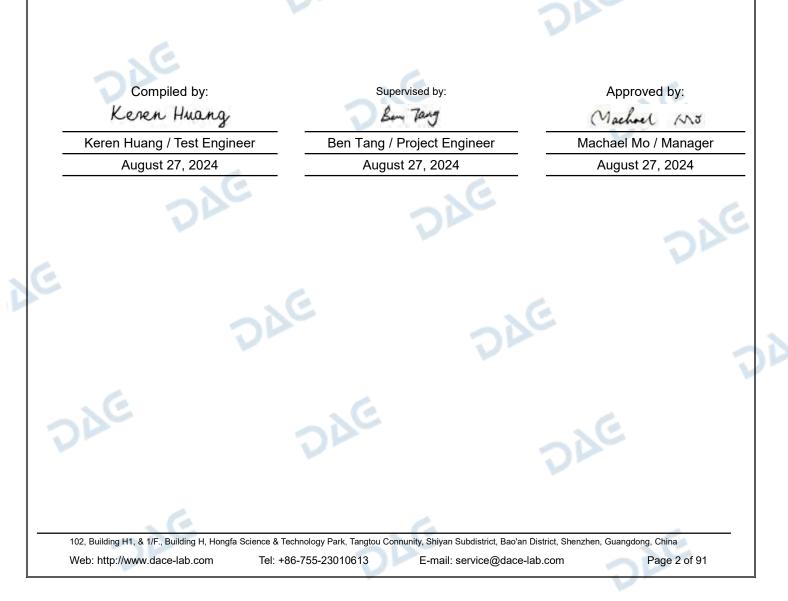
2		246 246
1		Report No.: DACE240814006RL001
	DYE	
	Shenzhen	Weofly Innovation Technology Co.,LTD Product Name: Headphone Test Model(s).: Live
NE		
	Report Reference No.	: DACE240814006RL001
	FCC ID	2BF3T-LIVE
2	Applicant's Name	: Shenzhen Weofly Innovation Technology Co.,LTD
	Address	Factory Building 601-11, Nankeng Second Industrial Zone, Nankeng Community, Bantian Street, Longgang District, Shenzhen, China
	Testing Laboratory	: Shenzhen DACE Testing Technology Co., Ltd.
	Address	 102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China
	Test Specification Standard	: 47 CFR Part 15.247
	Date of Receipt	: August 14, 2024
6	Date of Test	: August 14, 2024 to August 27, 2024
	Data of Issue	: August 27, 2024
	Result	: Pass
	Testing Technology Co., Ltd. Th	produced except in full, without the written approval of Shenzhen DACE is document may be altered or revised by Shenzhen DACE Testing Technology all be noted in the revision section of the document. The test results in the ample
	102, Building H1, & 1/F., Building H, Hongfa Scie Web: http://www.dace-lab.com	nce & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 1 of 91
	web. http://www.uace-iab.com	Tel. TOUT DO TO E-Mail. Service@dace-lab.com Page 1 of 91

)D

Report No.: DACE240814006RL001

Revision History Of Report


Version	Description	REPORT No.	Issue Date	
V1.0	Original	DACE240814006RL001	August 27, 2024	
	- XC	6		
		J.		

NOTE1:

DA

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

NE

١

CONTENTS

	1/1 0	Depart No DA CE240044000D
Δ e —	V1.0	Report No.: DACE240814006RI
	C	CONTENTS
TEST SUMMARY		
2.5 EQUIPMEN 2.6 STATEMEN	TS USED DURING THE TEST	CERTAINTY
		RY
EVALUATION RE	SULTS (EVALUATION)	
3.1 ANTENNA		
		-S (RF)
		INE
4.1.1 E 4.1.7 T	.U. I. Operation:	
4.2.2 Te	est Setup Diagram:	<u></u>
4.2.3 Te	est Data:	
4.3 MAXIMUM	CONDUCTED OUTPUT POWER	
4.3.1 E	U.T. Operation:	
	-	
4.6 DWELL TIN	٨E	
4.6.1 E	U.T. Operation:	
		<u></u>
		NCY BANDS
4.0 DAND EDG		

V	1	0

DΔC

DAG

3

DAE

DAE

DAG

QÌ

Report No.: DACE240814006RL001

1

DAG

DAG

)AC

4.8.2 Test Setup Diagram:	
4.8.3 Test Data:	
4.9 EMISSIONS IN FREQUENCY BANDS (BELOW 1GHZ)	
4.9.1 E.U.T. Operation:	29
4.9.2 Test Data:	
4.10 EMISSIONS IN FREQUENCY BANDS (ABOVE 1GHZ)	31
4.10.1 E.U.T. Operation:	
4.10.2 Test Data:	
5 TEST SETUP PHOTOS	
6 PHOTOS OF THE EUT	
APPENDIX	
120DB BANDWIDTH	51
2. 99% OCCUPIED BANDWIDTH	
3. PEAK OUTPUT POWER	
4. SPURIOUS EMISSIONS	
5. BANDEDGE 6. CARRIER FREQUENCIES SEPARATION (HOPPING)	
7. NUMBER OF HOPPING CHANNEL (HOPPING)	
8. DWELL TIME (HOPPING)	
DIE	

NE

DAE

)DE

DAG

DAE

-

TEST SUMMARY 1

1.1 Test Standards

DAG

The tests were performed according to following standards:

47 CFR Part 15.247: Operation within the bands 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz

1.2 Summary of Test Result

Item	Standard	Method	Requirement	Result
Antenna requirement	47 CFR Part 15.247		47 CFR 15.203	Pass
Conducted Emission at AC power line	47 CFR Part 15.247	ANSI C63.10-2013 section 6.2	47 CFR 15.207(a)	Pass
Occupied Bandwidth	47 CFR Part 15.247	ANSI C63.10-2013, section 7.8.7 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(a)(1)	Pass
Maximum Conducted Output Power	47 CFR Part 15.247	ANSI C63.10-2013, section 7.8.5 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(b)(1)	Pass
Channel Separation	47 CFR Part 15.247	ANSI C63.10-2013, section 7.8.2 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(a)(1)	Pass
Number of Hopping Frequencies	47 CFR Part 15.247	ANSI C63.10-2013, section 7.8.3 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(a)(1)(iii)	Pass
Dwell Time	47 CFR Part 15.247	ANSI C63.10-2013, section 7.8.4 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(a)(1)(iii)	Pass
Emissions in non-restricted frequency bands	47 CFR Part 15.247	ANSI C63.10-2013 section 7.8.8 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(d), 15.209, 15.205	Pass
Band edge emissions (Radiated)	47 CFR Part 15.247	ANSI C63.10-2013 section 6.10 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(d), 15.209, 15.205	Pass
Emissions in frequency bands (below 1GHz)	47 CFR Part 15.247	ANSI C63.10-2013 section 6.6.4 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(d), 15.209, 15.205	Pass
Emissions in frequency bands (above 1GHz)	47 CFR Part 15.247	ANSI C63.10-2013 section 6.6.4 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(d), 15.209, 15.205	Pass

E-mail: service@dace-lab.com

Page 5 of 91

XC	1.0 Report No.: DACE240814006
GENERAL IN 1 Client Informatio	NFORMATION on
Applicant's Name	: Shenzhen Weofly Innovation Technology Co.,LTD
Address	: Factory Building 601-11,Nankeng Second Industrial Zone,Nankeng Community, Bantian Street, Longgang District, Shenzhen, China
Manufacturer	: Shenzhen Weofly Innovation Technology Co.,LTD
Address	: Factory Building 601-11,Nankeng Second Industrial Zone,Nankeng Community, Bantian Street, Longgang District, Shenzhen, China
2 Description of D Product Name:	Headphone
Model/Type reference:	
Model/Type reference: Series Model:	 Live Nova, Nova 2, Nova 3, Nova 4, Nova 5, Nova 6, Nova Pro, Nova Lite, Live 2, Live 3, Live 4, Live 5, Live 6, Live Pro, Live Lite, Tour, Tour 2, Tour 3, Tour 4, Tour 5, Tour 6, Tour Pro, Tour Lite, Tuner, Tuner 2, Tuner 3, Tune 4, Tuner 5, Tuner 6, Tuner Pro, Tuner Lite, Mixer, Mixer 2, Mixer 3, Mixer 4, Mixer 5, Mixer 6, Mixer Pro, Mixer Lite
	Nova, Nova 2, Nova 3, Nova 4, Nova 5, Nova 6, Nova Pro, Nova Lite, Liv 2, Live 3, Live 4, Live 5, Live 6, Live Pro, Live Lite, Tour, Tour 2, Tour 3 Tour 4, Tour 5, Tour 6, Tour Pro, Tour Lite, Tuner, Tuner 2, Tuner 3, Tune 4, Tuner 5, Tuner 6, Tuner Pro, Tuner Lite, Mixer, Mixer 2, Mixer 3, Mixer
Series Model:	 Nova, Nova 2, Nova 3, Nova 4, Nova 5, Nova 6, Nova Pro, Nova Lite, Live 2, Live 3, Live 4, Live 5, Live 6, Live Pro, Live Lite, Tour, Tour 2, Tour 3, Tour 4, Tour 5, Tour 6, Tour Pro, Tour Lite, Tuner, Tuner 2, Tuner 3, Tune 4, Tuner 5, Tuner 6, Tuner Pro, Tuner Lite, Mixer, Mixer 2, Mixer 3, Mixer 4, Mixer 5, Mixer 6, Mixer Pro, Mixer Lite The product has many models, only the model name is different, and the oth
Series Model: Model Difference:	 Nova, Nova 2, Nova 3, Nova 4, Nova 5, Nova 6, Nova Pro, Nova Lite, Live 2, Live 3, Live 4, Live 5, Live 6, Live Pro, Live Lite, Tour, Tour 2, Tour 3 Tour 4, Tour 5, Tour 6, Tour Pro, Tour Lite, Tuner, Tuner 2, Tuner 3, Tune 4, Tuner 5, Tuner 6, Tuner Pro, Tuner Lite, Mixer, Mixer 2, Mixer 3, Mixer 4, Mixer 5, Mixer 6, Mixer Pro, Mixer Lite The product has many models, only the model name is different, and the oth parts such as the circuit principle, pcb and electrical structure are the same.
Series Model: Model Difference: Trade Mark:	 Nova, Nova 2, Nova 3, Nova 4, Nova 5, Nova 6, Nova Pro, Nova Lite, Liv 2, Live 3, Live 4, Live 5, Live 6, Live Pro, Live Lite, Tour, Tour 2, Tour 3 Tour 4, Tour 5, Tour 6, Tour Pro, Tour Lite, Tuner, Tuner 2, Tuner 3, Tune 4, Tuner 5, Tuner 6, Tuner Pro, Tuner Lite, Mixer, Mixer 2, Mixer 3, Mixe 4, Mixer 5, Mixer 6, Mixer Pro, Mixer Lite The product has many models, only the model name is different, and the oth parts such as the circuit principle, pcb and electrical structure are the same. Weofly DC 5V/1A from adapter Battery:DC3.7V 500mAh
Series Model: Model Difference: Trade Mark: Power Supply:	 Nova, Nova 2, Nova 3, Nova 4, Nova 5, Nova 6, Nova Pro, Nova Lite, Liv 2, Live 3, Live 4, Live 5, Live 6, Live Pro, Live Lite, Tour, Tour 2, Tour 3 Tour 4, Tour 5, Tour 6, Tour Pro, Tour Lite, Tuner, Tuner 2, Tuner 3, Tune 4, Tuner 5, Tuner 6, Tuner Pro, Tuner Lite, Mixer, Mixer 2, Mixer 3, Mixe 4, Mixer 5, Mixer 6, Mixer Pro, Mixer Lite The product has many models, only the model name is different, and the oth parts such as the circuit principle, pcb and electrical structure are the same. Weofly DC 5V/1A from adapter Battery:DC3.7V 500mAh
Series Model: Model Difference: Trade Mark: Power Supply: Operation Frequency:	 Nova, Nova 2, Nova 3, Nova 4, Nova 5, Nova 6, Nova Pro, Nova Lite, Live 2, Live 3, Live 4, Live 5, Live 6, Live Pro, Live Lite, Tour, Tour 2, Tour 3, Tour 4, Tour 5, Tour 6, Tour Pro, Tour Lite, Tuner, Tuner 2, Tuner 3, Tune 4, Tuner 5, Tuner 6, Tuner Pro, Tuner Lite, Mixer, Mixer 2, Mixer 3, Mixer 4, Mixer 5, Mixer 6, Mixer Pro, Mixer Lite The product has many models, only the model name is different, and the oth parts such as the circuit principle, pcb and electrical structure are the same. Weofly DC 5V/1A from adapter Battery:DC3.7V 500mAh 2402MHz to 2480MHz
Series Model: Model Difference: Trade Mark: Power Supply: Operation Frequency: Number of Channels:	 Nova, Nova 2, Nova 3, Nova 4, Nova 5, Nova 6, Nova Pro, Nova Lite, Live 2, Live 3, Live 4, Live 5, Live 6, Live Pro, Live Lite, Tour, Tour 2, Tour 3, Tour 4, Tour 5, Tour 6, Tour Pro, Tour Lite, Tuner, Tuner 2, Tuner 3, Tune 4, Tuner 5, Tuner 6, Tuner Pro, Tuner Lite, Mixer, Mixer 2, Mixer 3, Mixer 4, Mixer 5, Mixer 6, Mixer Pro, Mixer Lite The product has many models, only the model name is different, and the oth parts such as the circuit principle, pcb and electrical structure are the same. Weofly DC 5V/1A from adapter Battery:DC3.7V 500mAh 2402MHz to 2480MHz 79
Series Model: Model Difference: Trade Mark: Power Supply: Operation Frequency: Number of Channels: Modulation Type:	Nova, Nova 2, Nova 3, Nova 4, Nova 5, Nova 6, Nova Pro, Nova Lite, Liv2, Live 3, Live 4, Live 5, Live 6, Live Pro, Live Lite, Tour, Tour 2, Tour 3Tour 4, Tour 5, Tour 6, Tour Pro, Tour Lite, Tuner, Tuner 2, Tuner 3, Tune4, Tuner 5, Tuner 6, Tuner Pro, Tuner Lite, Mixer, Mixer 2, Mixer 3, Mixe4, Mixer 5, Mixer 6, Mixer Pro, Mixer LiteThe product has many models, only the model name is different, and the othparts such as the circuit principle, pcb and electrical structure are the same.WeoflyDC 5V/1A from adapter Battery:DC3.7V 500mAh2402MHz to 2480MHz79GFSK, π/4 DQPSK
Series Model: Model Difference: Trade Mark: Power Supply: Operation Frequency: Number of Channels: Modulation Type: Antenna Type:	 Nova, Nova 2, Nova 3, Nova 4, Nova 5, Nova 6, Nova Pro, Nova Lite, Live 2, Live 3, Live 4, Live 5, Live 6, Live Pro, Live Lite, Tour, Tour 2, Tour 3, Tour 4, Tour 5, Tour 6, Tour Pro, Tour Lite, Tuner, Tuner 2, Tuner 3, Tune 4, Tuner 5, Tuner 6, Tuner Pro, Mixer Lite, Mixer, Mixer 2, Mixer 3, Mixer 4, Mixer 5, Mixer 6, Mixer Pro, Mixer Lite The product has many models, only the model name is different, and the oth parts such as the circuit principle, pcb and electrical structure are the same. Weofly DC 5V/1A from adapter Battery:DC3.7V 500mAh 2402MHz to 2480MHz 79 GFSK, π/4 DQPSK PCB

This data and the related calculations associated with it)

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	21	2422MHz	41	2442MHz	61	2462MHz
2	2403MHz	22	2423MHz	42 🧹	2443MHz	62	2463MHz
3	2404MHz	23	2424MHz	43	2444MHz	63	2464MHz
4	2405MHz	24	2425MHz	44	2445MHz	64	2465MHz
5	2406MHz	25	2426MHz	45	2446MHz	65	2466MHz
6	2407MHz	26	2427MHz	46	2447MHz	66	2467MHz
7	2408MHz	27	2428MHz	47	2448MHz	67	2468MHz
8	2409MHz	28	2429MHz	48	2449MHz	68	2469MHz
9	2410MHz	29	2430MHz	49	2450MHz	69	2470MHz
10	2411MHz	30	2431MHz	50	2451MHz	70	2471MHz

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23010613

Web: http://www.dace-lab.com

4

E-mail: service@dace-lab.com

Report No.: DACE240814006RL001

11	2412MHz	31	2432MHz	51	2452MHz	71	2472MHz
12	2413MHz	32	2433MHz	52	2453MHz	72	2473MHz
13	2414MHz	33	2434MHz	53	2454MHz	73	2474MHz
14	2415MHz	34	2435MHz	54	2455MHz	74	2475MHz
15	2416MHz	35	2436MHz	55	2456MHz	75	2476MHz
16	2417MHz	36	2437MHz	56	2457MHz	76	2477MHz
17 🚽	2418MHz	37	2438MHz	57	2458MHz	77	2478MHz
18	2419MHz	38	2439MHz	58	2459MHz	78	2479MHz
19	2420MHz	39	2440MHz	59	2460MHz	79	2480MHz
20	2421MHz	40	2441MHz	60	2461MHz		

Note:

DAC

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Test channel	Frequency (MHz)
Test channel	BDR/EDR
Lowest channel	2402MHz
Middle channel	2441MHz
Highest channel	2480MHz

2.3 Description of Test Modes

No	Title	Description
TM1	TX-GFSK (Non- Hopping)	Keep the EUT in continuously transmitting mode (non-hopping) with GFSK modulation.
TM2	TX-Pi/4DQPSK (Non- Hopping)	Keep the EUT in continuously transmitting mode (non-hopping) with Pi/4DQPSK modulation.
ТМ3	TX-GFSK (Hopping)	Keep the EUT in continuously transmitting mode (hopping) with GFSK modulation,.
TM4	TX-Pi/4DQPSK (Hopping)	Keep the EUT in continuously transmitting mode (hopping) with Pi/4DQPSK modulation.
Remar	k:Only the data of the worst	mode would be recorded in this report.

2.4 Description of Support Units

NE

	Title 👘	Manufacturer	Model No.	Serial No.
AC-	DC adapter	HUAWEI TECHNOLOGY	HW100400C01	

)AC

 102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

 Web: http://www.dace-lab.com
 Tel: +86-755-23010613
 E-mail: service@dace-lab.com
 Page 7 of 91

C

DAG

2.5 Equipments Used During The Test

DVC

Conducted Emission a	at AC power line	200			
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
Power absorbing clamp	SCHWARZ BECK	MESS- ELEKTRONIK	/	2024-03-25	2025-03-24
Electric Network	SCHWARZ BECK	CAT5 8158	CAT5 8158#207	/	1
Cable	SCHWARZ BECK		1	2024-03-20	2025-03-19
Pulse Limiter	SCHWARZ BECK	VTSD 9561-F Pulse limiter 10dB Ateennator	561-G071	2023-12-12	2024-12-11
50ΩCoaxial Switch	Anritsu	MP59B	M20531	/	/
Test Receiver	Rohde & Schwarz	ESPI TEST RECEIVER	ID:1164.6607K 03-102109- MH	2024-06-12	2025-06-11
L.I.S.N	R&S	ESH3-Z5	831.5518.52	2023-12-12	2024-12-11
L.I.S.N	SCHWARZ BECK	NSLK 8126	05055	2024-06-14	2025-06-13
Pulse Limiter	CYBERTEK	EM5010A	/	2023-09-27	2024-09-26
EMI test software	EZ -EMC	EZ	V1.1.42	1	/

C

Emissions in non-restricted frequency bands Occupied Bandwidth Maximum Conducted Output Power Channel Separation Number of Hopping Frequencies Dwell Time

Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
RF Test Software	TACHOY	RTS-01	V1.0.0	/	1
High Pass filter	ZHINAN	OQHPF1-M1.5- 18G-224	6210075	1	
Power divider	MIDEWEST	PWD-2533	SMA-79	2023-05-11	2026-05-10
RF Sensor Unit	Tachoy Information Technology(she nzhen) Co.,Ltd.	TR1029-2	000001	/	1
Wideband radio communication tester	R&S	CMW500	113410	2024-06-12	2025-06-11
Vector signal generator	Keysight	N5181A	MY48180415	2023-11-09	2024-11-08
Signal generator	Keysight	N5182A	MY50143455	2023-11-09	2024-11-08
Spectrum Analyzer	Keysight	N9020A	MY53420323	2023-12-12	2024-12-11

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23010613

Web: http://www.dace-lab.com

Report No.: DACE240814006RL001

1

Band edge emissions (Radiated) Emissions in frequency bands (below 1GHz) Emissions in frequency bands (above 1GHz)						
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date	
EMI Test software	Farad	EZ -EMC	V1.1.42	1	1	
Positioning Controller	<u> </u>	MF-7802	<u> </u>	/	1	
High Pass filter	ZHINAN	OQHPF1-M1.5- 18G-224	6210075	/	100	
Amplifier(18-40G)	COM-POWER	AH-1840	10100008-1	2022-04-05	2025-04-04	
Horn antenna	COM-POWER	AH-1840 (18-40G)	10100008	2023-04-05	2025-04-04	
Loop antenna	ZHINAN	ZN30900C	ZN30900C	2024-06-14	2026-06-13	
Cable(LF)#2	Schwarzbeck	/	1.0	2024-02-19	2025-02-18	
Cable(LF)#1	Schwarzbeck	/		2024-02-19	2025-02-18	
Cable(HF)#2	Schwarzbeck	AK9515E	96250	2024-03-20	2025-03-19	
Cable(HF)#1	Schwarzbeck	SYV-50-3-1	/	2024-03-20	2025-03-19	
Power amplifier(LF)	Schwarzbeck	BBV9743	9743-151	2024-06-12	2025-06-11	
Power amplifier(HF)	Schwarzbeck	BBV9718	9718-282	2024-06-12	2025-06-11	
Wideband radio communication tester	R&S	CMW500	113410	2024-06-12	2025-06-11	
Spectrum Analyzer	R&S	FSP30	1321.3008K40 -101729-jR	2024-06-12	2025-06-11	
Horn Antenna	Sunol Sciences	DRH-118	A091114	2023-05-13	2025-05-12	
Broadband Antenna	Sunol Sciences	JB6 Antenna	A090414	2023-05-21	2025-05-20	

DAG

DAC

DAE

V1.0

DAE

)ÀC

0

3

DAG

DAG

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

DAG

Page 9 of 91

)DE

DAG

Statement Of The Measurement Uncertainty 2.6

Test Item	Measurement Uncertainty
Conducted Disturbance (0.15~30MHz)	±3.41dB
Occupied Bandwidth	±3.63%
RF conducted power	±0.733dB
Duty cycle	±3.1%
Conducted Spurious emissions	±1.98dB
Radiated Emission (Above 1GHz)	±5.46dB
Radiated Emission (Below 1GHz)	±5.79dB
Note: (1) This upportainty represents on expanded up	poortainty expressed at approximately the 05%

Note: (1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

2.7 Identification of Testing Laboratory

Company Name:	Shenzhen DACE Testing Technology Co., Ltd.
Address:	102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China
Phone Number:	+86-13267178997
Fax Number:	86-755-29113252
Identification of the Respons	ible Testing Location
Company Name:	Shenzhen DACE Testing Technology Co., Ltd.
Address:	102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China
Phone Number:	+86-13267178997
Fax Number:	86-755-29113252
FCC Registration Number:	0032847402
Designation Number:	CN1342
Test Firm Registration Number:	778666
A2LA Certificate Number:	6270.01

2.8 Announcement

(1) The test report reference to the report template version v0.

(2) The test report is invalid if not marked with the signatures of the persons responsible for preparing, reviewing and approving the test report.

(3) The test report is invalid if there is any evidence and/or falsification.

(4) This document may not be altered or revised in any way unless done so by DACE and all revisions are duly noted in the revisions section.

(5) Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.

(6) The laboratory is only responsible for the data released by the laboratory, except for the part provided by the applicant.

Report No.: DACE240814006RL001

Evaluation Results (Evaluation) 3

3.1 Antenna requirement

Test Requirement:

DΔC

Refer to 47 CFR Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

3.1.1 Conclusion:

0

DAG

NE

DAG

NE

)AC

NE

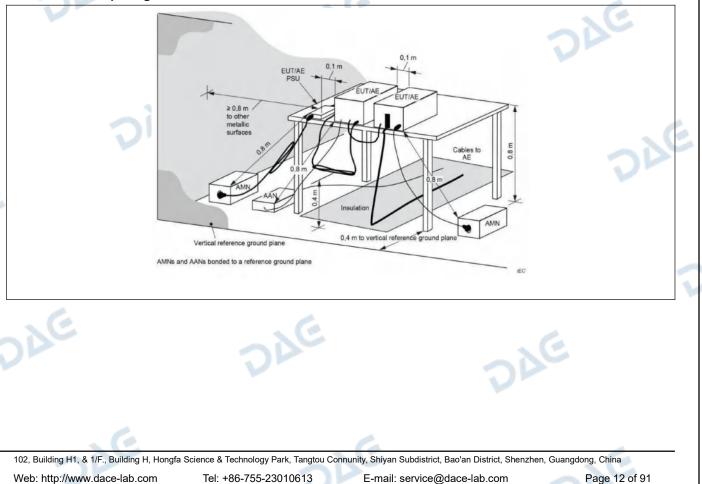
6

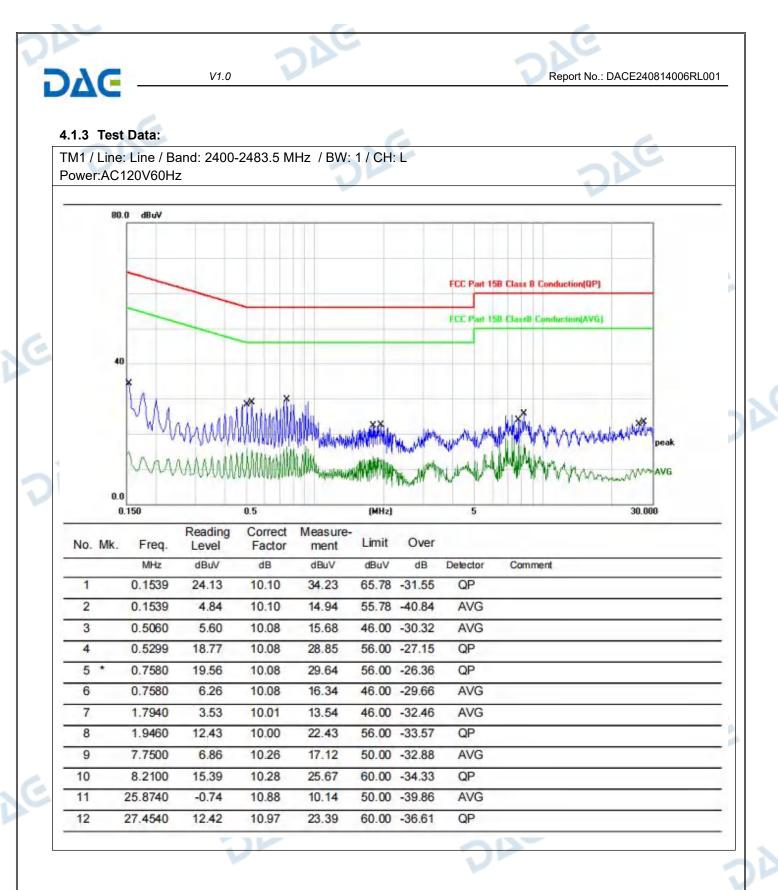
Report No.: DACE240814006RL001

4 Radio Spectrum Matter Test Results (RF)

4.1 Conducted Emission at AC power line

· · · · · · · · · · · · · · · · · · ·	-				
Test Requirement:	Refer to 47 CFR 15.207(a), Except as shown in paragraphs (b)and (c)of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 uH/50 ohms line impedance stabilization network (LISN).				
Test Limit:	Frequency of emission (MHz) Conducted limit (dBµV)				
		Quasi-peak	Average		
	0.15-0.5	66 to 56*	56 to 46*		
	0.5-5	56	46		
	5-30	60	50		
	*Decreases with the logarithm of the frequency.				
Test Method:	ANSI C63.10-2013 section 6.2				
Procedure:	Refer to ANSI C63.10-2013 section 6.2, standard test method for ac power-line conducted emissions from unlicensed wireless devices				

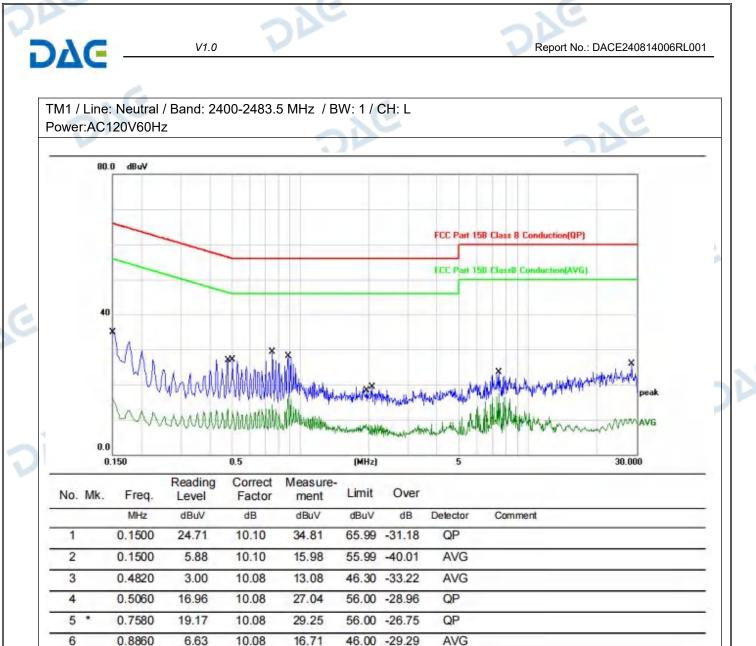

4.1.1 E.U.T. Operation:


DAG

Operating Envir	onment:		20				C
Temperature:	23 °C		Humidity:	50 %	Atmospheric Pres	sure:	102 kPa
Pretest mode:		TM1,	TM2			V	
Final test mode:		TM1					

× (e.

4.1.2 Test Setup Diagram:


102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

NE

DAG

Page 13 of 91

)AC

AVG

QP QP

AVG

AVG

QP

46.00 -37.23

56.00 -36.68

60.00 -36.56

50.00 -32.48

50.00 -39.67

60.00 -34.10

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

-1.23

9.32

13.20

7.28

-0.70

14.85

10.00

10.00

10.24

10.24

11.03

11.05

8.77

19.32

23.44

17.52

10.33

25.90

NE

1.9460

2.0700

7.4140

7.4140

28.1660

28.4660

7

8

9 10

11

12

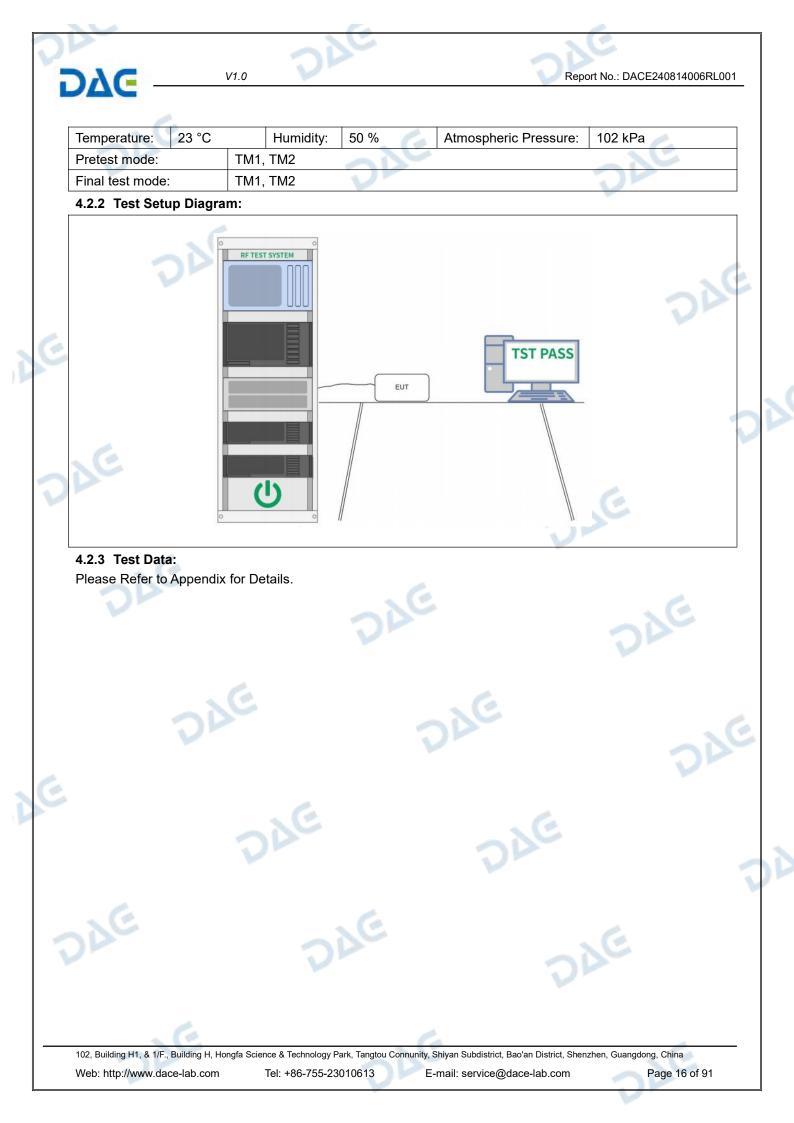
)DE

ø

Page 14 of 91

)AC

Report No.: DACE240814006RL001


4.2 Occupied Bandwidth

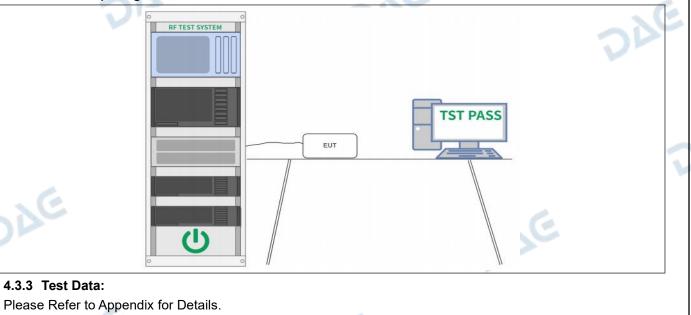
DγG

4.2 Occupied Band	iwidth	
Test Requirement:	47 CFR 15.247(a)(1)	
Test Limit:	Refer to 47 CFR 15.215(c), intentional radiat provisions to the general emission limits, as and in subpart E of this part, must be design of the emission, or whatever bandwidth may rule section under which the equipment oper band designated in the rule section under wh	contained in §§ 15.217 through 15.257 ed to ensure that the 20 dB bandwidth otherwise be specified in the specific rates, is contained within the frequency
Test Method:	ANSI C63.10-2013, section 7.8.7, For occup procedure in 6.9.2. KDB 558074 D01 15.247 Meas Guidance v0	
Procedure:	a) The spectrum analyzer center frequency i center frequency. The span range for the EM be between two times and five times the OB b) The nominal IF filter bandwidth (3 dB RBW the OBW and video bandwidth (VBW) shall B unless otherwise specified by the applicable c) Set the reference level of the instrument a	Il receiver or spectrum analyzer shall W. V) shall be in the range of 1% to 5% of be approximately three times RBW, requirement. Is required, keeping the signal from
	 exceeding the maximum input mixer level for of the spectral envelope shall be more than a reference level. Specific guidance is given in d) Steps a) through c) might require iteration tolerances. e) The dynamic range of the instrument at the dB below the target "-xx dB down" requirem measuring the -20 dB OBW, the instrument be at least 30 dB below the 	10 log (OBW/RBW)] below the 4.1.5.2. to adjust within the specified e selected RBW shall be more than 10 ent; that is, if the requirement calls for
	reference value. f) Set detection mode to peak and trace mod g) Determine the reference value: Set the El or modulated signal, as applicable. Allow the analyzer marker to the highest level of the di value). h) Determine the "-xx dB down amplitude" u	JT to transmit an unmodulated carrier trace to stabilize. Set the spectrum splayed trace (this is the reference sing [(reference value) – xx].
	 Alternatively, this calculation may be made b instrument. i) If the reference value is determined by an modulation ON, and either clear the existing spectrum analyzer and allow the new trace t step g) shall be used for step j). 	unmodulated carrier, then turn the EUT trace or start a new trace on the
	j) Place two markers, one at the lowest frequ frequency of the envelope of the spectral dis slightly below the "-xx dB down amplitude" d below this "-xx dB down amplitude" value, th this value. The occupied bandwidth is the fre markers. Alternatively, set a marker at the low spectral display, such that the marker is at of amplitude" determined in step h). Reset the	play, such that each marker is at or etermined in step h). If a marker is nen it shall be as close as possible to equency difference between the two west frequency of the envelope of the r slightly below the "-xx dB down
AC	marker to the other side of the emission until same level as the reference marker amplitud at this point is the specified emission bandwi k) The occupied bandwidth shall be reported instrument display; the plot axes and the sca labeled. Tabular data may be reported in add	the delta marker amplitude is at the le. The marker-delta frequency reading dth. by providing plot(s) of the measuring le units per division shall be clearly
4.2.1 E.U.T. Operation:		
Operating Environment:		
10		4

Web: http://www.dace-lab.com

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China E-mail: service@dace-lab.com

DAG


4.3 Maximum Conducted Output Power

and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts. Test Method: ANSI C63.10-2013, section 7.8.5 KDB 558074 D01 15.247 Meas Guidance v05r02 Procedure: This is an RF-conducted test to evaluate maximum peak output power. Use a dire connection between the antenna port of the unlicensed wireless device and the spectrum analyzer, through suitable attenuation. The hopping shall be disabled for this test: a) Use the following spectrum analyzer settings: 1) Span: Approximately five times the 20 dB bandwidth, centered on a hopping channel. 2) RBW > 20 dB bandwidth of the emission being measured. 3) VBW >= RBW. 4) Sweep: Auto. 5) Detector function: Peak. 6) Trace: Max hold. b) Allow trace to stabilize. c) Use the marker-to-peak function to set the marker to the peak of the emission. d) The indicated level is the peak output power, after any corrections for external attenuators and cables. e) A plot of the test results and setup description shall be included in the test reponding power meter may be used, where the power meter at sensor system video bandwidth is greater than the occupied bandwidth of the unlicensed wireless device, rather than a spectrum analyzer.		
2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts. Test Method: ANSI C63.10-2013, section 7.8.5 KDB 558074 D01 15.247 Meas Guidance v05r02 Procedure: This is an RF-conducted test to evaluate maximum peak output power. Use a dire connection between the antenna port of the unlicensed wireless device and the spectrum analyzer, through suitable attenuation. The hopping shall be disabled for this test: a) Use the following spectrum analyzer settings: 1) Span: Approximately five times the 20 dB bandwidth, centered on a hopping channel. 2) RBW > 20 dB bandwidth of the emission being measured. 3) VBW >= RBW. 4) Sweep: Auto. 5) Detector function: Peak. 6) Trace: Max hold. b) Allow trace to stabilize. c) Use the marker-to-peak function to set the marker to the peak of the emission. d) The indicated level is the peak output power, after any corrections for external attenuators and cables. e) A plot of the test results and setup description shall be included in the test repon NOTE—A peak responding power meter may be used, where the power meter as sensor system video bandwidth is greater than the occupied bandwidth of the unlicensed wireless device, rather than a spectrum analyzer.	Test Requirement:	47 CFR 15.247(b)(1)
KDB 558074 D01 15.247 Meas Guidance v05r02 Procedure: This is an RF-conducted test to evaluate maximum peak output power. Use a dim connection between the antenna port of the unlicensed wireless device and the spectrum analyzer, through suitable attenuation. The hopping shall be disabled for this test: a) Use the following spectrum analyzer settings: 1) Span: Approximately five times the 20 dB bandwidth, centered on a hopping channel. 2) RBW > 20 dB bandwidth of the emission being measured. 3) VBW >= RBW. 4) Sweep: Auto. 5) Detector function: Peak. 6) Trace: Max hold. b) Allow trace to stabilize. c) Use the marker-to-peak function to set the marker to the peak of the emission. d) The indicated level is the peak output power, after any corrections for external attenuators and cables. e) A plot of the test results and setup description shall be included in the test reponding power meter may be used, where the power meter as sensor system video bandwidth is greater than the occupied bandwidth of the unlicensed wireless device, rather than a spectrum analyzer. 	Test Limit:	2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all
 connection between the antenna port of the unlicensed wireless device and the spectrum analyzer, through suitable attenuation. The hopping shall be disabled for this test: a) Use the following spectrum analyzer settings: 1) Span: Approximately five times the 20 dB bandwidth, centered on a hopping channel. 2) RBW > 20 dB bandwidth of the emission being measured. 3) VBW >= RBW. 4) Sweep: Auto. 5) Detector function: Peak. 6) Trace: Max hold. b) Allow trace to stabilize. c) Use the marker-to-peak function to set the marker to the peak of the emission. d) The indicated level is the peak output power, after any corrections for external attenuators and cables. e) A plot of the test results and setup description shall be included in the test report NOTE—A peak responding power meter may be used, where the power meter at sensor system video bandwidth is greater than the occupied bandwidth of the unlicensed wireless device, rather than a spectrum analyzer. 	Test Method:	
e) A plot of the test results and setup description shall be included in the test report NOTE—A peak responding power meter may be used, where the power meter and sensor system video bandwidth is greater than the occupied bandwidth of the unlicensed wireless device, rather than a spectrum analyzer.	Procedure:	 spectrum analyzer, through suitable attenuation. The hopping shall be disabled for this test: a) Use the following spectrum analyzer settings: 1) Span: Approximately five times the 20 dB bandwidth, centered on a hopping channel. 2) RBW > 20 dB bandwidth of the emission being measured. 3) VBW >= RBW. 4) Sweep: Auto. 5) Detector function: Peak. 6) Trace: Max hold. b) Allow trace to stabilize. c) Use the marker-to-peak function to set the marker to the peak of the emission. d) The indicated level is the peak output power, after any corrections for external
	1E	e) A plot of the test results and setup description shall be included in the test report. NOTE—A peak responding power meter may be used, where the power meter and sensor system video bandwidth is greater than the occupied bandwidth of the
4.3.1 E.U.T. Operation:	4.3.1 E.U.T. Operation:	LE G

4.3.1 E.U.T. Operation:

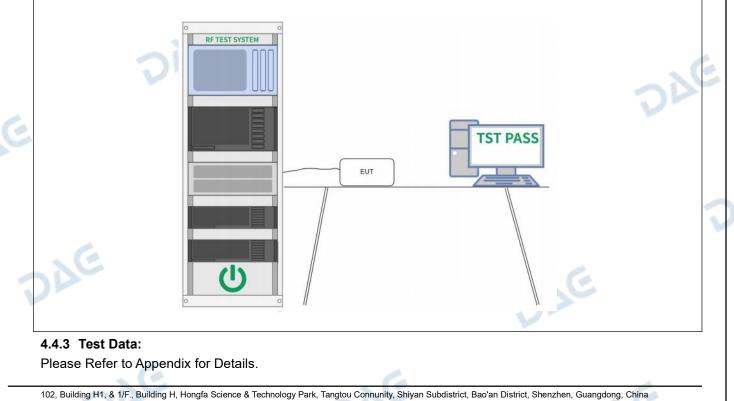
Operating Enviro	onment:			2P		200
Temperature:	23 °C		Humidity:	50 %	Atmospheric Pressure:	102 kPa
Pretest mode:		TM1,	TM2	•		
Final test mode:		TM1,	TM2			
4.3.2 Test Setu	ip Diagra	m:			10	

4.3.2 Test Setup Diagram:

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Page 17 of 91 Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

Report No.: DACE240814006RL001

4.4 Channel Separation


DAG

Test Requirement:	47 CFR 15.247(a)(1)
Test Limit:	Refer to 47 CFR 15.247(a)(1), Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.
Test Method:	ANSI C63.10-2013, section 7.8.2 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	 The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings: a) Span: Wide enough to capture the peaks of two adjacent channels. b) RBW: Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel. c) Video (or average) bandwidth (VBW) ≥ RBW.
de 1	 d) Sweep: Auto. e) Detector function: Peak. f) Trace: Max hold. g) Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. Compliance of an EUT with the appropriate regulatory limit shall be determined. A plot of the data shall be included in the test report.

4.4.1 E.U.T. Operation:

Operating Environment:						
Temperature: 23 °C		Humidity:	50 %		Atmospheric Pressure:	102 kPa
Pretest mode:	ТМ3,	TM4		C		. (.
Final test mode:	ΤМ3,	TM4	2			200

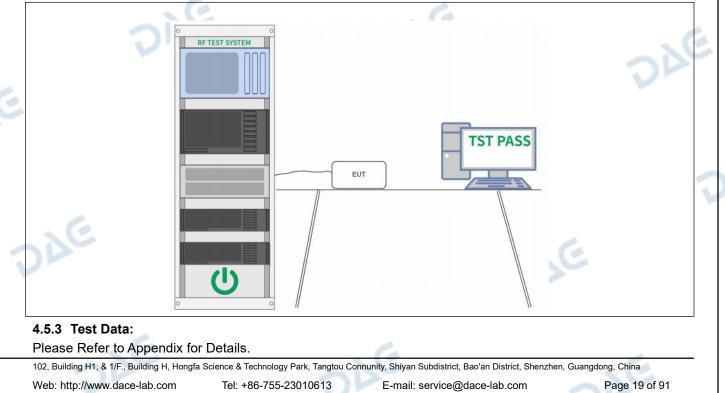
4.4.2 Test Setup Diagram:

Web: http://www.dace-lab.com

Tel: +86-755-23010613

E-mail: service@dace-lab.com

DΔC


Report No.: DACE240814006RL001

Test Requirement:	47 CFR 15.247(a)(1)(iii)
Test Limit:	Refer to 47 CFR 15.247(a)(1)(iii), Fequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.
Test Method:	ANSI C63.10-2013, section 7.8.3 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	 The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings: a) Span: The frequency band of operation. Depending on the number of channels the device supports, it may be necessary to divide the frequency range of operation across multiple spans, to allow the individual channels to be clearly seen. b) RBW: To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller. c) VBW ≥ RBW. d) Sweep: Auto. e) Detector function: Peak.
AC	 f) Trace: Max hold. g) Allow the trace to stabilize. It might prove necessary to break the span up into subranges to show clearly all of the hopping frequencies. Compliance of an EUT with the appropriate regulatory limit shall be determined for the number of hopping channels. A plot of the data shall be included in the test report.

4.5.1 E.U.T. Operation:

Operating Envir	onment:				6			
Temperature:	23 °C	_	Humidity:	50 %	20	Atmospheric Pressure:	102 kPa	C
Pretest mode:		ТМЗ,	TM4				22	
Final test mode:		ΤМ3,	TM4					

4.5.2 Test Setup Diagram:

Report No.: DACE240814006RL001

4.6 Dwell Time

DAG

Test Requirement:	47 CFR 15.247(a)(1)(iii)
Test Limit:	Refer to 47 CFR 15.247(a)(1)(iii), Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.
Test Method:	ANSI C63.10-2013, section 7.8.4 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings: a) Span: Zero span, centered on a hopping channel. b) RBW shall be <= channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel. c) Sweep: As necessary to capture the entire dwell time per hopping channel; where possible use a video trigger and trigger delay so that the transmitted signal starts a little to the right of the start of the plot. The trigger level might need slight adjustment to prevent triggering when the system hops on an adjacent channel; a second plot might be needed with a longer sweep time to show two successive hops on a channel. d) Detector function: Peak. e) Trace: Max hold. Use the marker-delta function to determine the transmit time per hop. If this value varies with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this test for each variation in transmit time. Repeat the measurement using a longer sweep time to determine the number of hops over the period specified in the requirements. The sweep time shall be equal to, or less than, the period specified in the requirements. Determine the number of hops over the sweep time and calculate the total number of hops in the period specified in the requirements) = (number of hops on spectrum analyzer) × (period specified in the requirements / analyzer sweep time) The average time of occupancy is calculated from the transmit time per hop multiplied by the number of hops in the period specified in the requirements. If the number of hops in a specific time varies with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this test for each variation.
	The measured transmit time and time between hops shall be consistent with the values described in the operational description for the EUT.

4.6.1 E.U.T. Operation:

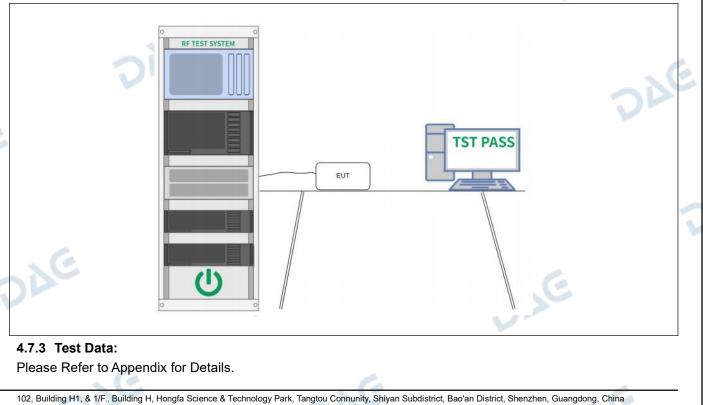
Operating Envir	onment:	V			26	
Temperature:	23 °C		Humidity:	50 %	Atmospheric Pressure:	102 kPa
Pretest mode:		TM3,	TM4	•		
Final test mode:		TM3,	TM4	6		
						6

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23010613 Web: http://www.dace-lab.com E-mail: service@dace-lab.com

4.6.2 Test Setup Dia	V1.0	Report No.: DACE240814006RL001
		TST PASS
4.6.3 Test Data: Please Refer to Appe	ndix for Details.	E

DAG

Report No.: DACE240814006RL001


4.7 Emissions in non-restricted frequency bands

Test Requirement:	47 CFR 15.247(d), 15.209, 15.205
Test Limit:	Refer to 47 CFR 15.247(d), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required.
Test Method:	ANSI C63.10-2013 section 7.8.8 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	Conducted spurious emissions shall be measured for the transmit frequency, per 5.5 and 5.6, and at the maximum transmit powers. Connect the primary antenna port through an attenuator to the spectrum analyzer input; in the results, account for all losses between the unlicensed wireless device output and the spectrum analyzer. The instrument shall span 30 MHz to 10 times the operating frequency in GHz, with a resolution bandwidth of 100 kHz, video bandwidth of 300 kHz, and a coupled sweep time with a peak detector. The band 30 MHz to the highest frequency may be split into smaller spans, as long as the entire spectrum is covered.

4.7.1 E.U.T. Operation:

Operating Environment:						
Temperature: 23 °C		Humidity:	50 %		Atmospheric Pressure:	102 kPa
Pretest mode:	TM1,	TM2, TM3, 1	ГМ4	Ce		. 6
Final test mode:	TM1,	TM2, TM3, 1	TM4			2

4.7.2 Test Setup Diagram:

Web: http://www.dace-lab.com

Tel: +86-755-23010613 E-mail:

E-mail: service@dace-lab.com

Report No.: DACE240814006RL001

4.8 Band edge emissions (Radiated)

DAG


Test Requirement:	restricted bands, as defi	(d), In addition, radiated emission ned in § 15.205(a), must also co l in § 15.209(a)(see § 15.205(c))	omply with the radiated
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
20	0.009-0.490	2400/F(kHz)	300
	0.490-1.705	24000/F(kHz)	30
	1.705-30.0	30	30
	30-88	100 **	3
	88-216	150 **	3
4	216-960	200 **	3
	Above 960	500	3
AE	radiators operating under 54-72 MHz, 76-88 MHz, these frequency bands in and 15.241. In the emission table ab The emission limits show employing a CISPR qua 110–490 kHz and above	paragraph (g), fundamental em er this section shall not be locate 174-216 MHz or 470-806 MHz. s permitted under other sections ove, the tighter limit applies at th wn in the above table are based si-peak detector except for the f e 1000 MHz. Radiated emission bents employing an average detector	ed in the frequency bands However, operation within s of this part, e.g., §§ 15.231 ne band edges. on measurements frequency bands 9–90 kHz, limits in these three bands
Test Method:	ANSI C63.10-2013 sect KDB 558074 D01 15.24	ion 6.10 7 Meas Guidance v05r02	
Procedure:	ANSI C63.10-2013 sect	ion 6.10.5.2	×C.
4.8.1 E.U.T. Operation:			~~~

. 6

4.8.1 E.U.T. Operation:

Operating Enviro	onment:							
Temperature:	23 °C		Humidity:	50 %	Atmospheric Pre	essure:	102 kPa	
Pretest mode:		TM1,	TM2		6			
Final test mode:	DP	TM1			200			

4.8.2 Test Setup Diagram:

DΔG V1.0 Report No.: DACE240814006RL001 4.8.3 Test Data: TM1 / Polarization: Horizontal / Band: 2400-2483.5 MHz / BW: 1 / CH: L dBuV/m 100.0 90 80 FCC Part 15C (Pe 70 60 FCC Part 15C 50 40 AVG 30 20 10 0.0 2310.000 2320.000 2330.000 2340.000 2350.000 (MHz) 2370.000 2380.000 2390.000 2400.000 2410.000 Frequency Reading Factor Level Limit Margin Height Azimuth No. Detector P/F Remark (dBuV) (MHz) (dB/m) (dBuV/m) (dBuV/m) (dB) (cm) (deg.) 2310.000 54.67 -13.53 41.14 74.00 -32.86 Ρ 1 peak 150 2 2310.000 43.07 -13.53 29.54 54.00 -24.46 P AVG 150 peak 3 2390.000 54.69 -13.27 41.42 74.00 -32.58 150 P 4 * 2390.000 43.47 -13.27 30.20 54.00 -23.80 AVG 150 P

DAG

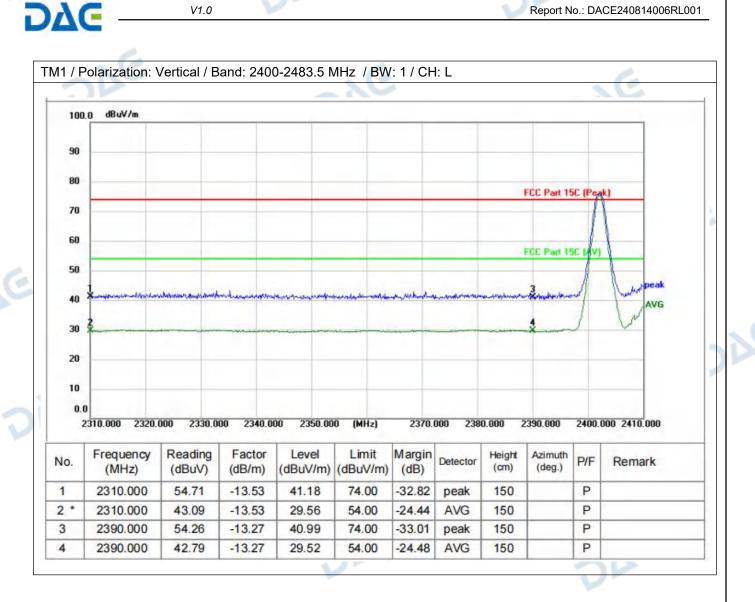
)AC

DAG

٧

DAG

DAG


)AC

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

)AC

)DE

Report No.: DACE240814006RL001

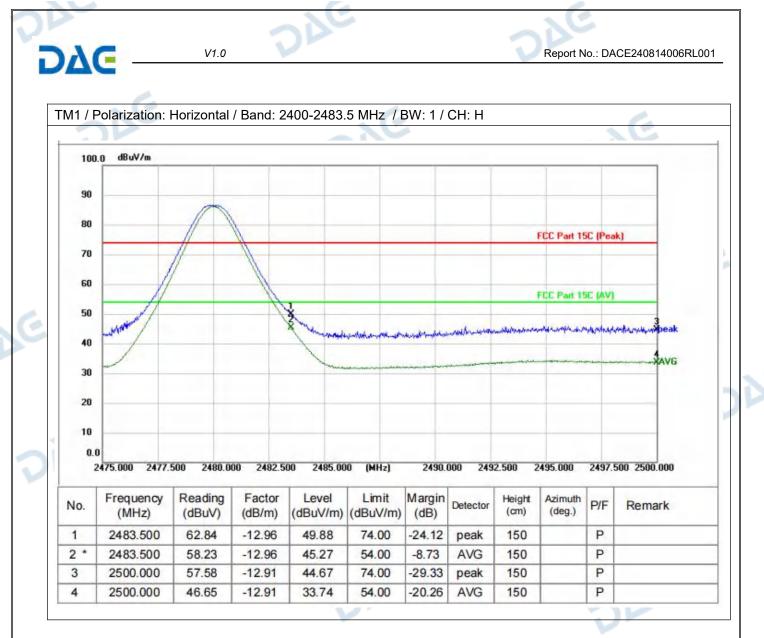
DAG

DAG

)DE

DAG

)AC


DAG

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

)AC

Page 25 of 91

NE

DAG

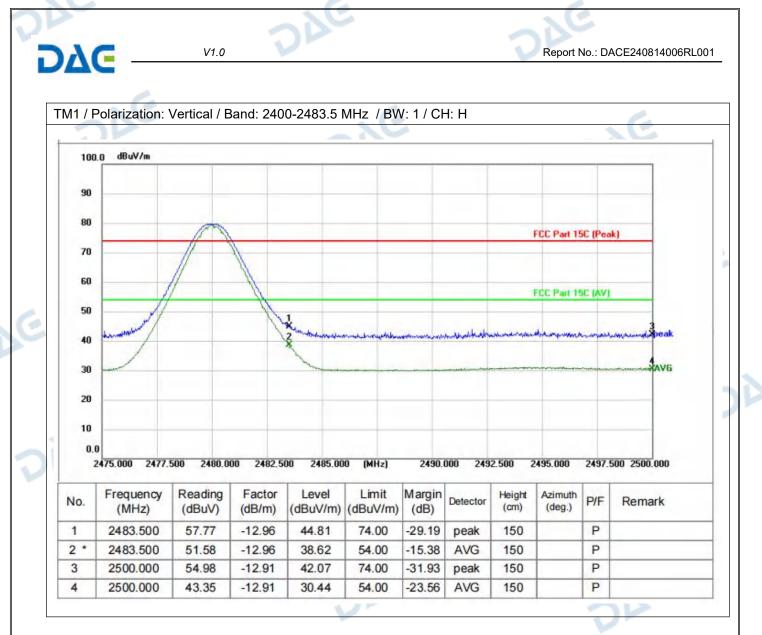
DAG

4

DAG

DAE

2AC


DAG

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

DAG

Page 26 of 91

DE

DAE

DAG

4

DAG

DAE

2AC

DAG

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

DAE

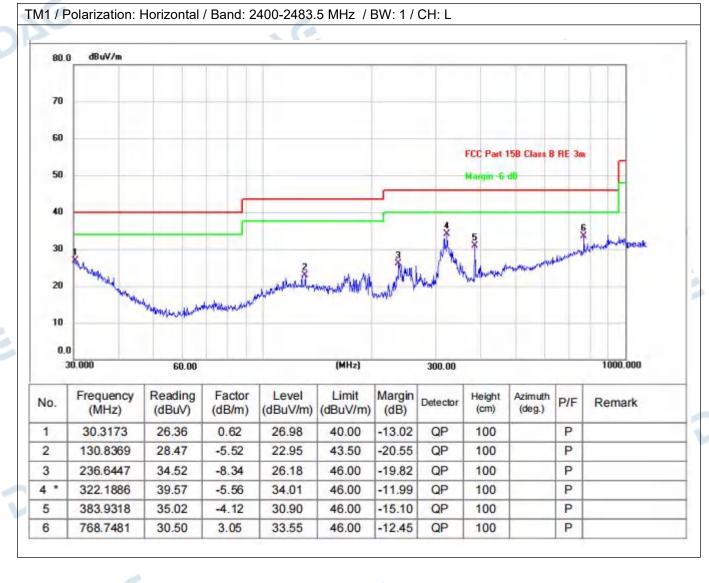
)DE

DγG

4.9 Emissions in frequency bands (below 1GHz)

Test Requirement:	restricted bands, as defin	d), In addition, radiated emissions ed in § 15.205(a), must also comp in § 15.209(a)(see § 15.205(c)).`				
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)			
20	0.009-0.490	2400/F(kHz)	300			
	0.490-1.705	24000/F(kHz)	30			
	1.705-30.0	30	30			
	30-88	100 **	3			
	88-216	150 **	3			
-	216-960	200 **	3			
1	Above 960	500	3			
	and 15.241. In the emission table abo The emission limits show employing a CISPR quas 110–490 kHz and above	permitted under other sections of ve, the tighter limit applies at the b n in the above table are based on i-peak detector except for the freq 1000 MHz. Radiated emission limit ents employing an average detector	oand edges. measurements uency bands 9–90 kH ts in these three bands			
Test Method:	ANSI C63.10-2013 section 6.6.4 KDB 558074 D01 15.247 Meas Guidance v05r02					
DÀG	360 degrees to determine b. For above 1GHz, the E above the ground at a 3 r degrees to determine the c. The EUT was set 3 or which was mounted on th d. The antenna height is determine the maximum polarizations of the anten e. For each suspected er the antenna was tuned to below 30MHz, the antenr was turned from 0 degree f. The test-receiver system Bandwidth with Maximum g. If the emission level of specified, then testing co reported. Otherwise the e tested one by one using p reported in a data sheet. h. Test the EUT in the low i. The radiation measurer	the EUT in peak mode was 10dB uld be stopped and the peak value missions that did not have 10dB r beak, quasi-peak or average meth	on. ating table 1.5 meters table was rotated 360 nce-receiving antenna, tower. ers above the ground to vizontal and vertical ent. its worst case and ther (for the test frequency and the rotatable table mum reading. n and Specified lower than the limit es of the EUT would be nargin would be re- od as specified and the the Highest channel. s positioning for			
	j. Repeat above procedur Remark:	GHz, through pre-scan found the w	was complete.			
	,					

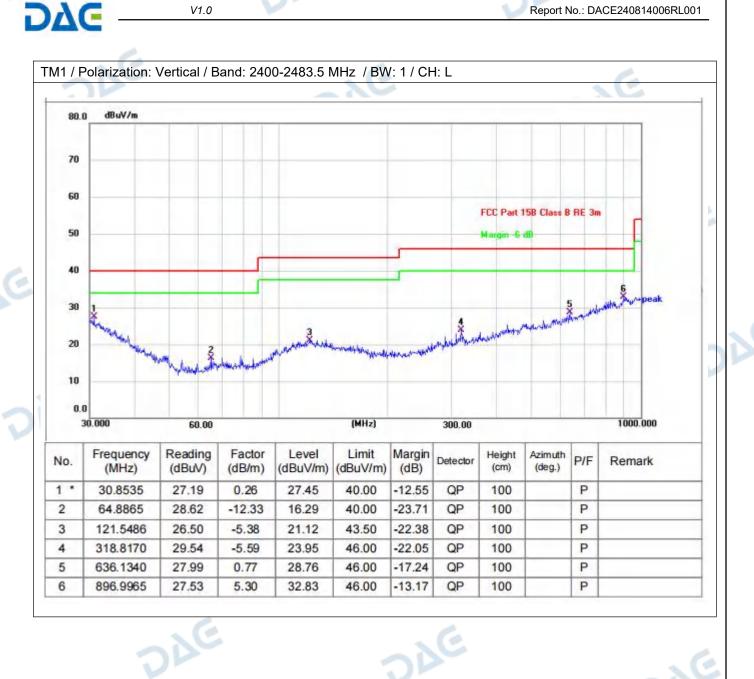
 102, Building H1, & 1/F., Building H, Hongta Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, G


 Web: http://www.dace-lab.com
 Tel: +86-755-23010613
 E-mail: service@dace-lab.com
 Pag

DAG —	V1.0	Report No.: DACE240814006RL0
DAC	Preamplifier. The basic equa Final Test Level =Receiver f Preamplifier Factor 3) Scan from 9kHz to 25GH was very low. The points ma found when testing, so only spurious emissions from the	ulated by adding the Antenna Factor, Cable Factor & ation with a sample calculation is as follows: Reading + Antenna Factor + Cable Factor "C Iz, the disturbance above 12.75GHz and below 30MHz arked on above plots are the highest emissions could be above points had been displayed. The amplitude of a radiator which are attenuated more than 20dB below ed. Fundamental frequency is blocked by filter, and only

4.9.1 E.U.T. Operation:

Operating Environment:							
Temperature:	23 °C		Humidity:	50 %	Atmospheric Pressure:	102 kPa	
Pretest mode:	TM1, TM2						
Final test mode:		TM1					


4.9.2 Test Data:

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23010613 Web: http://www.dace-lab.com E-mail: service@dace-lab.com

Page 29 of 91

Report No.: DACE240814006RL001

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

)AC

)AC

DAG

Page 30 of 91

)De

DAG

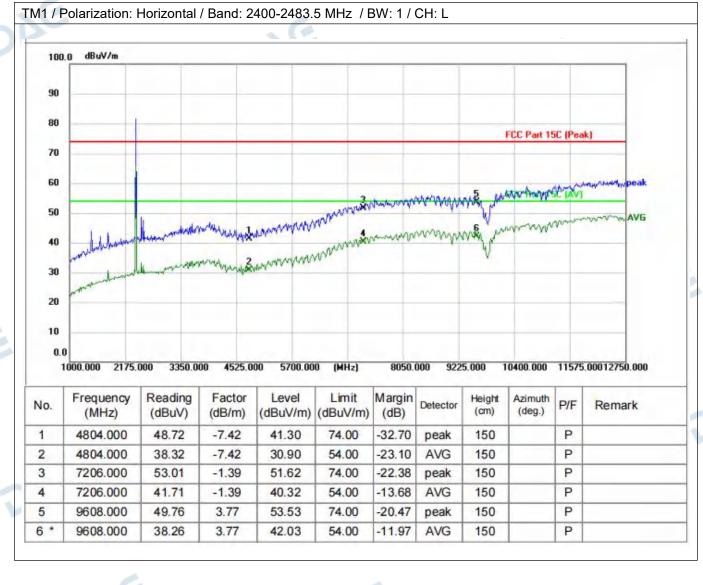
NE

DγG

Report No.: DACE240814006RL001

4.10 Emissions in frequency bands (above 1GHz)

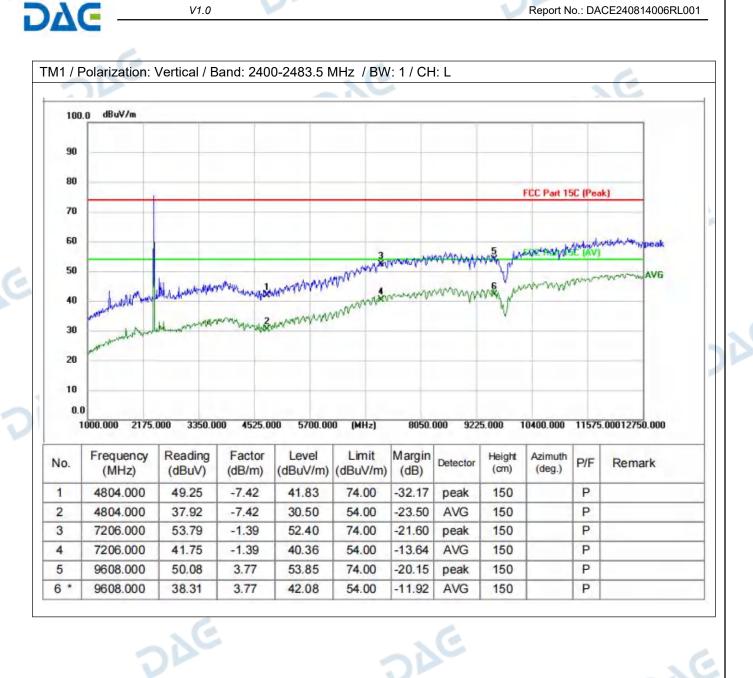
Test Requirement:		ssions which fall in the restricte mply with the radiated emission (c)).`				
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)			
	0.009-0.490	2400/F(kHz)	300			
	0.490-1.705	24000/F(kHz)	30			
	1.705-30.0	30	30			
	30-88	100 **	3			
	88-216	150 **	3			
	216-960	200 **	3			
	Above 960	500	3			
Test Method:	 and 15.241. In the emission table above, the tighter limit applies at the band edges. The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9–90 kHz, 110–490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector. ANSI C63.10-2013 section 6.6.4 KDD 559024 D01 45 247 Maga Cuidenea v05r02 					
Procedure:	KDB 558074 D01 15.247 Meas Guidance v05r02a. For below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters					
D	360 degrees to determine b. For above 1GHz, the above the ground at a 3 degrees to determine th c. The EUT was set 3 or which was mounted on a d. The antenna height is determine the maximum polarizations of the anter e. For each suspected e the antenna was tuned to below 30MHz, the anter was turned from 0 degree f. The test-receiver syste Bandwidth with Maximu g. If the emission level of specified, then testing of reported. Otherwise the tested one by one using reported in a data sheet h. Test the EUT in the lo i. The radiation measure	of the EUT in peak mode was 10 build be stopped and the peak v emissions that did not have 10 peak, quasi-peak or average m	diation. a rotating table 1.5 meters The table was rotated 360 on. ference-receiving antenna, enna tower. meters above the ground to h horizontal and vertical rement. d to its worst case and then ters (for the test frequency of er) and the rotatable table naximum reading. ction and Specified OdB lower than the limit alues of the EUT would be dB margin would be re- nethod as specified and the hel, the Highest channel. axis positioning for			
.6	 j. Repeat above procedures until all frequencies measured was complete. Remark: 1) For emission below 1GHz, through pre-scan found the worst case is the lowest 					


 Web: http://www.dace-lab.com
 Tel: +86-755-23010613
 E-mail: service@dace-lab.com

DAG	V1.0	Report No.: DACE240814006RL001
DAC DA	Preamplifier. The basic equa Final Test Level =Receiver I Preamplifier Factor 3) Scan from 9kHz to 25GH was very low. The points ma found when testing, so only spurious emissions from the	Alated by adding the Antenna Factor, Cable Factor & ation with a sample calculation is as follows: Reading + Antenna Factor + Cable Factor "C z, the disturbance above 12.75GHz and below 30MHz arked on above plots are the highest emissions could be above points had been displayed. The amplitude of e radiator which are attenuated more than 20dB below ed. Fundamental frequency is blocked by filter, and only

4.10.1 E.U.T. Operation:

Operating Environment:							
Temperature:	23 °C		Humidity:	50 %	Atmospheric Pres	sure:	102 kPa
Pretest mode:	TM1, TM2						
Final test mode:		TM1					


4.10.2 Test Data:

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613

E-mail: service@dace-lab.com

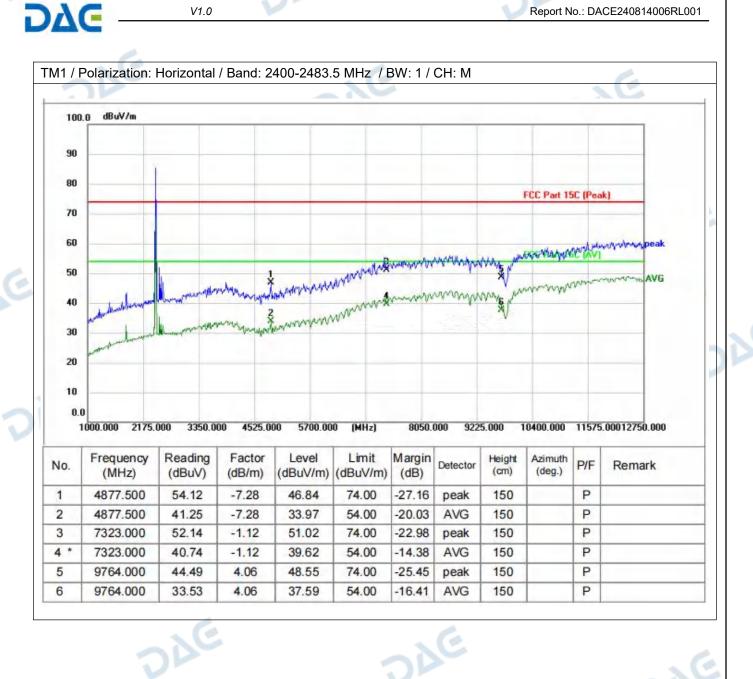
Report No.: DACE240814006RL001

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

)DE

)De

\$


)AC

Page 33 of 91

)De

DAG

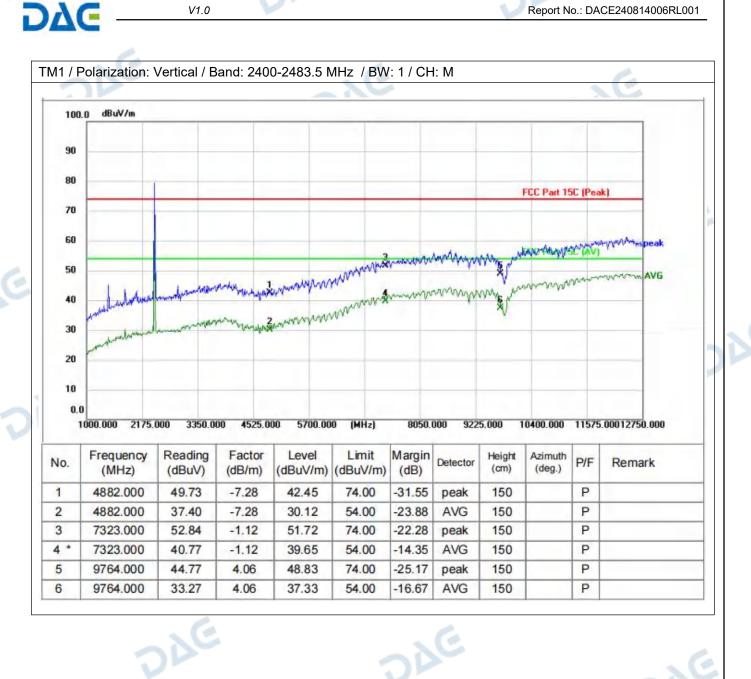
Report No.: DACE240814006RL001

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

)AC

DAG

DAG


Page 34 of 91

)AC

DAG

NE

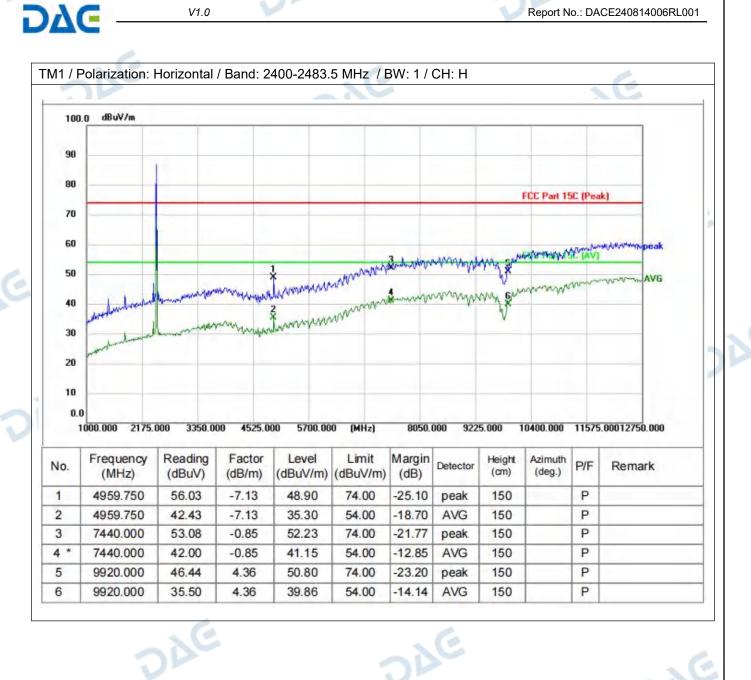
Report No.: DACE240814006RL001

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

)AC

)AC

DAG


Page 35 of 91

)De

DAG

Se

Report No.: DACE240814006RL001

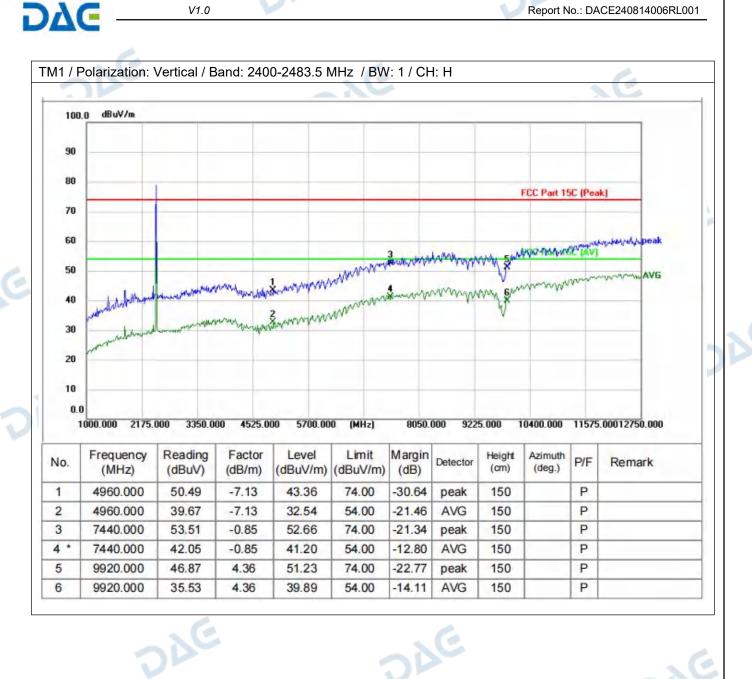
102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

)AC

)De

DAG

Page 36 of 91


)De

DAG

NE

V1.0

Report No.: DACE240814006RL001

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

)AC

)AC

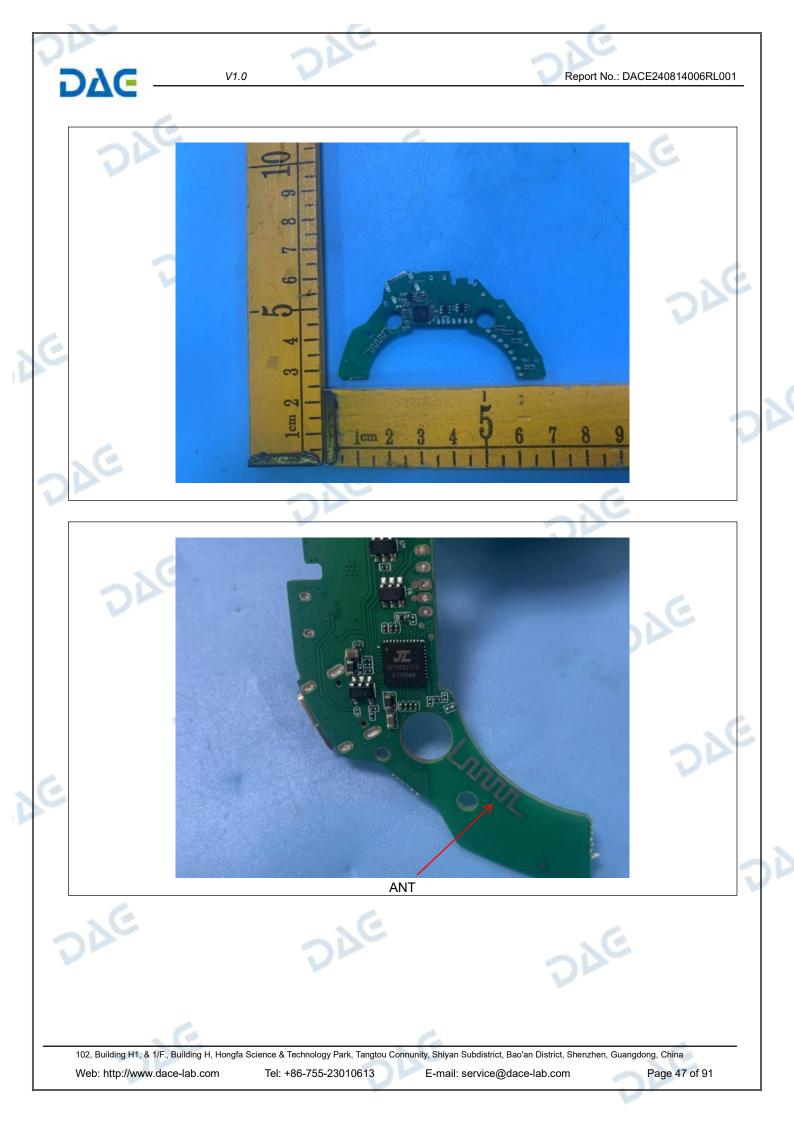
DAG

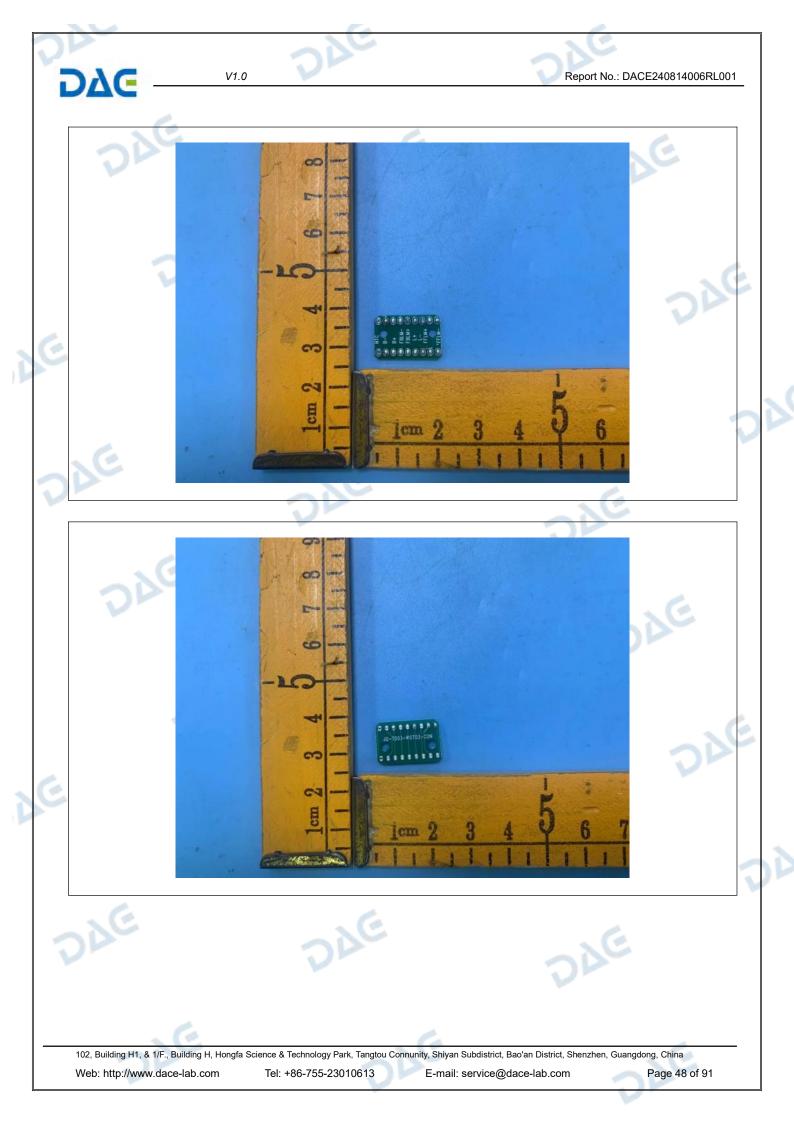
Page 37 of 91

)De

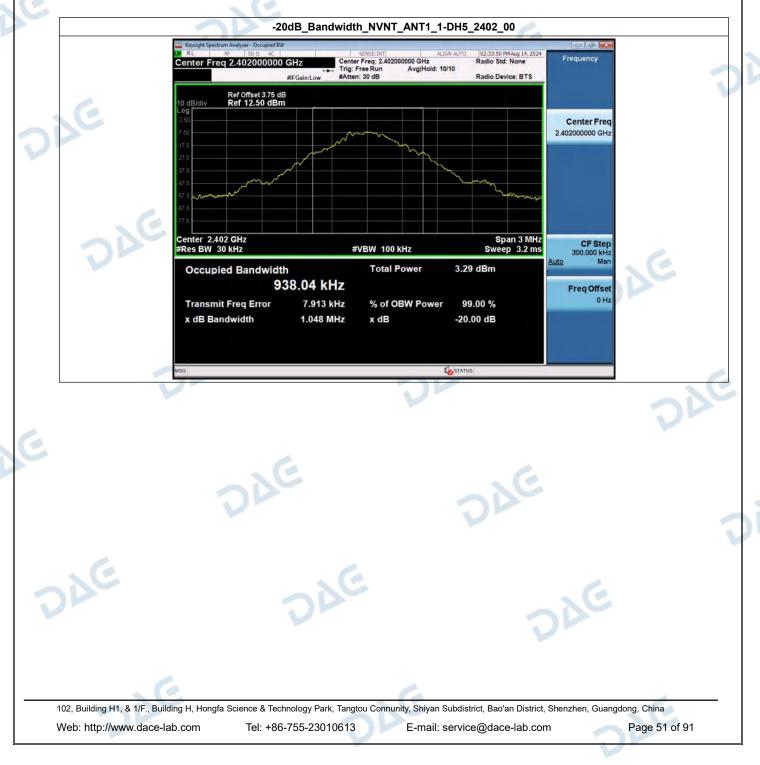
DAG

NC





e

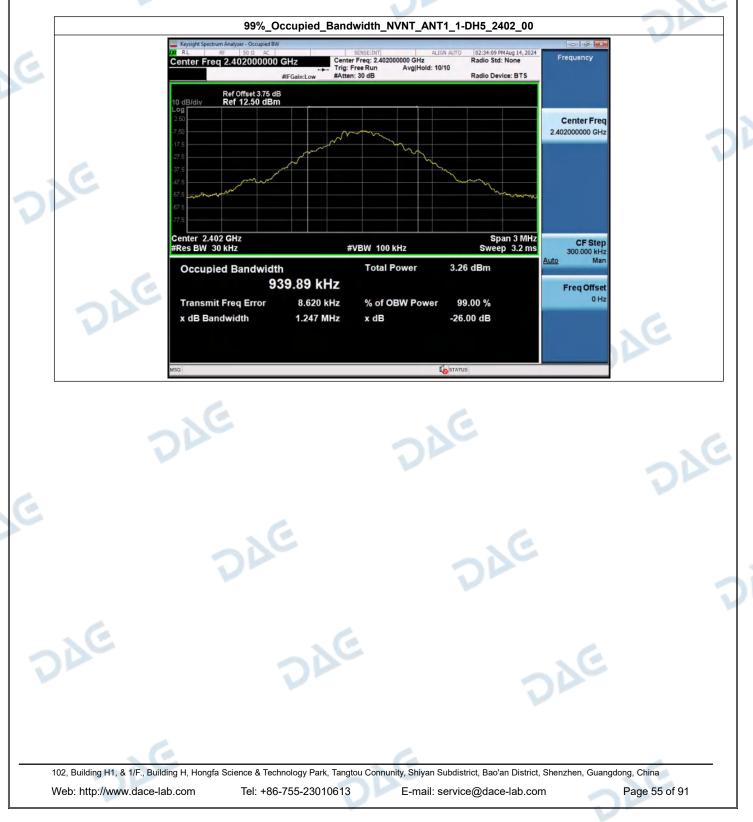

HT240814003--Live--EDR--FCC FCC_BT (Part15.247) Test Data

1. -20dB Bandwidth

V1.0

DAG

Condition	Antenna	Modulation	Frequency (MHz)	-20dB BW(MHz)	if larger than CFS
NVNT	ANT1	1-DH5	2402.00	1.048	Yes
NVNT	ANT1	1-DH5	2441.00	1.062	Yes
NVNT 🔰	ANT1	1-DH5	2480.00	1.060	Yes
NVNT	ANT1	2-DH5	2402.00	1.334	Yes
NVNT	ANT1	2-DH5	2441.00	1.341	Yes
NVNT	ANT1	2-DH5	2480.00	1.340	Yes


		C		<u>e</u>	
DAG -	V1.0		Repor	t No.: DACE240814006RL00	1
DAC	Keysight Spectrum Analyzer - Occupied BW RL RF 50 Q AC Center Freq 2.480000000 GHz #IFGain:Lo	Center Freq: 2.480000000 GHz Trig: Free Run Avg Hold:>1	IGN AUTO 03:13:04 PM Aug 14, 2024 Radio Std: None Free	quency	
2	Ref Offset 3.85 dB 10 dB/dlv Ref 4.70 dBm Log - 5.30 - -15 3 - -25 3 - -65 3 - -65 3 - -65 3 - -75 3 -			enter Freq 1000000 GHz	
÷	Res BW 30 kHz Occupied Bandwidth	#VBW 100 kHz Total Power	Span 3 MHz Sweep 3.2 ms 0.91 dBm	CF Step 00.000 kHz Man	
G		MHZ 75 kHz % of OBW Power 10 MHz x dB		req Offset 0 Hz	1
200		<u> </u>	Costatus	E	

2. 99% Occupied Bandwidth

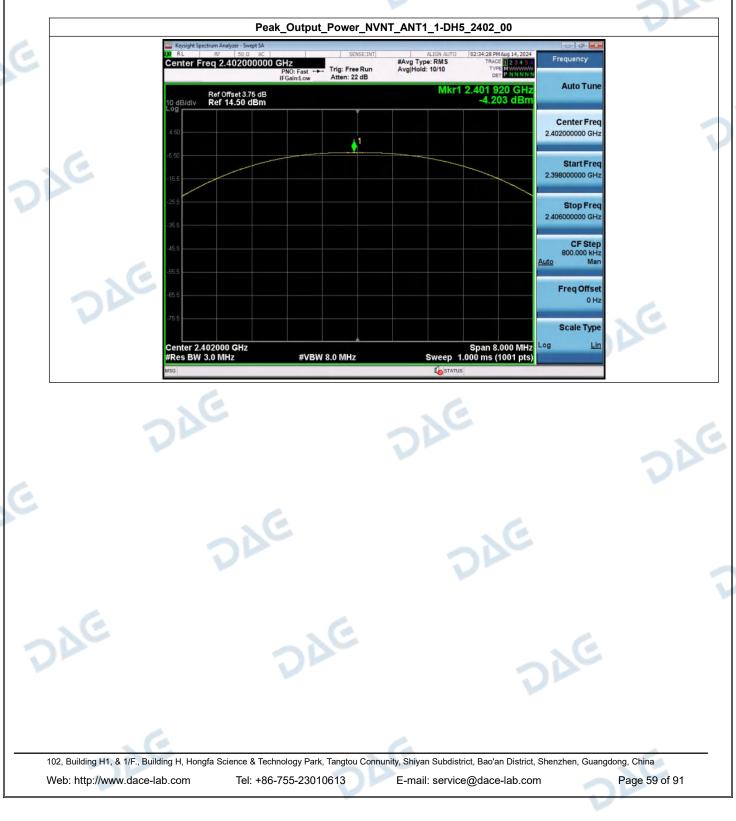
DΔC

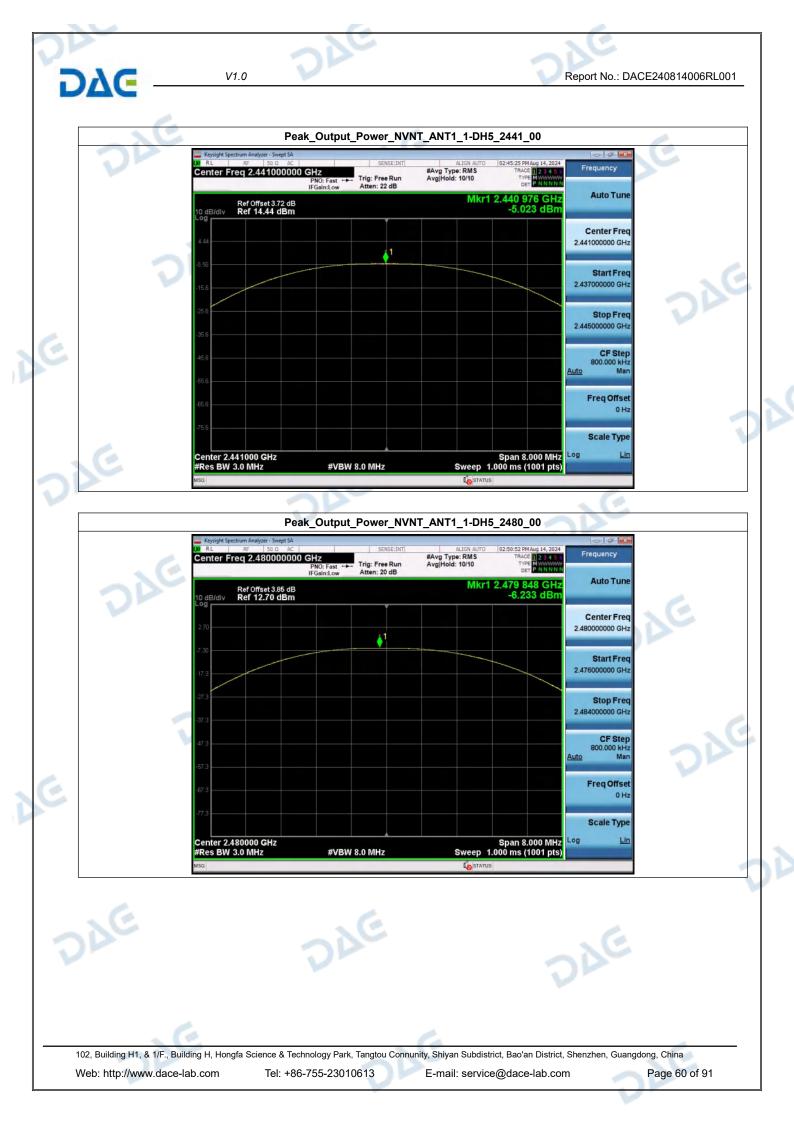
Condition	Antenna	Modulation	Frequency (MHz)	99%%BW(MHz)
NVNT	ANT1	1-DH5	2402.00	0.940
NVNT	ANT1	1-DH5	2441.00	0.955
NVNT	ANT1	1-DH5	2480.00	0.962
NVNT	ANT1	2-DH5	2402.00	1.204
NVNT	ANT1	2-DH5	2441.00	1.222
NVNT	ANT1	2-DH5	2480.00	1.229

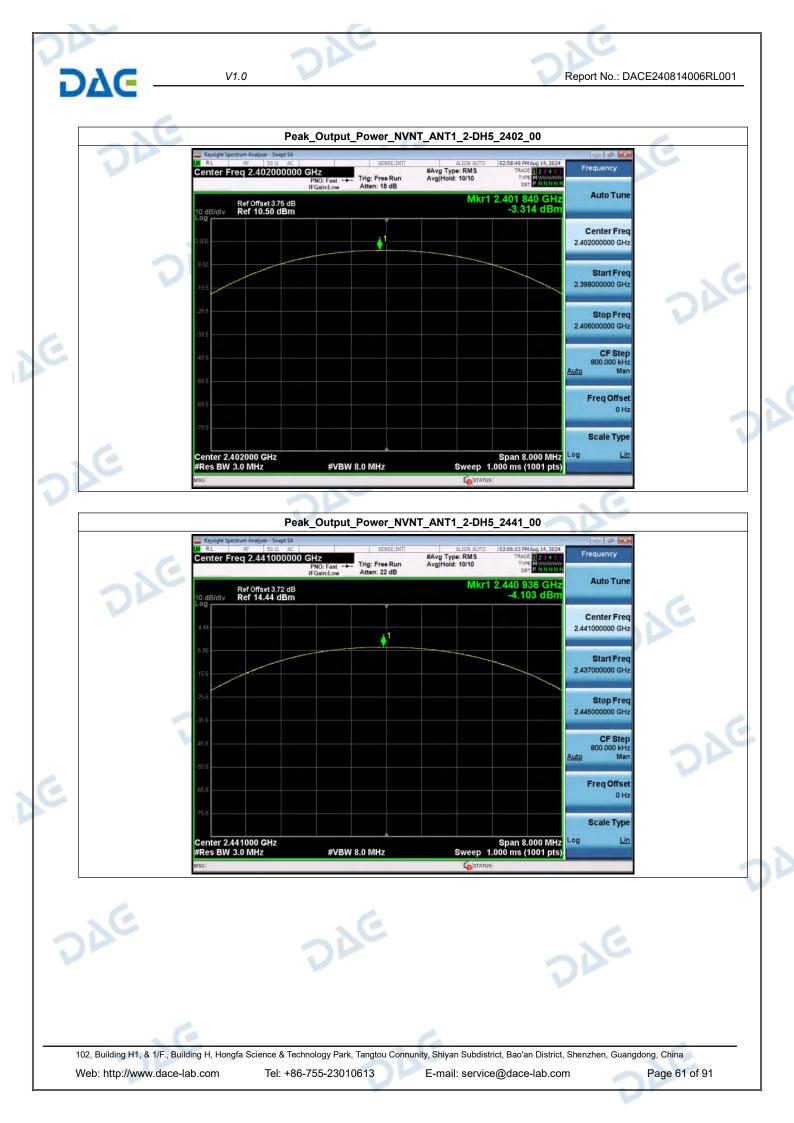
C

DAC -	Keysight Spectrum Analyzer - Occupied BW		ALIGN AUTO 03:13:23 PM Aug 14, 2024		
	Center Freq 2.480000000 GHz #IFGair Ref Offset 3.85 dB 10 dB/div Ref 10.70 dBm	Center Freq: 2.480000000 GHz	Radio Std: None Id: 10/10 Radio Device: BTS	Frequency	
	Log 0.700 -9.30 -19.3			Center Freq 2.480000000 GHz	
	29.3 .39.3 .49.3 .69.3				26
4	693 79.3 Center 2.48 GHz		Span 3 MHz		
-	#Res BW 30 kHz Occupied Bandwidth	#VBW 100 kHz Total Power 6 MHz	Sweep 3.2 ms 0.96 dBm		
	Transmit Freq Error 23	B.340 kHz % of OBW Pov .432 MHz x dB	ver 99.00 % -26.00 dB	Freq Offset 0 Hz	1
E	MSG		STATUS		
				1C	
A.					

V


Report No.: DACE240814006RL001


3. Peak Output Power


DVG

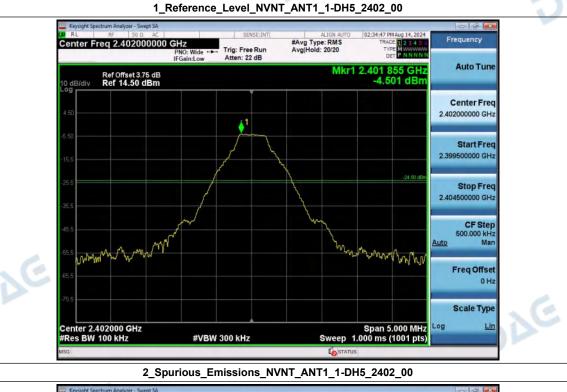
Antenna	Modulation	Frequency (MHz)	Max. Conducted Power(dBm)	Max. Conducted Power(mW)	Limit(mW)	Result
ANT1	1-DH5	2402.00	-4.20	0.38	125	Pass
ANT1	1-DH5	2441.00	-5.02	0.31	125	Pass
ANT1	1-DH5	2480.00	-6.23	0.24	125	Pass
ANT1	2-DH5	2402.00	-3.31	0.47	125	Pass
ANT1	2-DH5	2441.00	-4.10	0.39	125	Pass
ANT1	2-DH5	2480.00	-5.34	0.29	125	Pass
	ANT1 ANT1 ANT1 ANT1 ANT1 ANT1	ANT1 1-DH5 ANT1 1-DH5 ANT1 1-DH5 ANT1 2-DH5 ANT1 2-DH5	Antennia Woddhatton (MHz) ANT1 1-DH5 2402.00 ANT1 1-DH5 2441.00 ANT1 1-DH5 2480.00 ANT1 2-DH5 2402.00 ANT1 2-DH5 2402.00	Antenna Modulation (MHz) Power(dBm) ANT1 1-DH5 2402.00 -4.20 ANT1 1-DH5 2441.00 -5.02 ANT1 1-DH5 2480.00 -6.23 ANT1 2-DH5 2402.00 -3.31 ANT1 2-DH5 2441.00 -4.10	Antenna Modulation (MHz) Power(dBm) Power(mW) ANT1 1-DH5 2402.00 -4.20 0.38 ANT1 1-DH5 2441.00 -5.02 0.31 ANT1 1-DH5 2480.00 -6.23 0.24 ANT1 2-DH5 2402.00 -3.31 0.47 ANT1 2-DH5 2441.00 -4.10 0.39	Antenna Modulation (MHz) Power(dBm) Power(mW) Limit(mW) ANT1 1-DH5 2402.00 -4.20 0.38 125 ANT1 1-DH5 2441.00 -5.02 0.31 125 ANT1 1-DH5 2480.00 -6.23 0.24 125 ANT1 2-DH5 2402.00 -3.31 0.47 125 ANT1 2-DH5 2441.00 -4.10 0.39 125

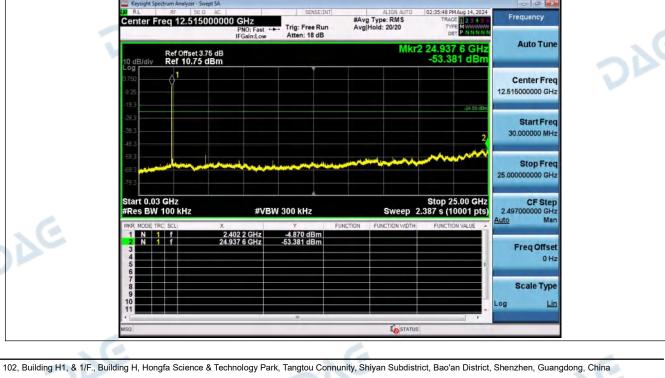
C

DAG -	V1.0	Report No.: DACE240814006RL001
DAG	Peak_Output_Power_NVNT_A Keysight Spectrum Analyzer - Swept SA RL PF RL PF RL PF SENSE:INT	NT1_2-DH5_2480_00
	Center Freq 2.480000000 GHz PNO: Fast +++ Trig: Free Run IFGaint.ow Ref Offset 3.85 dB 10 dB/div Ref 8.70 dBm	Mkr1 2.479 688 GHz -5.336 dBm Auto Tune Center Freq 2.480000000 GHz Center Freq
E	-21.3 31.3 -41.3 -61.3	Start Freq 2.476000000 GHz Stop Freq 2.484000000 GHz CF Step 800.000 kHz Auto Man
E	61.3 -71.3 -61.3 -61.3 -61.3 -61.3 -61.3 -61.3 -61.3 -61.3 -61.3 -61.3 -61.3 -61.3 -61.3 -61.3 -61.3 -61.3 -71.5 -71.5 -	Span 8.000 MHz Sweep 1.000 ms (1001 pts)
		Costatus DEC
		DAG

D

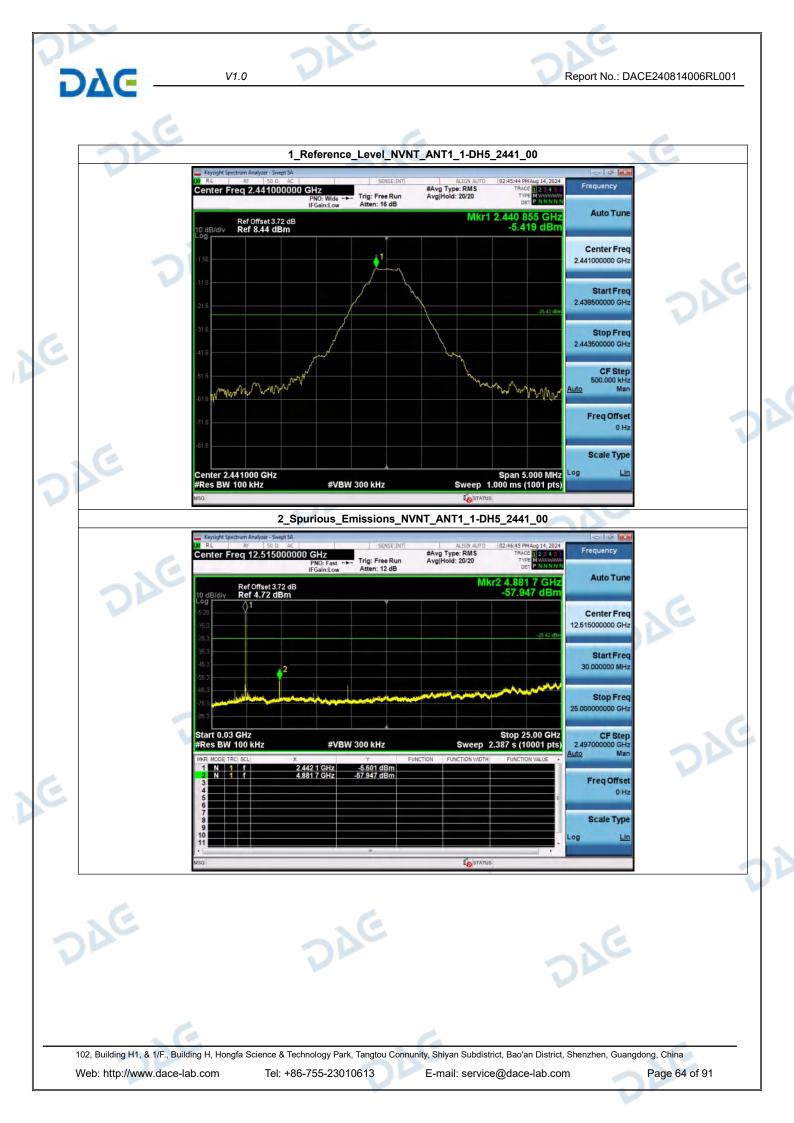
V1.0

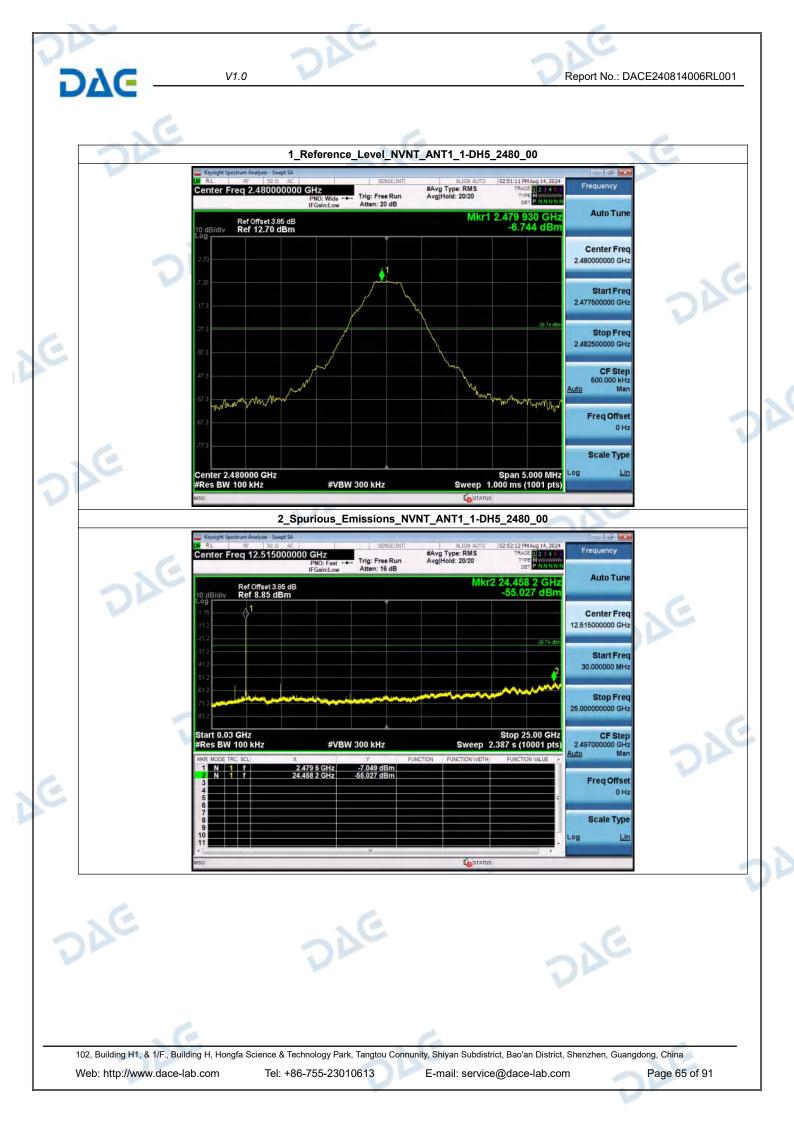

4. Spurious Emissions


DAG

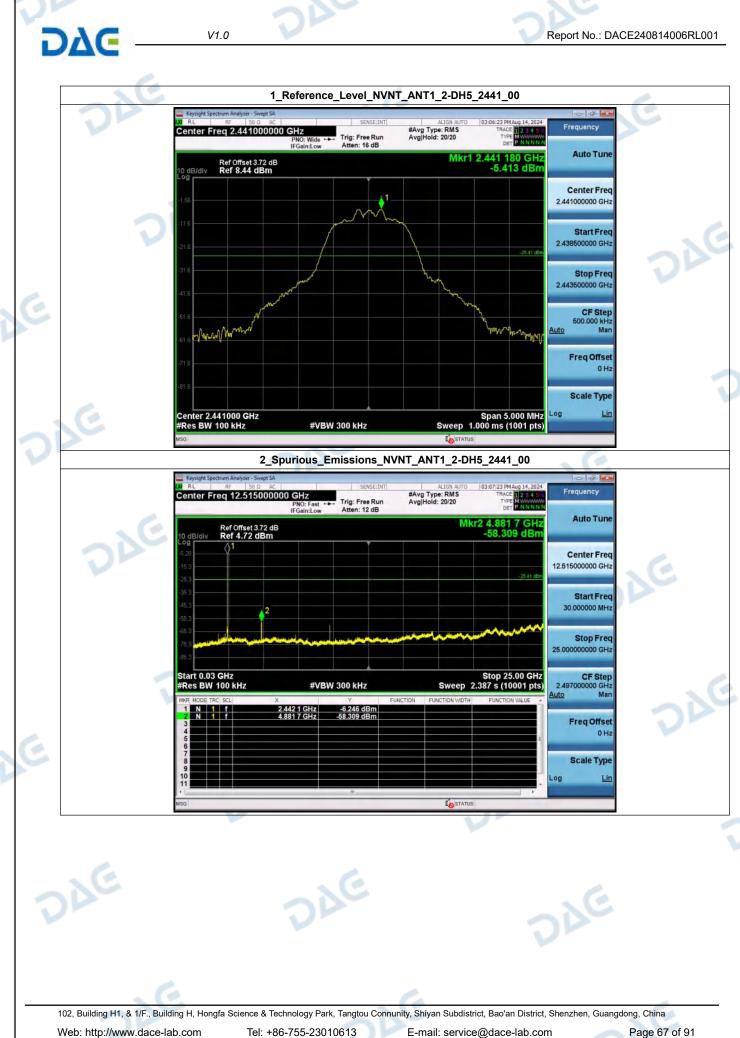
2

Condition	Antenna	Modulation	TX Mode	Spurious MAX.Value(dBm)	Limit	Result
NVNT	ANT1	1-DH5	2402.00	-53.381	-24.501	Pass
NVNT	ANT1	1-DH5	2441.00	-57.947	-25.419	Pass
NVNT	ANT1	1-DH5	2480.00	-55.027	-26.744	Pass
NVNT	ANT1	2-DH5	2402.00	-52.795	-24.463	Pass
NVNT	ANT1	2-DH5	2441.00	-58.309	-25.413	Pass
NVNT	ANT1	2-DH5	2480.00	-55.458	-26.621	Pass


C

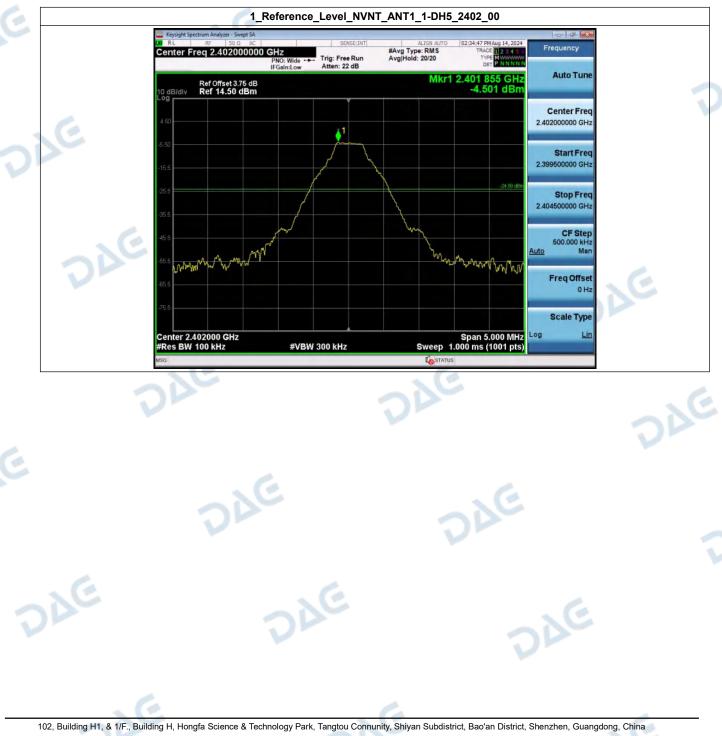





Tel: +86-755-23010613

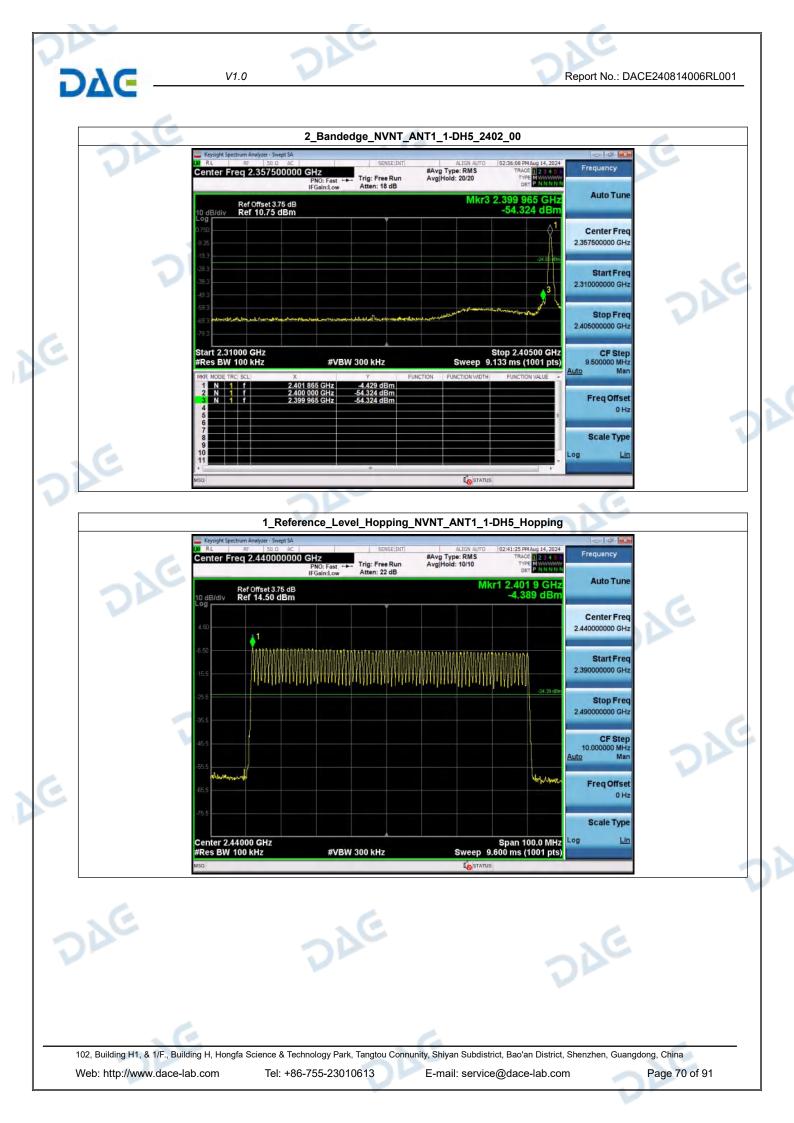
Web: http://www.dace-lab.com

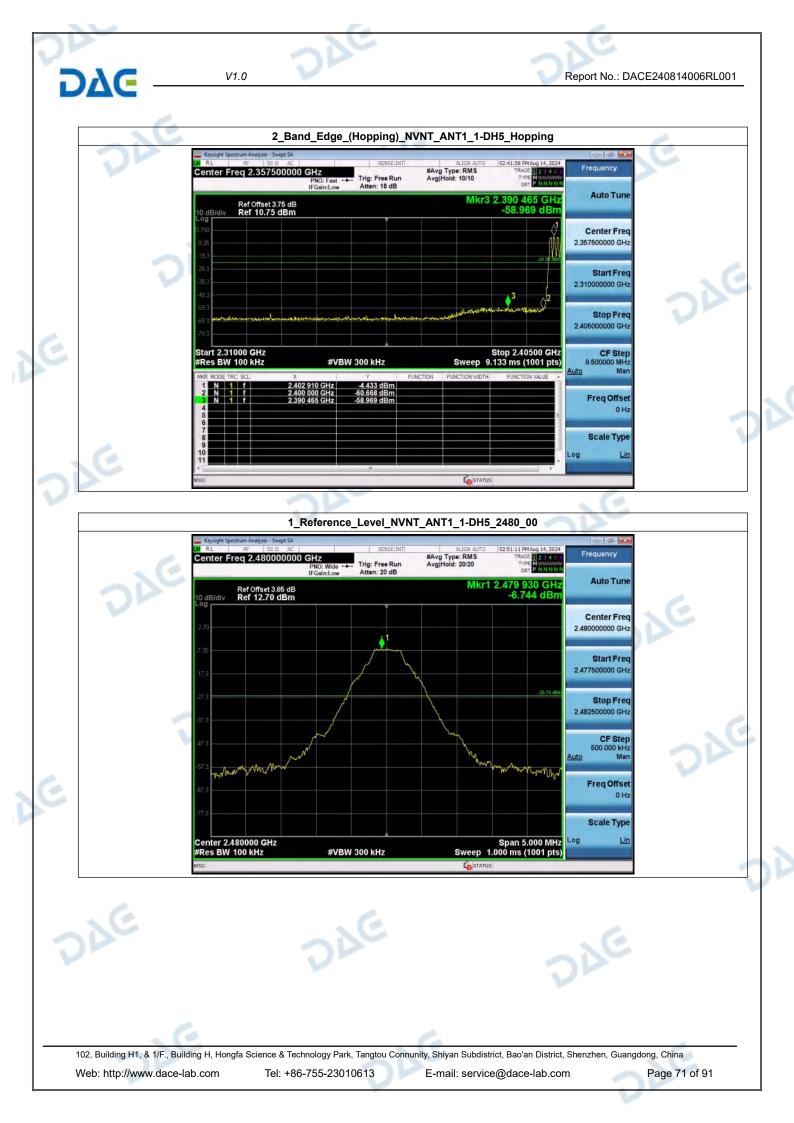
E-mail: service@dace-lab.com

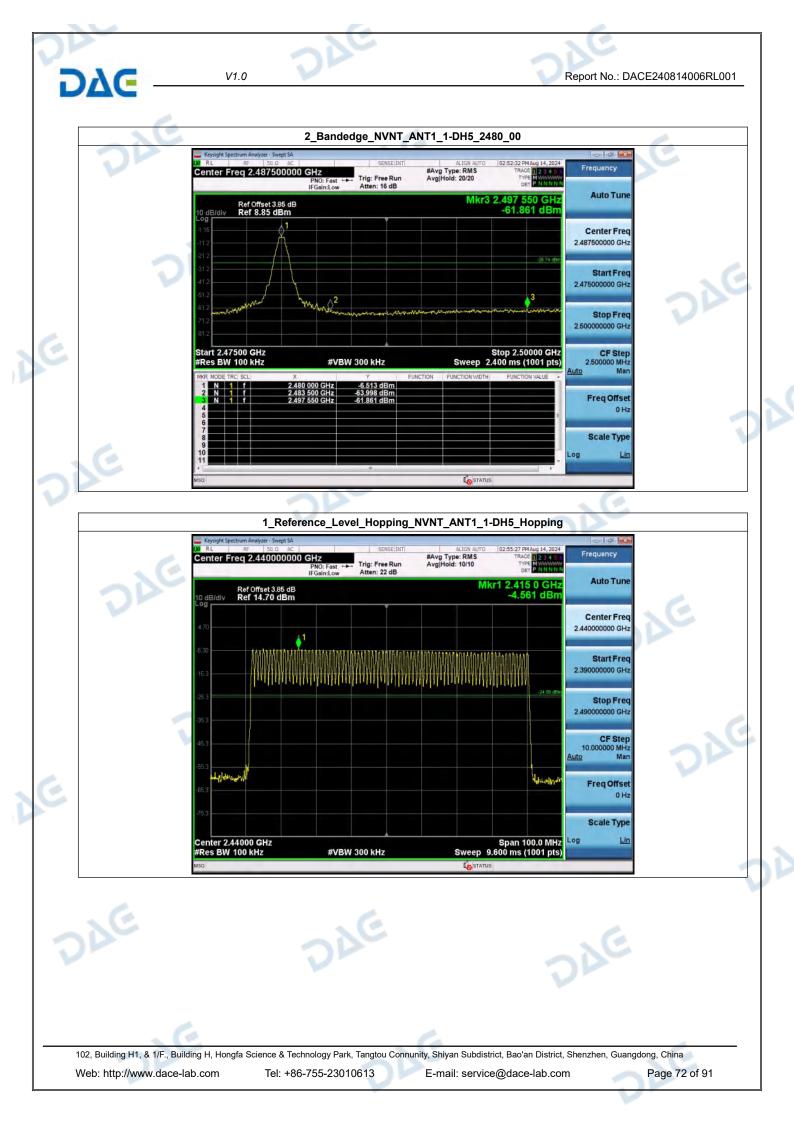


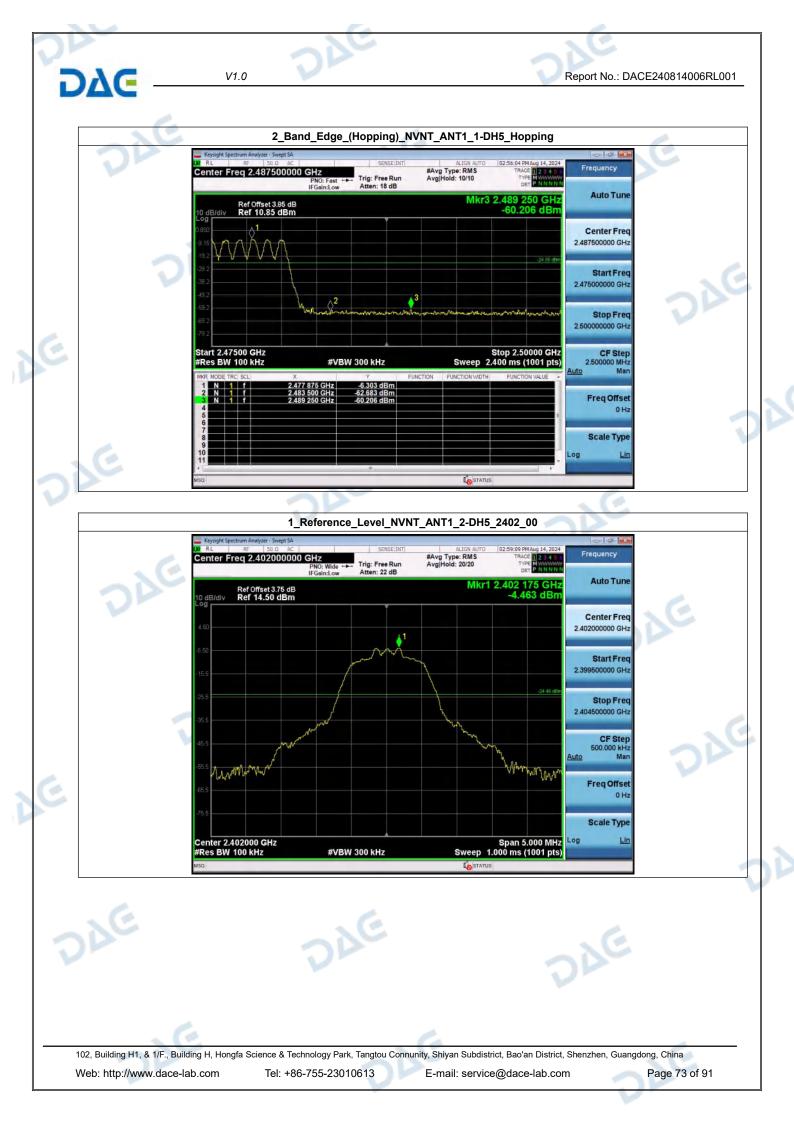
5. Bandedge

V1.0


DΔC


Bandedge							
Condition	Antenna	Modulation	TX Mode	Bandedge MAX.Value	Limit	Result	
NVNT	ANT1	1-DH5	2402.00	-54.324	-24.501	Pass	
NVNT	ANT1	1-DH5	Hopping_LCH	-58.969	-24.389	Pass	
NVNT	ANT1	1-DH5	2480.00	-61.861	-26.744	Pass	
NVNT	ANT1	1-DH5	Hopping_HCH	-60.206	-24.561	Pass	
NVNT	ANT1	2-DH5	2402.00	-54.758	-24.463	Pass	
NVNT	ANT1	2-DH5	Hopping_LCH	-58.706	-24.585	Pass	
NVNT	ANT1	2-DH5	2480.00	-60.976	-26.621	Pass	
NVNT	ANT1	2-DH5	Hopping_HCH	-60.246	-24.466	Pass	




Web: http://www.dace-lab.com


Tel: +86-755-23010613 E-mail: service@dace-lab.com





250	2_Band	d_Edge_(Hopping)_N	VNT_ANT1_2-DH5_Hopp	ing	E
(*	RL RF 50 Ω AC enter Freq 2.487500000 (SHZ PNO: Fast +++ IFGain:Low Trig: Free Run Atten: 18 dB	ALIGN AUTO 03:22:13 PM Aug #Avg Type: RMS TRACE Avg Hold: 10/10 TYPE M DET	114,2024 Frequency 2 3 4 5 NNNNN	
1	Ref Offset 3.85 dB 0 dB/div Ref 10.85 dBm		Mkr3 2.493 250 -60.246	GHZ	
2	9.2			2.487500000 GHz	
	19 2	2 600-1-0-00-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0	allowing all and a faith of the art of the	2.475000000 GHz	
	92 9.2 ttart 2.47500 GHz		Stop 2.5000	2.500000000 GHz	
#	Res BW 100 kHz	175 GHz -6.440 dBm	Sweep 2.400 ms (100 Sweep 2.400 ms (100 NCTION FUNCTION WIDTH FUNCTION VI	1 pts) 2.500000 MHz Auto Man	
	2 N 1 f 2.483 3 N 1 f 2.493 4 5 6	500 GHz -63.397 dBm 250 GHz -60.246 dBm		Freq Offset 0 Hz	
E				Scale Type	
			K STATUS	. 6	
				DAG	

D

Report No.: DACE240814006RL001

ø

DAG

6. Carrier Frequencies Separation (Hopping)	6.	Carrier I	Frequencies	Separation	(Hopping)
---	----	------------------	-------------	------------	-----------

Condition	Antenna	Modulation	Frequency(MHz)	Hopping NO.0 (MHz)	Hopping NO.1 (MHz)	Carrier Frequencies Separation(MHz)	Limit(MHz)	Result
NVNT	ANT1	1-DH5	2402.00	2401.921	2403.022	1.10	0.699	Pass
NVNT	ANT1	1-DH5	2441.00	2440.855	2441.911	1.06	0.708	Pass
NVNT	ANT1	1-DH5	2480.00	2478.855	2479.854	1.00	0.707	Pass
NVNT	ANT1 <	2-DH5	2402.00	2401.852	2403.178	1.33	0.889	Pass
NVNT	ANT1	2-DH5	2441.00	2440.855	2442.175	1.32	0.894	Pass
NVNT	ANT1	2-DH5	2480.00	2479.179	2480.178	1.00	0.893	Pass

Web: http://www.dace-lab.com

Tel: +86-755-23010613

E-mail: service@dace-lab.com

Page 79 of 91

Web: http://www.dace-lab.com

Tel: +86-755-23010613

E-mail: service@dace-lab.com

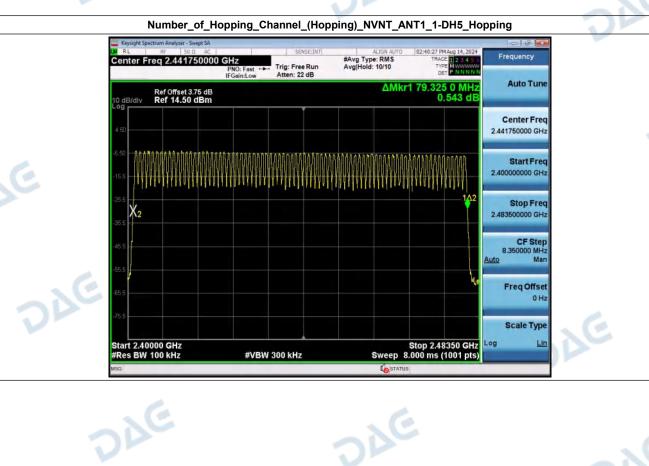
DVG -				
DAC	Carrier_Frequencies_Separ	SENSE:INT ALIGN AUTO	03:19:02 PM Aug 14, 2024 Frequency	E
	PNO: Wide ↔ Ti IFGain:Low A Ref Offset 3.85 dB	ig: Free Run Avg Hold: 10/10 tten: 12 dB	IMkr1999 kHz -0.070 dB	
	10 dB/div Ref 4.70 dBm	•1∆2	Center Freq 2.479500000 GHz	
2	-5-50 4 A A A A A A A A A A A A A A A A A A	man	Start Freq	
	-25.3		2.478000000 GHz	
	45.3		2.481000000 GHz	
	65.3		CF Step 300.000 kHz Auto Man	
	75.3		Freq Offset 0 Hz	
	.85.3		Scale Type	
E	Center 2.479500 GHz #Res BW 100 kHz #VBW 30	0 kHz Sweep 1.	Span 3.000 MHz 000 ms (1001 pts)	
	20		.e	
	C.			

D

V

DΔC

1


2

4

DAG

7. Number of Hopping Channel (Hopping)

Condition	Antenna	Modulation	Hopping Num	Limit	Result
NVNT	ANT1	1-DH5	79	15	Pass
NVNT	ANT1	1-DH5	79	15	Pass
NVNT	ANT1	1-DH5	79	15	Pass
NVNT	ANT1	2-DH5	79	15	Pass
NVNT	ANT1	2-DH5	79	15	Pass
NVNT	ANT1	2-DH5	79	15	Pass

24C

DAG

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

DAG

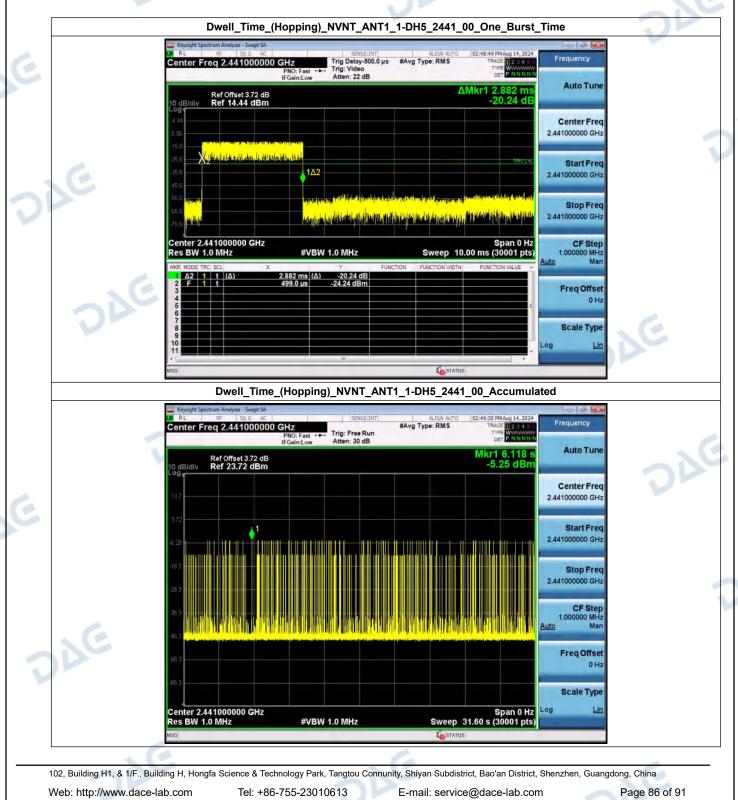
DAG

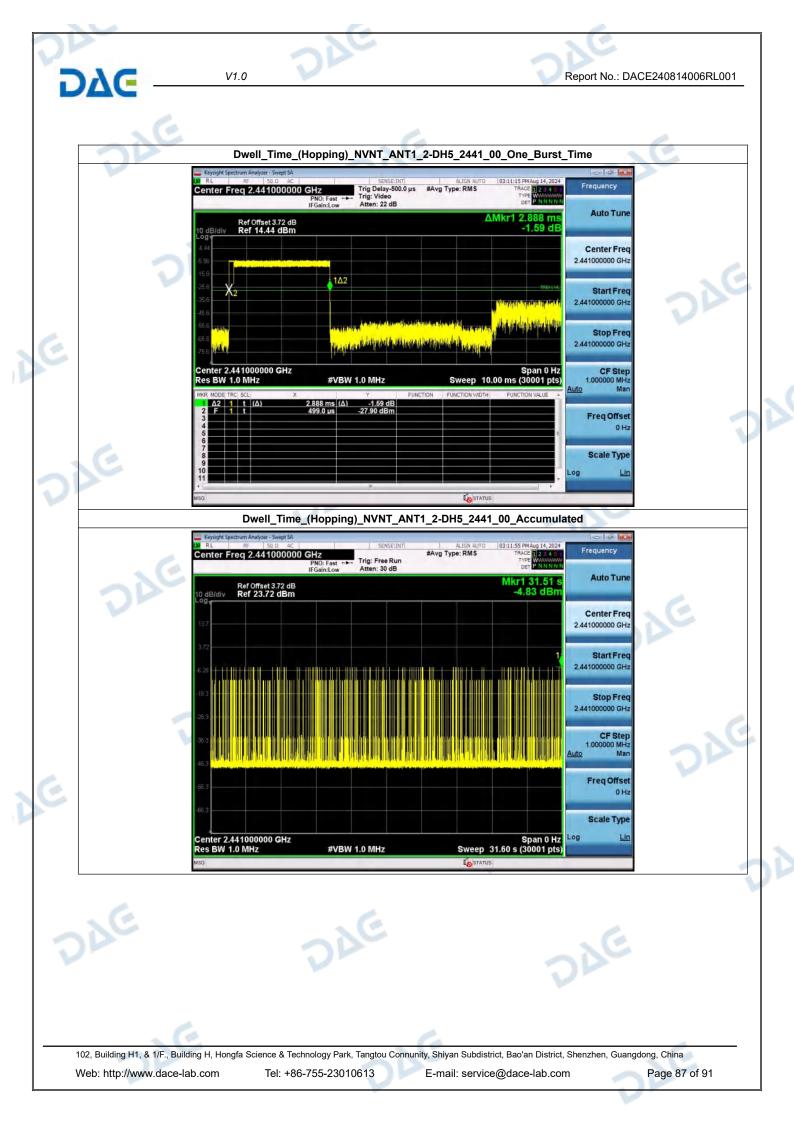
)DE

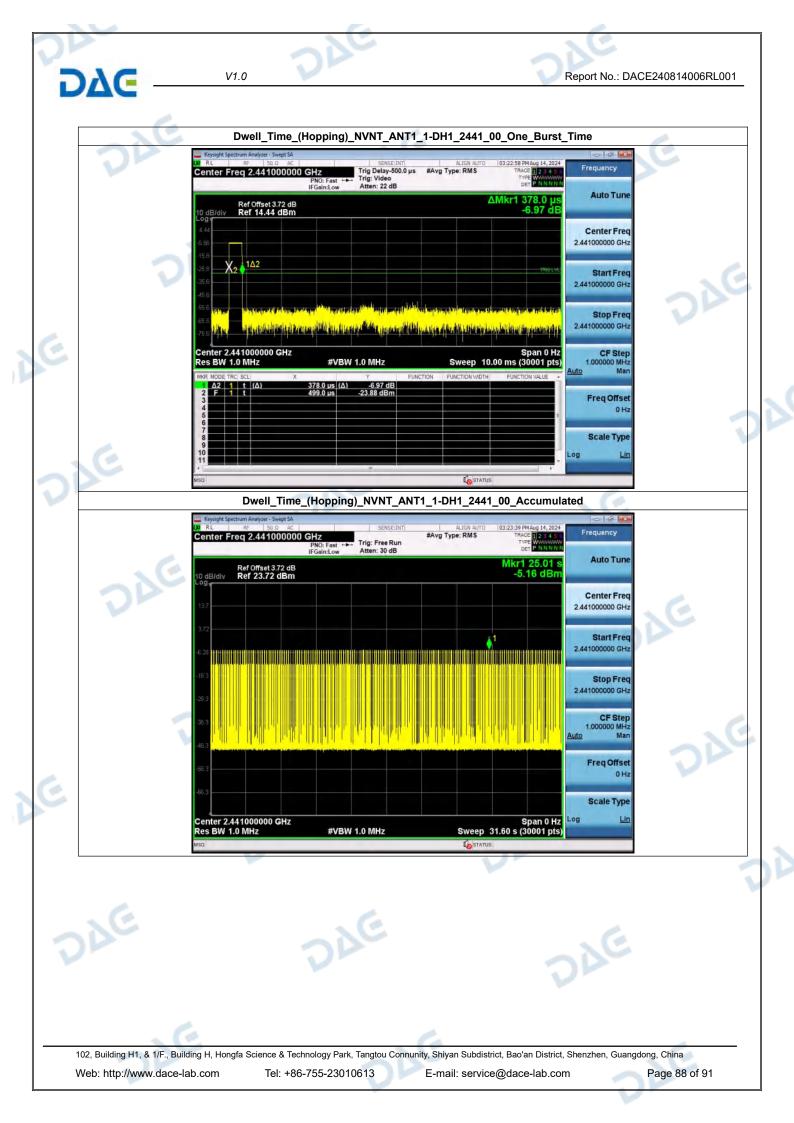
102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Connunity, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

DAG -	V1.0		Report No.: DACE24081	4006RL001
DAC	Keysight Spectrum Analyzer - Swept SA OR RL RF SQ AC Center Freq 2.441750000 GHz PNO: Fast ↔ Tr IFGain:Low Ref Offset 3.85 dB B Common Sector A 10 dB/div Ref 14.70 dBm Common Sector	ig: Free Run Avg Hold: 10/10 TYPE tten: 22 dB DET AMkr1 79.659	Center Freq 2.441750000 GHz)AG
DIE	-353 X2 -553 -554 -55	Stop 2.483 0 kHz Sweep 8.000 ms (1 Costatus	CF Step 8.350000 MHz Auto Man Freq Offset 0 Hz Scale Type Log Lin 0 Hz	
102, Building H1, & 1/F., B Web: http://www.dace	uilding H, Hongfa Science & Technology Park, Ta lab.com Tel: +86-755-230106*			

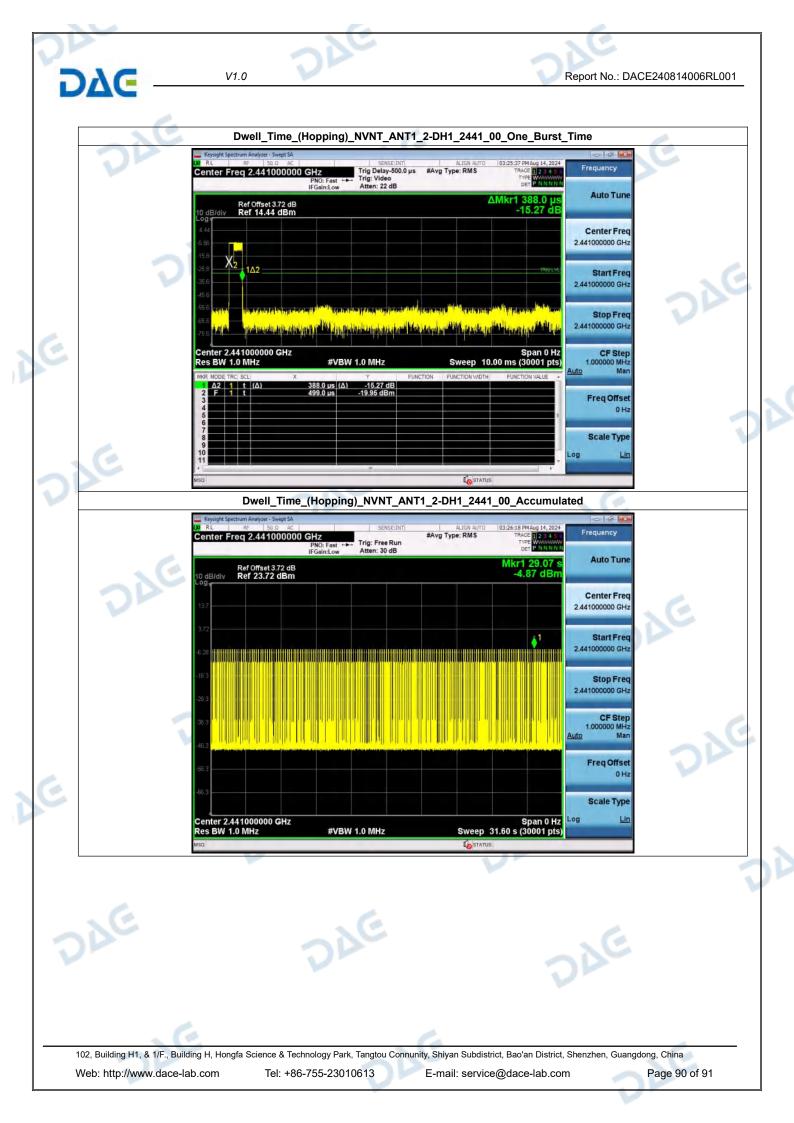
D


Report No.: DACE240814006RL001


8. Dwell Time (Hopping)


DAC

Condition	Antenna	Packet Type	Pulse Time(ms)	Hops	Dwell Time(ms)	Limit(s)	Result
NVNT	ANT1	1-DH5	2.882	103.00	296.846	0.40	Pass
NVNT	ANT1	2-DH5	2.888	102.00	294.576	0.40	Pass
NVNT	ANT1	1-DH1	0.378	320.00	120.960	0.40	Pass
NVNT	ANT1	1-DH3	1.634	162.00	264.708	0.40	Pass
NVNT	ANT1	2-DH1	0.388	320.00	124.160	0.40	Pass
NVNT	ANT1	2-DH3	1.640	164.00	268.960	0.40	Pass


6

