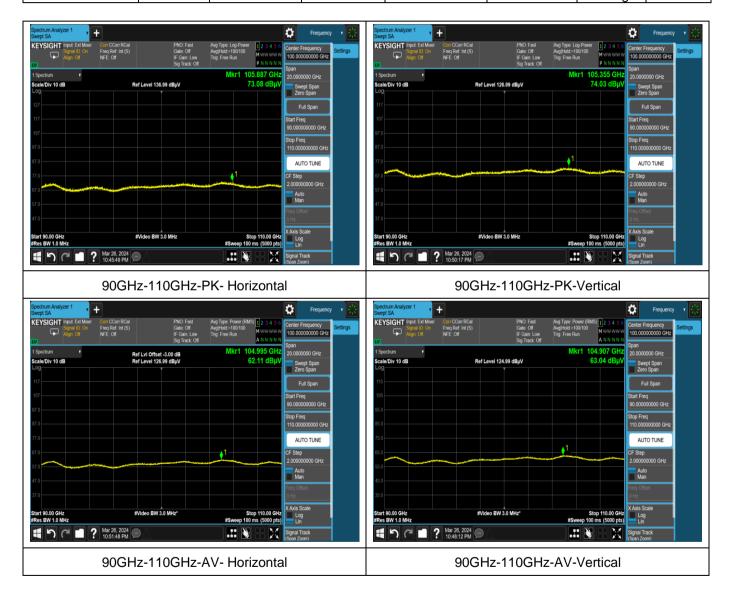
Note: Due to the Peak Value below Average Value (63.5dBuv/m).so not show the Average Value.



CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240300038701 Page: 20 of 26

Frequency Range (GHz)	Distance (M)	Frequency (GHz)	Peak Value (dBuv/m)	Limit (dBuv/m)	Polarization	Detector mode	Result
	1	80.650	64.29	83.5	Horizontal	Peak	Pass
75-90	1	82.270	64.20	83.5	Vertical	Peak	Pass
75-90	1	81.373	56.25	63.5	Horizontal	Average	Pass
	1	81.136	56.27	63.5	Vertical	Average	Pass



CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240300038701 Page: 21 of 26

Frequency Range (GHz)	Distance (M)	Frequency (GHz)	Peak Value (dBuv/m)	Limit (dBuv/m)	Polarization	Detector mode	Result
	1	105.887	73.08	83.5	Horizontal	Peak	Pass
90-110	1	105.355	74.03	83.5	Vertical	Peak	Pass
90-110	1	104.995	62.11	63.5	Horizontal	Average	Pass
	1	104.907	63.04	63.5	Vertical	Average	Pass

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240300038701 Page: 22 of 26

7.3 Radiated Emissions which fall in the restricted bands

Test Requirement

Test Method:

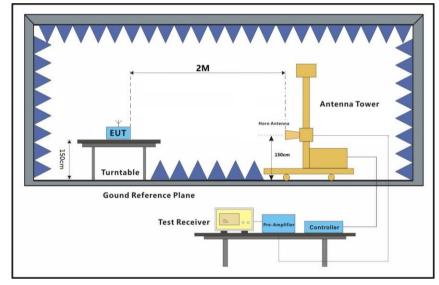
47 CFR Part 15, Subpart C 15.205 & 15.209; RSS-210 Issue 10 Amendment (April 2020) Annex B 10 ANSI C63.10 (2013) Section 6.10.5

Limit:

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Remark: The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90kHz, 110-490kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation.

CCSEM-TRF-001 Rev. 02 Sep 01, 2023


Report No.: KSCR240300038701 Page: 23 of 26

7.3.1 E.U.T. Operation

Operating Environment:

Temperature:	22 °C	Humidity:	50 % RH	Atmospheric Pressure:	1002	mbar
Test Mode:	a: TX mo	de _ Keep the	e EUT in contin	uously transmitting mode.		

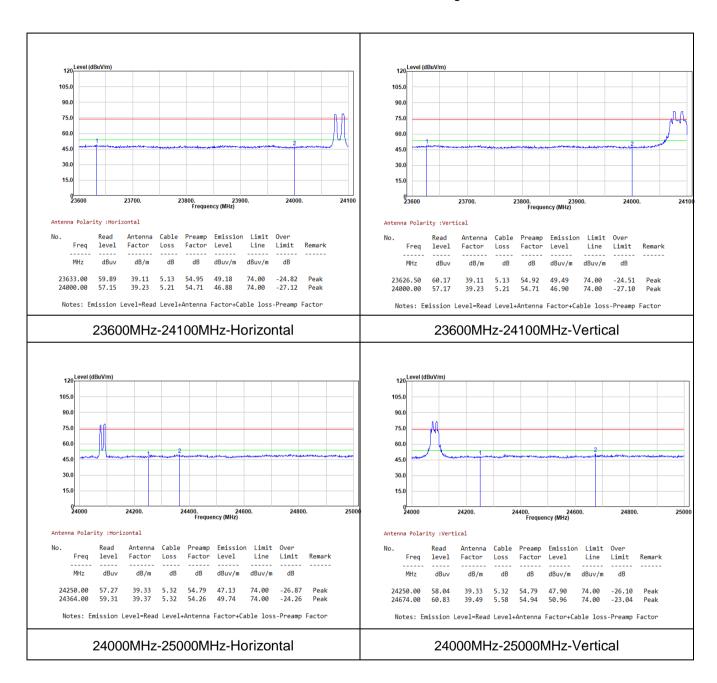
7.3.2 Test Setup Diagram

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240300038701 Page: 24 of 26

7.3.3 Measurement Procedure and Data

- 1) The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 2 meter fullyanechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2) The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 3) For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 4) The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- 5) If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- 6) The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
- 7) Repeat above procedures until all frequencies measured was complete.


Remark 1: Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor

Remark 2: For frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower than the average limit, only the peak measurement is shown in the report.

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240300038701 Page: 25 of 26

CCSEM-TRF-001 Rev. 02 Sep 01, 2023

Report No.: KSCR240300038701 Page: 26 of 26

8 Test Setup Photo

Refer to Appendix - Test Setup Photo for KSCR2403000387AT

9 EUT Constructional Details (EUT Photos)

Refer to Appendix - Photographs of EUT Constructional Details for KSCR2403000387AT

- End of the Report -