

FCC Test Report

Report No: FCS202406244W01

Issued for

Applicant:	Shenzhen Guan Ersheng Electronics Co., LTD.				
Address:	uilding 301, No. 355 Zhangge Road, Zhangge ommunity, Fucheng Street, Longhua New District, henzhen				
Product Name:	Headphones				
Brand Name:	N/A				
Model Name:	′X27				
Series Model:	YX06,YX07,YX08,YX11,YX12,YX15,YX16,YX19,YX20, YX23,YX24,YX25,YX26,YX28,YX29,YX30,YX31,YX32, YX33,YX34,YX35,YX36,YX37,YX38,YX39,YX40,YX41, YX42,A8 pro ANC, A9 pro ANC,A10 pro ANC, A10 pro, A11 pro, A12 pro ,A13 pro ,A14 pro ,A15 pro				
FCC ID:	2BF2R-YX27				
Issued By: Flux Compliance Service Laboratory Add: Room 105 Floor Bao hao Technology Building 1 NO.15 Gong ye West Road Hi-Tech Industrial, Song shan lake Dongguan Tel: 769-27280901 Fax:769-27280901 http://www.FCS-lab.com					

TEST RESULT CERTIFICATION

Applicant's Name:	Shenzhen Guan Ersheng Electronics Co., LTD.					
Address:	Building 301, No. 355 Zhangge Road, Zhangge Community, Fucheng Street, Longhua New District, Shenzhen					
Manufacture's Name:	Shenzhen Guan Ersheng Electronics Co., LTD.					
Address	Building 301, No. 355 Zhangge Road, Zhangge Community, Fucheng Street, Longhua New District, Shenzhen					
Product Description						
Product Name:	Headphones					
Brand Name	N/A					
Model Name:	YX27					
Series Model	See page 1 of the report.					
Test Standards	FCC Rules and Regulations Part 15 Subpart C, Section 247					
Test Procedure:	ANSI C63.10:2013					

This device described above has been tested by Flux Compliance Service Laboratory, the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of Flux Compliance Service Laboratory, this document may be altered or revised by Flux Compliance Service Laboratory, personal only, and shall be noted in the revision of the document.

Date of Test.....

Date (s) of performance of tests.: Jun 24, 2024 ~ Jun 25, 2024

Date of Issue..... Jun 25, 2024

Test Result..... Pass

Tested by	:	Scott shen
		(Scott Shen)
Reviewed by	:	DuteQue
		(Duke Qian)
Approved by	:	Jule voug

(Jack Wang)

Table of Contents

Page

1. SUMMARY OF TEST RESULTS	3
1.1 TEST FACTORY	7
1.2 MEASUREMENT UNCERTAINTY	7
2. GENERAL INFORMATION	3
2.1 GENERAL DESCRIPTION OF THE EUT	3
2.2 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED)
2.3 DESCRIPTION OF NECESSARY ACCESSORIES AND SUPPORT UNITS11	1
2.4 EQUIPMENTS LIST	2
3. 20 DB BANDWIDTH	3
3.1 Limit	3
3.2 Test Procedure	3
3.3 Test setup	3
3.4 Test results	
3.5 Original Test Data14	1
4. CONDUCTED OUTPUT POWER17	7
4.1 LIMIT	7
4.2 TEST SETUP 17	7
4.3 TEST RESULTS	7
5 NUMBER OF HOPPING CHANNEL)
5.1 LIMIT)
5.2 TEST PROCEDURE)
5.3 TEST SETUP	
5.4 EUT OPERATION CONDITIONS	
5.5 TEST RESULTS	1
6. BAND EDGE AND SPURIOUS(CONDUCTED) 22	2
6.1 LIMIT	2
6.2 TEST PROCEDURE	2
6.3 TEST SETUP	2
6.4 TEST RESULTS	3
6.5 Original test data	3
6.6 For Hopping Band edge27	7

Table of Contents

Page

7. RADIATED EMISSION MEASUREMENT	
7.1 RADIATED EMISSION LIMITS	
7.2 TEST PROCEDURE	
7.3 TESTSETUP	
7.4. TEST RESULTS	
7.5 (30MHZ-1000MHZ)	
7.6 ABOVE 1GHZ	
7.6 RADIATED BAND EDGE DATA	
8. AVERAGE TIME OF OCCUPANCY	
8.1 LIMIT	
8.2 TEST PROCEDURE	
8.3 TEST SETUP	
8.4 TEST RESULTS	40
8.5 ORIGINAL TEST DATA	40
9. HOPPING CHANNEL SEPARATION MEASURE	1EN
9.1 LIMIT	
9.1 LIMIT	
9.1 LIMIT 9.2 TEST PROCEDURE	
9.1 LIMIT 9.2 TEST PROCEDURE 9.3 TEST SETUP	
 9.1 LIMIT 9.2 TEST PROCEDURE 9.3 TEST SETUP 9.4 EUT OPERATION CONDITIONS 	42 42 42 42 42 42 42 43
 9.1 LIMIT 9.2 TEST PROCEDURE 9.3 TEST SETUP 9.4 EUT OPERATION CONDITIONS 9.5 TEST RESULTS	
 9.1 LIMIT 9.2 TEST PROCEDURE 9.3 TEST SETUP 9.4 EUT OPERATION CONDITIONS 9.5 TEST RESULTS 10 CONDUCTED EMISSION MEASUREMENT 	42 42 42 42 42 42 43 43 43 44
 9.1 LIMIT	42 42 42 42 42 42 43 43 43 44 44
 9.1 LIMIT	42 42 42 42 42 43 43 43 44 44 44
 9.1 LIMIT	42 42 42 42 42 43 43 43 44 44 44 44 44
 9.1 LIMIT	42 42 42 42 42 43 43 43 44 44 44 44 44 44 44 44 44 44
 9.1 LIMIT	42 42 42 42 42 43 43 44 44 44 44 44 44 44 44 44 44 44

Revision History

Rev.	Issue Date	Effect Page	Contents	
00	Jun 25, 2024	N/A	N/A	

Flux Compliance Service Laboratory Room 105 Floor Bao hao Technology Building 1 NO.15 Gong ye West Road Hi-Tech Industrial, Song shan lake Dongguan Tel: 769-27280901 Fax:769-27280901 http://www.fcs-lab.com

1. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards: KDB 558074 D01 15.247 Meas Guidance v05r02

	FCC Part 15.247,Subpart C						
Standard Section	Let Item						
15.207	Conducted Emission	PASS					
15.247(a)(1)	Hopping Channel Separation	PASS					
15.247 (b)(1)	Output Power	PASS					
15.209	Radiated Spurious Emission	PASS					
15.247(d)	Conducted Spurious & Band Edge Emission	PASS					
15.247(a)(1)(i)	Number of Hopping Frequency	PASS					
15.247(a)(1)(i)	Dwell Time	PASS					
15.247(a)(1)	20dB Bandwidth 99% Bandwidth	PASS					
15.205	Restricted bands of operation	PASS					
Part 15.247(d)/part 15.209(a)	Band Edge Emission	PASS					
15.203	Antenna Requirement	PASS					

NOTE:

(1)" N/A" denotes test is not applicable in this Test Report

(2) All tests are according to ANSI C63.10-2013

1.1 TEST FACTORY

Company Name:	lame: Flux Compliance Service Laboratory				
Address:	Room 105 Floor Bao hao Technology Building 1 NO.15 Gong ye West Road Hi-Tech Industrial, Song shan lake Dongguan				
Telephone:	+86-769-27280901				
Fax:	+86-769-27280901				
Laboray Accreditation	Laboray Accreditations				
FCC Test Firm Registration Number: 514908 CNAS Number: L15566 Designation number: CN0127 A2LA accreditation number: 5545.01 ISED Number: 25801					

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	RF output power, conducted	±0.71dB
2	Unwanted Emissions, conducted	±2.988 dB
3	Conducted Emission (9KHz-150KHz)	±4.13 dB
4	All emissions radiated (9KHz -30MHz)	±3.1 dB
5	Conducted Emission (150KHz-30MHz)	±4.74 dB
6	All emissions,radiated(<1G) 30MHz-1000MHz	±5.2 dB
7	All emissions, radiated 1GHz -18GHz	±4.66 dB
8	All emissions, radiated 18GHz -40GHz	±4.31 dB
9	Occupied bandwidth and PSD	±0.3 dB

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF THE EUT

Product Name	Headphones
Trade Name	N/A
Model Name	YX27
Series Model	See page 1 of the report.
Model Difference	The above product with same circuit, PCB layout, electrical parts, materials and wiring structures, Appearance shape, the materials of decorative accessories is same, the only difference is the model name and colour.
Channel List	Please refer to the Note 2.
Operation frequency	2402MHz-2480MHz
Modulation:	GFSK
Channel number	79 CH
Transmitter rate:	1MHz
Power Supply	DC 5V
Battery	DC 3.7V
Report number	FCS202406244W01
Hardware version number	V1.0
Software version number	V1.0
Connecting I/O Port(s)	Please refer to the User's Manual

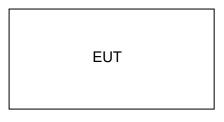
Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

2.

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	21	2422MHz	41	2442MHz	61	2462MHz
2	2403MHz	22	2423MHz	42	2443MHz	62	2463MHz
				*****			į
19	2420MHz	39	2440MHz	59	2460MHz	79	2480MHz
20	2421MHz	40	2441MHz	60	2461MHz		

3. Table for Filed Antenna


[Ant.	Brand	Model Name	Antenna Type	Connector	Gain (dBi)	NOTE
	1	N/A	HY160808 SRF07	Chip antenna	N/A	3.0	Antenna

2.2 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

During testing channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product.

Block diagram of EUT configuration for test

Test software:

FCC Assist 1.0.4

The test softeware was used to control EUT work in continuous TX mode, and select test channel, Wireless mode as below table

No.	Test model descrption
1	Low channel GFSK
2	Middle channel GFSK
3	High channel GFSK
4	Hopping GFSK

Note:

- 1. All the test modes can be supply by adapter, only the result of the worst case recorded in the report. GFSK mode is worst mode.
- 2. For radiated emission, 3 axis were chosen for testing for each applicable mode.
- 3. The EUT used adapter when tested.
- 4. During the test, The test voltage was tuned from 85% to 115% of the Nominal rate supply votage, and found that the worst case was the nominal rated supply condition, So the report just shows that condition's data.
- 5 The chip only supports the BR function, and the EDR function has been blocked through software.

2.3 DESCRIPTION OF NECESSARY ACCESSORIES AND SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Necessary accessories

Item	Equipment	Mfr/Brand	Model/Type No.	Serial No.	Note
1	adapter	XIAOMI	AD652G	N/A	N/A

Support units

Item	Equipment	Mfr/Brand	Model/Type No.	Serial No.	Note	Note

Note:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in $\[$ Length $\]$ column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

2.4 EQUIPMENTS LIST

Radiation Test equipment

Kind of Equipment	Manufacturer	Type No.	Company No.	Last calibration	Calibrated until	
EMI Test Receiver	R&S	ESRP 3	FCS-E001	2023.08.29	2024.08.28	
Signal Analyzer	R&S	FSV40-N	FCS-E012	2023.08.29	2024.08.28	
Active loop Antenna	ZHINAN	ZN30900C	FCS-E013	2023.08.29	2024.08.28	
Bilog Antenna	SCHWARZBECK	VULB 9168	FCS-E002	2023.08.29	2024.08.28	
Horn Antenna	SCHWARZBECK	BBHA 9120D	FCS-E003	2023.08.29	2024.08.28	
SHF-EHF Horn Antenna (18G-40GHz)	A-INFO	LB-180400-KF	FCS-E018	2023.08.29	2024.08.28	
Pre-Amplifier(0.1M-3G Hz)	EMCI	EM330N	FCS-E004	2023.08.29	2024.08.28	
Pre-Amplifier (1G-18GHz)	N/A	TSAMP-0518SE	FCS-E014	2023.08.29	2024.08.28	
Pre-Amplifier (18G-40GHz)	TERA-MW	TRLA-0400	FCS-E019	2023.08.29	2024.08.28	
Temperature & Humidity	HTC-1	victor	FCS-E005	2023.08.29	2024.08.28	
Testing Software	EZ-EMC(Ver.STSLAB 03A1 RE)					

Conduction Test equipment

Kind of Equipment	Manufacturer	Type No.	Company No.	Last calibration	Calibrated until
EMI Test Receiver	R&S	ESPI	FCS-E020	2023.08.29	2024.08.28
LISN	R&S	ENV216	FCS-E007	2023.08.29	2024.08.28
LISN	ETS	3810/2NM	FCS-E009	2023.08.29	2024.08.28
Temperature & Humidity	HTC-1	victor	FCS-E008	2023.08.29	2024.08.28
Testing Software EZ-EMC(Ver.EMC-CON 3A1.1)					

RF Connected Test

Kind of Equipment	Manufacturer	Type No.	Company No.	Last calibration	Calibrated until
MXA SIGNAL Analyzer	Keysight	N9020A	FCS-E015	2023.08.29	2024.08.28
Spectrum Analyzer	Agilent	E4447A	MY50180039	2023.08.29	2024.08.28
Spectrum Analyzer	R&S	FSV-40	101499	2023.08.29	2024.08.28
Power Sensor	Agilent	UX2021XA	FCS-E021	2023.08.29	2024.08.28
Testing Software	EZ-EMC(Ver.STSLAB 03A1 RE)				

3. 20 DB BANDWIDTH

3.1 Limit

	FCC Part15	(15.247) , Subpar	t C
Section	Test Item	Limit	Frequency Range (MHz)
15.247a(1)	20dB bandwidth	N/A	2400-2483.5

3.2 Test Procedure

(1) Connect EUT's antenna output to spectrum analyzer by RF cable.

(2) Set the spectrum analyzer as follows

Center Frequency	The centre frequency of the channel under test
Detector	Peak
	For 20 dB Bandwidth :30KHz
RBW	For 99% Bandwidth :1% to 5% of the occupied bandwidth
	For 20dB Bandwidth : ≥3 × RBW
VBW	For 99% Bandwidth : approximately 3×RBW
Trace	Max hold
Sweep	Auto

- (1) Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator
- (2) Position the EUT without connection to measurement instrument. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- (3) Measure the frequency difference of two frequencies that were attenuated 20 dB from the reference level. Record the frequency difference as the emission bandwidth.

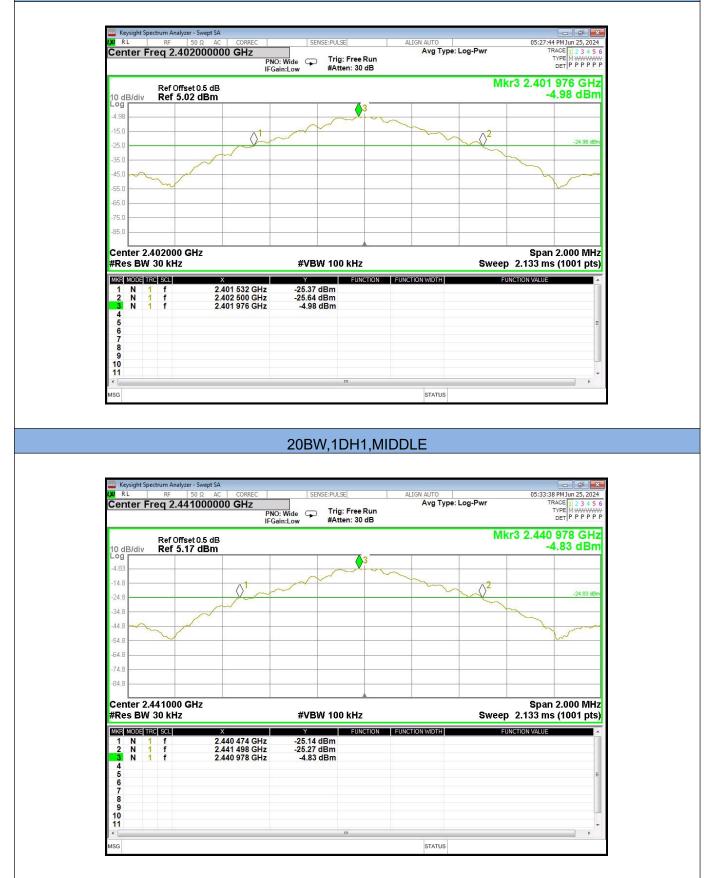
3.3 Test setup

Spectrum Analyzer

E

3.4 Test results

TestMode	Channel (MHz)	99%OBW(MHz)	20dB Bandwidth (MHz)	Verdict
Lowest	2402MHz	0.891	0.968	Pass
Middle	2441MHz	0.886	1.024	Pass
Highest	2480MHz	0.889	0.968	Pass

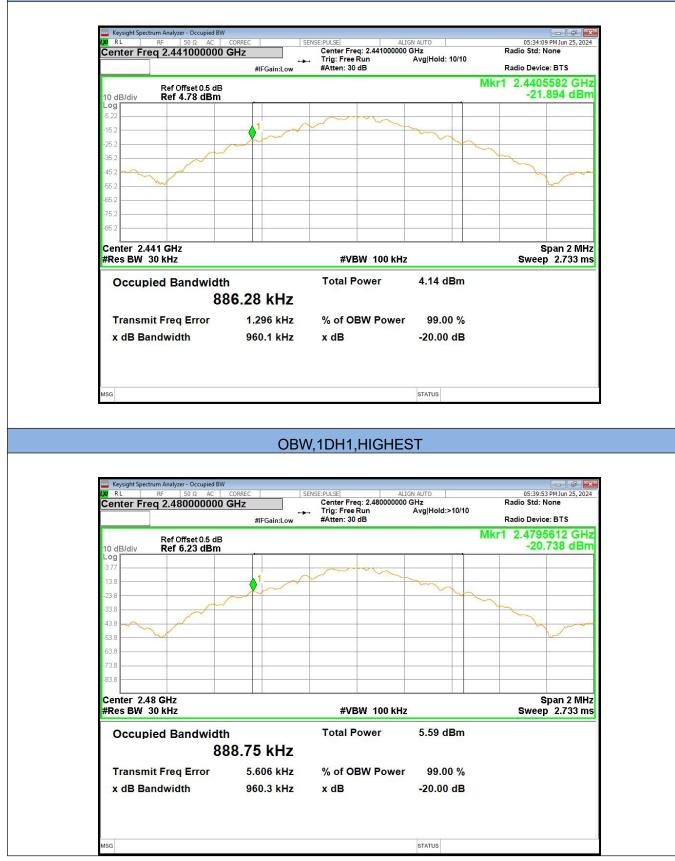

Flux Compliance Service Laboratory Room 105 Floor Bao hao Technology Building 1 NO.15 Gong ye West Road Hi-Tech Industrial, Song shan lake Dongguan Tel: 769-27280901 Fax:769-27280901 http://www.fcs-lab.com

Page 14 of 48

3.5 Original Test Data

20BW,1DH1,LOWEST

Page 15 of 48


20BW,1DH1,HIGHEST

OBW,1DH1,LOWEST 🚾 Keysight Spec 📈 R L um Analyzer - Occupied B 05:28:08 PM Jun 25, 2024 AUTO Center Freq: 2.402000000 GHz Trig: Free Run Avg #Atten: 36 dB Radio Std: None Center Freq 2.402000000 GHz Avg|Hold: 10/10 -#IFGain:Low Radio Device: BTS Mkr1 2.4015599 GHz Ref Offset 0.5 dB Ref 4.61 dBm -22.285 dBm 10 dB/div Log 15.4 25.4 35.4 45.4 55.4 65.4 75 85 . Center 2.402 GHz Span 2 MHz #Res BW 30 kHz #VBW 100 kHz Sweep 2.733 ms **Total Power** 3.94 dBm **Occupied Bandwidth** 891.40 kHz Transmit Freq Error 5.627 kHz % of OBW Power 99.00 % x dB Bandwidth 961.1 kHz x dB -20.00 dB ISG STATUS

OBW,1DH1,MIDDLE

4. CONDUCTED OUTPUT POWER

4.1 LIMIT

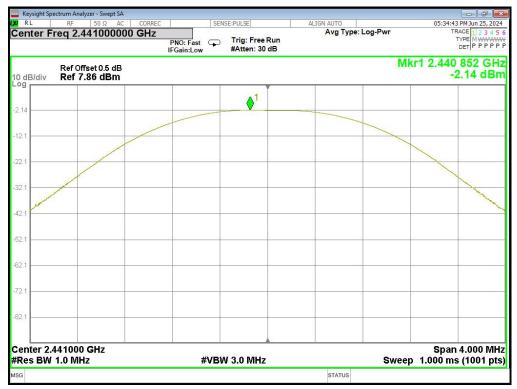
FCC Part 15 Subpart C					
Section Test Item Limit Frequency Rang					
15.247(b)(1)	Peak output power	Power <1W(30dBm)	2400-2483.5		

1.Connect each EUT's antenna output to power sensor by RF cable and attenuator

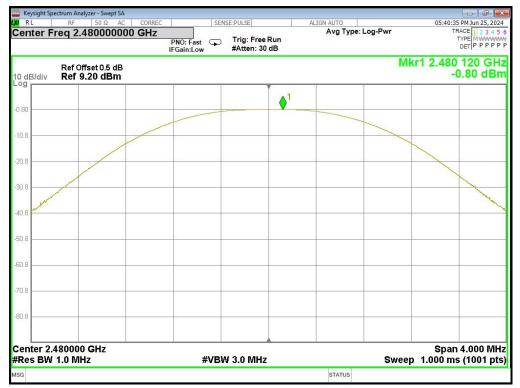
2.Measure the PK output power of each antenna port by power sensor.

4.2 TEST SETUP

4.3 TEST RESULTS


TestMode	Channel (MHz)	Result (dBm)	Limit (dBm)	Verdict
Lowest	2402MHz	-2.33	30	Pass
Middle	2441MHz	-2.14	30	Pass
Highest	2480MHz	-0.80	30	Pass

LOW-2402MHZ

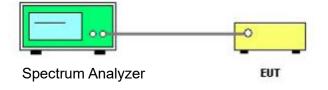


MID-2441MHZ

HIG-2480MHz

5 NUMBER OF HOPPING CHANNEL

5.1 LIMIT


FCC Part 15.247,Subpart C						
Section	FrequencyRange (MHz)	Result				
15.247 (a)(1)(iii) RSS-247	Number of Hopping Channel	>15	2400-2483.5	PASS		

5.2 TEST PROCEDURE

a The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.

b Spectrum Setting: RBW= 100KHz, VBW=300KHz, Sweep time = Auto

5.3 TEST SETUP

5.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

5.5 TEST RESULTS

Temperature:	25 °C	Relative Humidity:	60%	
Test Mode:	Hopping Mode -GFSK Mode	Test Voltage:	DC 5V	

RL	copecu	RF	lyzer - Swept SA 50 Ω AC	CORREC	SE	NSE:PULSE		ALIGN AUTO		05:46:4	PM Jun 25, 20
	Fre		44175000	00 GHz	PNO: Fast Gain:Low	1000			e: Log-Pwr	TF	TYPE MWWW DET P P P P
) dB/di			ffset 0.5 dB 9.83 dBm						Mkr	2 2.479 9 -(93 0 GH).52 dBi
9 17 117 12 1.2 12 1.2 12 1.2 12 1.2 12 1.2 12 1.2 12 1.2 12	,1 					MMM	AMAAAA			AMMMM AMMMM	
art 2. Res B					#VB	W 300 kH	z		Swee	Stop 2. 0 8.000 ms	48350 GH s (1001 pt
1 N 2 N 3 4 5 6 7	TRC 1	SCL f f	2.40	x 01 837 0 GHz 79 993 0 GHz		dBm dBm	NCTION FU	INCTION WIDTH	F	UNCTION VALUE	
B 9 0 1											

6. BAND EDGE AND SPURIOUS(CONDUCTED)

6.1 LIMIT

In any 100kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator in operating, the radio frequency power that is produced by the intentional radiator shall be at least 30dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power.

6.2 TEST PROCEDURE

(1) Connect EUT's antenna output to spectrum analyzer by RF cable.

(2) Establish a reference level by using the following procedure:

Center frequency	DTS Channel center			
	frequency			
RBW:	100kHz			
VBW:	300kHz			
Span	1.5times the DTS bandwidth			
Detector Mode:	Peak			
Sweep time:	auto			
Trace mode	Max hold			

(3) Establish Allow the trace to stabilize, use the peak marker function to determine the maximum peak power level to establish the reference level.

(4) Set the spectrum analyzer as follows:

RBW:	100kHz
VBW:	300kHz
Span	Encompass frequency range to be
	measured
Number of second second	
Number of measurement points	≥span/RBW
Detector Mode:	≥span/RBW Peak
·	•

(5) Allow the trace to stabilize, use the peak marker function to determine the maximum amplitude of all unwanted emissions outside of the authorized frequency band

6.3 TEST SETUP

6.4 TEST RESULTS

Eut set mode	CH or Frequency	Result	
GFSK	CH1	Pass	
	CH79	Pass	

6.5 Original test data

CH1 2402MHZ

ENSE:PULSE ALIGN AUTO	05:30:45 PM Jun 25, 20
Avg Type: Log-Pwr Trig: Free Run #Atten: 30 dB	TRACE 1 2 3 4 TYPE M WWW DET P P P P
Mk	r1 2.402 00 GF -2.54 dB
	-22.54 c
en and a second and	
HETTLETON BLETON LOUGHTON AND LOUGHTON AND AND AND AND AND AND AND AND AND AN	away hay you praise with a set of the set of
W 300 kHz Sweep	Stop 2.45000 GH 14.40 ms (1001 pt
FUNCTION FUNCTION WIDTH FUNC	CTION VALUE
dBm dBm	
	1.1

Page 24 of 48

CH79 2480MHZ

		Spect		Analyzer - Swept SA				
L XI R	L		RF	50 Ω AC CORREC	SE	ENSE:PULSE	ALIGN AUTO	05:42:30 PM Jun 25, 2024
Cer	nter	Fre	eq 2		PNO: Fast G	Trig: Free Run #Atten: 30 dB	Avg Type: Log-	Pwr TRACE 1 2 3 4 5 6 TYPE M WWWWW DET P P P P P P
10 d	B/div			Offset 0.5 dB f 8.99 dBm				Mkr1 2.479 95 GHz -1.01 dBm
Log -1.01					1			
-11.0						6		
-21.0	1			-				-21.01 dBm
-31.0 -41.0								
-51.0					2			<mark>3</mark>
-61.0	himme	June J	Mum	downow introduction on the lower	wall Monorer	manuplet	have been and the second states of the second s	manufana de stantance de la departe de la composition de la serie de la composition de la serie de la compositi
-71.C						2		
-81.C								
	rt 2. s Bl			GHz kHz	#VB	W 300 kHz		Stop 2.58000 GHz Sweep 14.40 ms (1001 pts)
_	MODE	TRC			Y	FUNCTION	FUNCTION WIDTH	FUNCTION VALUE
1 2 3	N	1	f	2.479 95 GH 2.483 55 GH	-58.10			
	N	1	f	2.547 30 GH;	z -55.11	dBm		
6								E
4 5 6 7 8 9								
10 11								
						ш		
MSG							STATUS	

Flux Compliance Service Laboratory Room 105 Floor Bao hao Technology Building 1 NO.15 Gong ye West Road Hi-Tech Industrial, Song shan lake Dongguan Tel: 769-27280901 Fax:769-27280901 http://www.fcs-lab.com

Temperature:	25 °C	Relative Humidity:	60%
Test Mode:	GFSK Mode	Test Voltage:	DC 5V

Spurious emissions

Low Channel 30MHz-26.5GHz

	Spect		nalyzer - Swept SA							
RL	Fre	RF	50 Ω AC 2.5150000		SENSE:PUL	SE	ALIGN AUTO	e: Log-Pwr		2 PM Jun 25, 202
ontor		· P ·	2.010000	PNC		: Free Run en: 12 dB			:	DET P P P P
) dB/div			Offset 0.5 dB 1.26 dBm						Mkr2 2.4	02 2 GH 2.96 dBn
74			2							
8.7										-22.54 dB
8.7 —										
.7		_								
.7				25					0	1
.7		~		\wedge^3			a mailed .		and the second s	
1.7		\mathcal{O}	and and the state of the state of the		New York and the state of the	and and the second second				
7	. J									
art 0. Res B			Hz		#VBW 30) kHz		Swe	Stop ep 2.387 s	25.00 GH (32001 pt
R MODE	TRC	SCL		2.139 2 GHz	Y -74.23 dBm	FUNCTION	FUNCTION WIDTH		FUNCTION VALUE	
N	1	f		2.402 2 GHz	-2.96 dBm					
N	1	f	3	5.749 7 GHz 24.681 6 GHz	-69.55 dBm -58.75 dBm					
5										
7 3										
9 D										
						m				•
1							STATUS			

Page 26 of 48

Middle Channel 30MHz-26.5GHz

		Spec		Analyzer - Swept SA								
LXI R			RF	50 Ω AC CORREC	SEN	SE:PULSE		ALI	GN AUTO			1 PM Jun 25, 2024
Cer	nter	Fre	ed ,	12.515000000 GHz		Trig: Fi	Pup		Avg Type:	Log-Pwr	т	RACE 1 2 3 4 5 6
					PNO: Fast	Atten:						DET PPPPP
					II GUIILEON						Miren O. A	44.0.011-
				Offset 0.5 dB								41 2 GHz
10 d Log		V	Rei	f 1.44 dBm								4.70 dBm
-8.56				2			Ĭ					
	I											
-18.6			_				_				3	-22.94 dBm
-28.6												-
-38.6												
-48.6												0.3.
	1									3	÷	1
-58.6				∧3							Level at the property of the property of	and hereits without
-68.6	-		$-\triangle$		and the second second second		and the same stages	المراباة من العد	and the deside the second	and a start of the last	and in the second second second	
-78.6	-	Ladia	Y					Same and	Augusta participation in the same	A CONTRACTOR OF CONTRACTOR OFO		
-88.6		-	NO.									
-00.6												
Sta	rt O	03	CH-	,							Stor	25.00 GHz
#Re					#VBV	V 300 k	H7			SWE	ep 2.387 s	
_											•	(
MKR 1	MODE	TRC	SCL	2.043 2 G	z -74.95 d		FUNCTION	FUNCT	ION WIDTH		FUNCTION VALUE	<u>^</u>
2	N	1	f	2.441 2 G								
3	N	1	f	5.745 8 G								
4 5 6 7 8 9	N	1	f	24.797 9 G	-58.68 d	IBm						=
6												-
7												
8												
10												
11												-
•	-					m			1 1			•
MSG									STATUS			

High Channel 30MHz-26.5GHz

6.6 For Hopping Band edge

05:48:55 PM Jun 25, 2024 TRACE 1 2 3 4 5 (TYPE M WWWW DET P P P P F Avg Type: Log-Pwr Center Freq 2.440000000 GHz Trig: Free Run #Atten: 30 dB PNO: Fast IFGain:Low \mathbf{P} Mkr1 2.428 24 GHz -0.12 dBm Ref Offset 0.5 dB Ref 9.88 dBm 10 dB/div Log **(**1 -10.1 -20.12 dB -20. -30. -40. 3 24 **∂**⁵ -50.1 -60. -70.1 -80. Start 2.3000 GHz #Res BW 100 kHz Stop 2.5800 GHz Sweep 26.80 ms (1001 pts) #VBW 300 kHz MKR MODE TRC SCL FUNCTION FUNCTION WIDTH FUNCTION VALUE -0.12 dBm -55.59 dBm -55.92 dBm -57.48 dBm -54.88 dBm x 2.428 24 GHz 2.301 12 GHz 2.399 96 GHz 2.483 68 GHz 2.558 44 GHz 1 2 3 4 5 6 7 8 9 10 11 N N N N N f f STATUS 202

7. RADIATED EMISSION MEASUREMENT

7.1 RADIATED EMISSION LIMITS

In any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the Restricted band specified on Part15.205(a)&209(a) limit in the table and according to ANSI C63.10-2013 below has to be followed

LIMITS OF RADIATED EMISSION MEASUREMENT (0.009MHz - 1000MHz)

	· · · · · · · · · · · · · · · · · · ·	/
Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

LIMITS OF RADIATED EMISSION MEASUREMENT (1GHz-25 GHz)

	(dBuV/m) (at 3M)				
FREQUENCY (MHz)	PEAK	AVERAGE			
Above 1000	74	54			

Notes:

(1) The limit for radiated test was performed according to FCC PART 15C.

- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

For Radiated Emission

Spectrum Parameter	Setting	
Attenuation	Auto	
Detector	Peak/AV	
Start Frequency	1000 MHz(Peak/AV)	
Stop Frequency	10th carrier hamonic(Peak/AV)	
RB / VB (emission in restricted		
band)	PK=1MHz / 1MHz, AV=1 MHz /10 Hz	

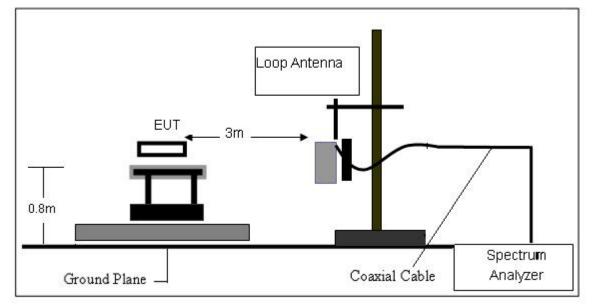
For Band edge

Daila eage				
Spectrum Parameter	Setting			
Detector	Peak/AV			
	Lower Band Edge: 2300 to 2403 MHz			
Start/Stop Frequency	Upper Band Edge: 2479 to 2500 MHz			
RB / VB (emission in restricted band)	PK=1MHz / 1MHz, AV=1 MHz / 10 Hz			

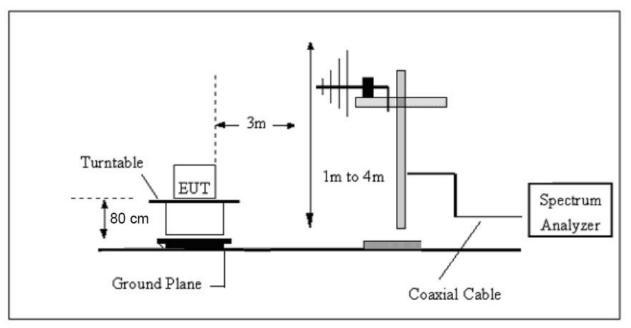
Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~90kHz / RB 200Hz for PK & AV
Start ~ Stop Frequency	90kHz~110kHz / RB 200Hz for QP
Start ~ Stop Frequency	110kHz~490kHz / RB 200Hz for PK & AV
Start ~ Stop Frequency	490kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

7.2 TEST PROCEDURE

- a. The measuring distance of at 3 m shall be used for measurements at frequency 0.009MHz up to 1GHz,and above 1GHz.
- b. The EUT was placed on the top of a rotating table 0.8 meters (above 1GHz is 1.5 m) above the ground at a 3 meter anechoic chamber test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment shall be 0.8 m(above 1GHz is 1.5 m); the height of the test antenna shall vary between 1 m to 4 m. horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then QuasiPeak detector mode re-measured.
- e. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- f. For the actual test configuration, please refer to the related Item –EUT Test Photos. Note:

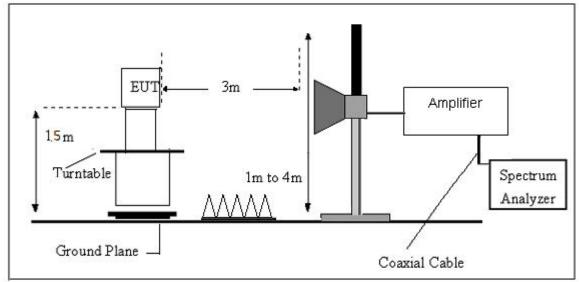

Both horizontal and vertical antenna polarities were tested

and performed pretest to three orthogonal axis. The worst case emissions were reported



7.3 TESTSETUP

(A) Radiated Emission Test-Up Frequency Below 30MHz



(B) Radiated Emission Test-Up Frequency 30MHz~1GHz

7.4. TEST RESULTS

(9KHz-30MHz)

Temperature:	22.7 ℃	Relative Humidity:	61%
Test Voltage:	DC 5V	Test Mode:	GFSK(worst mode)

Freq.	Reading	Limit	Margin	State	Test Result
(MHz)	(dBuV/m)	(dBuV/m)	(dB)	P/F	iesi kesuli
					PASS
					PASS

Note:

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

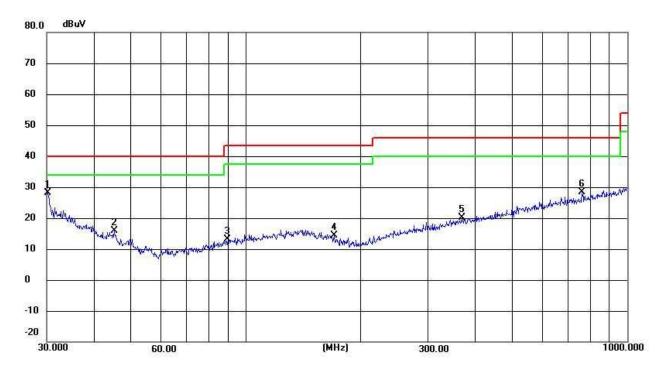
Distance extrapolation factor =40 log (specific distance/test distance)(dB);

Limit line = specific limits (dBuv) + distance extrapolation factor.

7.5 (30MHZ-1000MHZ)

Temperature:	24.7°C	Relative Humidity:	61%
Test Voltage:	DC 5V	Phase:	Horizontal
Test Mode:	GFSK(worst mode)		

No.	Frequency	Reading	Correct	Correct Result Limit		Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m) (dBuV/r		(dBuV/m)	(dB)	
1	30.1054	33.89	-7.24	26.65	40.00	-13.35	QP
2	55.0274	31.05	-19.65	11.40	40.00	-28.60	QP
3	110.9571	46.81	-32.18	14.63	43.50	-28.87	QP
4	258.3264	47.65	-31.96	15.69	46.00	-30.31	QP
5	547.0977	54.83	-31.22	23.61	46.00	-22.39	QP
6	993.0114	60.02	-30.61	29.41	54.00	-24.59	QP


Note: 1. Margin = Result (Result = Reading + Factor)–Limit

2. If Peak Result complies with QP limit, QP Result is deemed to comply with QP limit.

3. Test setup: RBW: 120 kHz, VBW: 300 kHz, Sweep time: auto.

Temperature:	22.7°C	Relative Humidity:	61%
Test Voltage:	DC 5V	Phase:	Vertical
Test Mode:	GFSK(worst mode)		

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m) (dBuV/m)		(dB)	
1	30.2111	35.39	-7.31	28.08	40.00	-11.92	QP
2	45.0583	31.48	-15.56	15.92	40.00	-24.08	QP
3	89.5899	45.25	-32.18	13.07	43.50	-30.43	QP
4	170.1948	46.39	-32.09	14.30	43.50	-29.20	QP
5	368.1116	51.73	-31.70	20.03	46.00	-25.97	QP
6	760.7036	59.20	-30.87	28.33	46.00	-17.67	QP

Note: 1. Margin = Result (Result = Reading + Factor)–Limit

2. If Peak Result complies with QP limit, QP Result is deemed to comply with QP limit.

3. Test setup: RBW: 120 kHz, VBW: 300 kHz, Sweep time: auto.

7.6 ABOVE 1GHZ

Temperature:	25 °C	Relative Humidity:	60%
Test Mode:	GFSK Mode	Test Voltage:	DC 5V

Low CH (GFSK)

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4804.00	35.32	31.78	8.60	32.09	43.61	74.00	-30.39	Vertica
7206.00	30.52	36.15	11.65	32.00	46.32	74.00	-27.68	Vertical
9608.00	30.30	37.95	14.14	31.62	50.77	74.00	-23.23	Vertical
12010.00	*					74.00		Vertical
14412.00	*					74.00		Vertica
4804.00	39.20	31.78	8.60	32.09	47.49	74.00	-26.51	Horizontal
7206.00	32.10	36.15	11.65	32.00	47.90	74.00	-26.10	Horizontal
9608.00	29.53	37.95	14.14	31.62	50.00	74.00	-24.00	Horizonta
12010.00	*					74.00		Horizontal
14412.00	*					74.00		Horizonta

Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4804.00	24.51	31.78	8.60	32.09	32.80	54.00	-21.20	Vertical
7206.00	19.43	36.15	11.65	32.00	35.23	54.00	-18.77	Vertical
9608.00	18.63	37.95	14.14	31.62	39.10	54.00	-14.90	Vertical
12010.00	*			1		54.00		Vertical
14412.00	*					54.00		Vertical
4804.00	28.52	31.78	8.60	32.09	36.81	54.00	-17.19	Horizontal
7206.00	21.47	36.15	11.65	32.00	37.27	54.00	-16.73	Horizontal
9608.00	18.19	37.95	14.14	31.62	38.66	54.00	-15.34	Horizontal
12010.00	*					54.00		Horizontal
14412.00	*					54.00		Horizontal

Remark:

1. Final Level =Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

3. "*", means this data is the too weak instrument of signal is unable to test.

Temperature:	25 °C	Relative Humidity:	60%
Test Mode:	GFSK Mode	Test Voltage:	DC 5V

Middle CH (GFSK)

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4882.00	35.19	31.85	8.67	32.12	43.59	74.00	-30.41	Vertica
7323.00	30.43	36.37	11.72	31.89	46.63	74.00	-27.37	Vertica
9764.00	30.22	38.35	14.25	31.62	51.20	74.00	-22.80	Vertica
12205.00	*	3				74.00		Vertica
14646.00	*					74.00		Vertical
4882.00	39.05	31.85	8.67	32.12	47.45	74.00	-26.55	Horizontal
7323.00	32.00	36.37	11.72	31.89	48.20	74.00	-25.80	Horizonta
9764.00	29.44	38.35	14.25	31.62	50.42	74.00	-23.58	Horizontal
12205.00	*					74.00		Horizontal
14646.00	*	- 1				74.00		Horizontal

Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4882.00	24.41	31.85	8.67	32.12	32.81	54.00	-21.19	Vertica
7323.00	19.36	36.37	11.72	31.89	35.56	54.00	-18.44	Vertical
9764.00	18.56	38.35	14.25	31.62	39.54	54.00	-14.46	Vertica
12205.00	*					54.00		Vertical
14646.00	*					54.00		Vertica
4882.00	28.40	31.85	8.67	32.12	36.80	54.00	-17.20	Horizontal
7323.00	21.39	36.37	11.72	31.89	37.59	54.00	-16.41	Horizontal
9764.00	18.12	38.35	14.25	31.62	39.10	54.00	-14.90	Horizontal
12205.00	*		2			54.00		Horizontal
14646.00	*					54.00		Horizontal

Remark:

1. Final Level =Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

3. "*", means this data is the too weak instrument of signal is unable to test.

Temperature:	25 °C	Relative Humidity:	60%
Test Mode:	GFSK Mode	Test Voltage:	DC 5V

High CH(GFSK)

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4960.00	34.74	31.93	8.73	32.16	43.24	74.00	-30.76	Vertica
7440.00	30.13	36.59	11.79	31.78	46.73	74.00	-27.27	Vertical
9920.00	29.96	38.81	14.38	31.88	51.27	74.00	-22.73	Vertica
12400.00	*					74.00		Vertical
14880.00	*				0 () ()	74.00		Vertical
4960.00	38.51	31.93	8.73	32.16	47.01	74.00	-26.99	Horizontal
7440.00	31.66	36.59	11.79	31.78	48.26	74.00	-25.74	Horizonta
9920.00	29.14	38.81	14.38	31.88	50.45	74.00	-23.55	Horizontal
12400.00	*					74.00		Horizontal
14880.00	*					74.00		Horizontal

Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4960.00	24.05	31.93	8.73	32.16	32.55	54.00	-21.45	Vertical
7440.00	19.11	36.59	11.79	31.78	35.71	54.00	-18.29	Vertical
9920.00	18.35	38.81	14.38	31.88	39.66	54.00	-14.34	Vertical
12400.00	*	-	-Co.5			54.00		Vertical
14880.00	*	8				54.00		Vertical
4960.00	27.99	31.93	8.73	32.16	36.49	54.00	-17.51	Horizontal
7440.00	21.12	36.59	11.79	31.78	37.72	54.00	-16.28	Horizontal
9920.00	17.87	38.81	14.38	31.88	39.18	54.00	-14.82	Horizontal
12400.00	*					54.00		Horizontal
14880.00	*					54.00		Horizontal

Remark:

1. Final Level =Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor

2. The emission levels of other frequencies are very lower than the limit and not show in test report.

3. "*", means this data is the too weak instrument of signal is unable to test.

7.6 RADIATED BAND EDGE DATA

Remark: All restriction band have been tested, and only the worst case is shown in report

Low CH (GFSK)

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2310.00	37.16	27.61	5.36	30.18	39.95	74.00	-34.05	Horizontal
2390.00	37.32	27.59	5.38	30.18	40.11	74.00	-33.89	Horizontal
2400.00	53.32	27.58	5.39	30.18	56.11	74.00	-17.89	Horizontal
2310.00	37.65	27.61	5.36	30.18	40.44	74.00	-33.56	Vertical
2390.00	37.34	27.59	5.38	30.18	40.13	74.00	-33.87	Vertical
2400.00	54.76	27.58	5.39	30.18	57.55	74.00	-16.45	Vertica

Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2310.00	29.65	27.61	5.36	30.18	32.44	54.00	-21.56	Horizontal
2390.00	29.13	27.59	5.38	30.18	31.92	54.00	-22.08	Horizontal
2400.00	40.03	27.58	5.39	30.18	42.82	54.00	-11.18	Horizontal
2310.00	28.34	27.61	5.36	30.18	31.13	54.00	-22.87	Vertical
2390.00	28.68	27.59	5.38	30.18	31.47	54.00	-22.53	Vertical
2400.00	41.15	27.58	5.39	30.18	43.94	54.00	-10.06	Vertical

High CH(GFSK)

Peak value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	38.76	27.53	5.47	29.93	41.83	74.00	-32.17	Horizontal
2500.00	38.99	27.55	5.49	29.93	42.10	74.00	-31.90	Horizontal
2483.50	38.68	27.53	5.47	29.93	41.75	74.00	-32.25	Vertical
2500.00	39.46	27.55	5.49	29.93	42.57	74.00	-31.43	Vertical

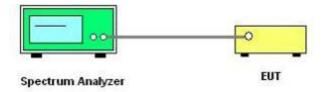
Average value:

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
2483.50	31.89	27.53	5.47	29.93	34.96	54.00	-19.04	Horizontal
2500.00	30.68	27.55	5.49	29.93	33.79	54.00	-20.21	Horizontal
2483.50	32.64	27.53	5.47	29.93	35.71	54.00	-18.29	Vertical
2500.00	30.14	27.55	5.49	29.93	33.25	54.00	-20.75	Vertical

Remark:

1. Final Level =Receiver Read level + Antenna Factor + Cable Loss – Preamplifier Factor

8. AVERAGE TIME OF OCCUPANCY

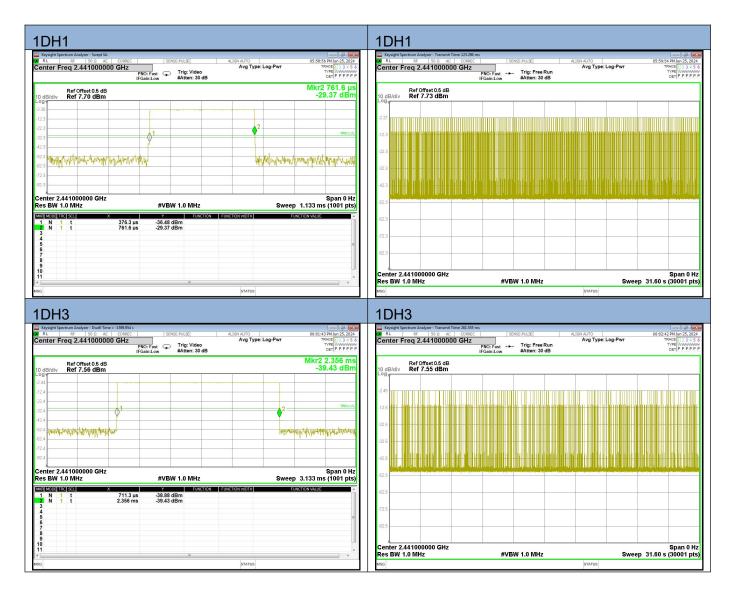

8.1 LIMIT

	FCC Parti 5 (15.247), Subpart C									
Section	Test Item	Limit	Frequency Range (MHz)							
15.247(a)(1)	Average Time of Occupancy	0.4 sec	2400-2483.5							

8.2 TEST PROCEDURE

- a. The transmitter output (antenna port) was connected to the spectrum analyzer.
- b. Set RBW =1MHz/VBW =1MHz.
- c. Use a video trigger with the trigger level set to enable triggering only on full pulses.
- d. Sweep Time is more than once pulse time.
- e. Set the center frequency on any frequency would be measure and set the frequency span to zero span.
- f. Measure the maximum time duration of one single pulse.
- g. Set the EUT for DH5, DH3 and DH1 packet transmitting.
- h. Measure the maximum time duration of one single pulse.
- i. DH5 Packet permit maximum 1600/ 79 / 6 = 3.37 hops per second in each channel (5 time slots RX, 1 time slot TX). So the number of pulses in the observation period of 31.6 seconds is 3.37x31.6 = 106.6.
- j. DH3 Packet permit maximum 1600 / 79 / 4 = 5.06 hops per second in each channel (3 time slots RX, 1 time slot TX). So the number of pulses in the observation period of 31.6 seconds is 5.06x31.6 = 160.
- k. DH1 Packet permit maximum 1600 / 79 / 2 = 10.12 hops per second in each channel (1 time slot RX, 1 time slot TX). So the number of pulses in the observation period of 31.6 seconds is 10.12x31.6 = 320.

8.3 TEST SETUP



8.4 TEST RESULTS


	AVERAGE_TIME_OF_OCCUPANCY									
CONDITION	MODE	FREQUENCY	PULSE	AVERAGE TIME	LIMIT	BURST	RESULTS			
		(MHZ)	TIME	OF OCCUPANCY	(MS)	NUMBER				
			(MS)	(MS)						
NVNT	1DH1	2441	0.385	123.296	400	320	PASS			
NVNT	1DH3	2441	1.645	261.555	400	159	PASS			
NVNT	1DH5	2441	2.896	301.184	400	104	PASS			

8.5 ORIGINAL TEST DATA

		im Analyzer - Dwell Tim								- 6
RL		RF 50 Ω AC		SEN	SE:PULSE		ALIGN AUTO	e: Log-Pwr		PM Jun 25, 202
enter	1100	12.44100000	PNO): Fast 😱 in:Low	Trig: V #Atten	/ideo h: 30 dB			т	DET P P P P P
0 dB/div	F	Ref Offset 0.5 dB Ref 7.73 dBm								3.484 m .03 dBr
2 27		-								
12.3										
22.3		4							2	TRIG LV
12.3		0 .							¢*	
42.3						_				(marriest)
	hord	(martinet)				_			M	and hours that
32.3		_				_				
2.3		_				_				
32.3									S	
enter : tes BW		1000000 GHz MHz		#VBV	V 1.0 M	1Hz		Swee	o 4.000 ms	Span 0 H (1001 pts
KR MODE	TRC S	50L] >		Y		FUNCTION	FUNCTION WIDTH	G	UNCTION VALUE	
1 N 2 N	1	t	588.0 µs 3.484 ms	-39.36 0						
3 4		-								
5										
6 7										
8										

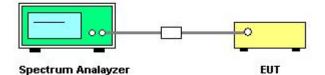
 Flux Compliance Service Laboratory

 Room 105 Floor Bao hao Technology Building 1 NO.15 Gong ye West Road Hi-Tech Industrial, Song shan lake Dongguan

 Tel: 769-27280901
 Fax: 769-27280901

 http://www.fcs-lab.com

9. HOPPING CHANNEL SEPARATION MEASUREMEN


9.1 LIMIT

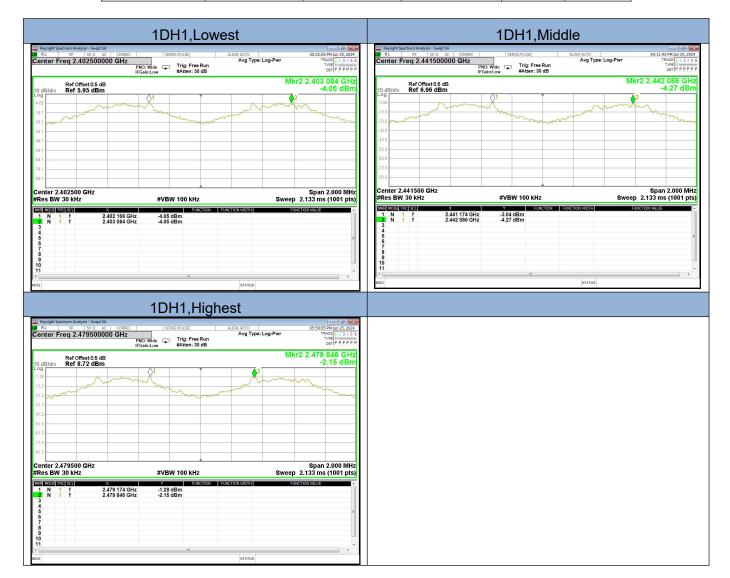
Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

Spectrum Parameter	Setting				
Attenuation	Auto				
Span Frequency	> 20 dB Bandwidth or Channel Separation				
RB	30 kHz (20dB Bandwidth) / 30 kHz (Channel Separation)				
VB	100 kHz (20dB Bandwidth) /100 kHz (Channel Separation)				
Detector	Peak				
Trace	Max Hold				
Sweep Time	Auto				

9.2 TEST PROCEDURE

- a. The transmitter output (antenna port) was connected to the spectrum analyser in peak hold mode.
- b. The resolution bandwidth of 30 kHz and the video bandwidth of 100 kHz were utilised for 20 dB bandwidth measurement.
- c. The resolution bandwidth of 30 kHz and the video bandwidth of 100 kHz were utilised for channel separation measurement
- 9.3 TEST SETUP

9.4 EUT OPERATION CONDITIONS


The EUT was programmed to be in continuously transmitting mode.

9.5 TEST RESULTS

Temperature:	25 °C	Relative Humidity:	60%
Test Mode:	GFSK Mode	Test Voltage:	DC 5V

Modulation	Test Mode	Frequency (MHz)	Channel Separation (MHz)	Limit (MHz)	Result
	1DH1	2402	0.918	> 0.65	Pass
GFSK	1DH1	2441	0.912	> 0.68	Pass
	1DH1	2480	0.672	> 0.65	Pass

10 CONDUCTED EMISSION MEASUREMENT

10.1 LIMIT

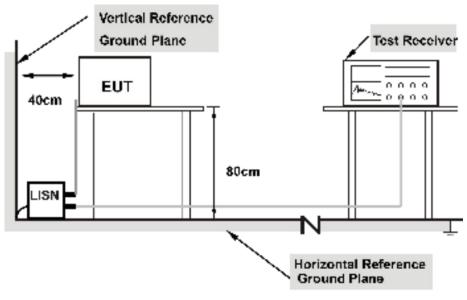
Operating frequency band. In case the emission fall within the restricted band specified on Part 207(a) limit in the table below has to be followed.

	Conducted Emiss	sionlimit (dBuV)
FREQUENCY (MHz)	Quasi-peak	Average
0.15 -0.5	66 - 56 *	56 - 46 *
0.50 -5.0	56.00	46.00
5.0 -30.0	60.00	50.00

Note:

- (4) The tighter limit applies at the band edges.
- (5) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

10.2 TEST PROCEDURE


The following table is the setting of the receiver

Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz

- a. The EUT was 0.8 meters from the horizontal ground plane and 0.4 meters from the vertical ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item –EUT Test Photos.

10.3 TEST SETUP

Note: 1.Support units were connected to second LISN. 2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 from other units and other metal planes

10.4 TEST RESULTS

	Temperature:	25 ℃		Relative Humidity:	50%
	Test Mode:	GFSK(wo	orst mode)	Test Voltage:	DC 5V from adapter AC 120V/60Hz
	Result:	L		Result:	Pass
100.	0				
90					
80		0 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -			
70		n an			
60					
50					
40					
30	M X AAAAAA	3 X	5		9 11 11
20		VIANAMAN	APANNA MARTINI AND A CAMPACTURE A		peak
10 0.0		YUVIUUuuu			No With Marken AVG
	.150	0.500	0.800 (M	lz) 5.000	30.000

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	Factor(dB)	(dBuV)	(dBuV)	(dB)	
1	0.2040	16.23	10.05	26.28	63.45	37.17	QP
2	0.2040	9.64	10.05	19.69	53.45	33.76	AVG
3	0.4605	16.51	10.01	26.52	56.68	30.16	QP
4	0.4605	9.55	10.01	19.56	46.68	27.12	AVG
5	1.0770	18.57	9.99	28.56	56.00	27.44	QP
6	1.0770	2.64	9.99	12.63	46.00	33.37	AVG
7	2.1255	12.19	9.96	22.15	56.00	33.85	QP
8	2.1255	-0.91	9.96	9.05	46.00	36.95	AVG
9	8.6820	14.25	9.82	24.07	60.00	35.93	QP
10	8.6820	2.16	9.82	11.98	50.00	38.02	AVG
11	22.7760	13.09	9.99	23.08	60.00	36.92	QP
12	22.7760	0.32	9.99	10.31	50.00	39.69	AVG

	perature:	25 ℃		Relativ	e Humidity:	50%	
Test	Mode:	GFSK(wo	rst mode)	Test V	oltage:	DC 5V from 120V/60Hz	n adapter AC
Resi	ult:	N		Result	:	Pass	
0.0				10			
	-						
	-						
	1						
	1	1. L. 1.					
Ar	1 1 1 0 000	3	5	7		9	
1 5 1							31
	VVVVVV	V VININAN	water with the stream when	and the second second second	Normal Martin Hanston	warman the tribustion	11 Myslu Angermanner
	MMM	MMMum		anter a stranger for stranger	new when and a second	warman Hold Marked Mark	man Brannan mar
		MMMun	in market and the second	annen an Arther and Arthone	water and a second	un har Herter harden hard harden harden hard	man Jun and a strain of the st
0.150		0.500	0.800	(MHz)	5.000		12 30
	Frequency (MHz)	0.500 Reading	0.800 Correct	(MHz)	5.000 Limit	Margin	man Jun and a strain of the st
0.150	(MHz)	0.500 Reading (dBuV)	0.800 Correct Factor(dB)	(MHz) Result (dBuV)	5.000 Limit (dBuV)	Margin (dB)	12 30 Remark
0.150 No.	(MHz) 0.2310	0.500 Reading (dBuV) 16.75	0.800 Correct Factor(dB) 10.05	(MHz) Result (dBuV) 26.80	5.000 Limit (dBuV) 62.41	Margin (dB) 35.61	12 30 Remark
0.0 0.150 No.	(MHz)	0.500 Reading (dBuV) 16.75 7.31	0.800 Correct Factor(dB) 10.05 10.05	(MHz) Result (dBuV)	5.000 Limit (dBuV) 62.41 52.41	Margin (dB) 35.61 35.05	Remark
No.	(MHz) 0.2310 0.2310	0.500 Reading (dBuV) 16.75	0.800 Correct Factor(dB) 10.05	(MHz) Result (dBuV) 26.80 17.36	5.000 Limit (dBuV) 62.41	Margin (dB) 35.61	12 30 Remark
1 0.0 0.150 No. 1 2 3	(MHz) 0.2310 0.2310 0.4605	0.500 Reading (dBuV) 16.75 7.31 14.83	0.800 Correct Factor(dB) 10.05 10.05 10.01	(MHz) Result (dBuV) 26.80 17.36 24.84	5.000 Limit (dBuV) 62.41 52.41 56.68	Margin (dB) 35.61 35.05 31.84	Remark
1 0.150 No. 1 2 3 4	(MHz) 0.2310 0.2310 0.4605 0.4605	0.500 Reading (dBuV) 16.75 7.31 14.83 6.11	0.800 Correct Factor(dB) 10.05 10.05 10.01 10.01	(MHz) Result (dBuV) 26.80 17.36 24.84 16.12	5.000 Limit (dBuV) 62.41 52.41 56.68 46.68	Margin (dB) 35.61 35.05 31.84 30.56	Remark
1 2 3 4 5	(MHz) 0.2310 0.2310 0.4605 0.4605 1.0769	0.500 Reading (dBuV) 16.75 7.31 14.83 6.11 17.69	0.800 Correct Factor(dB) 10.05 10.05 10.01 10.01 9.99	(MHz) Result (dBuV) 26.80 17.36 24.84 16.12 27.68	5.000 Limit (dBuV) 62.41 52.41 56.68 46.68 56.00	Margin (dB) 35.61 35.05 31.84 30.56 28.32	Remark QP AVG QP AVG QP
1 2 3 4 5 6	(MHz) 0.2310 0.2310 0.4605 0.4605 1.0769 1.0769	0.500 Reading (dBuV) 16.75 7.31 14.83 6.11 17.69 9.23	0.800 Correct Factor(dB) 10.05 10.05 10.01 10.01 9.99 9.99	(MHz) Result (dBuV) 26.80 17.36 24.84 16.12 27.68 19.22	5.000 Limit (dBuV) 62.41 52.41 56.68 46.68 56.00 46.00	Margin (dB) 35.61 35.05 31.84 30.56 28.32 26.78	Remark QP AVG QP AVG QP AVG
1 2 3 4 5 6 7	(MHz) 0.2310 0.2310 0.4605 0.4605 1.0769 1.0769 3.0210	0.500 Reading (dBuV) 16.75 7.31 14.83 6.11 17.69 9.23 12.92	0.800 Correct Factor(dB) 10.05 10.05 10.01 10.01 9.99 9.99 9.99 9.94	(MHz) Result (dBuV) 26.80 17.36 24.84 16.12 27.68 19.22 22.86	5.000 Limit (dBuV) 62.41 52.41 56.68 46.68 56.00 46.00 56.00	Margin (dB) 35.61 35.05 31.84 30.56 28.32 26.78 33.14	Remark QP AVG QP AVG QP AVG QP AVG
0.150 0.150 No. 1 2 3 4 5 6 7 8	(MHz) 0.2310 0.2310 0.4605 0.4605 1.0769 1.0769 3.0210 3.0210	0.500 Reading (dBuV) 16.75 7.31 14.83 6.11 17.69 9.23 12.92 0.97	0.800 Correct Factor(dB) 10.05 10.05 10.01 10.01 9.99 9.99 9.99 9.94 9.94	(MHz) Result (dBuV) 26.80 17.36 24.84 16.12 27.68 19.22 22.86 10.91	5.000 Limit (dBuV) 62.41 52.41 56.68 46.68 56.00 46.00 56.00 46.00	Margin (dB) 35.61 35.05 31.84 30.56 28.32 26.78 33.14 35.09	Ile and a construction of the construction of
0.150 0.150 No. 1 2 3 4 5 6 7 8 9	(MHz) 0.2310 0.2310 0.4605 0.4605 1.0769 1.0769 3.0210 3.0210 10.0050	0.500 Reading (dBuV) 16.75 7.31 14.83 6.11 17.69 9.23 12.92 0.97 12.97	0.800 Correct Factor(dB) 10.05 10.05 10.01 10.01 9.99 9.99 9.99 9.94 9.94 9.94 9.94 9.81	(MHz) Result (dBuV) 26.80 17.36 24.84 16.12 27.68 19.22 22.86 10.91 22.78	5.000 Limit (dBuV) 62.41 52.41 56.68 46.68 56.00 46.00 56.00 46.00 60.00	Margin (dB) 35.61 35.05 31.84 30.56 28.32 26.78 33.14 35.09 37.22	In the second se

Remark:1.All readings are Quasi-Peak and Average values

2.During the test, pre-scan all modes, only the worst case is recorded in the report. AC conducted emission pre-test at both at AC 120V/60Hz and AC 240V/60Hz modes, recorded worst case AC 120V/60Hz.

11. ANTENNA REQUIREMENT

11.1 STANDARD REQUIREMENT

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section 15.247 (b), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

11.2 RESULT

The antennas used for this product are Chip antenna and no antenna other than that furnished by the responsible party shall be used with the device, the maximum peak gain of the transmit antenna is 3.0dBi.

XXXXXEND OF THE REPORTXXXXX

Flux Compliance Service Laboratory Room 105 Floor Bao hao Technology Building 1 NO.15 Gong ye West Road Hi-Tech Industrial, Song shan lake Dongguan Tel: 769-27280901 Fax:769-27280901 http://www.fcs-lab.com