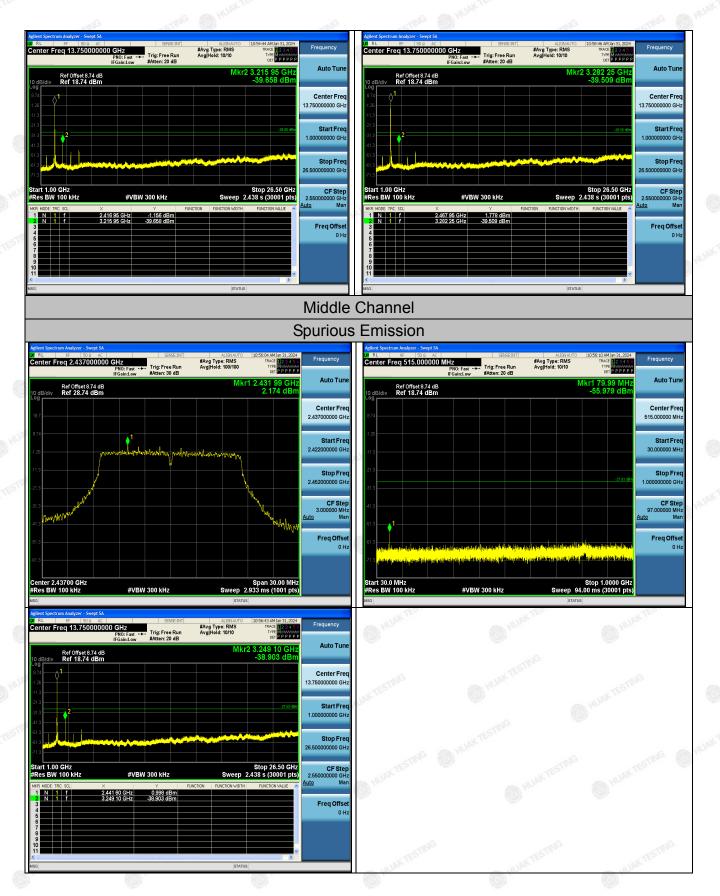


Page 37 of 72

802.11g Modulation


The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

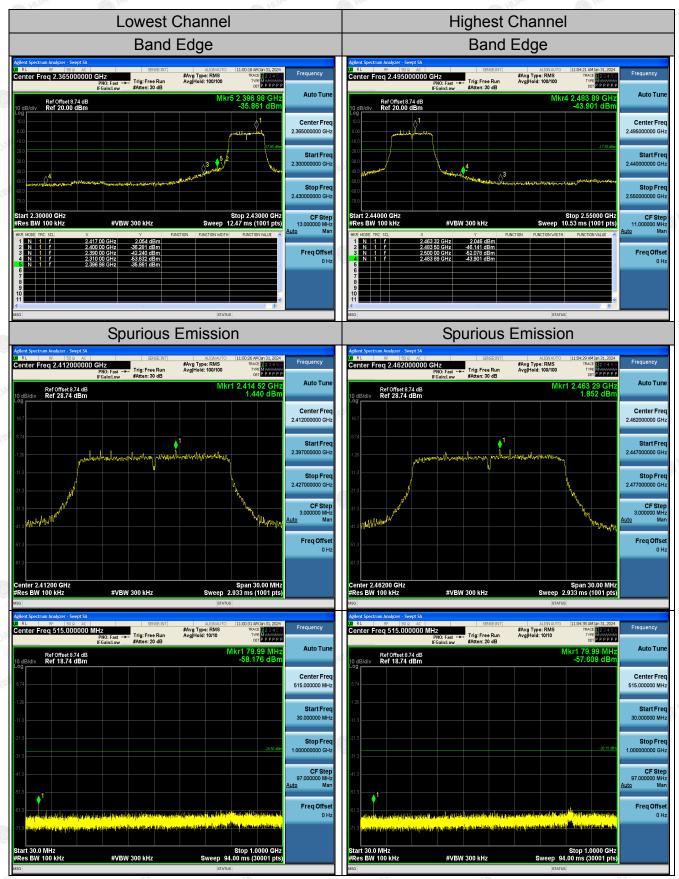
TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

Page 38 of 72

HST FIF

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

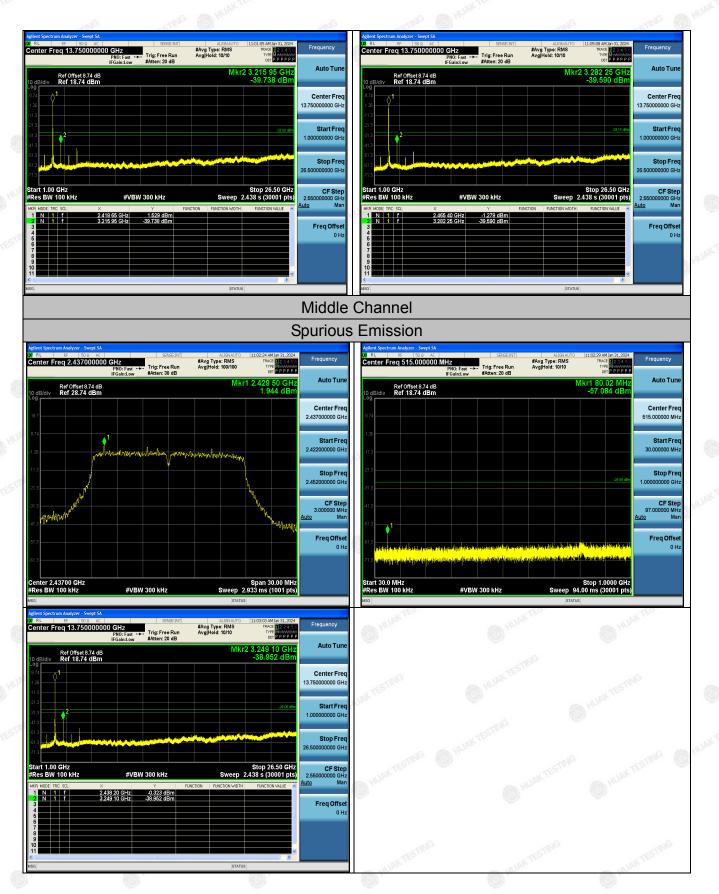


Page 39 of 72

NG

¦К

802.11n (HT20) Modulation


The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

Page 40 of 72

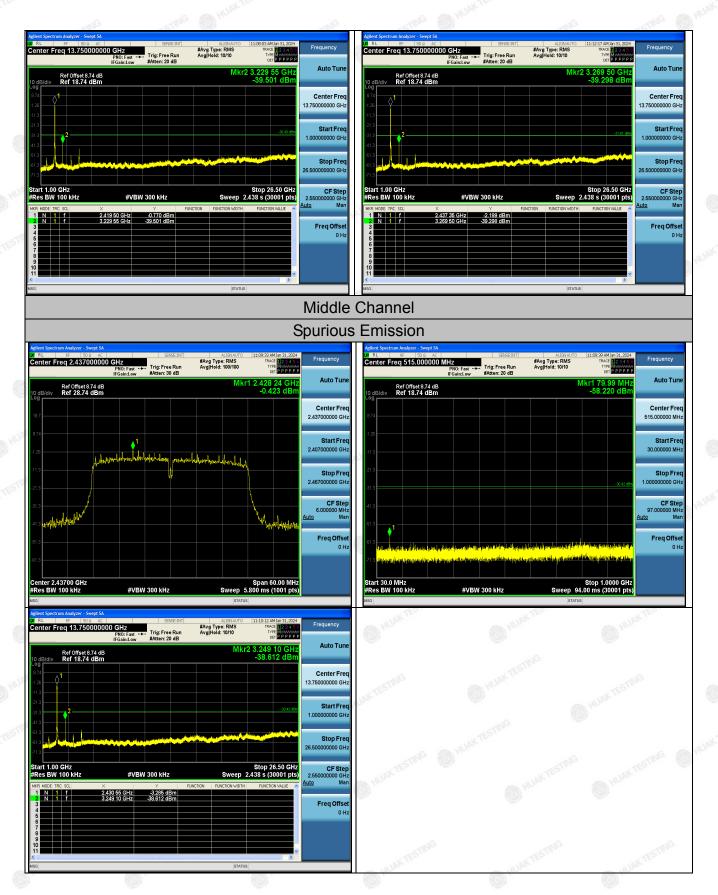
J.


The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

Page 41 of 72

802.11n (HT40) Modulation


The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

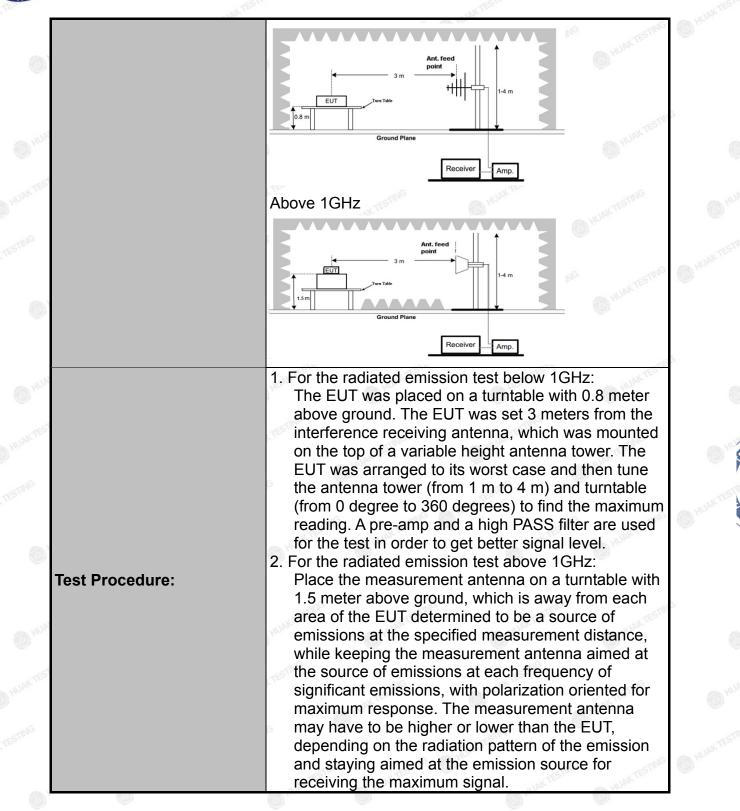
Page 42 of 72

FICATION

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

4.7. Radiated Spurious Emission Measurement


Test Specification

	1 The		TED		TES
ANSI C63.10): 2013	(HUAN		O HUAN
9 kHz to 25 (GHz		CTING		
3 m	TESTING	(m)	AKTE		TESTING
Horizontal &	Vertical	<i>w</i>	.0	0	HUME
Transmitting	mode with	modulati	ion		
Frequency	Detector	RBW	VBW	STING	Remark
9kHz- 150kHz 150kHz- 30MHz	Quasi-peak Quasi-peak	200Hz 9kHz	1kHz 30kHz		i-peak Valu i-peak Valu
30MHz-1GHz	Quasi-peak	120KHz	300KHz	Quas	i-peak Valu
	Peak	1MHz	3MHz		eak Value
Above IGHZ	Peak	1MHz	10Hz	Ave	erage Value
Frequency			-	Measurement Distance (meters)	
0.009-0.4	190		,		300
			KHz)	1000 N	30
-			n ^G	I I I I I I I I I I I I I I I I I I I	30
					3 3
				TING	3
	500	- HUAK TE		3	
0	Ŷ		0		Ś
Frequency		Field Strength (microvolts/meter)		ce	Detector
Above 1GHz	NUAK 1	500			Average
	- 5	5000 3			Peak
For radiated	3 m - Turs Tale Ground Plane				NAK TESTING
	9 kHz to 25 0 3 m Horizontal & Transmitting Frequency 9kHz-150kHz 150kHz- 30MHz-1GHz Above 1GHz Frequency 0.009-0.4 0.490-1.3 1.705-3 30-88 88-210 216-96 Above 9 Frequency Above 1GHz Frequency Above 1GHz	Horizontal & Vertical Transmitting mode with Frequency Detector 9kHz-150kHz Quasi-peak 150kHz- Quasi-peak 30MHz Quasi-peak 30MHz-1GHz Quasi-peak Above 1GHz Peak Peak Peak 0.009-0.490 0 0.490-1.705 1 1.705-30 30-88 88-216 2 216-960 Above 960 Frequency Field (microv Above 1GHz 5 For radiated emissions Image: Construct of the state 3m Image: Construct of the state 3m Image: Construct of the state 3m	9 kHz to 25 GHz 3 m Horizontal & Vertical Transmitting mode with modulat Frequency Detector RBW 9kHz-150kHz Quasi-peak 200Hz 150kHz- Quasi-peak 9kHz 30MHz Quasi-peak 120KHz 30MHz Quasi-peak 120KHz 30MHz Quasi-peak 120KHz Above 1GHz Peak 1MHz V Frequency Field Strength 0.009-0.490 2400/F(th) 0.490-1.705 0.1705-30 30 30 30-88 100 88-216 150 216-960 200 500 Above 1GHz 500 5000 For radiated emissions below 30 Ground Plane Ground Plane Plane <td>9 kHz to 25 GHz 3 m Horizontal & Vertical Transmitting mode with modulation</td> <td>9 kHz to 25 GHz 3 m Horizontal & Vertical Transmitting mode with modulation Frequency Detector RBW VBW 9kHz-150kHz Quasi-peak 200Hz 1kHz Quasi- 150kHz- Quasi-peak 9kHz 30kHz Quasi- 30MHz-1GHz Quasi-peak 120KHz 300KHz Quasi- 30MHz-1GHz Quasi-peak 120KHz 300KHz Quasi- Above 1GHz Peak 1MHz 3MHz Pri Above 1GHz Peak 1MHz 10Hz Ave Frequency Field Strength Me (microvolts/meter) Distance 0.009-0.490 2400/F(KHz) 100 88-216 150 200 Above 960 500 Content Distance (meters) Above 1GHz 500 3 3 0 3 0 3 0 3 0 500 Content Distance Frequency Field Strength Measurement Distance (meters) Above 1GHz 500 3 0 3 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0</td>	9 kHz to 25 GHz 3 m Horizontal & Vertical Transmitting mode with modulation	9 kHz to 25 GHz 3 m Horizontal & Vertical Transmitting mode with modulation Frequency Detector RBW VBW 9kHz-150kHz Quasi-peak 200Hz 1kHz Quasi- 150kHz- Quasi-peak 9kHz 30kHz Quasi- 30MHz-1GHz Quasi-peak 120KHz 300KHz Quasi- 30MHz-1GHz Quasi-peak 120KHz 300KHz Quasi- Above 1GHz Peak 1MHz 3MHz Pri Above 1GHz Peak 1MHz 10Hz Ave Frequency Field Strength Me (microvolts/meter) Distance 0.009-0.490 2400/F(KHz) 100 88-216 150 200 Above 960 500 Content Distance (meters) Above 1GHz 500 3 3 0 3 0 3 0 3 0 500 Content Distance Frequency Field Strength Measurement Distance (meters) Above 1GHz 500 3 0 3 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

HUAK TESTING

Report No.: HK2401250555-E

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

NG

¦К

ALL CIT	
	The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference
	ground plane.
	 Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level
	4. For measurement below 1GHz, If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission
	measurement will be repeated using the quasi-peak detector and reported.
	 5. Use the following spectrum analyzer settings: (1) Span shall wide enough to fully capture the emission being measured;
	(2) Set RBW=120 kHz for f < 1 GHz; VBW ≥RBW; Sweep = auto; Detector function = peak; Trace = max hold;
	(3) Set RBW = 1 MHz, VBW= 3MHz for f 1 GHz for peak measurement.
	 6.For average measurement: VBW = 10 Hz, when duty cycle is no less than 98 percent.VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the
	minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.
Test Results:	PASS

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com/

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

Test Instruments

	Rad	iated Emission	Test Site (966	6)	
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due
Receiver	R&S	ESR-7	HKE-010	Feb. 17, 2023	Feb. 16, 2024
Spectrum analyzer	Agilent	N9020A	HKE-048	Feb. 17, 2023	Feb. 16, 2024
Spectrum analyzer	R&S	FSP40	HKE-025	Feb. 17, 2023	Feb. 16, 2024
High gain antenna	Schwarzbeck	LB-180400KF	HKE-054	Feb. 17, 2023	Feb. 16, 2024
Preamplifier	Schwarzbeck	BBV 9743	HKE-006	Feb. 17, 2023	Feb. 16, 2024
Preamplifier	EMCI	EMC051845S E	HKE-015	Feb. 17, 2023	Feb. 16, 2024
Preamplifier	Agilent	83051A	HKE-016	Feb. 17, 2023	Feb. 16, 2024
Loop antenna	Schwarzbeck	FMZB 1519 B	HKE-014	Feb. 17, 2023	Feb. 16, 2024
Broadband antenna	Schwarzbeck	VULB 9163	HKE-012	Feb. 17, 2023	Feb. 16, 2024
Horn antenna	Schwarzbeck	9120D	HKE-013	Feb. 17, 2023	Feb. 16, 2024
High pass filter unit	Tonscend	JS0806-F	HKE-055	Feb. 17, 2023	Feb. 16, 2024
Antenna Mast	Keleto	CC-A-4M	N/A	N/A	N/A
Position controller	Taiwan MF	MF7802	HKE-011	Feb. 17, 2023	Feb. 16, 2024
Radiated test software	Tonscend	TS+ Rev 2.5.0.0	HKE-082	N/A	N/A
RF cable	Times	9kHz-1GHz	HKE-117	Feb. 17, 2023	Feb. 16, 2024
RF cable	Times	0 1-40G	HKE-034	Feb. 17, 2023	Feb. 16, 2024
Horn Antenna	Schewarzbeck	BBHA 9170	HKE-017	Feb. 17, 2023	Feb. 16, 2024


Note: The calibration interval of the above test instruments is 12 months and the calibrations are traceable to international system unit (SI).

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

Test Data

Below 1GHz

Suspected List

NG	Freq.	Factor	Reading	Level	Limit	Margin	Height	Angle	
NO.	[MHz]	[dB]	[dBµV/m]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity
1	78.548549	-17.29	48.42	31.13	40.00	8.87	100	69	Horizontal
2	148.45845	-18.68	54.09	35.41	43.50	8.09	100	350	Horizontal
3	187.29729	-16.96	51.07	34.11	43.50	9.39	100	1	Horizontal
4	378.57857	-10.69	41.47	30.78	46.00	15.22	100	47	Horizontal
5	505.77577	-7.12	36.12	29.00	46.00	17.00	100	47	Horizontal
6	784.44444	-2.30	32.84	30.54	46.00	15.46	100	344	Horizontal


Remark: Factor = Cable loss + Antenna factor - Preamplifier; Level = Reading + Factor; Margin = Limit - Level;

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

FICATION

Curan a stard List

	Suspe									
		Freq.	Factor	Reading	Level	Limit	Margin	Height	Angle	
l	NO.	[MHz]	[dB]	[dBµV/m]	[dBµV/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity
-	1	40.680681	-15.30	46.53	31.23	40.00	8.77	100	81	Vertical
	2	81.461461	-17.48	50.44	32.96	40.00	7.04	100	338	Vertical
	3	162.05205	-17.28	50.79	33.51	43.50	9.99	100	134	Vertical
а	4	278.56856	-12.59	44.89	32.30	46.00	13.70	100	48	Vertical
	5	513.54354	-7.23	44.91	37.68	46.00	8.32	100	269	Vertical
	6	784.44444	-2.30	38.55	36.25	46.00	9.75	100	308	Vertical

Remark: Factor = Cable loss + Antenna factor - Preamplifier; Level = Reading + Factor; Margin = Limit - Level;

Harmonics and Spurious Emissions

Frequency Range (9kHz-30MHz)

5	Frequency (M	Hz)	Level@3m (dBµV/m)	Limit	Limit@3m (dBµV/m)		
	-tSTAIG	HUDAN HUDAN		HUAK	TESTING		
	HUNK	w.	14 1914		- HUAK		
	<u> </u>	- INC	<u> </u>	TING			
		- HUAK TES		S SUAKTES			

Note:1. Emission Level=Reading+ Cable loss-Antenna factor-Amp factor.

2. The emission levels are 20 dB below the limit value, which are not reported. It is deemed to comply with the requirement.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

Above 1GHz

Radiated Emission Test

LOW CH1 (802.11b Mode)/2412

Horizontal:

imi

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4824	57.15	-3.64	53.51	74	-20.49	peak
4824	44.26	-3.64	40.62	54	-13.38	AVG
7236	52.44	-0.95	51.49	74	-22.51	peak
7236	41.99	-0.95	41.04	54	-12.96	AVG

Vertical:	HUAK	HUAK	HUAK		HUAK	HUAK
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4824	56.87	-3.64	53.23	74	-20.77	peak
4824	42.39	-3.64	38.75	54	-15.25	AVG
7236	54.63	-0.95	53.68	74	-20.32	peak
7236	40.06	-0.95	39.11	54	-14.89	AVG
Remark: Factor	r = Antenna Factor +	Cable Loss	- Pre-amplifier; Leve	el = Reading +	Factor; Margin	= Level-

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

FIF

MID CH6 (802.11b Mode)/2437

Horizontal:		Ś	<u> </u>		w.	-
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4874	55.39	-3.51	51.88	74	-22.12	peak
4874	43.63	-3.51	40.12	54	-13.88	AVG
7311	54.51	-0.82	53.69	74	-20.31	peak
7311	41.38	-0.82	40.56	54	-13.44	AVG
Domark: Easta	r - Antonno Eastor	Cable Loss	Dro omplifior: Lov	al - Dooding +	- Footor: Morair	

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4874	54.63	-3.51	51.12	74	-22.88	peak
4874	40.59	-3.51	37.08	54	-16.92	AVG
7311	50.14	-0.82	49.32	74	-24.68	peak
7311	40.97	-0.82	40.15	54	-13.85	AVG

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

Page 51 of 72

HIGH CH11 (802.11b Mode)/2462

Horizontal:		Ś				
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4924	55.08	-3.43	51.65	74	-22.35	peak
4924	46.12	-3.43	42.69	54	-11.31	AVG
7386	51.33	-0.75	50.58	74	-23.42	peak
7386	42.96	-0.75	42.21	54	-11.79	AVG

11				
Ve	nt.	000	SI -	

vertical:						
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4924	53.45	-3.43	50.02	74	-23.98	peak
4924	46.12	-3.43	42.69	54	-11.31	AVG
7386	51.08	-0.75	50.33	74	-23.67	peak
7386	42.39	-0.75	41.64	54	-12.36	AVG

Remark:

(1) Measuring frequencies from 1 GHz to the 25 GHz.

(2) "F" denotes fundamental frequency; "H" denotes spurious frequency; "E" denotes band edge frequency.

(3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.

(4) The emissions are attenuated more than 20dB below the permissible limits are not recorded in the report.

(5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.

(6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54dBuV/m(AV Limit), the Average Detected not need to completed.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

LOW CH1 (802.11g Mode)/2412

Horizontal:	<i></i>		w.		9	e
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4824	52.19	-3.64	48.55	74	-25.45	peak
4824	42.26	-3.64	38.62	54	-15.38	AVG
7236	51.33	-0.95	50.38	74	-23.62	peak
7236	39.21	-0.95	38.26	54	-15.74	AVG
Remark: Factor	= Antenna Factor	+ Cable Loss –	Pre-amplifier: Lev	el = Reading +	Factor: Margir	n = Level-

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:	0	O HD.	0		O HD	0
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4824	52.06	-3.64	48.42	74	-25.58	peak
4824	41.18	-3.64	37.54	54	-16.46	AVG
7236	51.31	-0.95	50.36	74	-23.64	peak
7236	40.96	-0.95	40.01	54	-13.99	AVG
Remark: Factor Limit.	r = Antenna Factor +	- Cable Loss -	Pre-amplifier; Leve	el = Reading +	Factor; Margir	n = Level-

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

MID CH6 (802.11g Mode)/2437

Horizontal:		Ŵ			-	-
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4874	56.23	-3.51	52.72	74	-21.28	peak
a 4874	44.79	-3.51	41.28	54	-12.72	AVG
7311	53.86	-0.82	53.04	74	-20.96	peak
7311	40.07	-0.82	39.25	54	-14.75	AVG

Vertical:	HUAN	HUAN	HUAN		HUAKIL	HUAN
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4874	55.32	-3.51	51.81	74	-22.19	peak
4874	45.18	-3.51	41.67	54	-12.33	AVG
7311	52.66	-0.82	51.84	74	-22.16	peak
7311	42.74	-0.82	41.92	54	-12.08	AVG

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

CATION

HIGH CH11 (802.11g Mode)/2462

	w.	~		S.	
Reading Result	Factor	Emission Level	Limits	Margin	Detector
(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
55.89	-3.43	52.46	74	-21.54	peak
44.25	-3.43	40.82	54	-13.18	AVG
54.03	-0.75	53.28	74	-20.72	peak
40.14	-0.75	39.39	54	-14.61	AVG
	(dBµV) 55.89 44.25 54.03	(dBµV) (dB) 55.89 -3.43 44.25 -3.43 54.03 -0.75	(dBµV) (dB) (dBµV/m) 55.89 -3.43 52.46 44.25 -3.43 40.82 54.03 -0.75 53.28	(dBµV) (dB) (dBµV/m) (dBµV/m) 55.89 -3.43 52.46 74 44.25 -3.43 40.82 54 54.03 -0.75 53.28 74	(dBµV) (dB) (dBµV/m) (dBµV/m) (dBµV/m) 55.89 -3.43 52.46 74 -21.54 44.25 -3.43 40.82 54 -13.18 54.03 -0.75 53.28 74 -20.72

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:		O HD.	0		O HU.	0
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4924	56.08	-3.43	52.65	74	-21.35	peak
4924 ⁴	42.92	-3.43	39.49	54	-14.51	AVG
7386	50.17	-0.75	49.42	74	-24.58	peak
7386	42.63	-0.75	41.88	54	-12.12	AVG
	r = Antenna Factor +	CSTILL ST		ESTI-		

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit.

Remark:

(1) Measuring frequencies from 1 GHz to the 25 GHz.

(2) "F" denotes fundamental frequency; "H" denotes spurious frequency; "E" denotes band edge frequency.

(3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of 15.205, then the general radiated emission limits in 15.209 apply.

(4) The emissions are attenuated more than 20dB below the permissible limits are not recorded in the report.

(5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.

(6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54dBuV/m(AV Limit), the Average Detected not need to completed.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

LOW CH1 (802.11n/H20 Mode)/2412

Horizontal:	/	w.	Ŵ		9	w.
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4824	54.51	-3.64	50.87	74	-23.13	peak
4824	46.32	-3.64	42.68	54	-11.32	AVG
7236	51.89	-0.95	50.94	74	-23.06	peak
7236	43.08	-0.95	42.13	54	-11.87	AVG

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detecto
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4824	56.17	-3.64	52.53	74	-21.47	peak
4824	46.95	-3.64	43.31	54	-10.69	AVG
7236	53.06	-0.95	52.11	74	-21.89	peak
7236	43.13	-0.95	42.18	54	-11.82	AVG

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

FIF

MID CH6 (802.11n/H20 Mode)/2437

Horizontal:		w.			Contraction of the second seco	~
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре
4874	51.29	-3.51	47.78	74.00	-26.22	peak
4874	42.38	-3.51	38.87	54.00	-15.13	AVG
7311	51.91	-0.82	51.09	74.00	-22.91	peak
7311	39.77	-0.82	38.95	54.00	-15.05	AVG

0"	D HOL	(0 ***	O HOM	h	Vertical:
Detector	Margin	Limits	Emission Level	Factor	Reading Result	Frequency
Туре	(dB)	(dBµV/m)	(dBµV/m)	(dB)	(dBµV)	(MHz)
peak	-26.27	74.00	47.73	-3.51	51.24	4874
AVG	-14.45	54.00	39.55	-3.51	43.06	4874
peak	-24.24	74.00	49.76	-0.82	50.58	7311
AVG	-16.63	54.00	37.37	-0.82	38.19	7311
1	-16.63	54.00	37.37	-0.82		7311

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

NG

¦K ≥PR

HIGH CH11 (802.11n/H20 Mode)/2462

Horizontal:			~			~
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	HUAKTESTI
4924	54.32	-3.43	50.89	74	-23.11	peak
4924	44.68	-3.43	41.25	54	-12.75	AVG
7386	50.49	-0.75	49.74	74	-24.26	peak
7386	40.88	-0.75	40.13	54	-13.87	AVG

Vertical:	HUAK	HUP	HUAN .		HUAKTEL	HUAK .
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	si (dBμV/m)	(dBµV/m)	(dB)	
4924	55.06	-3.43	51.63	74	-22.37	peak
4924	41.51	-3.43	38.08	54	-15.92	AVG
7386	53.34	-0.75	52.59	74	-21.41	peak
7386	40.89	-0.75	40.14	54	-13.86	AVG

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

Page 58 of 72

LOW CH3 (802.11n/H40 Mode)/2422

Horizontal		S				~
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
4844	53.26	-3.63	49.63	74	-24.37	peak
4844	43.95	-3.63	40.32	54	-13.68	AVG
7266	51.86	-0.94	50.92	74	-23.08	peak
7266	41.91	-0.94	40.97	54	-13.03	AVG

Vertical:	HUAKTES		AKTESIN HUAKTE		- HUAK TEST.	HUAKTES
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
4844	56.44	-3.63	52.81	74	-21.19	peak
4844	46.29	-3.63	42.66	54	-11.34	AVG
7266	46.16	-0.94	45.22	74	-28.78	peak
7266	42.85	-0.94	41.91	54	-12.09	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

MID CH6 (802.11n/H40 Mode)/2437

Horizontal:					w.	~
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	AUAK TEST
4874	54.93	-3.51	51.42	74	-22.58	peak
4874	42.52	-3.51	39.01	54	-14.99	AVG
7311	50.07	-0.82	49.25	74	-24.75	peak
7311	40.61	-0.82	39.79	54		AVG

Vertical:	HUAN	HUA	KIL HUAN		HUAKIL	HUAN
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
4874	52.32	-3.51	48.81	74	-25.19	peak
4874	43.27	-3.51	39.76	54	-14.24	AVG
7311	50.11	-0.82	49.29	74	-24.71	peak
7311	39.34	-0.82	38.52	54	-15.48	AVG

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

FICATION

HIGH CH9 (802.11n/H40 Mode)/2452

Horizontal:		-	~		0	
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	AUAK TESTIN
4904	53.18	-3.43	49.75	74	-24.25	peak
4904	44.29	-3.43	40.86	54	-13.14	AVG
7356	52.36	-0.75	51.61	74	-22.39	peak
7356	42.51	-0.75	41.76	54	-12.24	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit.

Vertical:	HUAK	HUP!	HUAK		HUAKTEN	HUAK
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
4904	53.79	-3.43	50.36	74	-23.64	peak
4904	44.25	-3.43	40.82	54	-13.18	AVG
7356	50.93	-0.75	50.18	74	-23.82	peak
7356	39.12	-0.75	38.37	54	-15.63	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit.

Remark:

(1) Measuring frequencies from 1 GHz to the 25 GHz.

(2) "F" denotes fundamental frequency; "H" denotes spurious frequency; "E" denotes band edge frequency.
 (3) * denotes emission frequency which appearing within the Restricted Bands specified in provision of

15.205, then the general radiated emission limits in 15.209 apply.

(4) The emissions are attenuated more than 20dB below the permissible limits are not recorded in the report.

(5) The IF bandwidth of EMI Test Receiver between 30MHz to 1GHz was 120KHz, 1 MHz for measuring above 1 GHz, below 30MHz was 10KHz.

(6) When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed. For example: Top Channel at Fundamental 73.16dBuV/m(PK Value) <93.98(AV Limit), at harmonic 53.20 dBuV/m(PK Value) <54 dBuV/m(AV Limit), the Average Detected not need to completed.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

Test Result of Radiated Spurious at Band edges

All modes have been tested. Only the worst result was reported as below:

Operation Mode:

802.11b Mode TX CH Low (2412MHz)

Horizontal:

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
2310.00	54.38	-5.81	48.57	74	-25.43	peak
2310.00	44.59	-5.81	38.78	54	-15.22	AVG
2390.00	52.16	-5.84	46.32	74	-27.68	peak
2390.00	42.83	-5.84	36.99	54	-17.01	AVG

ertical:		-		9	-	<u> </u>
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB) 💿	Walk and Street
2310.00	52.42	-5.81	46.61	74	-27.39	peak
2310.00	42.83	-5.81	37.02	54	-16.98	AVG
2390.00	54.57	-5.84	48.73	74	-25.27	peak
2390.00	43.91	-5.84	38.07	54	-15.93	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

E F

Operation Mode: TX CH High (2462MHz)

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
2483.50	55.24	-5.81	49.43	74	-24.57	peak
2483.50	44.62	-5.81	38.81	54	-15.19	AVG
2500.00	53.99	-6.06	47.93	74	-26.07	peak
2500.00	42.81	-6.06	36.75	54	-17.25	AVG

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
2483.50	54.46	-5.81	48.65	74	-25.35	🤍 peak
2483.50	43.52	-5.81	37.71	54	-16.29	AVG
2500.00	53.34	-6.06	47.28	74	-26.72	peak
2500.00	43.79	-6.06	37.73	54	-16.27	AVG

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

NG

¦K ≥PR

Operation Mode: 802.11g Mode TX CH Low (2412MHz)

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	HUNK TES J
2310.00	53.08	-5.81	47.27	74	-26.73	peak
2310.00	44.29	-5.81	38.48	54	-15.52	AVG
2390.00	51.85	-5.84	46.01	74	-27.99	peak
2390.00	42.03	-5.84	36.19	54	-17.81	AVG

Vertical:)*	OHO.	0.		O HU.	0.
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	IAK TESTING
2310.00	56.24	-5.81	50.43	74	-23.57	peak
2310.00	42.59	-5.81	36.78	54	-17.22	AVG
2390.00	52.36	-5.84	46.52	74	-27.48	peak
2390.00	42.89	-5.84	37.05	54	-16.95	AVG

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

Operation Mode: TX CH High (2462MHz)

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
2483.50	53.13	-5.65	47.48	74	-26.52	peak
2483.50	45.92	-5.65	40.27	54	-13.73	AVG
2500.00	51.08	-5.65	45.43	74	-28.57	peak
2500.00	43.16	-5.65	37.51	54	-16.49	AVG

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	HUAK TESTIN
2483.50	53.11	-5.65	47.46	74	-26.54	peak
2483.50	43.47	-5.65	37.82	54	-16.18	AVG
2500.00	54.96	-5.65	49.31	74	-24.69	peak
2500.00	41.32	-5.65	35.67	54	-18.33	AVG

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

Operation Mode: 802.11n/H20 Mode TX CH Low (2412MHz)

Horizontal:		<i>V</i>			~	
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	HUAKTES
2310.00	56.85	-5.81	51.04	74	-22.96	peak
2310.00	43.49	-5.81	37.68	54	-16.32	AVG
2390.00	54.18	-5.84	48.34	74	-25.66	peak
2390.00	42.56	-5.84	36.72	54	-17.28	AVG

Vertical:).	0			<u> </u>	0
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	WAX TESTING
2310.00	53.12	-5.81	47.31	74	-26.69	peak
2310.00	45.95	-5.81	40.14	54	-13.86	AVG
2390.00	53.07	-5.84	47.23	74	-26.77	peak
2390.00	42.76	-5.84	36.92	54	-17.08	AVG

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

FICATION

Operation Mode: TX CH High (2462MHz)

Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
2483.50	54.32	-5.65	48.67	74	-25.33	peak
2483.50	41.79	-5.65	36.14	54 _{MUM}	-17.86	AVG
2500.00	53.08	-5.65	47.43	74	-26.57	peak
2500.00	43.21	-5.65	37.56	54	-16.44	AVG

Vertical: Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Detector Type
2483.50	53.22	-5.65	47.57	74	-26.43	peak
2483.50	45.64	-5.65	39.99	54	-14.01	AVG
2500.00	52.31	-5.65	46.66	74	-27.34	peak
2500.00	43.26	-5.65	37.61	54	-16.39	AVG

Remark: All the other emissions not reported were too low to read and deemed to comply with FCC limit.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

Operation Mode: 802.11n/H40 Mode TX CH Low (2422MHz)

Horizontal:		w.			<i></i>	
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	HUANTES
2310.00	53.83	-5.81	48.02	74	-25.98	peak
2310.00	STING /	-5.81	/	54	R TESTA	AVG
2390.00	53.29	-5.84	47.45	74	-26.55	peak
2390.00	1	-5.84	/	54	1	AVG

Vertical:		OHD.	0.		O HU.	0.
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	HUAN TESTIN
2310.00	53.08	-5.81	47.27	74	-26.73	peak
2310.00	STING /	-5.81	/ STING	54	I TESTING	AVG
2390.00	51.69	-5.84	45.85	74	-28.15	peak
2390.00	1	-5.84	/	54	1	AVG
-	JG SER			G ARRA		all Dia

Remark: Factor = Antenna Factor + Cable Loss – Pre-amplifier; Level = Reading + Factor; Margin = Level-Limit.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

Operation Mode: TX CH High (2452MHz)

lorizontal:		Ý				
Frequency	Reading Result	Factor	Emission Level	Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	C HUAK IL
و 2483.50	56.32	-5.65	50.67	74	-23.33	peak
2483.50	CESTING /	-5.65	/ TESTING	54	1	AVG
2500.00	53.11	-5.65	47.46	74	-26.54	peak
2500.00	1	-5.65	/	54	1	AVG

Vertical:

Frequency	Reading Result	Factor	Emission Level	o Limits	Margin	Detector Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
⁶ 2483.50	56.79	-5.65	51.14	74	-22.86	peak
2483.50	ESTINE /	-5.65	ILAN TESTING	54	/	AVG
2500.00	52.83	-5.65	47.18	74	-26.82	peak
2500.00	HUD-	-5.65	/	54	1	AVG

Remark:

1. If the PK measured levels comply with average limit, then the average level were deemed to comply with average limit.

In restricted bands of operation, the spurious emissions below the permissible value more than 20dB.
 The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

4.8. Antenna Requirement

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section 15.247, if transmitting antennas of directional gain greater than6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

Refer to statement below for compliance.

The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

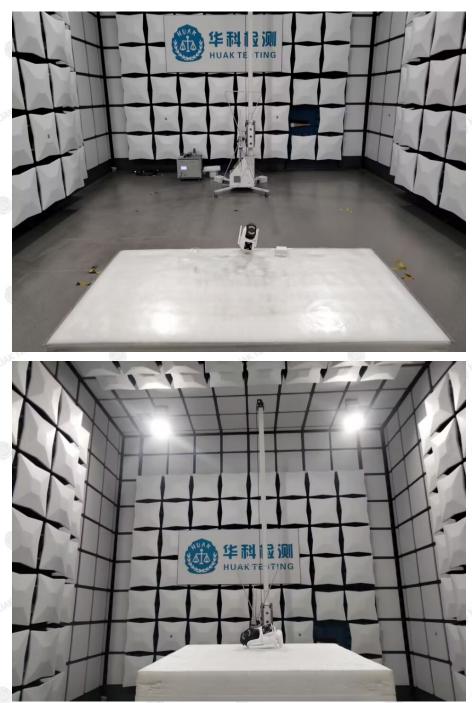
Antenna Connected Construction

The antenna used in this product is a FPC antenna, need professional installation, not easy to remove. It conforms to the standard requirements. The directional gains of antenna used for transmitting is 2dBi.

WIFI ANTENNA

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com



Page 70 of 72

Report No.: HK2401250555-E

5. Photographs of Test

Radiated Emission

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

Page 71 of 72

Report No.: HK2401250555-E

Conducted Emission

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com

FICATION

6. Photos of the EUT

Reference to the report: ANNEX A of external photos and ANNEX B of internal photos.

----End of test report--

The results shown in this test report refer only to the sample(s) tested unless otherwise stated and the sample(s) are retained for 30 days only. The document is issued by HUAK, this document cannont be reproduced except in full with our prior written permission. The more details and the authenticity of the report will be confirmed at http://www.cer-mark.com.

TEL: +86-755 2302 9901 FAX: +86-755 2302 9901 E-mail: service@cer-mark.com