

RF Test Report

For

Applicant Name:

Faurecia clarion electronics Europe Batiment Lumière – 40 Avenue des Terroirs de France, 75012 Paris – Address: France EUT Name: **IN Vehicle Infotainment** Brand Name: Faurecia Model Number: Crony 2 Series Model Number: Refer to section 2

Issued By

Company Name:

BTF Testing Lab (Shenzhen) Co., Ltd. F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Address: Community, Songgang Street, Bao'an District, Shenzhen, China

Report Number: BTF240125R00503 Test Standards: 47 CFR Part 15E

Pass

2BEZMCRONY2

2024-01-25

Test Conclusion: FCC ID: Test Date: Date of Issue:

Prepared By:

Date:

Approved By:

Date[.]

2024-01-14 to 2024-01-25

Note: All the test results in this report only related to the testing samples. Which can be duplicated completely for the legal use with approval of applicant; it shall not be reproduced except in full without the written approval of BTF Testing Lab (Shenzhen) Co., Ltd., All the objections should be raised within thirty days from the date of issue. To validate the report, you can contact us.

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.

Page 1 of 65

F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Revision History			
Version	Issue Date	Revisions Content	
R_V0	2024-01-25	Original	
Note: Once the revision has been made, then previous versions reports are invalid.			

Table of Contents

1	INTR	ODUCTION	5
	1.1	Identification of Testing Laboratory	5
	1.2	Identification of the Responsible Testing Location	
	1.3	Announcement	5
2	PRO	DUCT INFORMATION	6
	2.1	Application Information	6
	2.2	Manufacturer Information	
	2.3	Factory Information	6
	2.4	General Description of Equipment under Test (EUT)	
	2.5	Technical Information	6
3	SUM	MARY OF TEST RESULTS	7
	3.1	Test Standards	. 7
	3.2	Uncertainty of Test	
	3.3	Summary of Test Result	7
4	TEST	CONFIGURATION	8
	4.1	Test Equipment List	8
	4.2	Test Auxiliary Equipment	
	4.3	Test Modes	
	4.4	Test Setup	15
5	EVAL	LUATION RESULTS (EVALUATION) 1	
	5.1	Antenna requirement	
		5.1.1 Conclusion:	
6	RADI	O SPECTRUM MATTER TEST RESULTS (RF) 1	18
	6.1	Duty Cycle	18
		6.1.1 E.U.T. Operation:	18
		6.1.2 Test Data:	18
	6.2	Maximum conducted output power	19
		6.2.1 E.U.T. Operation:	
		6.2.2 Test Data:	
	6.3	Power spectral density	22
		6.3.1 E.U.T. Operation:	
		6.3.2 Test Data:	
	6.4	Emission bandwidth and occupied bandwidth	
		6.4.1 E.U.T. Operation:	
		6.4.2 Test Data:	
	6.5	Frequency Stability	
		6.5.1 E.U.T. Operation:	
	• •	6.5.2 Test Data:	
	6.6	Band edge emissions (Radiated)	
		6.6.1 E.U.T. Operation:	
	67	6.6.2 Test Data:	
	6.7	. ,	
		6.7.1 E.U.T. Operation:	
	6.8	Undesirable emission limits (above 1GHz)	
	0.0	6.8.1 E.U.T. Operation:	
		6.8.2 Test Data:	
			~

Test Report Number: BTF240125R00503

7	TEST SETUP PHOTOS 41
	EUT CONSTRUCTIONAL DETAILS (EUT PHOTOS)
	ENDIX

1 Introduction

1.1 Identification of Testing Laboratory

Company Name:	ame: BTF Testing Lab (Shenzhen) Co., Ltd.	
Address: F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Ta Community, Songgang Street, Bao'an District, Shenzhen, China		
Phone Number:	+86-0755-23146130	
Fax Number:	+86-0755-23146130	

1.2 Identification of the Responsible Testing Location

Company Name: BTF Testing Lab (Shenzhen) Co., Ltd.	
Address:	F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China
Phone Number: +86-0755-23146130	
Fax Number:	+86-0755-23146130
FCC Registration Number:	518915
Designation Number:	CN1330

1.3 Announcement

(1) The test report reference to the report template version v0.

(2) The test report is invalid if not marked with the signatures of the persons responsible for preparing, reviewing and approving the test report.

(3) The test report is invalid if there is any evidence and/or falsification.

(4) This document may not be altered or revised in any way unless done so by BTF and all revisions are duly noted in the revisions section.

(5) Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.

(6) The laboratory is only responsible for the data released by the laboratory, except for the part provided by the applicant.

2 **Product Information**

2.1 Application Information

Company Name:	Faurecia clarion electronics Europe
Address:	Batiment Lumière – 40 Avenue des Terroirs de France, 75012 Paris – France

2.2 Manufacturer Information

Company Name:	Clarion Hungary electronics KFT.
Address:	Jászberényi út 116, 2760 Nagykáta - Hungary

2.3 Factory Information

Company Name:	Clarion Hungary electronics KFT.
Address:	Jászberényi út 116, 2760 Nagykáta - Hungary

2.4 General Description of Equipment under Test (EUT)

EUT Name:	IN Vehicle Infotainment
Test Model Number:	Crony 2
Series Model Number:	1
Description of Model name differentiation:	1
Hardware Version:	HW05
Software Version:	3.13.0

2.5 Technical Information

Power Supply:	DC 12V from Battery
	802.11ac(HT20) :
U-NII Band 3: 5745MHz to 5825MHz;	
Operation Frequency:	802.11ac(HT40) :
	U-NII Band 3: 5755MHz to 5795MHz;
	802.11ac(HT20):
U-NII Band 3: 5;	
Number of Channels:	
802.11ac(HT40):	
	U-NII Band 3: 2;
Modulation Type:	802.11ac: OFDM(BPSK, QPSK, 16QAM, 64QAM);
Antenna Type:	Chip antenna
Antenna Gain [#] :	3.5 dBi

Note:

#: The antenna gain provided by the applicant, and the laboratory will not be responsible for the accumulated calculation results which covers the information provided by the applicant.

F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

3 Summary of Test Results

3.1 Test Standards

The tests were performed according to following standards:

47 CFR Part 15E: Unlicensed National Information Infrastructure Devices

3.2 Uncertainty of Test

Item	Measurement Uncertainty
Conducted Emission Test	2.56dB
Occupied Channel Bandwidth	69 KHz
All emissions, radiated(<1GHz)	4.12 dB
All emissions, radiated(>1GHz)	4.89dB
Temperature	0.82 °C
Humidity	4.1 %

The following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

3.3 Summary of Test Result

Item	Standard	Requirement	Result
Antenna requirement	47 CFR Part 15E	Part 15.203	Pass
Conducted Emission at AC power line	47 CFR Part 15E	47 CFR Part 15.207(a)	N/A
Maximum conducted output power	47 CFR Part 15E	47 CFR Part 15.407(a)(3)(i)	Pass
Power spectral density	47 CFR Part 15E	47 CFR Part 15.407(a)(3)(i)	Pass
Emission bandwidth and occupied bandwidth	47 CFR Part 15E	only for report use. 47 CFR Part 15.407(e)	Pass
Band edge emissions (Radiated)	47 CFR Part 15E	47 CFR Part 15.407(b)(10)	Pass
Frequency Stability	47 CFR Part 15E	47 CFR Part 15.407 (g)	Pass
Undesirable emission limits (below 1GHz)	47 CFR Part 15E	47 CFR Part 15.407(b)(9)	Pass
Undesirable emission limits (above 1GHz)	47 CFR Part 15E	47 CFR Part 15.407(b)(4) 47 CFR Part 15.407(b)(10)	Pass

F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Test Configuration 4

4.1 Test Equipment List

Conducted Emission at AC power line								
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date			
Pulse Limiter	SCHWARZBECK	VTSD 9561-F	00953	2023-11-24	2024-11-23			
Coaxial Switcher	SCHWARZBECK	CX210	CX210	2023-11-24	2024-11-23			
V-LISN	SCHWARZBECK	NSLK 8127	01073	2023-11-24	2024-11-23			
LISN	AFJ	LS16/110VAC	16010020076	2023-02-23	2024-02-22			
EMI Receiver	ROHDE&SCHWA RZ	ESCI3	101422	2023-11-24	2024-11-23			

Duty Cycle					
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
RFTest software	/	V1.00	/	/	/
RF Control Unit	Techy	TR1029-1	/	2023-11-24	2024-11-23
RF Sensor Unit	Techy	TR1029-2	/	2023-11-24	2024-11-23
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2023-11-24	2024-11-23
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2023-11-24	2024-11-23
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2023-11-24	2024-11-23
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2023-11-24	2024-11-23

Maximum conducted output power								
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date			
RFTest software	/	V1.00	/	/	/			
RF Control Unit	Techy	TR1029-1	/	2023-11-24	2024-11-23			
RF Sensor Unit	Techy	TR1029-2	/	2023-11-24	2024-11-23			
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2023-11-24	2024-11-23			
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2023-11-24	2024-11-23			
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2023-11-24	2024-11-23			
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2023-11-24	2024-11-23			

Power spectral density							
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date		
RFTest software	/	V1.00	/	/	/		
RF Control Unit	Techy	TR1029-1	/	2023-11-24	2024-11-23		
RF Sensor Unit	Techy	TR1029-2	/	2023-11-24	2024-11-23		
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2023-11-24	2024-11-23		
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2023-11-24	2024-11-23		
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2023-11-24	2024-11-23		
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2023-11-24	2024-11-23		

Emission bandwidth and occupied bandwidth									
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date				
RFTest software	/	V1.00	/	/	/				
RF Control Unit	Techy	TR1029-1	/	2023-11-24	2024-11-23				
RF Sensor Unit	Techy	TR1029-2	/	2023-11-24	2024-11-23				
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2023-11-24	2024-11-23				
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2023-11-24	2024-11-23				
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2023-11-24	2024-11-23				
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2023-11-24	2024-11-23				

Channel Availability Check Time								
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date			
RFTest software	/	V1.00	/	/	/			
RF Control Unit	Techy	TR1029-1	/	2023-11-24	2024-11-23			
RF Sensor Unit	Techy	TR1029-2	/	2023-11-24	2024-11-23			
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2023-11-24	2024-11-23			
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2023-11-24	2024-11-23			
WIDEBAND RADIO COMMNUNICATION	Rohde & Schwarz	CMW500	161997	2023-11-24	2024-11-23			

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 9 of 6BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Page 9 of 65

TESTER					
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2023-11-24	2024-11-23

U-NII Detection Bandwidth								
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date			
RFTest software	/	V1.00	/	/	/			
RF Control Unit	Techy	TR1029-1	/	2023-11-24	2024-11-23			
RF Sensor Unit	Techy	TR1029-2	/	2023-11-24	2024-11-23			
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2023-11-24	2024-11-23			
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2023-11-24	2024-11-23			
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2023-11-24	2024-11-23			
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2023-11-24	2024-11-23			

Statistical Performance Check								
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date			
RFTest software	/	V1.00	/	/	/			
RF Control Unit	Techy	TR1029-1	/	2023-11-24	2024-11-23			
RF Sensor Unit	Techy	TR1029-2	/	2023-11-24	2024-11-23			
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2023-11-24	2024-11-23			
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2023-11-24	2024-11-23			
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2023-11-24	2024-11-23			
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2023-11-24	2024-11-23			

Channel Move Time, Channel Closing Transmission Time								
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date			
RFTest software	/	V1.00	/	/	/			
RF Control Unit	Techy	TR1029-1	/	2023-11-24	2024-11-23			
RF Sensor Unit	Techy	TR1029-2	/	2023-11-24	2024-11-23			
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2023-11-24	2024-11-23			
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co.,	etm-6050c	20211026123	2023-11-24	2024-11-23			

	LTD				
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2023-11-24	2024-11-23
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2023-11-24	2024-11-23

Non-Occupancy Period Test									
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date				
RFTest software	/	V1.00	/	/	/				
RF Control Unit	Techy	TR1029-1	/	2023-11-24	2024-11-23				
RF Sensor Unit	Techy	TR1029-2	/	2023-11-24	2024-11-23				
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2023-11-24	2024-11-23				
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2023-11-24	2024-11-23				
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2023-11-24	2024-11-23				
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2023-11-24	2024-11-23				

DFS Detection Thresholds					
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
RFTest software	/	V1.00	/	/	/
RF Control Unit	Techy	TR1029-1	/	2023-11-24	2024-11-23
RF Sensor Unit	Techy	TR1029-2	/	2023-11-24	2024-11-23
Programmable constant temperature and humidity box	ZZCKONG	ZZ-K02A	20210928007	2023-11-24	2024-11-23
Adjustable Direct Current Regulated Power Supply	Dongguan Tongmen Electronic Technology Co., LTD	etm-6050c	20211026123	2023-11-24	2024-11-23
WIDEBAND RADIO COMMNUNICATION TESTER	Rohde & Schwarz	CMW500	161997	2023-11-24	2024-11-23
MXA Signal Analyzer	KEYSIGHT	N9020A	MY50410020	2023-11-24	2024-11-23

Band edge emissions (Radiated)					
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
Coaxial cable Multiflex 141	Schwarzbeck	N/SMA 0.5m	517386	2023-03-24	2024-03-23
Preamplifier	SCHWARZBECK	BBV9744	00246	2023-11-24	2024-11-23
RE Cable	REBES Talent	UF1-SMASMAM-1 0m	21101566	2023-11-24	2024-11-23
RE Cable	REBES Talent	UF2-NMNM-10m	21101570	2023-11-24	2024-11-23
RE Cable	REBES Talent	UF1-SMASMAM-1	21101568	2023-11-24	2024-11-23

Total or partial reproduction of this document without permission of the Laboratory is not allowed. Page 11 of 6 BTF Testing Lab (Shenzhen) Co., Ltd. F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Page 11 of 65

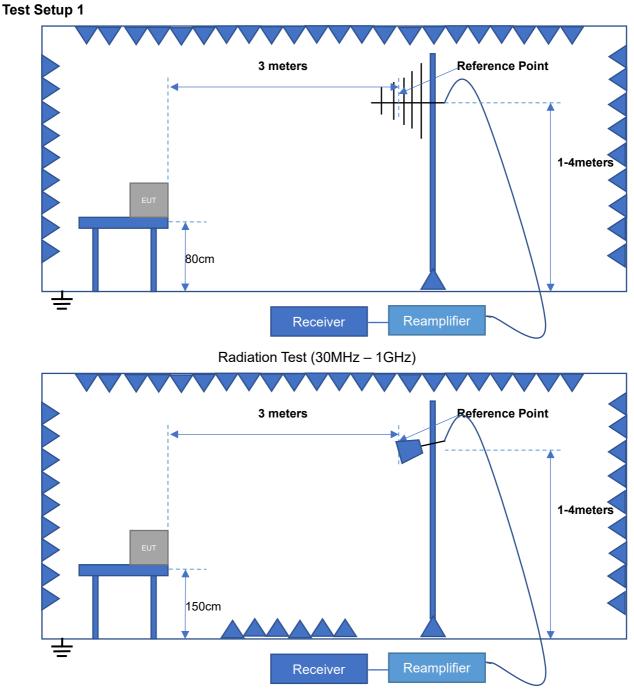
		m			
RE Cable	REBES Talent	UF2-NMNM-1m	21101576	2023-11-24	2024-11-23
RE Cable	REBES Talent	UF2-NMNM-2.5m	21101573	2023-11-24	2024-11-23
POSITIONAL CONTROLLER	SKET	PCI-GPIB	/	/	/
Horn Antenna	SCHWARZBECK	BBHA9170	01157	2023-11-28	2025-11-27
EMI TEST RECEIVER	ROHDE&SCHWA RZ	ESCI7	101032	2023-11-24	2024-11-23
SIGNAL ANALYZER	ROHDE&SCHWA RZ	FSQ40	100010	2023-11-24	2024-11-23
POSITIONAL CONTROLLER	SKET	PCI-GPIB	/	/	/
Broadband Preamplilifier	SCHWARZBECK	BBV9718D	00008	2023-03-24	2024-03-23
Horn Antenna	SCHWARZBECK	BBHA9120D	2597	2022-05-22	2024-05-21
EZ_EMC	Frad	FA-03A2 RE+	/	/	/
POSITIONAL CONTROLLER	SKET	PCI-GPIB	/	/	/
Log periodic antenna	SCHWARZBECK	VULB 9168	01328	2023-11-28	2025-11-27

Undesirable emission limits (below 1GHz)					
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
Coaxial cable Multiflex 141	Schwarzbeck	N/SMA 0.5m	517386	2023-03-24	2024-03-23
Preamplifier	SCHWARZBECK	BBV9744	00246	2023-11-24	2024-11-23
RE Cable	REBES Talent	UF1-SMASMAM-1 0m	21101566	2023-11-24	2024-11-23
RE Cable	REBES Talent	UF2-NMNM-10m	21101570	2023-11-24	2024-11-23
RE Cable	REBES Talent	UF1-SMASMAM-1 m	21101568	2023-11-24	2024-11-23
RE Cable	REBES Talent	UF2-NMNM-1m	21101576	2023-11-24	2024-11-23
RE Cable	REBES Talent	UF2-NMNM-2.5m	21101573	2023-11-24	2024-11-23
POSITIONAL CONTROLLER	SKET	PCI-GPIB	/	/	/
Horn Antenna	SCHWARZBECK	BBHA9170	01157	2023-11-28	2025-11-27
EMI TEST RECEIVER	ROHDE&SCHWA RZ	ESCI7	101032	2023-11-24	2024-11-23
SIGNAL ANALYZER	ROHDE&SCHWA RZ	FSQ40	100010	2023-11-24	2024-11-23
POSITIONAL CONTROLLER	SKET	PCI-GPIB	/	/	/
Broadband Preamplilifier	SCHWARZBECK	BBV9718D	00008	2023-03-24	2024-03-23
Horn Antenna	SCHWARZBECK	BBHA9120D	2597	2022-05-22	2024-05-21
EZ_EMC	Frad	FA-03A2 RE+	/	/	/
POSITIONAL CONTROLLER	SKET	PCI-GPIB	/	/	/
Log periodic antenna	SCHWARZBECK	VULB 9168	01328	2023-11-28	2025-11-27

Undesirable emission limits (above 1GHz)					
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
Coaxial cable Multiflex 141	Schwarzbeck	N/SMA 0.5m	517386	2023-03-24	2024-03-23
Preamplifier	SCHWARZBECK	BBV9744	00246	2023-11-24	2024-11-23
RE Cable	REBES Talent	UF1-SMASMAM-1 0m	21101566	2023-11-24	2024-11-23
RE Cable	REBES Talent	UF2-NMNM-10m	21101570	2023-11-24	2024-11-23
RE Cable	REBES Talent	UF1-SMASMAM-1 m	21101568	2023-11-24	2024-11-23
RE Cable	REBES Talent	UF2-NMNM-1m	21101576	2023-11-24	2024-11-23
RE Cable	REBES Talent	UF2-NMNM-2.5m	21101573	2023-11-24	2024-11-23
POSITIONAL CONTROLLER	SKET	PCI-GPIB	/	/	/
Horn Antenna	SCHWARZBECK	BBHA9170	01157	2023-11-28	2025-11-27
EMI TEST RECEIVER	ROHDE&SCHWA RZ	ESCI7	101032	2023-11-24	2024-11-23
SIGNAL ANALYZER	ROHDE&SCHWA RZ	FSQ40	100010	2023-11-24	2024-11-23
POSITIONAL CONTROLLER	SKET	PCI-GPIB	/	/	/
Broadband Preamplilifier	SCHWARZBECK	BBV9718D	00008	2023-03-24	2024-03-23
Horn Antenna	SCHWARZBECK	BBHA9120D	2597	2022-05-22	2024-05-21
EZ_EMC	Frad	FA-03A2 RE+	/	/	/
POSITIONAL CONTROLLER	SKET	PCI-GPIB	/	/	/
Log periodic antenna	SCHWARZBECK	VULB 9168	01328	2023-11-28	2025-11-27

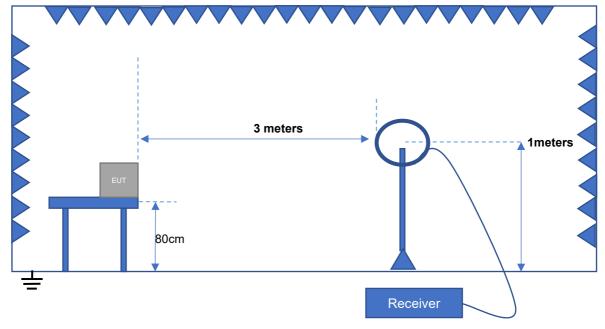
4.2 Test Auxiliary Equipment

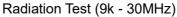
ltem	Equipment	Manufacturer	Model/Type No.	Series No.	Note
1	Adapter	Clarion Hungary	CH01	/	
2	GPS antenna	Clarion Hungary	CH02	/	
3	Camera	Clarion Hungary	CH03	/	
4	Display	Clarion Hungary	CH04	/	
5	Controller	Clarion Hungary	CH05	/	


4.3 Test Modes

No.	Test Modes	Description
TM1	802.11ac mode	Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11ac modulation type. All data rates has been tested and found the data rate @ MCS0 is the worst case. Only the data of worst case is recorded in the report.
TM2	Normal Operating	Keep the EUT works in normal operating mode and connect to companion device

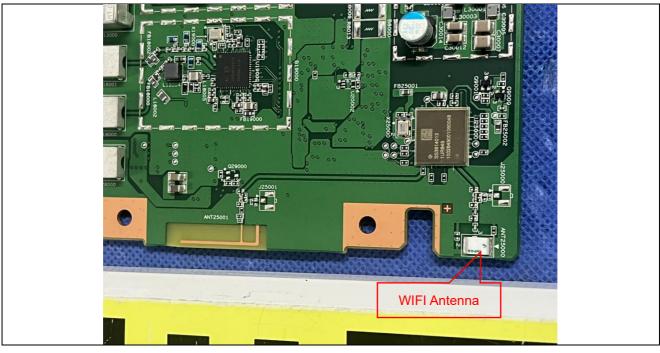
Test Report Number: BTF240125R00503


4.4 Test Setup



Radiation Test (Above 1GHz)

Test Setup 2


5 Evaluation Results (Evaluation)

5.1 Antenna requirement

Test Requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

5.1.1 Conclusion:

Radio Spectrum Matter Test Results (RF) 6

Duty Cycle 6.1

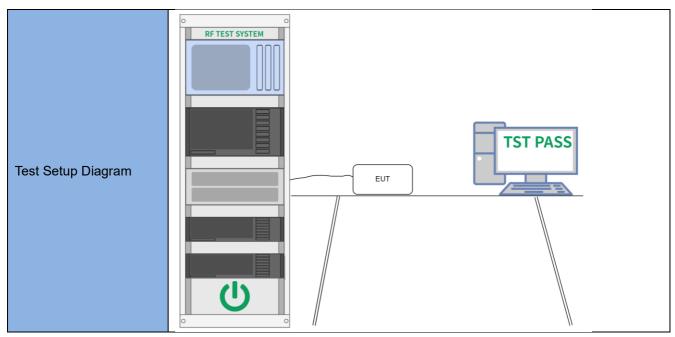
Test Requirement:	All measurements are to be performed with the EUT transmitting at 100% duty cycle at its maximum power control level; however, if 100% duty cycle cannot be achieved, measurements of duty cycle, x, and maximum-power transmission duration, T, are required for each tested mode of operation.			
Test Method:	ANSI C63.10-2013 section 12.2 (b)			
Test Limit:	No limits, only for report use.			
Procedure:	 i) Set the center frequency of the instrument to the center frequency of the transmission. ii) Set RBW >= EBW if possible; otherwise, set RBW to the largest available value. iii) Set VBW >= RBW. iv) Set detector = peak. v) The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T, where T is defined in item a1) of 12.2, and the number of sweep points across duration T exceeds 100. 			
Test Setup Diagram				

6.1.1 E.U.T. Operation:

Operating Environment:		
Temperature:	25.5 °C	
Humidity:	50.6 %	
Atmospheric Pressure:	1010 mbar	

6.1.2 Test Data:

Please Refer to Appendix for Details.


Maximum conducted output power 6.2

Test Requirement:	47 CFR Part 15.407(a)(3)(i)
Test Method:	ANSI C63.10-2013, section 12.3
	For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).
	For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
Test Limit:	For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems
	 employing high gain directional antennas are used exclusively for fixed, point-to-point operations. For client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
	For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
	For the band 5.725-5.850 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

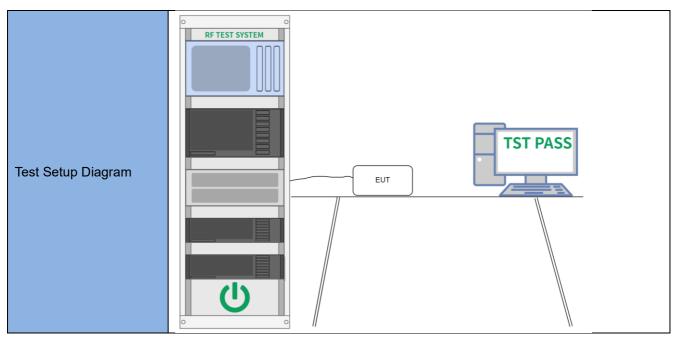
	However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.
Procedure:	Method SA-1 a) Set span to encompass the entire 26 dB EBW or 99% OBW of the signal. b) Set RBW = 1 MHz. c) Set VBW >= 3 MHz. d) Number of points in sweep >= [2 × span / RBW]. (This gives bin-to-bin spacing <= RBW / 2, so that narrowband signals are not lost between frequency bins.) e) Sweep time = auto. f) Detector = RMS (i.e., power averaging), if available. Otherwise, use sample detector mode. g) If transmit duty cycle < 98%, use a video trigger with the trigger level set to enable triggering only on full power pulses. The transmitter shall operate at maximum power control level for the entire duration of every sweep. If the EUT transmits continuously (i.e., with no OFF intervals) or at duty cycle >= 98%, and if each transmission is entirely at the maximum power control level, then the trigger shall be set to "free run." h) Trace average at least 100 traces in power averaging (rms) mode. i) Compute power by integrating the spectrum across the 26 dB EBW or 99% OBW of the signal using the instrument's band power measurement function, with band limits set equal to the EBW or OBW band edges. If the instrument does not have a band power function, then sum the spectrum levels (in power units) at 1 MHz intervals extending across the 26 dB EBW or 99% OBW of the spectrum.

6.2.1 E.U.T. Operation:

Operating Environment:	
Temperature:	25.5 °C
Humidity:	50.6 %
Atmospheric Pressure:	1010 mbar

6.2.2 Test Data:

Please Refer to Appendix for Details.


6.3 Power spectral density

Test Requirement:	47 CFR Part 15.407(a)(3)(i)
Test Method:	ANSI C63.10-2013, section 12.5
	For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
	For an indoor access point operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
	For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. Fixed point-to-point U-NII devices may employ antennas with directional gain up to
	23 dBi without any corresponding reduction in the maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi.
Test Limit:	Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.
	For client devices in the 5.15-5.25 GHz band, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
	For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
	For the band 5.725-5.850 GHz, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional
	gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems

	employing high gain directional antennas are used exclusively for fixed,
	point-to-point operations.
	a) Create an average power spectrum for the EUT operating mode being tested by
	following the
	instructions in 12.3.2 for measuring maximum conducted output power using a
	spectrum
	analyzer or EMI receiver; that is, select the appropriate test method (SA-1, SA-2,
	SA-3, or their
	respective alternatives) and apply it up to, but not including, the step labeled,
	"Compute
	power" (This procedure is required even if the maximum conducted output
	power
	measurement was performed using the power meter method PM.)
	b) Use the peak search function on the instrument to find the peak of the spectrum.
	c) Make the following adjustments to the peak value of the spectrum, if applicable:
	1) If method SA-2 or SA-2A was used, then add [10 log (1 / D)], where D is the duty
	cycle, to the peak of the spectrum.
	2) If method SA-3A was used and the linear mode was used in step h) of 12.3.2.7,
	add
Procedure:	1 dB to the final result to compensate for the difference between linear averaging
Procedure.	and
	power averaging.
	d) The result is the PPSD.
	e) The procedure in item a) through item c) requires the use of 1 MHz resolution
	bandwidth to
	satisfy the 1 MHz measurement bandwidth specified by some regulatory
	authorities.This
	requirement also permits use of resolution bandwidths less than 1 MHz "provided
	that the
	measured power is integrated to show the total power over the measurement
	bandwidth" (i.e.,
	1 MHz). If measurements are performed using a reduced resolution bandwidth and
	integrated
	over 1 MHz bandwidth, the following adjustments to the procedures apply:
	1) Set RBW >= 1 / T, where T is defined in 12.2 a).
	2) Set VBW >= [3 × RBW].
	3) Care shall be taken such that the measurements are performed during a period
	of continuous transmission or are corrected upward for duty cycle.

6.3.1 E.U.T. Operation:

Operating Environment:		
Temperature: 25.5 °C		
Humidity:	50.6 %	
Atmospheric Pressure:	1010 mbar	

6.3.2 Test Data:

Please Refer to Appendix for Details.

6.4 Emission bandwidth and occupied bandwidth

Test Requirement:	U-NII 3, U-NII 4: 47 CFR Part 15.407(e)
Test Mathed	ANSI C63.10-2013, section 6.9.3 & 12.4
Test Method:	KDB 789033 D02, Clause C.2
Test Limit:	U-NII 3, U-NII 4: Within the 5.725-5.850 GHz and 5.850-5.895 GHz bands, the
	minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz.
	Emission bandwidth:
	a) Set RBW = approximately 1% of the emission bandwidth.
	b) Set the VBW > RBW.
	c) Detector = peak.
	d) Trace mode = max hold.
	e) Measure the maximum width of the emission that is 26 dB down from the peak
	of the emission.
	Compare this with the RBW setting of the instrument. Readjust RBW and repeat
	measurement
	as needed until the RBW/EBW ratio is approximately 1%.
	Occupied bandwidth:
	a) The instrument center frequency is set to the nominal EUT channel center
	frequency. The
	frequency span for the spectrum analyzer shall be between 1.5 times and 5.0 times
	the OBW.
	b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of
	the OBW,
	and VBW shall be approximately three times the RBW, unless otherwise specified
	by the
	applicable requirement.
	c) Set the reference level of the instrument as required, keeping the signal from
	exceeding the
Procedure:	maximum input mixer level for linear operation. In general, the peak of the spectral envelope
	shall be more than [10 log (OBW/RBW)] below the reference level. Specific
	guidance is given
	in 4.1.5.2.
	d) Step a) through step c) might require iteration to adjust within the specified
	range.
	e) Video averaging is not permitted. Where practical, a sample detection and single
	sweep mode
	shall be used. Otherwise, peak detection and max hold mode (until the trace
	stabilizes) shall be
	Used.
	f) Use the 99% power bandwidth function of the instrument (if available) and report the measured
	bandwidth.
	g) If the instrument does not have a 99% power bandwidth function, then the trace
	data points are
	recovered and directly summed in linear power terms. The recovered amplitude
	data points,
	beginning at the lowest frequency, are placed in a running sum until 0.5% of the
	total is reached;
	that frequency is recorded as the lower frequency. The process is repeated until
	99.5% of the
	total is reached; that frequency is recorded as the upper frequency. The 99%
	power bandwidth is

	the difference between these two frequencies.					
	h) The occupied bandwidth shall be reported by providing plot(s) of the measuring					
	instrument					
	display; the plot axes and the scale units per division shall be clearly labeled.					
	Tabular data may					
	be reported in addition to the plot(s).					
	6 dB emission bandwidth:					
	a) Set RBW = 100 kHz.					
	b) Set the video bandwidth (VBW) ≥ 3 >= RBW.					
	c) Detector = Peak.					
	d) Trace mode = max hold.					
	e) Sweep = auto couple.					
	f) Allow the trace to stabilize.					
	g) Measure the maximum width of the emission that is constrained by the					
	frequencies associated with the two outermost amplitude points (upper and lower					
	frequencies) that are attenuated by 6 dB relative to the maximum level measured					
	in the fundamental emission.					
Test Setup Diagram						

6.4.1 E.U.T. Operation:

Operating Environment:			
Temperature: 25.5 °C			
Humidity:	50.6 %		
Atmospheric Pressure:	1010 mbar		

6.4.2 Test Data:

Please Refer to Appendix for Details.

6.5 Frequency Stability

Test Requirement:	U-NII 3, U-NII 4: 47 CFR Part 15.407(g)						
Test Method:	ANSI C63.10-2013						
Test Limit:	Manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.						
Procedure:	 The EUT was placed inside temperature chamber and powered and powered by nominal DC voltage. Set EUT as normal operation. Turn the EUT on and couple its output to spectrum. Turn the EUT off and set the chamber to the highest temperature specified. Allow sufficient time (approximately 30 min) for the temperature of the chamber to stabilize, turn the EUT and measure the operating frequency. Repeat step with the temperature chamber set to the lowest temperature. 						
Test Setup Diagram	EUT SPECTURM ANALYZER						
	Power Sources						

6.5.1 E.U.T. Operation:

	-		
	Operating Environment:		
Temperature: 25.5 °C			
	Humidity:	50.6 %	
	Atmospheric Pressure:	1010 mbar	

6.5.2 Test Data:

Please Refer to Appendix for Details.

6.6 Band edge emissions (Radiated)

Test Requirement:	47 CFR Part 15.407(b)(10)						
Test Method:	ANSI C63.10-2013, section 12.7.4, 12.7.5, 12.7.6						
		For transmitters operating solely in the 5.725-5.850 GHz band:					
	All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above						
	or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or						
	below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27						
dBm/MHz at the band edge.							
	MHz	MHz	MHz	GHz			
	0.090-0.110	16.42-16.423	399.9-410	4.5-5.15			
	¹ 0.495-0.505	16.69475-16.69525		5.35-5.46			
	2.1735-2.1905	16.80425-16.80475		7.25-7.75			
	4.125-4.128	25.5-25.67	1300-1427	8.025-8.5			
	4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2			
	4.20725-4.20775	73-74.6	1645.5-1646. 5	9.3-9.5			
	6.215-6.218	74.8-75.2	1660-1710	10.6-12.7			
	6.26775-6.26825	108-121.94	1718.8-1722. 2	13.25-13.4			
	6.31175-6.31225	123-138	2200-2300	14.47-14.5			
	8.291-8.294	149.9-150.05	2310-2390	15.35-16.2			
	8.362-8.366 156.52475-156.525 2483.5-2500 17.7-21.4 25						
	8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12			
	8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0			
Test Limit:	12.29-12.293	167.72-173.2	3332-3339	31.2-31.8			
	12.51975-12.52025		3345.8-3358	36.43-36.5			
	12.57675-12.57725 13.36-13.41	322-335.4	3600-4400	(2)			
	¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. ² Above 38.6						
	ncy bands shall not or less than 1000 ated using						
	 measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in § 15.209shall be demonstrated based on the average value of the measured emissions. The provisions in § 15.35apply to these measurements. Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table: Frequency (MHz) 						
	Frequency (MHz)	Measurement distance					
	(microvolts/meter)						
	0.009-0.490 2400/F(kHz)						
	0.490-1.705 24000/F(kHz) 30 1.705-30.0 30 30						
	30-88	100 **		3			

Total or partial reproduction of this document without permission of the Laboratory is not allowed.

BTF Testing Lab (Shenzhen) Co., Ltd. F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Test Report Number: BTF240125R00503

216-960200 **3Above 9605003Above 1GHz: a. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be re-tested one by one using peak or average method as specified and then reported		88-216	150 **	3
Above 960 500 3 Above 1GHz: a. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. b. The EUT was set3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights from 1 meter to a maximum reading. e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak or average method as specified and then reported in a data sheet. g. Test the EUT in the lowest channel, the middle channel, the Highest channel. h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case. i. Repeat above procedures until all frequencies measured was complete. Remark: 1. Level= Read Level+ Cable Loss+ Ante				
Above 1GHz: a. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation. b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be re-tested one by one using peak or average method as specified and then reported in a data sheet. g. Test the EUT in the lowest channel, the middle channel, the Highest channel. h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case. i. Repeat above procedures until all frequencies measured was complete. Remark: 1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor 2. Scan from 18GHz to 40GHz, the disturbance above 18GHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported. 3. As shown in this section, for		Above 960	500	
highest point could be found when testing, so only the above harmonics had been	Procedure:	Above 1GHz: a. For above 1GHz, above the ground a degrees to determin b. The EUT was set was mounted on the c. The antenna heig determine the maxi polarizations of the d. For each suspect the antenna was turn of below 30MHz, th was turned from 0 of e. The test-receiver Bandwidth with Max f. If the emission lew specified, then testi reported. Otherwise re-tested one by on in a data sheet. g. Test the EUT in th h. The radiation me Transmitting mode, i. Repeat above pro Remark: 1. Level= Read Lew 2. Scan from 18GH points marked on a testing, so only abo emissions from the need not be reported 3. As shown in this are based on avera not exceed the max dB under any condii than the average lin 4. The disturbance highest point could	the EUT was placed on t t a 3 meter fully-anechoic ne the position of the high 3 meters away from the e top of a variable-height of the source of the field stra- antenna are set to make the emission, the EUT was hed to heights from 1 met e antenna was tuned to he legrees to 360 degrees to system was set to Peak I kimum Hold Mode. vel of the EUT in peak mo- ng could be stopped and the emissions that did no e using peak or average r he lowest channel, the mi- asurements are performe and found the X axis pos- cedures until all frequence el+ Cable Loss+ Antenna z to 40GHz, the disturban- bove plots are the highest ve points had been displa- radiator which are attenua- d. section, for frequencies al ge limits. However, the pe- imum permitted average I tion of modulation. For the nit, only the peak measure above 18GHz were very I	he top of a rotating table 1.5 meters chamber. The table was rotated 360 est radiation. interference-receiving antenna, which antenna tower. er to four meters above the ground to ength. Both horizontal and vertical the measurement. s arranged to its worst case and then er to 4 meters (for the test frequency eights 1 meter) and the rotatable table of find the maximum reading. Detect Function and Specified de was 10dB lower than the limit the peak values of the EUT would be of have 10dB margin would be nethod as specified and then reported ddle channel, the Highest channel. d in X, Y, Z axis positioning for itioning which it is the worst case. ies measured was complete. Factor- Preamp Factor ce above 18GHz was very low. The t emissions could be found when hyed. The amplitude of spurious ated more than 20dB below the limit bove 1GHz, the field strength limits eak field strength of any emission shall imits specified above by more than 20 e emissions whose peak level is lower ement is shown in the report. ow and the harmonics were the
displayed.Test SetupSee section 4.4 for test setup 1. The photo of test setup please refer to ANNEX	Test Setup		test setup 1. The photo of	f test setup please refer to ANNEX

6.6.1 E.U.T. Operation:

Operating Environment:			
Temperature: 25.5 °C			
Humidity:	50.6 %		
Atmospheric Pressure:	1010 mbar		

6.6.2 Test Data:

UNII-3_20M_5745MHz_Horizontal

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	5650.000	89.03	-31.87	57.16	68.20	-11.04	peak	Р
2	5700.000	95.98	-31.98	64.00	105.60	-41.60	peak	Р
3	5720.000	96.89	-32.04	64.85	110.8	-45.95	peak	Р

UNII-3_20M_5745MHz_Vertical

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	5650.000	88.96	-31.58	57.38	68.20	-10.82	peak	Р
2	5700.000	95.91	-31.69	64.22	105.60	-41.38	peak	Р
3	5720.000	96.82	-31.75	65.07	110.8	-45.73	peak	Р

UNII-3_20M_5825MHz_Horizontal

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	5850.000	89.06	-31.84	57.22	122.20	-64.98	peak	Р
2	5875.000	96.01	-31.95	64.06	110.80	-46.74	peak	Р
3	5925.000	96.92	-32.01	64.91	68.20	-3.29	peak	Р

UNII-3_20M_5825MHz_Vertical

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	5850.000	89.38	-31.78	57.60	122.20	-64.60	peak	Р
2	5875.000	96.33	-31.89	64.44	110.80	-46.36	peak	Р
3	5925.000	97.24	-31.95	65.29	68.20	-2.91	peak	Р

UNII-3_40M_5755MHz_Horizontal

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	5650.000	87.97	-31.45	56.52	68.20	-11.68	peak	Р
2	5700.000	94.92	-31.56	63.36	105.60	-42.24	peak	Р
3	5720.000	95.82	-31.62	64.20	110.8	-46.60	peak	Р

UNII-3_40M_5755MHz_Vertical

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	5650.000	89.06	-31.44	57.62	68.20	-10.58	peak	Р
2	5700.000	96.01	-31.55	64.46	105.60	-41.14	peak	Р
3	5720.000	96.92	-31.61	65.31	110.8	-45.49	peak	Р

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.

F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

UNII-3_40M_5795MHz_Horizontal

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F				
1	5850.000	88.33	-31.55	56.78	122.20	-65.42	peak	Р				
2	5875.000	95.28	-31.66	63.62	110.80	-47.18	peak	Р				
3	5925.000	96.18	-31.72	64.46	68.20	-3.74	peak	Р				

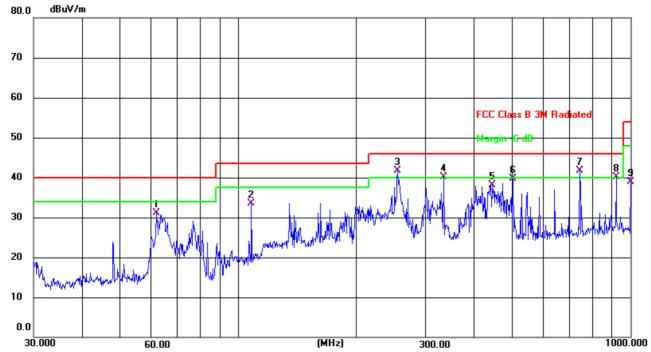
UNII-3_40M_5795MHz_Vertical

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	5850.000	87.63	-31.64	55.99	122.20	-66.21	peak	Р
2	5875.000	94.58	-31.75	62.83	110.80	-47.97	peak	Р
3	5925.000	95.48	-31.81	63.67	68.20	-4.53	peak	Р

Undesirable emission limits (below 1GHz) 6.7

Test Requirement:	47 CFR Part 15.407(b)(9)		
Test Method:	ANSI C63.10-2013, section	12.7.4, 12.7.5, 12.7.6	
	limits set forth in § 15.209.	1 GHz must comply with the g ere in this subpart, the emissio	
Test Limit:	Frequency (MHz) 0.009-0.490 0.490-1.705 1.705-30.0 30-88 88-216 216-960 Above 960	e field strength levels specified Field strength (microvolts/meter) 2400/F(kHz) 24000/F(kHz) 30 100 ** 150 ** 200 ** 500	d in the following table: Measurement distance (meters) 300 30 30 30 3 3 3 3 3 3 3 3 3 3
Procedure:	above the ground at a 3 me degrees to determine the po b. The EUT was set 3 or 10 which was mounted on the c. The antenna height is var determine the maximum val polarizations of the antenna d. For each suspected emiss the antenna was tuned to he of below 30MHz, the antenn was turned from 0 degrees e. The test-receiver system Bandwidth with Maximum H f. If the emission level of the specified, then testing could reported. Otherwise the emi re-tested one by one using data sheet. g. Test the EUT in the lowest h. The radiation measureme Transmitting mode, and fou i. Repeat above procedures Remark: 1. Level= Read Level+ Cabi 2. Scan from 9kHz to 30MH points marked on above plot testing, so only above point emissions from the radiator need not be reported. 3. The disturbance below 10	T was placed on the top of a re- ter semi-anechoic chamber. To position of the highest radiation. meters away from the interfer top of a variable-height antenr- ried from one meter to four me- ue of the field strength. Both to are set to make the measured sion, the EUT was arranged to eights from 1 meter to 4 meter ha was tuned to heights 1 meter to 360 degrees to find the max- was set to Peak Detect Funct lold Mode. E EUT in peak mode was 10dE be stopped and the peak valu- issions that did not have 10dB quasi-peak method as specified at channel, the middle channel ents are performed in X, Y, Z a nd the X axis positioning which a until all frequencies measured be highest emissions of s had been displayed. The am- which are attenuated more that GHz was very low and the harn esting, so only the above harn	he table was rotated 360 ence-receiving antenna, ha tower. Hers above the ground to horizontal and vertical ment. Do its worst case and then its worst case and then its (for the test frequency er) and the rotatable table kimum reading. Hower than the limit ues of the EUT would be margin would be end and then reported in a , the Highest channel. his positioning for h it is the worst case. d was complete. hamp Factor Hz was very low. The bould be found when uplitude of spurious an 20dB below the limit monics were the highest

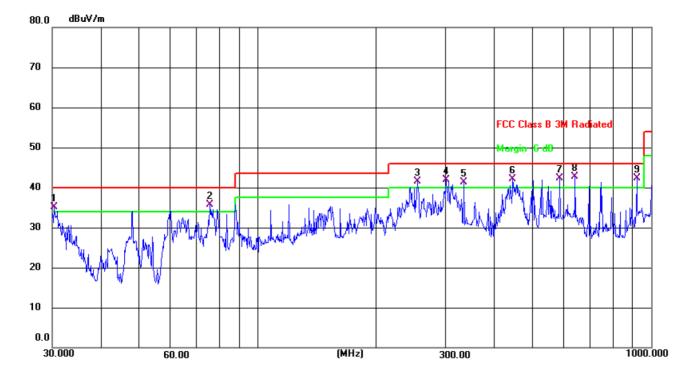
	Above 1GHz:
	a. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters
	above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360
	degrees to determine the position of the highest radiation.
	b. The EUT was set 3 meters away from the interference-receiving antenna, which
	was mounted on the top of a variable-height antenna tower.
	c. The antenna height is varied from one meter to four meters above the ground to
	determine the maximum value of the field strength. Both horizontal and vertical
	polarizations of the antenna are set to make the measurement.
	d. For each suspected emission, the EUT was arranged to its worst case and then
	the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency
	of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table
	was turned from 0 degrees to 360 degrees to find the maximum reading.
	e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	f. If the emission level of the EUT in peak mode was 10dB lower than the limit
	specified, then testing could be stopped and the peak values of the EUT would be
	reported. Otherwise the emissions that did not have 10dB margin would be
	re-tested one by one using peak or average method as specified and then reported
	in a data sheet.
	g. Test the EUT in the lowest channel, the middle channel, the Highest channel.
	h. The radiation measurements are performed in X, Y, Z axis positioning for
	Transmitting mode, and found the X axis positioning which it is the worst case.
	i. Repeat above procedures until all frequencies measured was complete.
	Remark:
	1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor
	2. Scan from 18GHz to 40GHz, the disturbance above 18GHz was very low. The
	points marked on above plots are the highest emissions could be found when
	testing, so only above points had been displayed. The amplitude of spurious
	emissions from the radiator which are attenuated more than 20dB below the limit
	need not be reported.
	3. As shown in this section, for frequencies above 1GHz, the field strength limits
	are based on average limits. However, the peak field strength of any emission shall
	not exceed the maximum permitted average limits specified above by more than 20
	dB under any condition of modulation. For the emissions whose peak level is lower
	than the average limit, only the peak measurement is shown in the report.
	4. The disturbance above 18GHz were very low and the harmonics were the
	highest point could be found when testing, so only the above harmonics had been
	displayed.
Test Setup	See section 4.4 for test setup 1&3. The photo of test setup please refer to ANNEX


6.7.1 E.U.T. Operation:

Operating Environment:					
Temperature:	25.5 °C				
Humidity:	50.6 %				
Atmospheric Pressure:	1010 mbar				

6.7.2 Test Data:

Note: All the mode have been tested, and only the worst case mode are in the report TM1 / Polarization: Horizontal / Band: U-NII 1 / BW: 20 / CH: L



No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
1		61.7779	44.19	-13.18	31.01	40.00	-8.99	QP
2		107.8876	50.07	-16.53	33.54	43.50	-9.96	QP
3	*	254.7281	54.34	-12.61	41.73	46.00	-4.27	QP
4	ļ	333.6865	51.01	-10.87	40.14	46.00	-5.86	QP
5		444.8514	46.80	-8.77	38.03	46.00	-7.97	QP
6		501.1788	47.17	-7.52	39.65	46.00	-6.35	QP
7	İ	742.2586	44.87	-3.20	41.67	46.00	-4.33	QP
8	İ	919.2865	40.32	-0.23	40.09	46.00	-5.91	QP
9		1000.000	37.95	0.93	38.88	54.00	-15.12	QP

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.

F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

TM1 / Polarization: Vertical / Band: U-NII 1 / BW: 20 / CH: L

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin	
		MHz	dBuV	dB	dBuV/m	dB/m	dB	Detector
1	ļ	30.3170	50.99	-15.98	35.01	40.00	-4.99	QP
2	İ	75.4462	52.36	-16.57	35.79	40.00	-4.21	QP
3	İ	254.7281	54.03	-12.61	41.42	46.00	-4.58	QP
4	İ	301.4223	53.40	-11.40	42.00	46.00	-4.00	QP
5	İ	333.6865	52.21	-10.87	41.34	46.00	-4.66	QP
6	İ	444.8514	50.96	-8.77	42.19	46.00	-3.81	QP
7	ļ	584.7894	48.60	-6.33	42.27	46.00	-3.73	QP
8	*	640.6109	47.85	-5.20	42.65	46.00	-3.35	QP
9	ļ	919.2865	42.44	-0.23	42.21	46.00	-3.79	QP

6.8 Undesirable emission limits (above 1GHz)

Test Requirement:	47 CFR Part 15.407(b)(10)				
Test Method:	ANSI C63.10-2013, section 12.7.4, 12.7.5, 12.7.6				
	For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz. For transmitters operating in the 5.25-5.35 GHz band: All emissions outside of the				
	5.15-5.35 GHz band shall not exceed an e.i.r.p. of −27 dBm/MHz.				
	For transmitters operating solely in the 5.725-5.850 GHz band:				
	All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above				
	or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or				
	below the band edge, and from 25 MHz above or below the band edge increasing				
	linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and				
	from 5 MHz above or below the band edge increasing linearly to a level of 27				
	dBm/MHz at the band e				
	MHz	MHz	MHz	GHz	
	0.090-0.110 ¹ 0.495-0.505	16.42-16.423 16.69475-16.69525	399.9-410 608-614	4.5-5.15 5.35-5.46	
	2.1735-2.1905	16.80425-16.80475		7.25-7.75	
	4.125-4.128	25.5-25.67	1300-1427	8.025-8.5	
	4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2	
	4.20725-4.20775	73-74.6	1645.5-1646.	9.3-9.5	
			5		
	6.215-6.218	74.8-75.2	1660-1710	10.6-12.7	
	6.26775-6.26825	108-121.94	1718.8-1722.	13.25-13.4	
	6.31175-6.31225	123-138	2 2200-2300	14.47-14.5	
	8.291-8.294	149.9-150.05	2310-2390	15.35-16.2	
Test Limit:	8.362-8.366	156.52475-156.525	2483.5-2500	17.7-21.4	
		25			
	8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12	
	8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0	
	12.29-12.293	167.72-173.2	3332-3339	31.2-31.8	
	12.51975-12.52025		3345.8-3358	36.43-36.5	
	12.57675-12.57725 13.36-13.41	322-335.4	3600-4400	(2)	
	13.30-13.41				
	¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.				
	² Above 38.6				
	The field strength of emissions appearing within these frequency bands shall not exceed the limits shown in § 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in § 15.209shall be demonstrated using				
		measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in § 15.209shall be demonstrated			
			alue of the measured emissions. The provisions in §		
	15.35apply to these measurements.				
	Except as provided elsewhere in this subpart, the emissions from an intentional				
	radiator shall not exceed the field strength levels specified in the following table:				
	Frequency (MHz)	Field strength		Measurement	
		(microvolts/mete	r)	distance (motors)	
	0.009-0.490	2400/F(kHz)		(meters) 300	
	0.000 0.700			000	

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd. F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Page 36 of 65

	0.490-1.705	24000/F(kHz)	30
	1.705-30.0	30	30
	30-88	100 **	3
	88-216	150 **	3
	216-960	200 **	3
		500	3
Procedure:	above the ground at a 3 me degrees to determine the p b. The EUT was set 3 meter was mounted on the top of c. The antenna height is var determine the maximum var polarizations of the antenna d. For each suspected emist the antenna was tuned to h of below 30MHz, the antenna was turned from 0 degrees e. The test-receiver system Bandwidth with Maximum H f. If the emission level of the specified, then testing could reported. Otherwise the emi- re-tested one by one using in a data sheet. g. Test the EUT in the lower h. The radiation measurem Transmitting mode, and four i. Repeat above procedures Remark: 1. Level= Read Level+ Cab 2. Scan from 18GHz to 400 points marked on above plot testing, so only above point emissions from the radiator need not be reported. 3. As shown in this section, are based on average limits not exceed the maximum po dB under any condition of m than the average limit, only 4. The disturbance above 1	500 T was placed on the top of a rota eter fully-anechoic chamber. The osition of the highest radiation. rs away from the interference-re a variable-height antenna tower. ried from one meter to four mete lue of the field strength. Both hol a are set to make the measurement ssion, the EUT was arranged to i eights from 1 meter to 4 meters na was tuned to heights 1 meter) to 360 degrees to find the maxin was set to Peak Detect Function fold Mode. e EUT in peak mode was 10dB ke d be stopped and the peak value issions that did not have 10dB m peak or average method as spect st channel, the middle channel, t ents are performed in X, Y, Z axis nd the X axis positioning which i s until all frequencies measured w le Loss+ Antenna Factor- Pream 6Hz, the disturbance above 18GI ots are the highest emissions cou is had been displayed. The ampl which are attenuated more than for frequencies above 1GHz, the s. However, the peak field strengte ermitted average limits specified nodulation. For the emissions wh the peak measurement is shown 8GHz were very low and the har d when testing, so only the above	table was rotated 360 ceiving antenna, which rs above the ground to rizontal and vertical ent. ts worst case and then (for the test frequency and the rotatable table num reading. n and Specified ower than the limit s of the EUT would be hargin would be cified and then reported he Highest channel. s positioning for t is the worst case. was complete. p Factor Hz was very low. The uld be found when itude of spurious 20dB below the limit e field strength limits th of any emission shall above by more than 20 iose peak level is lower n in the report. monics were the
Test Setup		up 1. The photo of test setup plea	ase refer to ANNEX
Test Setup			ase ieiei iu Aininea

6.8.1 E.U.T. Operation:

Operating Environment:					
Temperature:	25.5 °C				
Humidity:	50.6 %				
Atmospheric Pressure:	1010 mbar				

6.8.2 Test Data:

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd. F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F			
1	3510.445	78.30	-28.16	50.14	68.20	-18.06	peak	Р			
2	5487.745	80.04	-28.67	51.37	68.20	-16.83	peak	Р			
3	8102.825	81.70	-28.89	52.81	68.20	-15.39	peak	Р			
4	9083.095	82.78	-29.67	53.11	68.20	-15.09	peak	Р			
5	11384.986	83.49	-30.16	53.33	68.20	-14.87	peak	Р			

UNII-3_20M_5745MHz_Horizontal

UNII-3_20M_5745MHz_Vertical

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	3513.541	78.84	-28.03	50.81	68.20	-17.39	peak	Р
2	5490.841	80.58	-28.54	52.04	68.20	-16.16	peak	Р
3	8105.921	82.24	-28.76	53.48	68.20	-14.72	peak	Р
4	9086.191	83.32	-29.54	53.78	68.20	-14.42	peak	Р
5	11388.082	84.03	-30.03	54.00	68.20	-14.20	peak	Р
6	15046.693	84.88	-32.42	52.46	68.20	-15.74	peak	Р

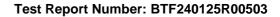
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	4001.514	78.19	-28.00	50.19	68.20	-18.01	peak	Р
2	5978.814	79.93	-28.51	51.42	68.20	-16.78	peak	Р
3	8593.894	81.59	-28.73	52.86	68.20	-15.34	peak	Р
4	9574.164	82.67	-29.51	53.16	68.20	-15.04	peak	Р
5	11876.055	83.38	-30.00	53.38	68.20	-14.82	peak	Р
6	15534.666	84.23	-32.39	51.84	68.20	-16.36	peak	Р

UNII-3 20M 5785MHz Horizontal

UNII-3_20M_5785MHz_Vertical

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	4005.547	78.87	-27.49	51.38	68.20	-16.82	peak	Р
2	5982.847	80.61	-28.00	52.61	68.20	-15.59	peak	Р
3	8597.927	82.27	-28.22	54.05	68.20	-14.15	peak	Р
4	9578.197	83.35	-29.00	54.35	68.20	-13.85	peak	Р
5	11880.088	84.06	-29.49	54.57	68.20	-13.63	peak	Р
6	15538.699	84.91	-31.88	53.03	68.20	-15.17	peak	Р

UNII-3 20M 5825MHz Horizontal


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	4011.514	78.86	-27.59	51.27	68.20	-16.93	peak	Р
2	5988.814	80.60	-28.10	52.50	68.20	-15.70	peak	Р
3	8603.894	82.26	-28.32	53.94	68.20	-14.26	peak	Р
4	9584.164	83.34	-29.10	54.24	68.20	-13.96	peak	Р
5	11886.055	84.05	-29.59	54.46	68.20	-13.74	peak	Р
6	15544.666	84.90	-31.98	52.92	68.20	-15.28	peak	Р

UNII-3_20M_5825MHz_Vertical

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	4152.541	79.37	-27.19	52.18	68.20	-16.02	peak	Р
2	6129.841	81.11	-27.70	53.41	68.20	-14.79	peak	Р
3	8744.921	82.77	-27.92	54.85	68.20	-13.35	peak	Р
4	9725.191	83.85	-28.70	55.15	68.20	-13.05	peak	Р
5	12027.082	84.56	-29.19	55.37	68.20	-12.83	peak	Р
6	15685.693	85.41	-31.58	53.83	68.20	-14.37	peak	Р

Total or partial reproduction of this document without permission of the Laboratory is not allowed.

BTF Testing Lab (Shenzhen) Co., Ltd. F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	2909.532	74.28	-30.99	43.29	68.20	-24.91	peak	Р
2	4010.130	74.76	-31.60	43.16	68.20	-25.04	peak	Р
3	6285.695	77.99	-31.81	46.18	68.20	-22.02	peak	Р
4	9585.684	82.76	-33.09	49.67	68.20	-18.53	peak	Р
5	11467.005	83.53	-34.66	48.87	68.20	-19.33	peak	Р
6 *	17013.540	81.17	-31.29	49.88	68.20	-18.32	peak	Р

LINUL 2 AONA EZEENALIT LIGHTONICA

UNII-3	40M	5755MHz	Vertical
•••••		•••••••••	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	3663.544	78.95	-27.31	51.64	68.20	-16.56	peak	Р
2	5640.844	80.69	-27.82	52.87	68.20	-15.33	peak	Р
3	8255.924	82.35	-28.04	54.31	68.20	-13.89	peak	Р
4	9236.194	83.54	-28.82	54.72	68.20	-13.48	peak	Р
5	11538.085	84.25	-29.31	54.94	68.20	-13.26	peak	Р
6	15196.696	85.10	-31.70	53.40	68.20	-14.80	peak	Р

UNII-3_40M_5795MHz_Horizontal

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	3613.554	78.64	-28.16	50.48	68.20	-17.72	peak	Р
2	5590.854	80.38	-28.67	51.71	68.20	-16.49	peak	Р
3	8205.934	82.04	-28.89	53.15	68.20	-15.05	peak	Р
4	9186.204	83.23	-29.67	53.56	68.20	-14.64	peak	Р
5	11488.095	83.94	-30.16	53.78	68.20	-14.42	peak	Р
6	15146.706	84.79	-32.55	52.24	68.20	-15.96	peak	Р

UNII-3 40M 5795MHz Vertical

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F
1	3414.551	78.16	-28.13	50.03	68.20	-18.17	peak	Р
2	5391.851	79.90	-28.64	51.26	68.20	-16.94	peak	Р
3	8006.931	81.56	-28.86	52.70	68.20	-15.50	peak	Р
4	8987.201	82.75	-29.64	53.11	68.20	-15.09	peak	Р
5	11289.092	83.46	-30.13	53.33	68.20	-14.87	peak	Р
6	14947.703	84.31	-32.52	51.79	68.20	-16.41	peak	Р

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd. F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

7 Test Setup Photos

Please refer to the setup photos

8 EUT Constructional Details (EUT Photos)

Please refer to the external photos and internal photos.

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 41 of 65BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Appendix

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd. F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Page 42 of 65

1. Duty Cycle


1.1 Ant1

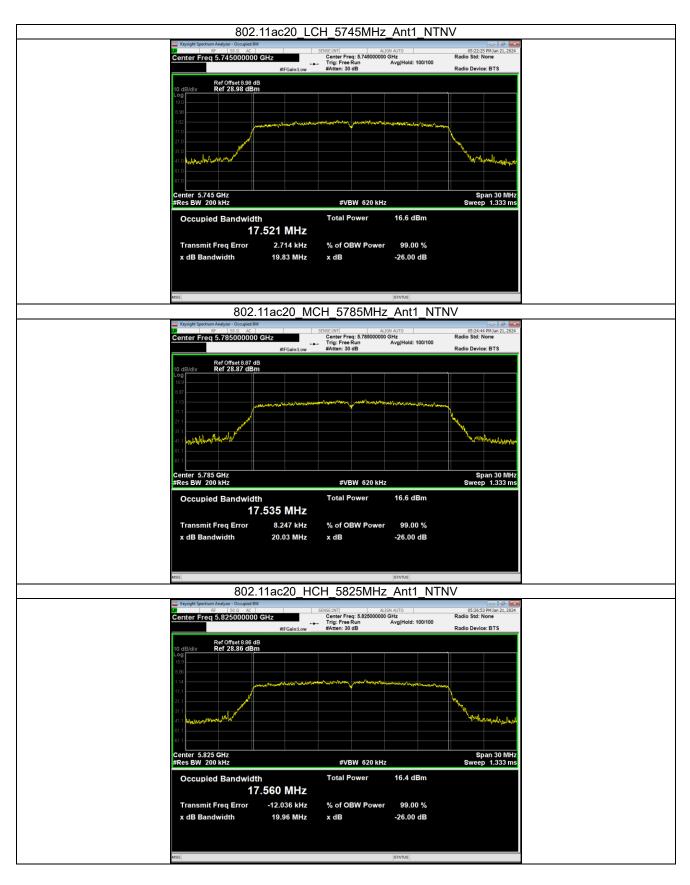
1.1.1 Test Result

Condition	Mode	Frequency (MHz)	Antenna	Duty Cycle (%)	Correction Factor (dB)
NVNT	ac20	5745	Ant1	95.46	0.2
NVNT	ac20	5785	Ant1	95.42	0.2
NVNT	ac20	5825	Ant1	95.42	0.2
NVNT	ac40	5755	Ant1	91.6	0.38
NVNT	ac40	5795	Ant1	91.58	0.38


1.1.2 Test Graph

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd. F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

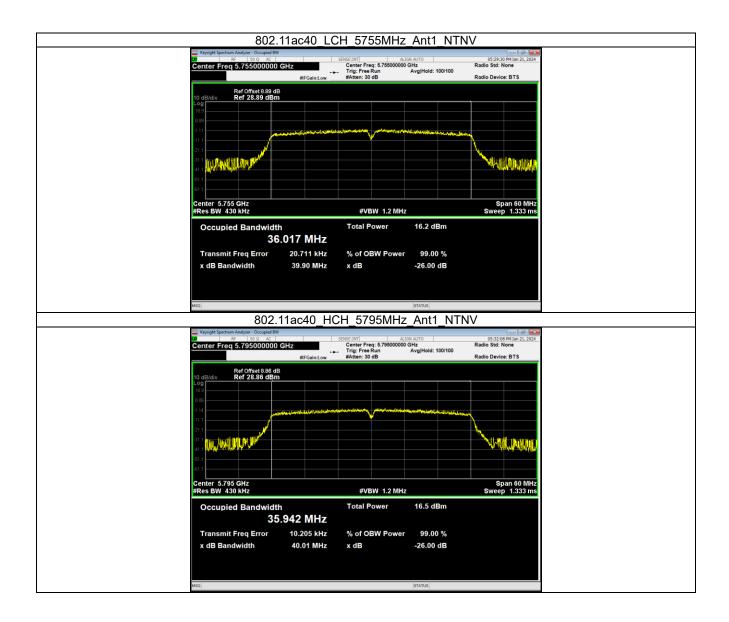
2. Bandwidth


2.1 OBW

2.1.1 Test Result

Mode	TX	Frequency (MHz) ANT		99% Occupied Bandwidth (MHz) Result	Verdict
	Туре				_
	SISO	5745		17.52111254	Pass
802.11ac20		5785	1	17.53527245	Pass
		5825	1	17.56038583	Pass
802.11ac40	SISO	5755	1	36.01734266	Pass
		5795	1	35.94232767	Pass

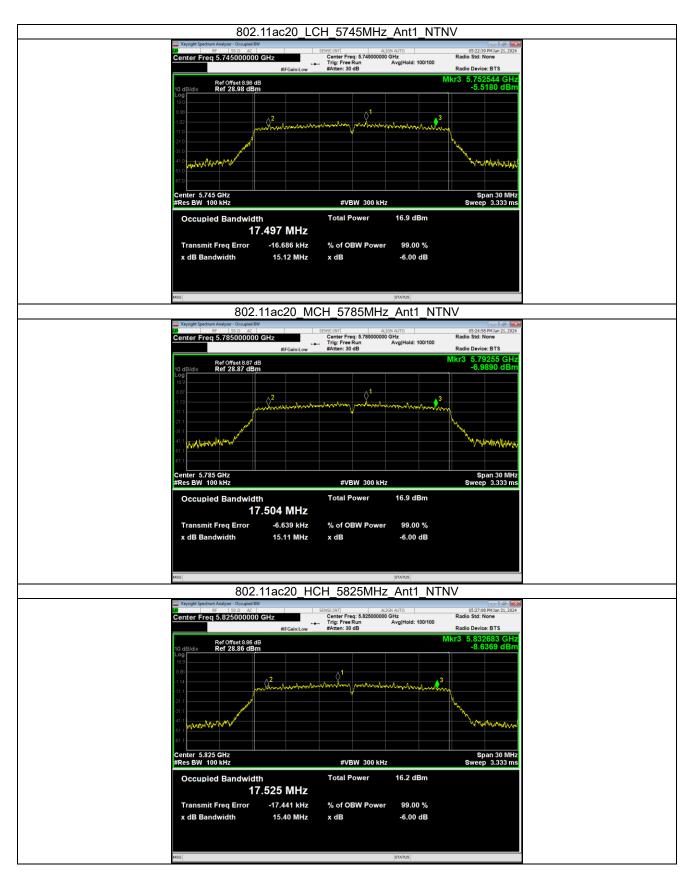
2.1.2 Test Graph



Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.

F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

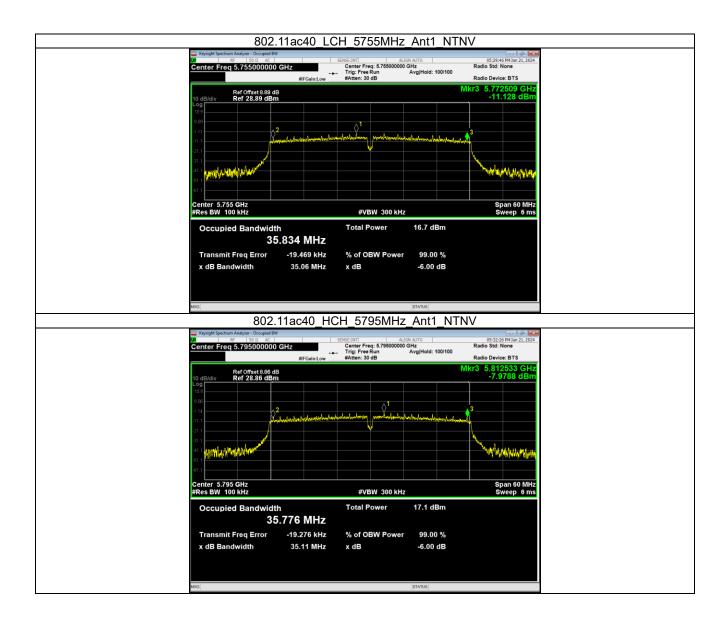
F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China


2.2 6dB BW

2.2.1 Test Result

Mode	TX	Frequency	ANT	6dB Bandw	Verdict	
Nidde	Туре	(MHz)	ANT	Result	Limit	verdict
	SISO	5745	1	15.121	>=0.5	Pass
802.11ac20		5785	1	15.114	>=0.5	Pass
			5825	1	15.402	>=0.5
802.11ac40	SISO	5755	1	35.057	>=0.5	Pass
		5795	1	35.105	>=0.5	Pass

2.2.2 Test Graph



Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.

F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd. E101 - 201 and 301 Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgong Street, Bacian Di

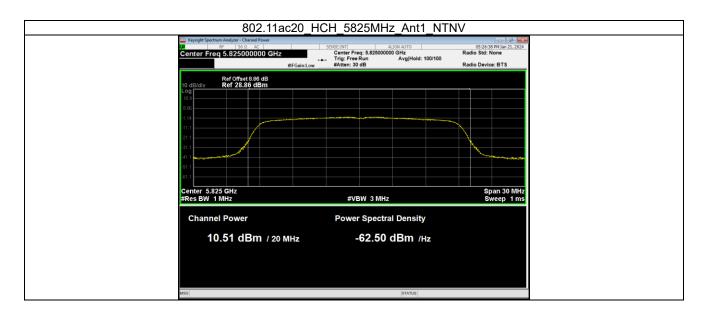
F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

3. Maximum Conducted Output Power

3.1 Power

3.1.1 Test Result

	τv	Fraguanay	Maximum Average Conducted Output Power (dBm)					
Mode	ТХ Туре	Frequency (MHz)	Reading (dBm)	Duty cycle Factor (dB)	Total Power (dBm)	Limit	Verdict	
		5745	10.82	0.2	11.02	<=23.98	Pass	
802.11ac20	SISO	5785	10.77	0.2	10.97	<=23.98	Pass	
		5825	10.51	0.2	10.71	<=23.98	Pass	
802.11ac40	SISO	5755	10.09	0.38	10.47	<=23.98	Pass	
002.118040	3130	5795	10.44	0.38	10.82	<=23.98	Pass	
Note1: Antenna Gain: Ant1: 1.7dBi;								
2: Total Powe	er= Readi	ng+Duty cycle	factor					

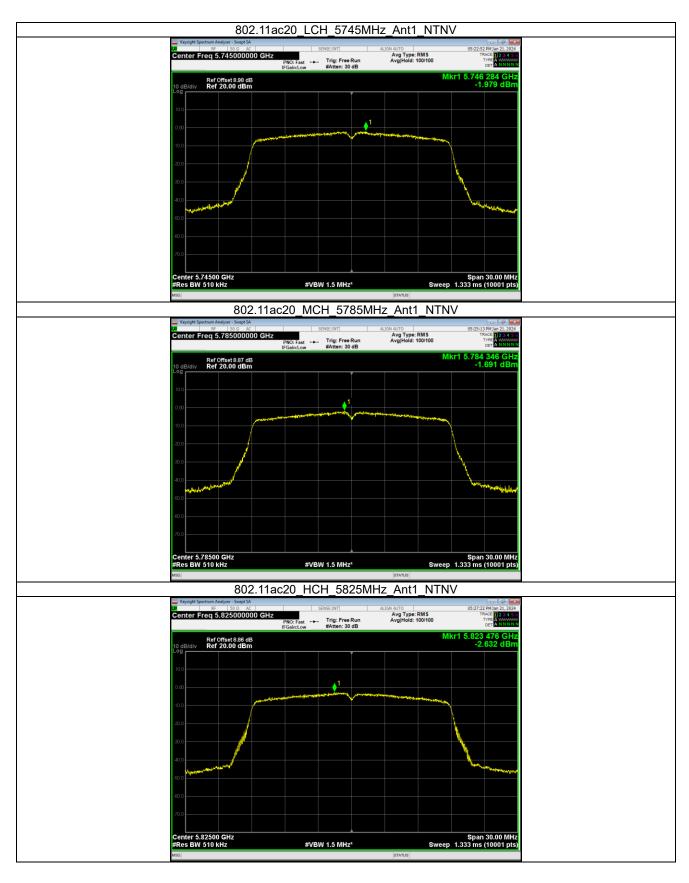

3.1.2 Test Graph

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.

F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Page 55 of 65

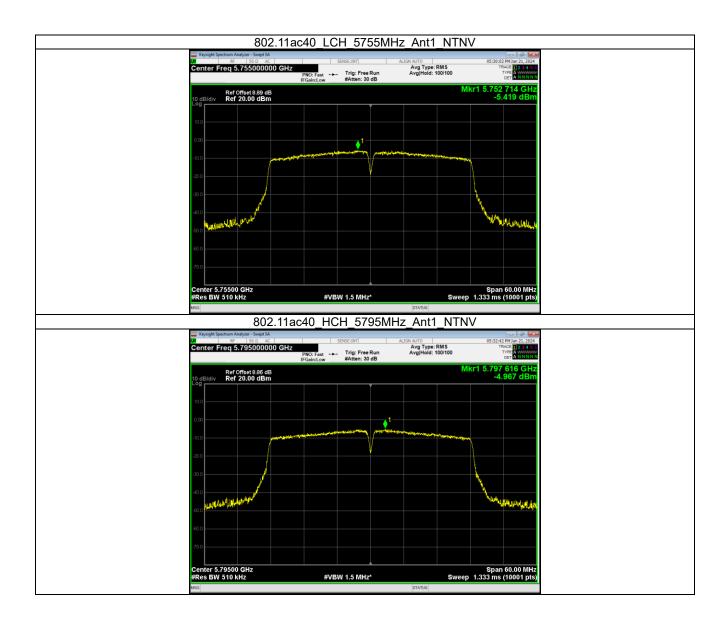
4. Maximum Power Spectral Density


4.1 PSD-Band3

4.1.1 Test Result

Condition	Mode	Frequency	Antenna	Max PSD	Duty Factor	Total PSD	Limit	Verdict
		(MHz)		(dBm)	(dB)	(dBm)	(dBm)	
NVNT	ac20	5745	Ant1	-1.979	0.2	-1.779	30	Pass
NVNT	ac20	5785	Ant1	-1.691	0.2	-1.491	30	Pass
NVNT	ac20	5825	Ant1	-2.632	0.2	-2.432	30	Pass
NVNT	ac40	5755	Ant1	-5.419	0.38	-5.039	30	Pass
NVNT	ac40	5795	Ant1	-4.967	0.38	-4.587	30	Pass
Note1: Ante	nna Gain	: Ant1: 1.7dBi;						
2Total PSD	(dBm)= N	/lax PSD (dBm)+ [Duty Factor (d	IB)				

4.2.2 Test Graph



Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd. F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Page 57 of 65

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd. F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

5. Frequency Stability

5.1 Ant1

5.1.1 Test Result

		I _	(– .	Ant1			
Mode	TX	Frequency	Temperature	Voltage	Measured Frequency	Limit	Verdict
	Туре	(MHz)	(°C)	(VAC)	(MHz)	(MHz)	
				10.8	5744.968	5725 to 5850	Pass
			20	12.0	5744.967	5725 to 5850	Pass
			-	13.2	5744.966	5725 to 5850	Pass
			-30	12.0	5744.967	5725 to 5850	Pass
			-20	12.0	5744.967	5725 to 5850	Pass
		5745	-10	12.0	5744.967	5725 to 5850	Pass
			0	12.0	5744.967	5725 to 5850	Pass
			10	12.0	5744.966	5725 to 5850	Pass
			30	12.0	5744.968	5725 to 5850	Pass
			40	12.0	5744.966	5725 to 5850	Pass
			50	12.0	5744.967	5725 to 5850	Pass
				10.8	5784.966	5725 to 5850	Pass
			20	12.0	5784.966	5725 to 5850	Pass
			-	13.2	5784.967	5725 to 5850	Pass
			-30	12.0	5784.966	5725 to 5850	Pass
			-20	12.0	5784.966	5725 to 5850	Pass
		5785	-10	12.0	5784.965	5725 to 5850	Pass
		ISO 5825	0	12.0	5784.966	5725 to 5850	Pass
			10	12.0	5784.966	5725 to 5850	Pass
			30	12.0	5784.966	5725 to 5850	Pass
			40	12.0	5784.966	5725 to 5850	Pass
			50	12.0	5784.966	5725 to 5850	Pass
Carrier Wave	SISO		20	10.8	5824.966	5725 to 5850	Pass
				12.0	5824.967	5725 to 5850	Pass
				13.2	5824.966	5725 to 5850	Pass
			-30	12.0	5824.965	5725 to 5850	Pass
			-20	12.0	5824.966	5725 to 5850	Pass
			-10	12.0	5824.966	5725 to 5850	Pass
			0	12.0	5824.966	5725 to 5850	Pass
			10	12.0	5824.965	5725 to 5850	Pass
			30	12.0	5824.965	5725 to 5850	Pass
			40	12.0	5824.965	5725 to 5850	Pass
			50	12.0	5824.964	5725 to 5850	Pass
				10.8	5754.966	5725 to 5850	Pass
			20	12.0	5754.967	5725 to 5850	Pass
				13.2	5754.966	5725 to 5850	Pass
			-30	12.0	5754.967	5725 to 5850	Pass
			-20	12.0	5754.966	5725 to 5850	Pass
		5755	-10	12.0	5754.966	5725 to 5850	Pass
			0	12.0	5754.968	5725 to 5850	Pass
			10	12.0	5754.966	5725 to 5850	Pass
			30	12.0	5754.965	5725 to 5850	Pass
			40	12.0	5754.968	5725 to 5850	Pass
			50	12.0	5754.966	5725 to 5850	Pass
		5795	20	10.8	5794.966	5725 to 5850	Pass
1		5195	20	12.0	5794.966	5725 to 5850	Pass

Total or partial reproduction of this document without permission of the Laboratory is not allowed.

Page 59 of 65

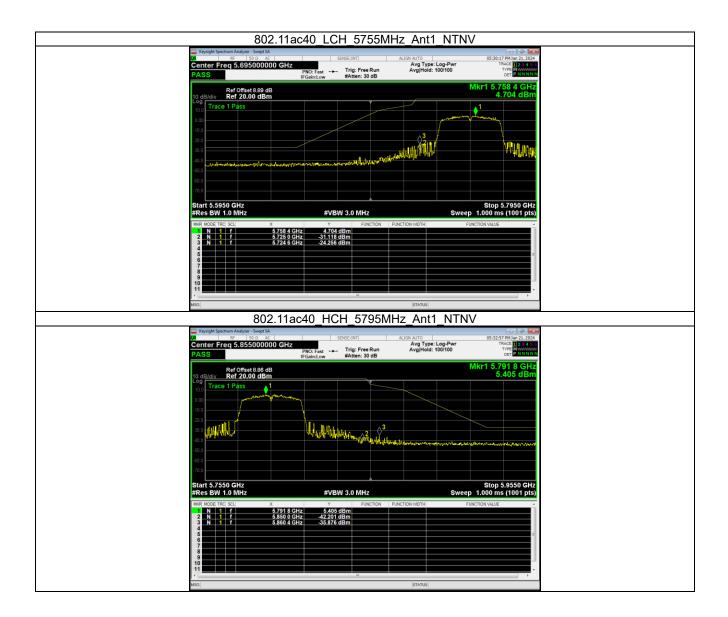
BTF Testing Lab (Shenzhen) Co., Ltd. F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

	13.2	5794.968	5725 to 5850	Pass
-30	12.0	5794.965	5725 to 5850	Pass
-20	12.0	5794.965	5725 to 5850	Pass
-10	12.0	5794.967	5725 to 5850	Pass
0	12.0	5794.965	5725 to 5850	Pass
10	12.0	5794.967	5725 to 5850	Pass
30	12.0	5794.965	5725 to 5850	Pass
40	12.0	5794.965	5725 to 5850	Pass
50	12.0	5794.965	5725 to 5850	Pass

6. Band Edge

6.1 Test Result

Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBm)	Limit (dBm)	Verdict		
NVNT	ac20	5745	Ant1	-30.4		Pass		
NVNT	ac20	5825	Ant1	-38.23		Pass		
NVNT	ac40	5755	Ant1	-24.25		Pass		
NVNT	ac40	5795	Ant1	-35.87		Pass		
Note1: Antenna Gain: Ant1: 1.7dBi								
The Ref offse	et contain t	he antenna gain.						


6.2 Test Graph

802 1	11ac20 LCH 5745M	Hz Ant1 NTNV		
Keysight Spectrum Analyzer - Swept SA Set S0 0 Ac Center Freq 5.6655000000 0	SENSE:INT	ALIGN AUTO	05:23:04 PM Jan 21, 2024	
PASS	PNO: Fast Trig: Free Run IFGain:Low #Atten: 30 dB	Avg Type: Log-Pwr Avg Hold: 100/100		
0 dB/dtv Ref 29.00 dBm 10 dB/dtv Ref 20.00 dBm 100 Trace 1 Páss			1 5.746 8 GHz 8.626 dBm ∳ ¹	
10.00				
-20.0		32	- Willy	
-40.0 -50.0 -60.0	_{กปลุดที่ถ} าปต่องการเกิดการเกิดการเกิดการการการการการการการการการการการการการก	ndaly have the Connect of the State of the		
-70.0				
Start 5,5650 GHz #Res BW 1.0 MHz ₩Reitwort Fred Soli ×	#VBW 3.0 MHz	Sweep 1.0	Stop 5.7650 GHz 000 ms (1001 pts)	
1 N 1 7 5.74 2 N 1 7 5.77 3 N 1 7 5.77	46 8 GHz 8.626 dBm 25 0 GHz -33.558 dBm 23 4 GHz -30.405 dBm	- Tomo Ho		
4 5 6 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
8 9 10 11				
4 [Msg		STATUS	•	
	I1ac20_HCH_5825M	Hz_Ant1_NTNV		
Krysigt Spectrum Analger: Swept 5A Sec 50 0 AC Center Freq 5,905000000 0	GHz	ALIGN AUTO Avg Type: Log-Pwr Avg Hold: 100/100	05:27:36 PM Jan 21, 2024 TRACE 2 34 5 6 TYPE M DET PINNINN N	
PASS Ref Offset 8.86 dB 10 dB/div Ref 20.00 dBm	PNO: Fast Trig: Free Run IFGain:Low #Atten: 30 dB		1 5.823 6 GHz 7.526 dBm	
10 dB/div Ref 20.00 dBm 10 g 10		7.526 dBm		
-10.0				
300 and all and all and all and all all all all all all all all all al	2 ³			
	"Indeelestypes more and the second support of a starting of	an Inan an an Anna an Anna an Anna an Anna an Anna an Anna an Anna an Anna an Anna an Anna an Anna an Anna Anna	มีสามหารณาร่าง	
-70.0				
Start 5.8050 GHz #Res BW 1.0 MHz	#VBW 3.0 MHz	Sweep 1.0	Stop 6.0050 GHz 000 ms (1001 pts)	
	23 6 GHz 7.526 dBm 50 0 GHz -40.954 dBm 53 4 GHz -38.237 dBm			
4567				
8 9 10 11				
K C	m.	STATUS	•	

Total or partial reproduction of this document without permission of the Laboratory is not allowed. Page 62 of 62 BTF Testing Lab (Shenzhen) Co., Ltd. F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Page 63 of 65

BTF Testing Lab (Shenzhen) Co., Ltd.

F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

www.btf-lab.com

-- END OF REPORT --