

Page:

1

of

60

Report Number: F690501-RF-RTL004858

TEST REPORT
of
FCC Part 15 Subpart C §15.247 IC RSS-247 Issue 3 and RSS-Gen Issue 5 FCC ID: 2BEYM-LINK-1
IC Certification: 32025-LINK1
Equipment Under Test : BLUETOOTH INTERCOM Model Name : LINK-1
Variant Model Name(s) : - FCC Applicant : KIDO SPORTS CO., LTD.
IC Applicant : KIDO SPORTS CO., LTD.
Manufacturer : KIDO SPORTS CO., LTD.
Date of Receipt : 2023.07.28
Date of Test(s) : 2023.11.28 ~ 2024.02.05
Date of Issue : 2024.02.26
In the configuration tested, the EUT complied with the standards specified above. This test report does not assure KOLAS accreditation.
 The results of this test report are effective only to the items tested. The SGS Korea is not responsible for the sampling, the results of this test report apply to the sample as received. This test report cannot be reproduced, except in full, without prior written permission of the Company. The data marked × in this report was provided by the customer and may affect the validity of the test results. We are responsible for all the information of this test report except for the data(*) provided by the customer.
Tested by: Technical Manager:
Murphy Kim Jinhyoung Cho
SGS Korea Co., Ltd. Gunpo Laboratory

Report Number:	F690501-RF-RTL004858	Page:	2	of	60

INDEX

Table of Contents	Page
1. General Information	3
2. Transmitter Radiated Spurious Emissions and Conducted Spurious Emissions	10
3. 20 dB Bandwidth & 99 % Bandwidth	37
4. Maximum Peak Conducted Output Power	46
5. Carrier Frequency Separation	48
6. Number of Hopping Frequencies	50
7. Time of Occupancy(Dwell Time)	52
8. Antenna Requirement	60

1. General Information

1.1 Testing Laboratory

SGS Korea Co., Ltd. (Gunpo Laboratory)

- 10-2, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807
- 4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 15807
- Designation number: KR0150

All SGS services are rendered in accordance with the applicable SGS conditions of service available on request and accessible at <u>http://www.sgs.com/en/Terms-and-Conditions.aspx</u>.

- Phone No. : +82 31 688 0901
- Fax No. : +82 31 688 0921

1.2. Details of Applicant

FCC Applicant	:	KIDO SPORTS CO., LTD.
FCC Address	:	395, Gonghang-daero, Gangseo-gu, Seoul, South Korea, 07590
IC Applicant	:	KIDO SPORTS CO., LTD.
IC Address	:	395, Gonghang-daero, Gangseo-gu, Seoul, South Korea, 07590
Contact Person	:	Kim, Gi-young
Phone No.	:	+82 10 8787 5611

1.3. Details of Manufacturer

Company	:	Same as applicant
Address	:	Same as applicant

1.4. Description of EUT

Kind of Product	BLUETOOTH INTERCOM			
Model Name	LINK-1			
Serial Number	Conducted: 2 Radiated: 1			
Power Supply	DC 3.7 V			
Frequency Range	2 402 Mtz ~ 2 480 Mtz (Bluetooth)			
Modulation Technique	GFSK, π/4DQPSK, 8DPSK			
Number of Channels	79 channels (Bluetooth)			
Antenna Type	PCB Pattern Antenna			
Antenna Gain [*]	1.88 dB i			
H/W Version	v1.3			
S/W Version	v1.0			
FVIN	N/A			

1.5. Information about the FHSS characteristics:

1.5.1. Pseudorandom Frequency Hopping Sequence

The channel is represented by a pseudo-random hopping sequence hopping through the 79 RF channels. The hopping sequence is unique for the piconet and is determined by the Bluetooth device address of the master; the phase in the hopping sequence is determined by the Bluetooth clock of the master. The channel is divided into time slots where each slot corresponds to an RF hop frequency. Consecutive hops correspond to different RF hop frequencies. The nominal hop rate is 1 600 hops/s.

1.5.2. Equal Hopping Frequency Use

The channels of this system will be used equally over the long-term distribution of the hopsets.

1.5.3. Example of a 79 hopping sequence in data mode:

02, 05, 31, 24, 20, 10, 43, 36, 30, 23, 40, 06, 21, 50, 44, 09, 71, 78, 01, 13, 73, 07, 70, 72, 35, 62, 42, 11, 41, 08, 16, 29, 60, 15, 34, 61, 58, 04, 67, 12, 22, 53, 57, 18, 27, 76, 39, 32, 17, 77, 52, 33, 56, 46, 37, 47, 64, 49, 45, 38, 69, 14, 51, 26, 79, 19, 28, 65, 75, 54, 48, 03, 25, 66, 05, 16, 68, 74, 59, 63, 55

1.5.4. System Receiver Input Bandwidth

Each channel bandwidth is 1 Mz.

The system receivers have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

1.5.5. Equipment Description

15.247(a) (1) that the Rx input bandwidths shift frequencies in synchronization with the transmitted signals.

15.247(g): In accordance with the Bluetooth Industry Standard, the system is designed to comply with all of the regulations in Section 15.247 when the transmitter is presented with a continuous data (or information) system.

15.247(h): In accordance with the Bluetooth Industry Standard, the system does not coordinate it channels selection/ hopping sequence with other frequency hopping systems for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters.

Report Number: F690501-RF-RTL004858

of

60

1.6. Test Equipment List

Equipment	Manufacturer	Model	S/N	Cal. Date	Cal. Interval	Cal. Due
Signal Generator	Signal Generator R&S		106887	Oct. 06, 2023	Annual	Oct. 06, 2024
Spectrum Analyzer	R&S	FSV30	103453	Oct. 31, 2023	Annual	Oct. 31, 2024
Spectrum Analyzer	R&S	FSW43	100637	Apr. 06, 2023	Annual	Apr. 06, 2024
Spectrum Analyzer	Agilent	N9020A	MY53421758	Sep. 01, 2023	Annual	Sep. 01, 2024
Bluetooth Tester	TESCOM	TC-3000C	3000C000560	Sep. 13, 2023	Annual	Sep. 13, 2024
Directional Coupler	KRYTAR	152613	122660	Jul. 13, 2023	Annual	Jul. 13, 2024
BRIDGE COUPLER	MARKI MICROWAVE INC	CBR16-0012	1542	May 16, 2023	Annual	May 16, 2024
High Pass Filter	Wainwright Instrument GmbH	WHKX3.0/18G-10SS	21	Jun. 01, 2023	Annual	Jun. 01, 2024
High Pass Filter	Wainwright Instrument GmbH	WHNX7.5/26.5G-6SS	15	Jun. 02, 2023	Annual	Jun. 02, 2024
Low Pass Filter	Mini-Circuits	NLP-1200+	V 8979400903-1	May 16, 2023	Annual	May 16, 2024
Power Sensor	R&S	NRP-Z81	100669	May 16, 2023	Annual	May 16, 2024
DC Power Supply	R&S	HMP2020	022802107	Oct. 31, 2023	Annual	Oct. 31, 2024
Preamplifier	H.P.	8447F	2944A03909	Aug. 04, 2023	Annual	Aug. 04, 2024
Signal Conditioning Unit	R&S	SCU-18F	101058	Dec. 07, 2023	Annual	Dec. 07, 2024
Preamplifier	MITEQ Inc.	JS44-18004000-35-8P	1546891	Oct. 06, 2023	Annual	Oct. 06, 2024
Loop Antenna	Schwarzbeck Mess- Elektronik	FMZB 1519	1519-039	Aug. 21, 2023	Biennial	Aug. 21, 2025
Bilog Antenna	Schwarzbeck Mess- Elektronik	VULB 9163	01126	Feb. 09, 2023	Annual	Feb. 09, 2024
Horn Antenna	R&S	HF906	100326	Feb. 28, 2023	Annual	Feb. 28, 2024
Horn Antenna	Schwarzbeck Mess- Elektronik	BBHA 9170	BBHA9170223	Oct. 10, 2023	Annual	Oct. 10, 2024
EMI Test Receiver	R&S	ESU26	100109	Jan. 16, 2024	Annual	Jan. 16, 2025
Turn Table	Innco systems GmbH	DS 1200 S	N/A	N.C.R.	N/A	N.C.R.
Controller	Innco systems GmbH	CONTROLLER CO3000- 4P	CO3000/963/383 30516/L	N.C.R.	N/A	N.C.R.
Antenna Mast	Innco systems GmbH	MA4640-XP-ET	MA4640/536/383 30516/L	N.C.R.	N/A	N.C.R.
Anechoic Chamber	SY Corporation	L × W × H (9.6 m × 6.4 m × 6.6 m)	N/A	N.C.R.	N/A	N.C.R.
Coaxial Cable	RFONE	MWX221-NMSNMS (4 m)	J1023142	Oct. 04, 2023	Semi- Annual	Apr. 04, 2024
Coaxial Cable	Qualwave Inc.	QA500-18-NN-10 (10 m)	22200114	Oct. 04, 2023	Semi- Annual	Apr. 04, 2024
Coaxial Cable	RADIALL	TESTPRO 3	182287	Oct. 14, 2023	Semi- Annual	Apr. 14, 2024
Coaxial Cable	RADIALL	TESTPRO 3	182288	Oct. 14, 2023	Semi- Annual	Apr. 14, 2024
Coaxial Cable	RADIALL	TESTPRO 3	182290	Oct. 14, 2023	Semi- Annual	Apr. 14, 2024

Note;

For equipment listed above that has a calibration date or calibration due date that falls within the test date range, care was taken to ensure that this equipment was used after the calibration date and before the calibration due date

1.7. Declaration by the Manufacturer

- Adaptive Frequency Hopping is supported and use at least 20 channels.

1.8. Summary of Test Results

The EUT has been tested according to the following specifications:

APPLIED STA	APPLIED STANDARD: FCC Part15 Subpart C, IC RSS-247 Issue 3 and RSS-Gen Issue 5							
Section in FCC	Section in IC	Test Item(s)	Result					
15.205(a) 15.209 15.247(d)	RSS-247 Issue 3 5.5 RSS-Gen Issue 5 8.9	Transmitter Radiated Spurious Emissions and Conducted Spurious Emission	Complied					
15.247(a)(1)	RSS-247 Issue 3 5.1(b) RSS-Gen Issue 5 6.7 20 dB Bandwidth and 99 % Bandwid		Complied					
15.247(a)(1) 15.247(b)(1)	RSS-247 Issue 3 5.1(b) 5.4(b)	Maximum Peak Conducted Output Power	Complied					
15.247(a)(1)	RSS-247 Issue 3 5.1(b)	Carrier Frequency Separation	Complied					
15.247(a)(1)(iii)	RSS-247 Issue 3 5.1(d)	Number of Hopping Frequencies	Complied					
15.247(a)(1)(iii)	RSS-247 Issue 3 5.1(d)	Time of Occupancy (Dwell Time)	Complied					
15.207	RSS-Gen Issue 5 8.8	AC Power Line Conducted Emission	N/A ¹⁾					

Note;

1) The AC power line test was not performed because the EUT use battery power for operation and which do not operate from the AC power lines.

1.9. Test Procedure(s)

The measurement procedures described in the American National Standard of Procedure for Compliance Testing of unlicensed Wireless Devices (ANSI C63.10-2013) and the guidance provided in KDB 558074 D01 15.247 Meas Guidance v05r02 were used in the measurement of the DUT.

1.10. Sample Calculation

Where relevant, the following sample calculation is provided:

1.10.1. Conducted Test

Offset value (dB) = Directional coupler (dB) + Cable loss (dB)

1.10.2. Radiation Test

Field strength level (dBµN/m) = Measured level (dBµN) + Antenna factor (dB/m) + Cable loss (dB) - Amplifier gain (dB) + Duty factor (dB)

1.11. Information of software for test

- Using the software of BlueTest3 v3.3.17 to testing of EUT.

1.12. Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Parameter	Uncertainty					
Maximum Peak Conducted Output Power		0.33 dB				
99 & Bnadwidth		6.89 kHz				
20 dB Bandwidth	6.79 kHz					
Conducted Spurious Emission	0.87 dB					
Time of Occupancy		0.02 ms				
Redicted Emission 0 Mar to 20 Mar	н	3.60 dB				
Radiated Emission, 9 kHz to 30 MHz	V	3.60 dB				
Dedicted Emission holey 1 (1)	н	4.60 dB				
Radiated Emission, below 1 GHz	V	4.90 dB				
Padiated Emission above 1 M	н	3.90 dB				
Radiated Emission, above 1 GHz	V	3.80 dB				

All measurement uncertainty values are shown with a coverage factor k = 2 to indicate a 95 % level of confidence.

1.13. Test Report Revision

Revision	Report Number Date of Issue		Description
0	F690501-RF-RTL004858	2024.02.26	Initial

Report Number: F690501-RF-RTL004858

1.14. Descriptions of Test Mode

Preliminary tests were performed in different data rates and recorded the RF output power in the following table:

Mode	Data Rate (Mbps)	Channel	Frequency (ᡅ)	RF Peak Output Power (dB m)
		Low	2 402	17.69
GFSK	1	Middle	2 441	<u>17.96</u>
		High	2 480	17.82
		Low	2 402	18.14
π/4DQPSK	2	Middle	2 441	18.55
		High	2 480	<u>18.68</u>
		Low	2 402	18.18
8DPSK	3	Middle	2 441	18.61
		High	2 480	<u>18.81</u>

Note;

1. For transmitter radiated spurious emissions, conducted spurious emission, carrier frequency separation and number of hopping frequencies, GFSK / DH5 and 8DPSK / 3DH5 are tested as worst condition. 2. For 20 dB bandwidth, 99 % bandwidth and maximum peak conducted output power, GFSK / DH5,

 $\pi/4DQPSK / 2DH5$ and 8DPSK / 3DH5 are tested as worst condition.

3. For Time of Occupancy, GFSK / DH1, DH3, DH5 and 8DPSK / 3DH1, 3DH3, 3DH5 are tested as worst condition.

1.15. Duty Cycle Correction Factor of EUT

According to KDB 558074 D01 15.247 Meas Guidance v05r02, 9, as a "duty cycle correction factor", pulse averaging with 20 log (worst case dwell time / 100 ms) has to be used for average result.

3DH5 on time (One Pulse) Plot on Channel 39

3DH5 on time (Count Pulses) Plot on Channel 39

	Spectrum 2 🛞 Spectru			Spectrum		2 🛞 Spectrum			
SGL TDF	dBm			Ref Level 20. Att SGL TDF		 RBW 3 MHz 100 ms VBW 3 MHz 			
1Pk Max				●1Pk Max					
10 dBm		D2[1]	16,82 dBm 2.93000 ms -1.40 dB 2.89000 ms						\square
) dBm				0 dBm					
-20 dBm				-20 dBm	and the states of the second	sadio continuo al darcadar		สการสารที่ได้การสารที่เป็นการสารที่เป็นการ	w waaaaaa
40 dBm	Willingtobertapl	ly the whole	- and the set	-40 dBm	en e	flat and through the state of t	and adverte the state of the state	ala a ol M ala alla a seconda	
50 dBm				-50 dBm					
70 dBm				-70 dBm					
CF 2.441 GHz		1001 pts	1.0 ms/	CF 2.441 GHz		10	01 pts		10.0 ms/
		Ready	11.01.2024				Ready	(11.01.2024 15:12:48

In AFH mode, the minimum hopping frequencies are 20, to get the longest dwell time 3DH5 packet is observed;

the period to have 3DH5 packet completing one hopping sequence is 2.89 $ms \times 20$ channels = 57.80 ms

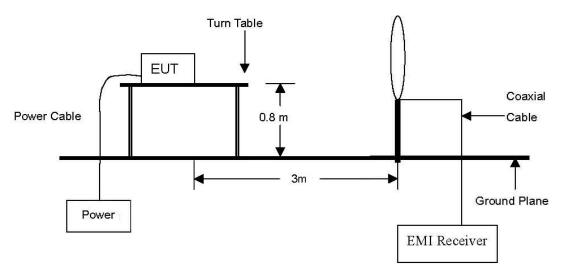
There cannot be 2 complete hopping sequences within 100 ms period, considering the random hopping behavior, maximum 2 hops can be possibly observed within the period. [100 ms / 57.80 ms] = 2 hops

Thus, the maximum possible ON time:

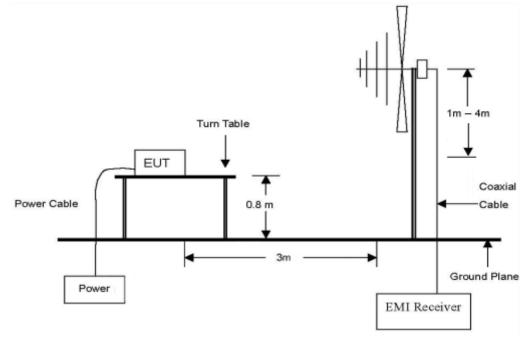
2.89 ms x 2 = 5.78 ms

Worst case Duty Cycle Correction factor, which is derived from the maximum possible ON time:

20 x log (5.78 ms/100 ms) = -24.76 dB



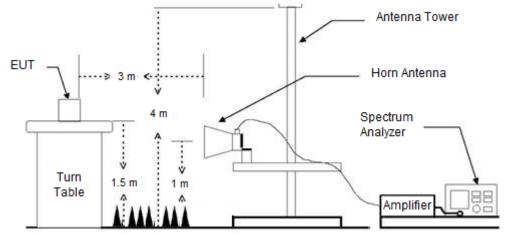
2. Transmitter Radiated Spurious Emissions and Conducted Spurious Emissions

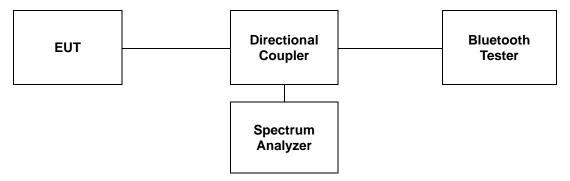

2.1. Test Setup

2.1.1. Transmitter Radiated Spurious Emissions

The diagram below shows the test setup that is utilized to make the measurements for emission from 9 $\,\rm klz$ to 30 $\,\rm Mz$

The diagram below shows the test setup that is utilized to make the measurements for emission from 30 Mz to 1 Gz.




Report Number: F690501-RF-RTL004858

Page:	11	of	60
-------	----	----	----

The diagram below shows the test setup that is utilized to make the measurements for emission. The spurious emissions were investigated form 1 Gl_2 to the 10th harmonic of the highest fundamental frequency or 40 Gl_2 , whichever is lower.

2.1.2. Conducted Spurious Emissions

2.2. Limit

2.2.1. FCC

According to §15.247(d), in any 100 kl/z bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kl/z bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emission which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

According to §15.209(a), except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (账)	Field Strength (<i>μ</i> ∛/m)	Measurement Distance (Meters)
0.009-0.490	2 400/F(kHz)	300
0.490-1.705	24 000/F(kliz)	30
1.705-30.0	30	30
30-88	100**	3
88-216	150**	3
216-960	200**	3
Above 960	500	3

** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 Mb, 76-88 Mb, 174-216 Mb or 470-806 Mb. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§15.231 and 15.241.

Report Number: F690501-RF-RTL004858

2.2.2. IC

According to RSS-247 Issue 3, 5.5, in any 100 kt bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kt bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under section 5.4(d), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

According to RSS-Gen Issue 5, 8.9, except where otherwise indicated in the applicable RSS, radiated emissions shall comply with the field strength limits shown in table 5 and table 6. Additionally, the level of any transmitter unwanted emission shall not exceed the level of the transmitter's fundamental emission.

Frequency (쌘)	Field Strength (µV/m at 3 m)
30-88	100
88-216	150
216-960	200
Above 960	500

Table 5 – General Field Strength Limits at frequencies above 30 Mz

Table 6 – General Field Strength Limits at frequencies below 30 Mb

Frequency	Magnetic Field Strength (H-Field) (#A/m)	Measurement Distance (meters)
9-490 kHz ¹	6.37/F (F in kl₂)	300
490-1 705 kHz	63.7/F (F in k⊞)	30
1.705-30 Mz	0.08	30

Note¹: The emission limits for the ranges 9-90 klz and 110-490 klz are based on measurements employing a linear average detector.

2.3. Test Procedures

Radiated emissions from the EUT were measured according to the dictates of ANSI C63.10-2013 and only the radiated emissions of the configuration that produced the worst case emissions are reported in this section.

2.3.1. Test Procedures for emission below 30 Mb

- 1. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter anechoic chamber test site. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2. Then antenna is a loop antenna is fixed at one meter above the ground to determine the maximum value of the field strength. Both parallel and perpendicular of the antenna are set to make the measurement.
- 3. For each suspected emission, the EUT was arranged to its worst case and then the table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 4. The test-receiver system was set to average or quasi peak detect function and Specified Bandwidth with Maximum Hold Mode.

2.3.2. Test Procedures for emission from above 30 Mb

- 1. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter anechoic chamber test site below 1 GHz and 1.5 meter above the ground at a 3 meter anechoic chamber test site above 1 GHz. The table was rotated 360 degrees to determine the position of the highest radiation.
- 2. During performing radiated emission below 1 GHz, the EUT was set 3 meters away from the interference receiving antenna, which was mounted on the top of a variable-height antenna tower. During performing radiated emission above 1 GHz, the EUT was set 3 meter away from the interference-receiving antenna.
- 3. The antenna is a bi-log antenna, a horn antenna and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the table was turned from 0 degrees to 360 degrees to find the maximum reading.
- 5. For measurements below 1 GHz resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.
- 6. For measurements Above 1 GHz resolution bandwidth is set to 1 MHz, the video bandwidth is set to 3 MHz for peak measurements and as applicable for average measurements.

2.3.3. Definition of EUT Axis.

The radiation test of the EUT was investigated in three orthogonal orientations X, Y, and Z described in the test setup photo. All radiated testing of EUT was performed with worst case axis.

2.3.3. Test Procedures for Conducted Spurious Emissions

2.3.3.1. Band-edge Compliance of RF Conducted Emissions

The transmitter output was connected to the spectrum analyzer. Span = wide enough to capture the peak level of the emission operating on the channel closest to the band edge, as well as any modulation products which fall outside of the authorized band of operation. RBW \geq 100 kHz VBW = 300 kHz Sweep = auto Detector function = peak Trace = max hold

2.3.3.2. Spurious RF Conducted Emissions

The transmitter output was connected to the spectrum analyzer. RBW = 1 Mb VBW = 3 Mb Sweep = auto Detector function = peak Trace = max hold

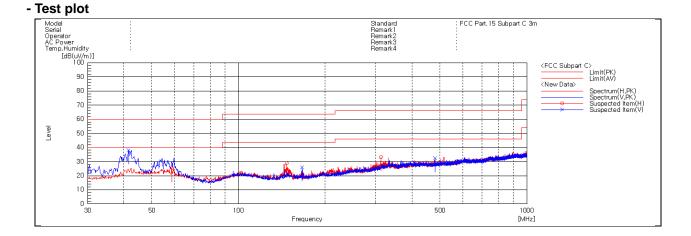
2.3.3.3. TDF function

- For plots showing conducted spurious emissions from 9 klz to 25 Glz, all path loss of wide frequency range was investigated and compensated to spectrum analyzer as TDF function. So, the reading values shown in plots were final result.

Report Number: F690501-RF-RTL004858

2.4. Test Results

Ambient temperature	:	(23	3 ± 1) ℃
Relative humidity	:	47	% R.H.


2.4.1. Radiated Spurious Emission below 1 000 Mb

The frequency spectrum from 9 kltz to 1 000 Mtz was investigated. All reading values are peak values.

Radia	ated Emissio	ons	Ant.	Correctio	n Factors	Total	Limit	
Frequency (胍)	Reading (dBµN)	Detect Mode	Pol.	AF (dB/m)	AMP + CL (dB)	Actual (dBµN/m)	Limit (dBµV/m)	Margin (dB)
41.64	47.10	Peak	V	18.83	-27.93	<u>38.00</u>	40.00	2.00
58.74	34.70	Peak	Н	18.58	-27.77	25.51	40.00	14.49
147.01	42.20	Peak	н	13.70	-27.10	28.80	43.50	14.70
166.29	38.30	Peak	V	14.60	-26.94	25.96	43.50	17.54
312.15	40.20	Peak	н	19.20	-26.07	33.33	46.00	12.67
479.96	35.30	Peak	V	22.60	-25.48	32.42	46.00	13.58

Remark;

- 1. Spurious emissions for all channels and modes were investigated and almost the same below 1 GHz.
- 2. Test from 30 Mz to 1 000 Mz was performed using the software of EP5RE(V5.3.70) from TOYO.
- 3. Reported spurious emissions are in EDR / 3DH5 / High channel as worst case among other modes.
- Radiated spurious emission measurement as below.
 (Actual = Reading + AF + AMP + CL)
- 5. According to §15.31(o), emission levels are not report much lower than the limits by over 20 dB.

RTT7081-02(2020.10.05)(0)

Report Number: F690501-RF-RTL004858

2.4.2. Radiated Spurious Emission above 1 000 Mb

The frequency spectrum above 1 000 Mb was investigated. All reading values are peak values.

Operating Mode: GFSK

A. Low Channel (2 402 Mb)

Radiated Emissions			Ant.	Corr	Correction Factors			Limit	
Frequency (畑)	Reading (dBµN)	Detect Mode	Pol.	AF (dB/m)	CL (dB)	DF (dB)	Actual (dBµN/m)	Limit (dBµV/m)	Margin (dB)
*2 310.00	24.71	Peak	Н	28.04	6.65	-	59.40	74.00	14.60
*2 310.00	-	Average	н	-	-	-24.76	34.64	54.00	19.36
*2 389.36	29.56	Peak	н	28.15	7.60	-	65.44	74.00	8.56
*2 389.36	-	Average	н	-	-	-24.76	40.68	54.00	13.32
*2 390.00	28.97	Peak	н	28.28	7.55	-	64.80	74.00	9.20
*2 390.00	-	Average	Н	-	-	-24.76	40.04	54.00	13.96

Radiated Emissions			Ant.	Cor	Correction Factors			Total Limit	
Frequency (畑)	Reading (dBµV)	Detect Mode	Pol.	AF (dB/m)	AMP+CL (dB)	DF (dB)	Actual (dBµN/m)	Limit (dBµV/m)	Margin (dB)
*4 804.38	58.11	Peak	н	32.72	-29.00	-	61.83	74.00	12.17
*4 804.38	-	Average	Н	-	-	-24.76	37.07	54.00	16.93
7 206.54	53.20	Peak	V	36.11	-27.36	-	61.95	74.00	12.05
9 608.74	48.50	Peak	V	37.60	-27.22	-	58.88	74.00	15.12
*12 010.92	39.56	Peak	н	38.50	-23.02	-	55.04	74.00	18.96
14 413.06	38.67	Peak	н	41.73	-24.54	-	55.86	74.00	18.14
Above 14 500.00	Not detected	-	-	-	-	-	-	-	-

Report Number: F690501-RF-RTL004858

B. Middle Channel (2 441 Mtz)

Radi	Radiated Emissions			Cor	Correction Factors			Total Limit	
Frequency (胍)	Reading (dBµV)	Detect Mode	Pol.	AF (dB/m)	AMP+CL (dB)	DF (dB)	Actual (dBµN/m)	Limit (dBµN/m)	Margin (dB)
*4 881.70	58.00	Peak	Н	33.09	-28.66	-	62.43	74.00	11.57
*4 881.70	-	Average	Н	-	-	-24.76	37.67	54.00	16.33
*7 323.62	51.08	Peak	V	36.15	-27.23	-	60.00	74.00	14.00
*7 323.62	-	Average	V	-	-	-24.76	35.24	54.00	18.76
9 763.38	54.39	Peak	V	37.65	-25.83	-	66.21	74.00	7.79
*12 204.62	38.97	Peak	Н	38.60	-23.82	-	53.75	74.00	20.25
14 645.14	37.25	Peak	Н	41.40	-23.49	-	55.16	74.00	18.84
Above 14 700.00	Not detected	-	-	-	-	-	-	-	-

Report Number: F690501-RF-RTL004858

C. High Channel (2 480 Mb)

Radiated Emissions			Ant.	Correction Factors			Total	Limit	
Frequency (胍)	Reading (dBµN)	Detect Mode	Pol.	AF (dB/m)	CL (dB)	DF (dB)	Actual (dBµN/m)	Limit (dBµV/m)	Margin (dB)
*2 483.50	33.45	Peak	Н	28.27	7.69	-	69.41	74.00	4.59
*2 483.50	-	Average	н	-	-	-24.76	44.65	54.00	9.35
*2 483.58	34.42	Peak	Н	28.27	7.68	-	70.37	74.00	3.63
*2 483.58	-	Average	н	-	-	-24.76	<u>45.61</u>	54.00	8.39
*2 500.00	28.07	Peak	Н	28.30	6.71	-	63.08	74.00	10.92
*2 500.00	-	Average	Н	-	-	-24.76	38.32	54.00	15.68

Radi	Radiated Emissions			Cor	Correction Factors			Limit	
Frequency (쌘)	Reading (dBµV)	Detect Mode	Pol.	AF (dB/m)	AMP+CL (dB)	DF (dB)	Actual (dBµN/m)	Limit (dBµV/m)	Margin (dB)
*4 960.30	55.47	Peak	н	33.20	-29.23	-	59.44	74.00	14.56
*4 960.30	-	Average	Н	-	-	-24.76	34.68	54.00	19.32
*7 439.58	49.02	Peak	V	36.20	-27.54	-	57.68	74.00	16.32
9 920.72	55.80	Peak	V	37.60	-25.74	-	67.66	74.00	6.34
*12 399.24	35.51	Peak	н	38.40	-23.60	-	50.31	74.00	23.69
14 881.08	36.92	Peak	н	40.60	-23.70	-	53.82	74.00	20.18
Above 14 900.00	Not detected	-	-	-	-	-	-	-	-

Report Number: F690501-RF-RTL004858

Operating Mode: 8DPSK

A. Low Channel (2 402 Mz)

Radia	Radiated Emissions			Correction Factors			Total	Limit	
Frequency (쌘)	Reading (dBµN)	Detect Mode	Pol.	AF (dB/m)	CL (dB)	DF (dB)	Actual (dBµN/m)	Limit (dBµN/m)	Margin (dB)
*2 310.00	26.11	Peak	н	28.04	6.65	-	60.80	74.00	13.20
*2 310.00	-	Average	Н	-	-	-24.76	36.04	54.00	17.96
*2 389.88	29.52	Peak	н	28.28	7.56	-	65.36	74.00	8.64
*2 389.88	-	Average	н	-	-	-24.76	40.60	54.00	13.40
*2 390.00	29.03	Peak	Н	28.28	7.55	-	64.86	74.00	9.14
*2 390.00	-	Average	Н	-	-	-24.76	40.10	54.00	13.90

Radiated Emissions			Ant.	Correction Factors			Total	Limit	
Frequency (쌘)	Reading (dB _# N)	Detect Mode	Pol.	AF (dB/m)	AMP+CL (dB)	DF (dB)	Actual (dBµN/m)	Limit (dBµN/m)	Margin (dB)
*4 804.08	58.99	Peak	н	32.72	-29.00	-	62.71	74.00	11.29
*4 804.08	-	Average	н	-	-	-24.76	37.95	54.00	16.05
7 206.46	54.63	Peak	V	36.11	-27.37	-	63.37	74.00	10.63
9 608.06	52.16	Peak	V	37.60	-27.22	-	62.54	74.00	11.46
*12 010.98	39.09	Peak	Н	38.50	-23.02	-	54.57	74.00	19.43
14 412.38	39.75	Peak	н	41.72	-24.56	-	56.91	74.00	17.09
Above 14 500.00	Not detected	-	-	-	-	-	-	-	-

Report Number: F690501-RF-RTL004858

B. Middle Channel (2 441 Mtz)

Radiated Emissions			Ant.	Cor	rection Fac	tors	Total	Limit	
Frequency (쌘)	Reading (dBµN)	Detect Mode	Pol.	AF (dB/m)	AMP+CL (dB)	DF (dB)	Actual (dBµN/m)	Limit (dBµN/m)	Margin (dB)
*4 881.88	58.27	Peak	Н	33.09	-28.67	-	62.69	74.00	11.31
*4 881.88	-	Average	Н	-	-	-24.76	37.93	54.00	16.07
*7 323.52	49.10	Peak	V	36.15	-27.24	-	58.01	74.00	15.99
9 764.02	56.93	Peak	V	37.66	-25.86	-	68.73	74.00	5.27
*12 204.18	39.09	Peak	н	38.60	-23.81	-	53.88	74.00	20.12
14 645.12	38.58	Peak	Н	41.40	-23.49	-	56.49	74.00	17.51
Above 14 700.00	Not detected	-	-	-	-	-	-	-	-

Report Number: F690501-RF-RTL004858

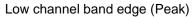
C. High Channel (2 480 Mbz)

Radiated Emissions			Ant.	Correction Factors			Total	Limit	
Frequency (쌘)	Reading (dBµN)	Detect Mode	Pol.	AF (dB/m)	CL (dB)	DF (dB)	Actual (dBµN/m)	Limit (dBµV/m)	Margin (dB)
*2 483.50	36.05	Peak	Н	28.27	7.69	-	72.01	74.00	1.99
*2 483.50	-	Average	н	-	-	-24.76	47.25	54.00	6.75
*2 483.55	36.95	Peak	Н	28.27	7.68	-	72.90	74.00	1.10
*2 483.55	-	Average	н	-	-	-24.76	48.14	54.00	5.86
*2 500.00	27.46	Peak	Н	28.30	6.71	-	62.47	74.00	11.53
*2 500.00	-	Average	Н	-	-	-24.76	37.71	54.00	16.29

Radiated Emissions			Ant.	Cor	rection Fac	tors	Total	Limit	
Frequency (쌘)	Reading (dBµV)	Detect Mode	Pol.	AF (dB/m)	AMP+CL (dB)	DF (dB)	Actual (dBµN/m)	Limit (dBµN/m)	Margin (dB)
*4 960.08	56.59	Peak	н	33.20	-29.21	-	60.58	74.00	13.42
*4 960.08	-	Average	Н	-	-	-24.76	35.82	54.00	18.18
*7 440.58	46.07	Peak	V	36.20	-27.52	-	54.75	74.00	19.25
9 920.00	57.95	Peak	V	37.60	-25.76	-	69.79	74.00	4.21
*12 399.90	37.85	Peak	н	38.40	-23.59	-	52.66	74.00	21.34
14 879.74	38.17	Peak	н	40.60	-23.72	-	55.05	74.00	18.95
Above 14 900.00	Not detected	-	-	-	-	-	-	-	-

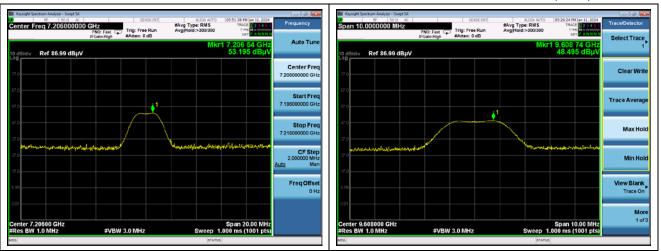
Remark;

- 1. "*" means the restricted band.
- 2. Measuring frequencies from 1 $\,\mathrm{Ghz}$ to the 10th harmonic of highest fundamental frequency.
- 3. Radiated emissions measured in frequency above 1 000 № were made with an instrument using peak/average detector mode.
- 4. Actual = Reading + AF + CL + (DF) or Reading + AF + AMP + CL + (DF).
- 5. According to § 15.31(o), emission levels are not reported much lower than the limits by over 20 dB.
- 6. The maximized peak measured value complies with the average limit, to perform an average measurement is unnecessary.
- 7. AF = Antenna Factor, CL = Cable Loss, DF = Duty Correction Factor.

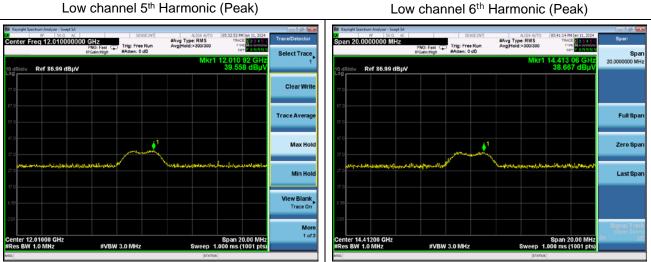

Report Number: F690501-RF-RTL004858

Low channel 2nd Harmonic (Peak)

Low channel 4th Harmonic (Peak)


- Test plots

Mode: GFSK

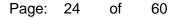


Low channel 3rd Harmonic (Peak)

Low channel 6th Harmonic (Peak)

RTT7081-02(2020.10.05)(0)

A4(210 mm * 297 mm)


er Freg 7.323000000 GHz

Ref 86.99 dBµV

ter 7.32300 GHz s BW 1.0 MHz

Report Number: F690501-RF-RTL004858

7.323

Span 20.00 MH ep 1.000 ms (1001 pts

Select Tra

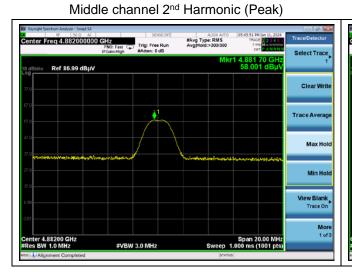
Clear Writ

Trace Avera

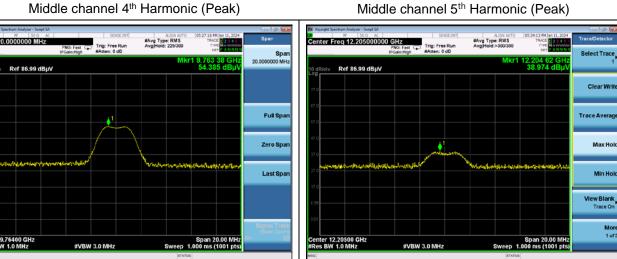
Max Hol

Min Ho

View Blank Trace On


More 1 of 3

#Avg Type: RMS Avg Hold:>300/30

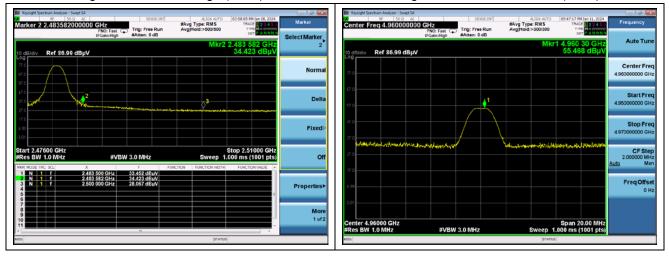

Middle channel 3rd Harmonic (Peak)

Trig: Free Ru

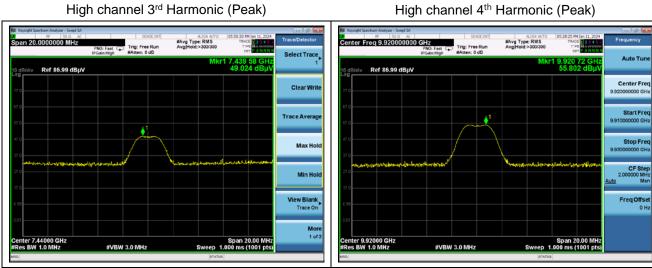
#VBW 3.0 MH;

Middle channel 4th Harmonic (Peak)

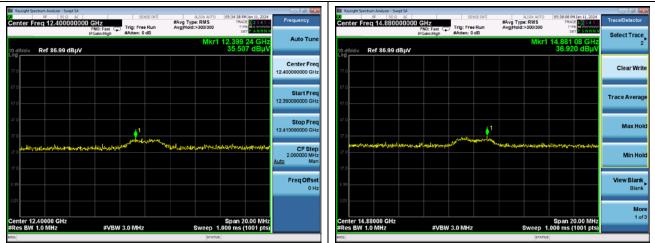
Middle channel 6th Harmonic (Peak)



S

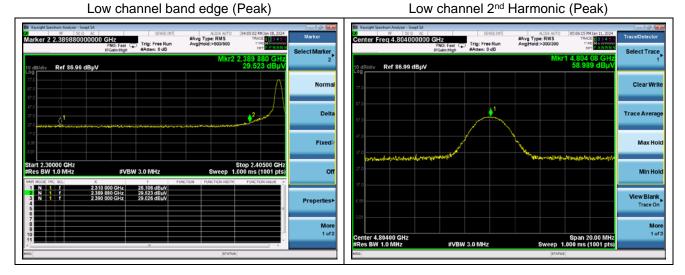


High channel 2nd Harmonic (Peak)

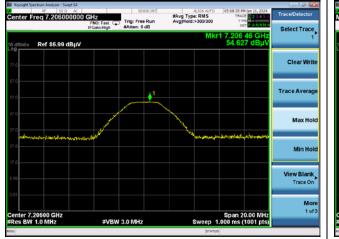

High channel band edge (Peak)

High channel 3rd Harmonic (Peak)

High channel 5th Harmonic (Peak)

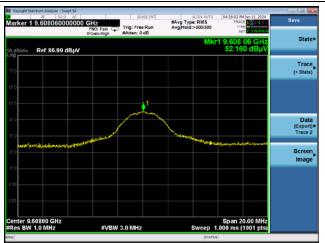


High channel 6th Harmonic (Peak)



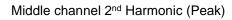
Report Number: F690501-RF-RTL004858

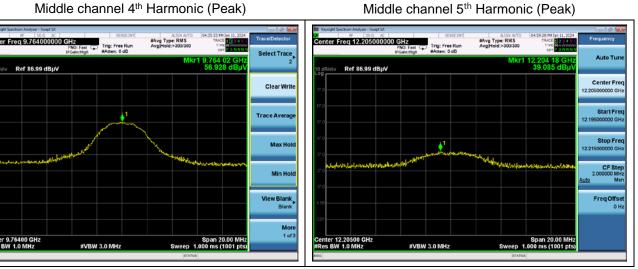
Mode: 8DPSK



Low channel 3rd Harmonic (Peak)

Low channel 5th Harmonic (Peak)


Low channel 6th Harmonic (Peak)



Middle channel 3rd Harmonic (Peak)

Middle channel 4th Harmonic (Peak)

Middle channel 6th Harmonic (Peak)

S

Span 20.00 MH 1.000 ms (1001 pt

57 946

Auto Tu

Center Fre

Start Fre

Stop Fre

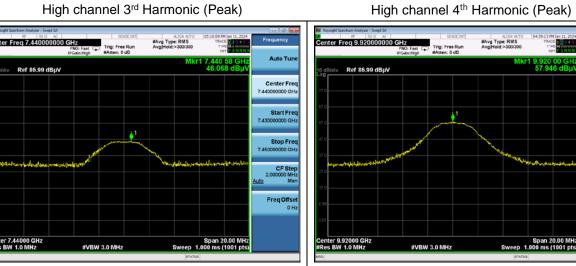
CF S

FreqOffse

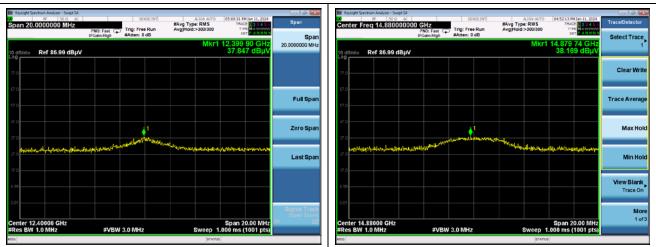
Clear W

Trace Aver

Max Hol


Min Hol

More 1 of 3


High channel band edge (Peak)

High channel 3rd Harmonic (Peak)

High channel 5th Harmonic (Peak)

High channel 6th Harmonic (Peak)

High channel 2nd Harmonic (Peak)

Trig: Free Ru

#VBW 3.0 MH

#Avg Type: RMS Avg/Hold:>300/300