

FCC Test Report

Report No.: AGC16247240102FR01

FCC ID	:	2BESG-K10H
APPLICATION PURPOSE	:	Original Equipment
PRODUCT DESIGNATION	:	Bluetooth Headset
BRAND NAME	:	KEVTU
MODEL NAME	:	К10Н, К10
APPLICANT	:	Keweitu (Shenzhen) Technology Co., Ltd
DATE OF ISSUE	:	May 20, 2024
STANDARD(S)	:	FCC Part 15 Subpart C §15.247
REPORT VERSION	:	V1.0

Report Revise Record

Report Version	Revise Time	Issued Date	Valid Version	Notes	
V1.0	/	May 20, 2024	Valid	Initial Release	

Table of Contents

1. General Information	5
2. Product Information	6
2.1 Product Technical Description	6
2.2 Test Frequency List	6
2.3 Related Submittal(S) / Grant (S)	7
2.4 Test Methodology	7
2.5 Receiver Input Bandwidth	7
2.6 Equally Average Use of Frequencies And Behaviour	7
2.7 Pseudorandom Frequency Hopping Sequence	
2.8 Special Accessories	9
2.9 Equipment Modifications	9
2.10 Antenna Requirement	9
3. Test Environment	
3.1 Address of The Test Laboratory	
3.2 Test Facility	
3.3 Environmental Conditions	11
3.4 Measurement Uncertainty	11
3.5 List of Equipment Used	
4.System Test Configuration	14
4.1 EUT Configuration	14
4.2 EUT Exercise	14
4.3 Configuration of Tested System	14
4.4 Equipment Used in Tested System	14
4.5 Summary of Test Results	
5. Description of Test Modes	
6. RF Output Power Measurement	
6.1 Provisions Applicable	17
6.2 Measurement Procedure	17
6.3 Measurement Setup (Block Diagram of Configuration)	17
6.4 Measurement Result	
7. 20dB Bandwidth and 99% Occupied Bandwidth Measurement	24
7.1 Provisions Applicable	24
7.2 Measurement Procedure	24
7.3 Measurement Setup (Block Diagram of Configuration)	24
7.4 Measurement Results	
8. Conducted Band Edge and Out-of-Band Emissions	
8.1 Provisions Applicable	
8.2 Measurement Procedure	
8.3 Measurement Setup (Block Diagram of Configuration)	
8 / Massurement Pasults	21

9. Radiated Spurious Emission	51
9.1 Measurement Limit	51
9.2 Measurement Procedure	51
9.3 Measurement Setup (Block Diagram of Configuration)	54
9.4 Measurement Result	
10. Number of Hopping Frequency Measurement	69
10.1 Provisions Applicable	69
10.2 Measurement Procedure	
10.3 Measurement Setup (Block Diagram of Configuration)	
10.4 Measurement Result	69
11. Time of Occupancy (Dwell Time) Measurement	71
11.1 Provisions Applicable	
11.2 Measurement Procedure	71
11.3 Measurement Setup (Block Diagram of Configuration)	71
11.4 Measurement Result	71
12. Frequency Separation Measurement	75
12.1 Provisions Applicable	75
12.2 Measurement Procedure	75
12.3 Measurement Setup (Block Diagram of Configuration)	75
12.4 Measurement Result	
13. AC Power Line Conducted Emission Test	77
13.1 Measurement Limit	77
13.2 Measurement Setup (Block Diagram of Configuration)	77
13.3 Preliminary Procedure of Line Conducted Emission Test	
13.4 Final Procedure of Line Conducted Emission Test	78
13.5 Measurement Results	
Appendix I: Photographs of Test Setup	79
Appendix II: Photographs of Test EUT	

1. General Information

Applicant	Keweitu (Shenzhen) Technology Co., Ltd
Address	Room 505.Tower B, Taojindi E-commerce Incubator Base, Longhua New District, Shenzhen
Manufacturer	Keweitu (Shenzhen) Technology Co., Ltd
Address	Room 505.Tower B, Taojindi E-commerce Incubator Base, Longhua New District, Shenzhen
Factory	Keweitu (Shenzhen) Technology Co., Ltd
Address	Room 505.Tower B, Taojindi E-commerce Incubator Base, Longhua New District, Shenzhen
Product Designation	Bluetooth Headset
Brand Name	KEVTU
Test Model	К10Н
Series Model(s)	К10
Difference Description	The only difference between these models are the model name, digital sound processing chip, ear amplitier chip, and everything else are the same.
Date of receipt of test item	Jan. 18, 2024
Date of Test	Jan. 18, 2024~May 20, 2024
Deviation from Standard	No any deviation from the test method
Condition of Test Sample	Normal
Test Result	Pass
Test Report Form No	AGCER-FCC-BR_EDR-V1

Note: The test results of this report relate only to the tested sample identified in this report.

Thea Yuang Prepared By Thea Huang May 20, 2024 (Project Engineer) Calvin Lin **Reviewed By** Calvin Liu May 20, 2024 (Reviewer) Max Zhang Approved By Max Zhang May 20, 2024 Authorized Officer

2. Product Information

2.1 Product Technical Description

Frequency Band	2400MHz-2483.5MHz
Operation Frequency Range	2402MHz-2480MHz
Bluetooth Version	V5.2
Modulation Type	BR 🖾 GFSK, EDR 🖾 π /4-DQPSK, 🖾 8DPSK
Number of channels	79 Channels
Channel Separation	1 MHz
Maximum Transmitter Power	3.690dBm
Hardware Version	V2.0
Software Version	V2.3
Antenna Designation	PCB Antenna
Antenna Gain	0.6dBi
Power Supply	DC 3.7V by battery

2.2 Test Frequency List

Frequency Band	Channel Number	Frequency			
	0	2402 MHz			
	1	2403 MHz			
	:	:			
2400~2483.5MHz	39	2441MHz			
	:	:			
	77	2479 MHz			
	78	2480 MHz			
Note: f = 2402 + 1k MHz, k = 0,, 78 ; "f "is the operating frequency (MHz); "k" is the operating channel.					

2.3 Related Submittal(S) / Grant (S)

This submittal(s) (test report) is intended for FCC ID: 2BESG-K10H, filing to comply with Part 2, Part 15 of the Federal Communication Commission rules.

2.4 Test Methodology

The tests were performed according to following standards:

No.	Identity	Document Title		
1	FCC 47 CFR Part 2	Frequency allocations and radio treaty matters; general rules and regulations		
2	FCC 47 CFR Part 15 Radio Frequency Devices			
3	ANSI C63.10-2013	American National Standard for Testing Unlicensed Wireless Devices		
4	KDB 558074 D01 15.247 Meas Guidance v05r02	Guidance for compliance measurements on Digital Transmission Systems, Frequency Hopping Spread Spectrum system, and Hybrid system devices operating under Section 15.247 of the FCC rules		

2.5 Receiver Input Bandwidth

The input bandwidth of the receiver is 1.3MHz, in every connection one Bluetooth device is the master and the other one is slave. The master determines the hopping sequence. The slave follows this sequence. Both devices shift between RX and TX time slot according to the clock of the master. Additionally, the type of connection (e.g. single of multi slot packet) is set up at the beginning of the connection. The master adapts its hopping frequency and its TX/RX timing according to the packet type of the connection. Also, the slave of the connection will use these settings. Repeating of a packet has no influence on the hopping sequence. The hopping sequence generated by the master of the connection will be followed in any case. That means, a repeated packet will not be send on the same frequency, it is send on the next frequency of the hopping sequence.

2.6 Equally Average Use of Frequencies and Behaviour.

The generation of the hopping sequence in connection mode depends essentially on two input values:

1. LAP/UAP of the master of the connection.

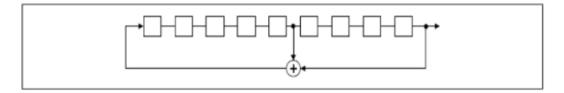
2. Internal master clock.

The LAP (lower address part) are the 24 LSB's of the 48 BD_ADDRESS. The BD_ADDRESS is an unambiguous number of every Bluetooth unit. The UAP (upper address part) are the 24MSB's of the 48BD_ADDRESS

The internal clock of a Bluetooth unit is derived from a free running clock which is never adjusted and is never turned off. For behavior action with other units only offset is used. It has no relation to the time of the day. Its resolution is at least half the RX/TX slot length of 312.5us. The clock has a cycle of about one day(23h30).

In most case it is implemented as 28 bits counter. For the deriving of the hopping sequence the entire. LAP (24 bits),4LSB's(4bits) (Input 1) and the 27MSB's of the clock (Input 2) are used. With this input values different mathematical procedures (permutations, additions, XOR-operations) are performed to generate the Sequence. This will be done at the beginning of every new transmission.

Regarding short transmissions the Bluetooth system has the following behavior:


The first connection between the two devices is established, a hopping sequence was generated. For Transmitting the wanted data the complete hopping sequence was not used. The connection ended. The second connection will be established. A new hopping sequence is generated. Due to the fact the Bluetooth clock has a different value, because the period between the two transmission is longer (and it Cannot be shorter) than the minimum resolution of the clock(312.5us). The hopping sequence will always differ from the first one.

2.7 Pseudorandom Frequency Hopping Sequence

The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- Number of shift register stages: 9
- Length of pseudo-random sequence: 29 1 = 511 bits
- Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of The PRBS Sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:

4	4	35	78	03	 20	76	02	19		 21	64	75
Γ				ľ	 	l	1			 		
				l i	-		-			1		
				;	1	;	-			i		
L					 _i		i		1	 ¦		

Each frequency used equally on the average by each transmitter.

The system receivers have input bandwidths that match the hopping channel bandwidths of their Corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

2.8 Special Accessories

Not available for this EUT intended for grant.

2.9 Equipment Modifications

Not available for this EUT intended for grant.

2.10 Antenna Requirement

Standard Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi

EUT Antenna:

The non-detachable antenna inside the device cannot be replaced by the user at will. The gain of the antenna is 0.6dBi.

3. Test Environment

3.1 Address of The Test Laboratory

Laboratory: Attestation of Global Compliance (Shenzhen) Co., Ltd.

Address: 1-2/F, Building 19, Junfeng Industrial Park, Chongqing Road, Heping Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

3.2 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L5488

Attestation of Global Compliance (Shenzhen) Co., Ltd. has been assessed and proved to follow CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories.)

A2LA-Lab Cert. No.: 5054.02

Attestation of Global Compliance (Shenzhen) Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to follow ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC-Registration No.: 975832

Attestation of Global Compliance (Shenzhen) Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files with Registration 975832.

IC-Registration No.: 24842(CAB identifier: CN0063)

Attestation of Global Compliance (Shenzhen) Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the Certification and Engineering Bureau of Industry Canada. The acceptance letter from the IC is maintained in our files with Registration 24842.

3.3 Environmental Conditions

	Normal Conditions
Temperature range (°C)	15 - 35
Relative humidity range	20 % - 75 %
Pressure range (kPa)	86 - 106
Power supply	DC 3.7V

3.4 Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95%.

Item	Measurement Uncertainty		
Uncertainty of Conducted Emission for AC Port	$U_c = \pm 2.9 \text{ dB}$		
Uncertainty of Radiated Emission below 1GHz	$U_c = \pm 3.9 \text{ dB}$		
Uncertainty of Radiated Emission above 1GHz	$U_c = \pm 4.9 \text{ dB}$		
Uncertainty of total RF power, conducted	$U_c = \pm 0.8 \text{ dB}$		
Uncertainty of RF power density, conducted	$U_c = \pm 2.6 \text{ dB}$		
Uncertainty of spurious emissions, conducted	$U_c = \pm 2 \%$		
Uncertainty of Occupied Channel Bandwidth	$U_c = \pm 2 \%$		

3.5 List of Equipment Used

• R	RF Conducted Test System								
Used	Equipment No.	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)		
\boxtimes	AGC-ER-E036	Spectrum Analyzer	Agilent	N9020A	MY49100060	2023-06-01	2024-05-31		
\boxtimes	AGC-ER-E062	Power Sensor	Agilent	U2021XA	MY54110007	2024-02-01	2025-01-31		
\boxtimes	AGC-ER-E063	Power Sensor	Agilent	U2021XA	MY54110009	2024-02-01	2025-01-31		
\boxtimes	AGC-EM-A152	6dB Attenuator	Eeatsheep	LM-XX-6-5W	N/A	2023-06-09	2024-06-08		
	AGC-ER-E083	Signal Generator	Agilent	E4421B	US39340815	2023-06-01	2024-05-31		
	N/A	RF Connection Cable	N/A	1#	N/A	Each time	N/A		
	N/A	RF Connection Cable	N/A	2#	N/A	Each time	N/A		

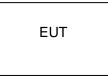
• F	Radiated Spurious Emission								
Used	Equipment No.	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)		
	AGC-EM-E046	EMI Test Receiver	R&S	ESCI	10096	2024-02-01	2025-01-31		
\boxtimes	AGC-EM-E116	EMI Test Receiver	R&S	ESCI	100034	2023-06-03	2024-06-02		
\square	AGC-EM-E061	Spectrum Analyzer	Agilent	N9010A	MY53470504	2023-06-01	2024-05-31		
\boxtimes	AGC-EM-E086	Loop Antenna	ZHINAN	ZN30900C	18051	2024-03-05	2026-03-04		
\boxtimes	AGC-EM-E001	Wideband Antenna	SCHWARZBECK	VULB9168	D69250	2023-05-11	2025-05-10		
\boxtimes	AGC-EM-E029	Broadband Ridged Horn Antenna	ETS	3117	00034609	2024-03-31	2025-03-30		
\square	AGC-EM-E082	Horn Antenna	SCHWARZBECK	BBHA 9170	#768	2023-09-24	2025-09-23		
\boxtimes	AGC-EM-E146	Pre-amplifier	ETS	3117-PA	00246148	2022-08-04	2024-08-03		
\boxtimes	AGC-EM-A119	2.4G Filter	SongYi	N/A	N/A	2023-06-01	2024-05-31		
\square	AGC-EM-A138	6dB Attenuator	Eeatsheep	LM-XX-6-5W	N/A	2023-06-09	2024-06-08		
	AGC-EM-A139	6dB Attenuator	Eeatsheep	LM-XX-6-5W	N/A	2023-06-09	2024-06-08		

• A	AC Power Line Conducted Emission								
Used	Equipment No.	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal. Date (YY-MM-DD)	Next Cal. Date (YY-MM-DD)		
	AGC-EM-E045	EMI Test Receiver	R&S	ESPI	101206	2023-06-03	2024-06-02		
	AGC-EM-A130	6dB Attenuator	Eeatsheep	LM-XX-6-5W	DC-6GZ	2023-06-09	2024-06-08		
	AGC-EM-E023	AMN	R&S	100086	ESH2-Z5	2023-06-03	2024-06-02		

• Te	Test Software							
Used	Equipment No.	Test Equipment	Manufacturer	Model No.	Version Information			
	AGC-EM-S001	CE Test System	R&S	ES-K1	V1.71			
	AGC-EM-S003	RE Test System	FARA	EZ-EMC	VRA-03A			
	AGC-ER-S012	BT/WIFI Test System	Tonscend	JS1120-2	2.6			
	AGC-EM-S011	RSE Test System	Tonscend	TS+-Ver2.1(JS36-RSE)	4.0.0.0			

4.System Test Configuration

4.1 EUT Configuration


The EUT configuration for testing is installed on RF field strength measurement to meet the Commission's requirement and operating in a manner which intends to maximize its emission characteristics in a continuous normal application.

4.2 EUT Exercise

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

4.3 Configuration of Tested System

Radiated Emission Configure:

4.4 Equipment Used in Tested System

The following peripheral devices and interface cables were connected during the measurement:

Test Accessories Come From The Laboratory

No.	Equipment	Manufacturer	Model No.	Specification Information	Cable
1					

Test Accessories Come From The Manufacturer

No.	Equipment	Manufacturer	Model No.	Specification Information	Cable
1					

4.5 Summary of Test Results

Item	FCC Rules	Description of Test	Result
1	§15.203&15.247(b)(4)	Antenna Equipment	Pass
2	§15.247 (b)(1)	RF Output Power	Pass
3	§15.247 (a)(1)	20 dB Bandwidth	Pass
4	§15.247 (d)	Conducted Band Edge and Out-of-Band Emissions	Pass
5	§15.209	Radiated Spurious Emission	Pass
6	§15.247 (a)(1)(iii)	Number of Hopping Frequency	Pass
7	§15.247 (a)(1)(iii)	Time of Occupancy	Pass
8	§15.247 (a)(1)	Frequency Separation	Pass
9	§15.207	AC Power Line Conducted Emission	Not applicable

Note: The BT function cannot transmit when charging.

5. Description of Test Modes

	Summary table of Test Cases
Test Item	Data Rate / Modulation
lest tielli	Bluetooth – BR_EDR (GFSK/π /4-DQPSK/8DPSK)
Radiated & Conducted Test Cases	Mode 1: Bluetooth Tx CH00_2402 MHz_1Mbps (Battery powered) Mode 2: Bluetooth Tx CH39_2441 MHz_1Mbps (Battery powered) Mode 3: Bluetooth Tx CH78_2480 MHz_1Mbps (Battery powered) Mode 4: Bluetooth Tx CH00_2402 MHz_2Mbps (Battery powered) Mode 5: Bluetooth Tx CH39_2441 MHz_2Mbps (Battery powered) Mode 6: Bluetooth Tx CH39_2440 MHz_2Mbps (Battery powered) Mode 6: Bluetooth Tx CH78_2480 MHz_3Mbps (Battery powered) Mode 7: Bluetooth Tx CH00_2402 MHz_3Mbps (Battery powered) Mode 8: Bluetooth Tx CH39_2441 MHz_3Mbps (Battery powered) Mode 9: Bluetooth Tx CH39_2441 MHz_3Mbps (Battery powered) Mode 9: Bluetooth Tx CH78_2480 MHz_3Mbps (Battery powered) Mode 10: Bluetooth Tx Hopping-1Mbps (Battery powered) Mode11: Bluetooth Tx Hopping-3Mbps (Battery powered)
AC Conducted Emission	N/A
 The battery is full-cha For Radiated Emission For Conducted Test n 	worst case was recorded in the report, if no other cases. arged during the test. on, 3axis were chosen for testing for each applicable mode. nethod, a temporary antenna connector is provided by the manufacture. Software Setting Diagram

LOOP BACK BER LOOP BACK	 Packet Type 	3-DH5	Close
ENABLE DUT MODE	Packet Size	1021	Help
CFG FREQ CFG FREQ MS			Execut
CFG PKT CFG BIT ERR			Rese
CFG TX IF CFG UAP/LAP	_		
-Test Results ☐ Save to file C:\Users\Administr	Browse for f		Standard C BER
Save to file	ator\AppData\Local\QTIL\ I successful		
Save to file	ator\AppData\Local\QTIL\ T successful 1 successful		
Save to file	ator\AppData\Local\QTIL\ I successful 1 successful I successful I successful		
Save to file C:\Users\Administr Radio Test CFG PK: Radio Test CFG PK: Radio Test CFG PK:	ator\AppData\Local\QTIL\ f successful 1 successful f successful POWER successful		
Save to file C:\Users\Administr Radio Test CFG PK Radio Test TXDATA Radio Test CFG PK Radio Test CFG TX	ator\AppData\Local\QTIL\ f successful f successful f successful pOWER successful 1 successful		
Save to file C:\Users\Administr Radio Test CFG PK Radio Test TXDATA Radio Test CFG PK Radio Test CFG TX Radio Test TXDATA Radio Test TXDATA	ator\AppData\Local\QTIL\ I successful I successful POWER successful 1 successful I successful 1 successful 1 successful		
Save to file C:\Users\Administr Radio Test CFG PK Radio Test TXDATA: Radio Test CFG PK Radio Test CFG PK Radio Test CFG PK Radio Test CFG PK Radio Test CFG PK	ator\AppData\Local\QTIL\ I successful I successful POWER successful I successful I successful I successful I successful I successful I successful		
Save to file C:\Users\Administr Radio Test CFG PK: Radio Test TKDATA: Radio Test CFG FK: Radio Test CFG FK: Radio Test TKDATA: Radio Test TKDATA: Radio Test TKDATA: Radio Test TKDATA: Radio Test TKDATA:	ator\AppData\Local\QTIL\ f successful f successful f successful pOWER successful f successful f successful f successful f successful f successful f successful f successful		
Save to file C:\Users\Administr Radio Test CFG PK: Radio Test CFG PK:	ator\AppData\Local\QTIL\ I successful I successful POWER successful 1 successful 1 successful 1 successful 1 successful 1 successful I successful I successful I successful I successful		
Save to file C:\Users\Administr Radio Test CFG PK Radio Test TXDATA: Radio Test CFG PK Radio Test CFG PK Radio Test TXDATA: Radio Test TXDATA: Radio Test TXDATA: Radio Test TXDATA: Radio Test CFG PK Radio Test CFG PK Radio Test CFG PK Radio Test CFG PK	ator\AppData\Local\QTIL\ f successful f successful POWER successful f successful f successful f successful f successful f successful f successful f successful f successful powER successful		
Save to file C:\Users\Administr Radio Test CFG PK: Radio Test TXDATA: Radio Test CFG PK: Radio Test CFG FK: Radio Test CFG FK: Radio Test CFG PK: Radio Test CFG PK: Radio Test CFG FK: Radio Test CFG FX: Radio Test CFG TX Radio Test CFG TX	ator\AppData\Local\QTIL\ f successful f successful POWER successful f successful f successful f successful f successful f successful f successful f successful poWER successful POWER successful		
Save to file C:\Users\Administr Radio Test CFG PK: Radio Test TXDATA: Radio Test CFG PK: Radio Test CFG FX: Radio Test TXDATA: Radio Test TXDATA: Radio Test CFG PK: Radio Test CFG PK: Radio Test CFG TX	ator\AppJata\Local\QTIL\ I successful I successful POWER successful 1 successful I successful I successful I successful I successful I successful POWER successful POWER successful I successful 1 successful		

6. RF Output Power Measurement

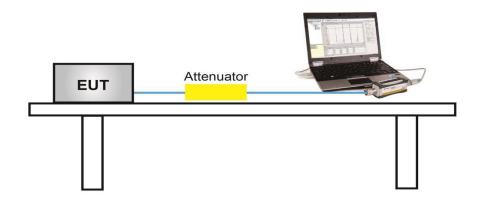
6.1 Provisions Applicable

The maximum out power permissible output power is 1 Watt for all frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels.

The maximum out power permissible output power is 0.125 watts for all other frequency hopping systems in the 2400-2483.5 MHz band.

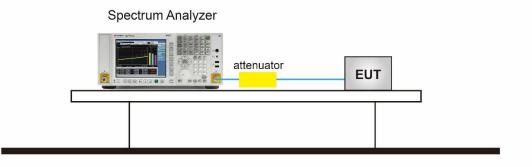
6.2 Measurement Procedure

⊠For Peak power test:

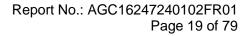

- 1. Connect EUT RF output port to the Spectrum Analyzer through an RF attenuator
- 2. Span: Approximately five times the 20 dB bandwidth, centered on a hopping channel.
- 3. RBW > 20 dB bandwidth of the emission being measured.
- 4. VBW \geq RBW.
- 5. Sweep: Auto.
- 6. Detector function: Peak.
- 7. Trace: Max hold.
- 8. Allow trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission. The indicated level is the peak output power, after any corrections for external attenuators and cables.

For Average power test:

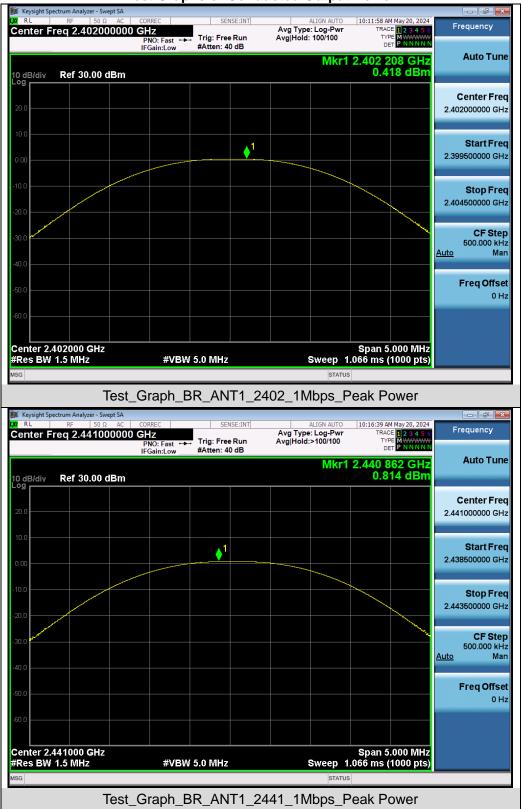
Measurements may be performed using a wideband gated RF power meter provided that the gate parameters are adjusted such that the power is measured only when the EUT is transmitting at its maximum power control level. Since this measurement is made only during the ON time of the transmitter, no duty cycle correction is required


6.3 Measurement Setup (Block Diagram of Configuration)

For Average power test setup

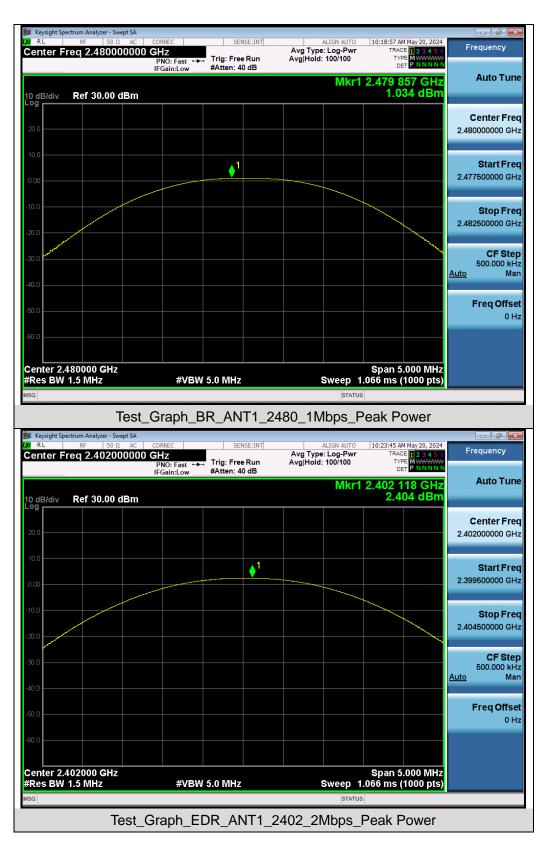


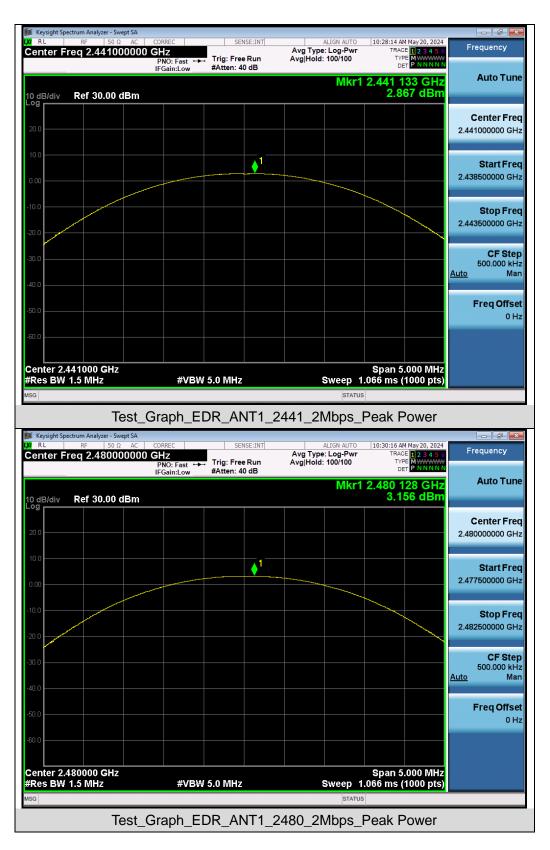
For peak power test setup



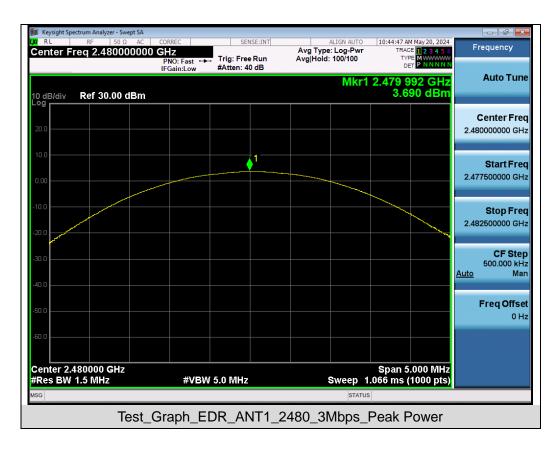
6.4 Measurement Result

	Test Da	ata of Conducted Output I	Power	
Test Mode	Test Frequency (MHz)	Peak Power (dBm)	Limits (dBm)	Pass or Fail
	2402	0.418	≤21	Pass
GFSK	2441	0.814	≤21	Pass
	2480	1.034	≤21	Pass
	2402	2.404	≤21	Pass
π /4-DQPSK	2441	2.867	≤21	Pass
	2480	3.156	≤21	Pass
	2402	2.859	≤21	Pass
8DPSK	2441	3.359	≤21	Pass
	2480	3.690	≤21	Pass



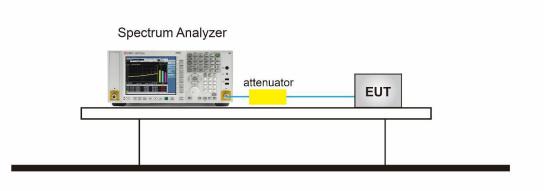


Test Graphs of Conducted Output Power



7. 20dB Bandwidth and 99% Occupied Bandwidth Measurement

7.1 Provisions Applicable

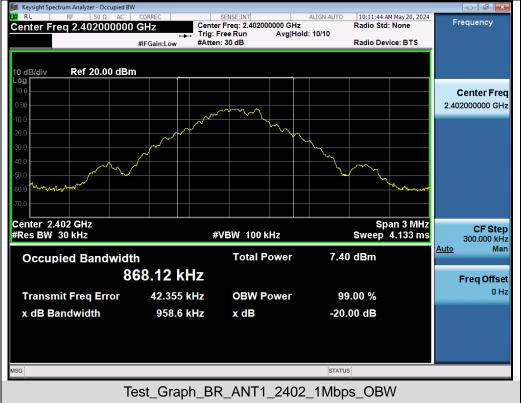

There is no corresponding limit requirement for this test item.

7.2 Measurement Procedure

The testing follows the ANSI C63.10 Section 6.9.3 (OBW) and 6.9.2 (20dB BW).

- The 20dB bandwidth spectrum analyzer setting reference is as follows:
- 1. Set RBW ≥ 1% to 5% of the 20dB bandwidth
- 2. VBW = Approximately three times RBW
- 3. Span = Approximately 2 to 5 times the 20dB bandwidth, centered on a hopping channel
- 4. Detector = Peak
- 5. Trace mode = Max hold
- 6. Sweep = Auto couple
- 7. Allow the trace to stabilize
- 8. Measure the maximum width of the emission that is constrained by the frequencies associated
- 9. with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 20
- 10. dB relative to the maximum level in the fundamental emission.
- The 99% bandwidth spectrum analyzer setting reference is as follows:
- 1. Span = 1.5 times to 5 times the OBW
- 2. Set RBW = 1% to 5% the OBW
- 3. VBW \geq 3 × RBW
- 4. Detector = Peak
- 5. Trace mode = Max hold
- 6. Sweep = Auto couple
- 7. Allow the trace was allowed to stabilize

7.3 Measurement Setup (Block Diagram of Configuration)



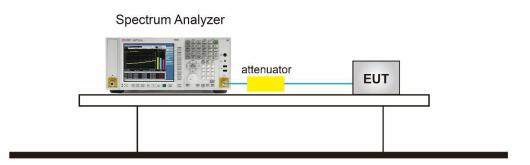
7.4 Measurement Results

	Test Data of Occupied Bandwidth and -20dB Bandwidth							
Test Mode	Test Frequency (MHz)	99% Occupied Bandwidth (MHz)	-20dB Bandwidth (MHz)	Limits	Pass or Fail			
	2402	0.868	0.959	N/A	Pass			
GFSK	2441	0.866	0.959	N/A	Pass			
	2480	0.866	0.958	N/A	Pass			
	2402	1.190	1.333	N/A	Pass			
π /4-DQPSK	2441	1.190	1.333	N/A	Pass			
	2480	1.188	1.332	N/A	Pass			
	2402	1.186	1.309	N/A	Pass			
8DPSK	2441	1.184	1.307	N/A	Pass			
	2480	1.183	1.308	N/A	Pass			

Test Graphs of Occupied Bandwidth and -20 Bandwidth

8. Conducted Band Edge and Out-of-Band Emissions

8.1 Provisions Applicable


In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

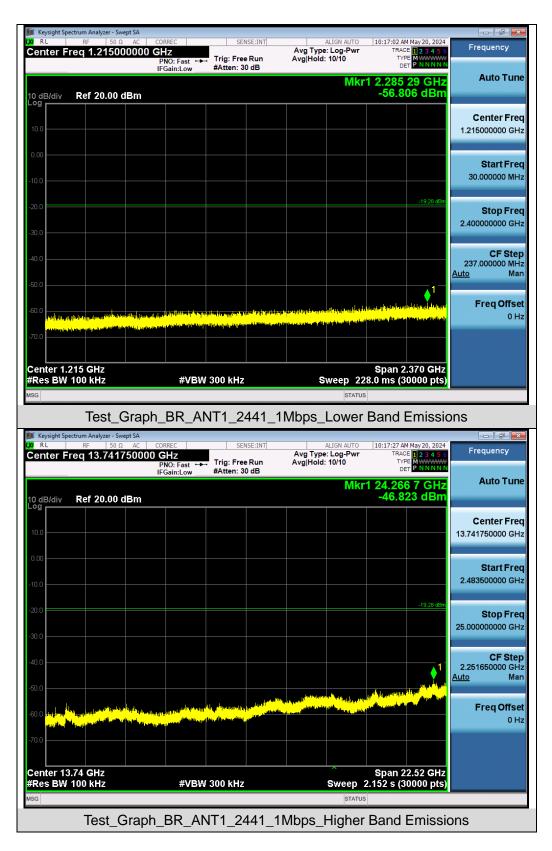
8.2 Measurement Procedure

The testing follows the ANSI C63.10 Section 6.10.4 and 7.8.8:

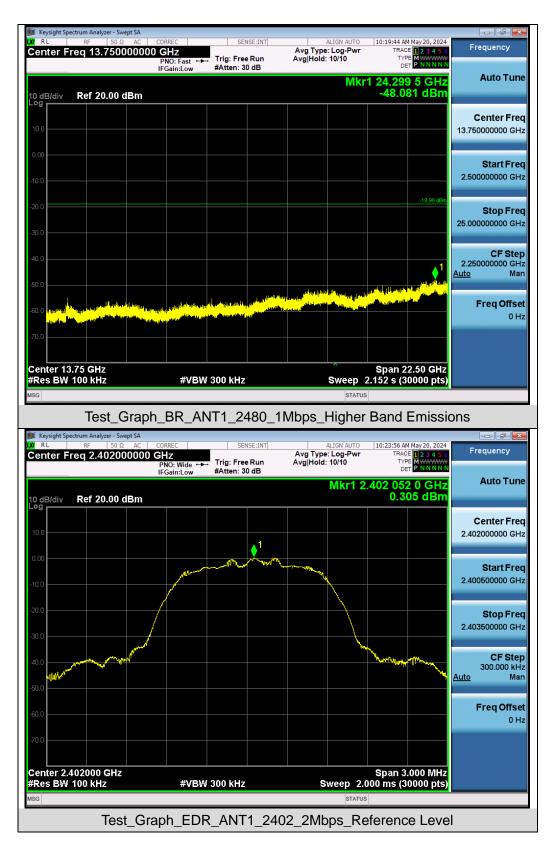

- Reference level measurement
- 1. Span = Wide enough to capture the peak level of the emission operating on the channel closest to the band edge, as well as any modulation products which fall outside of the authorized band of operation.
- 2. RBW = 100kHz
- 3. VBW = 300kHz
- 4. Detector = Peak
- 5. Sweep time = Auto couple
- 6. Trace mode = Max hold
- 7. Allow the trace to stabilize. Set the marker on the emission at the band edge, or on the highest modulation product outside of the band, if this level is greater than that at the band edge. Enable the marker-delta function, then use the marker-to-peak function to move the marker to the peak of the in-band emission.
- Emission level measurement
- 1. Span = Wide enough to capture the peak level of the in-band emission and all spurious emissions (e.g., harmonics) from the lowest frequency generated in the EUT up through the 10th harmonic. Typically, several plots are required to cover this entire span.
- 2. RBW = 100kHz
- 3. VBW = 300kHz
- 4. Detector = Peak
- 5. Sweep time = Auto couple
- 6. Trace mode = Max hold
- 7. Trace was allowed to stabilize
- 8. Set the marker on the peak of any spurious emission recorded. The level displayed must comply with the limit specified in this section.

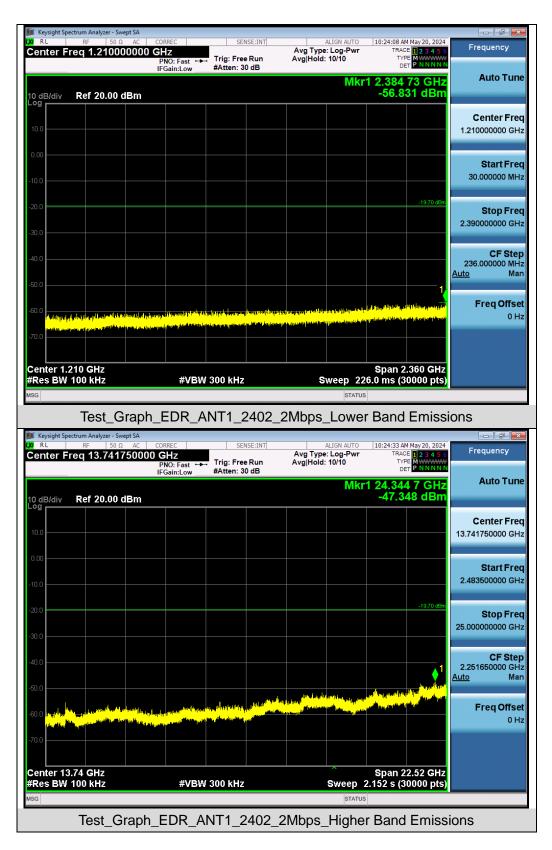
8.3 Measurement Setup (Block Diagram of Configuration)

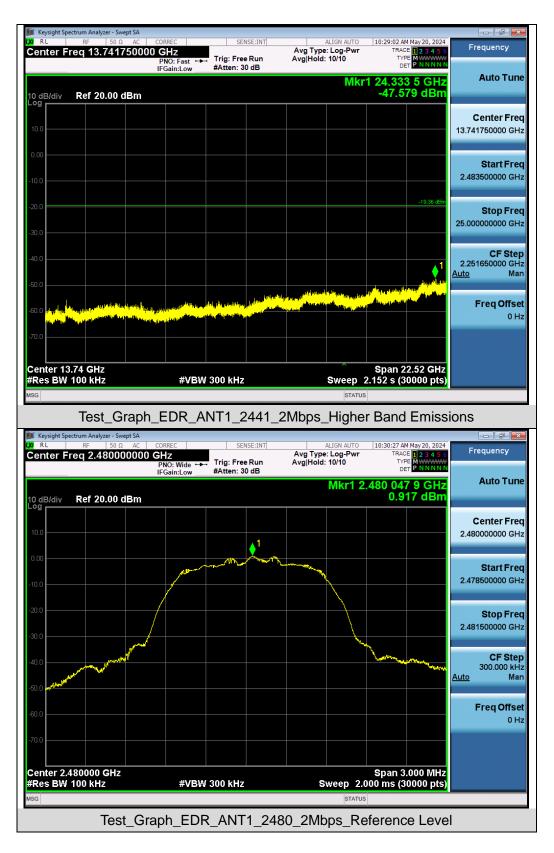
8.4 Measurement Results

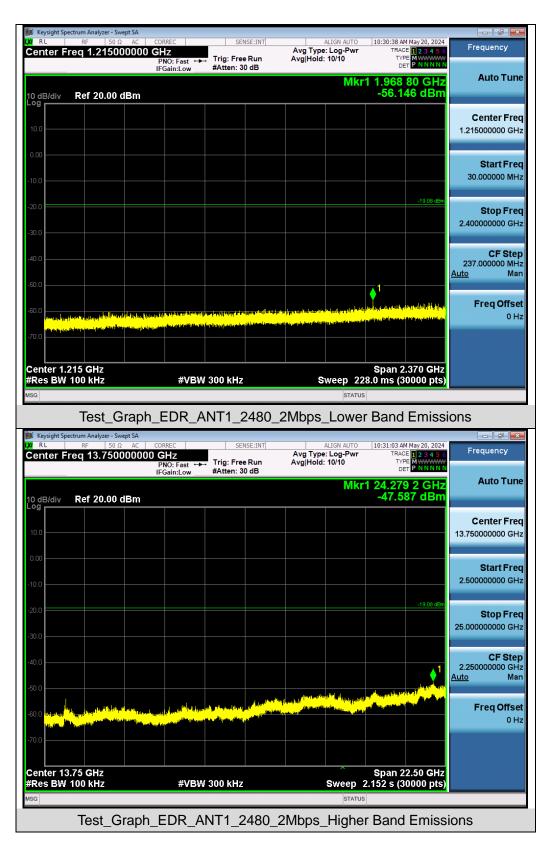


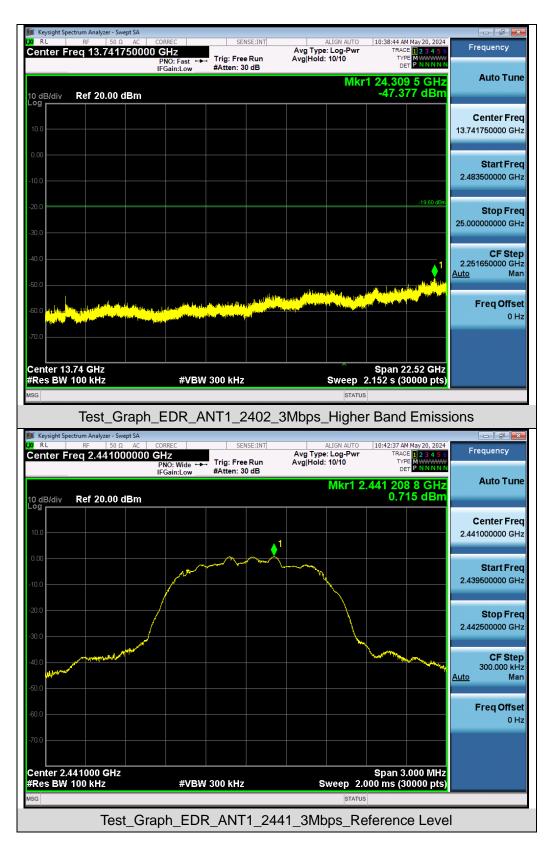
Test Graphs of Spurious Emissions in Non-Restricted Frequency Bands

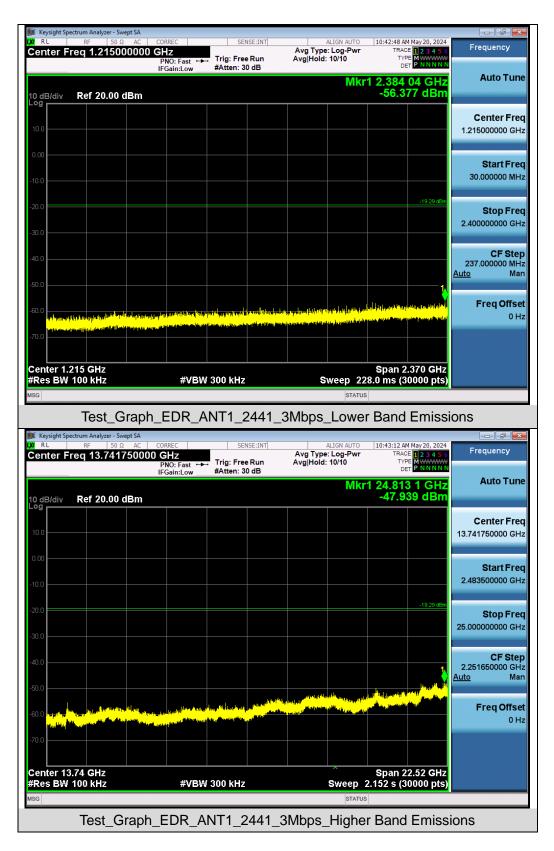


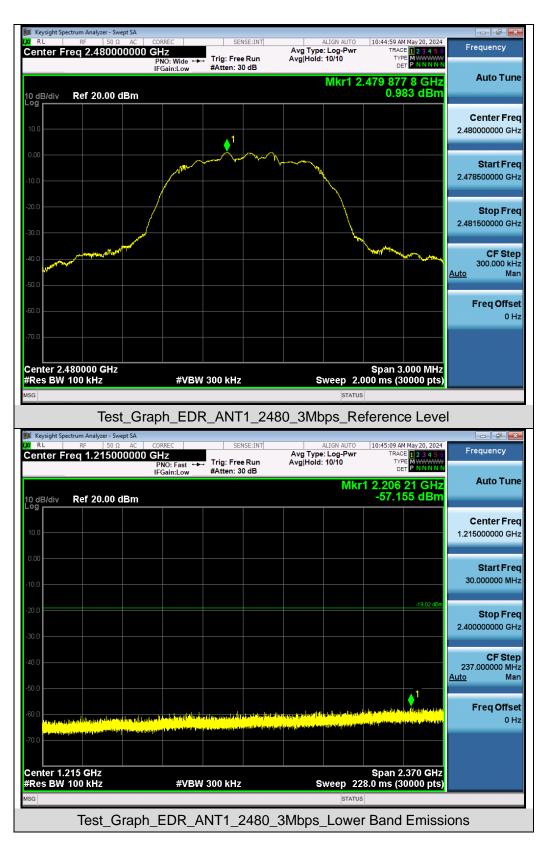


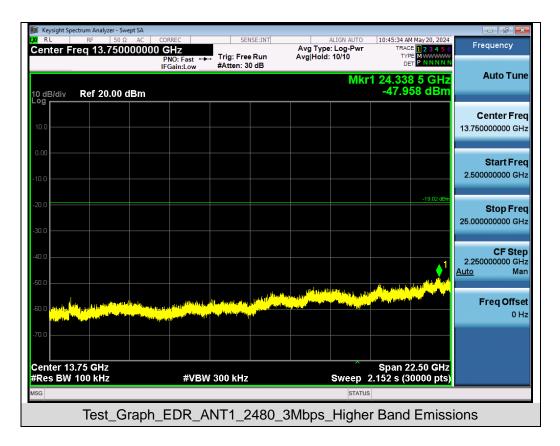


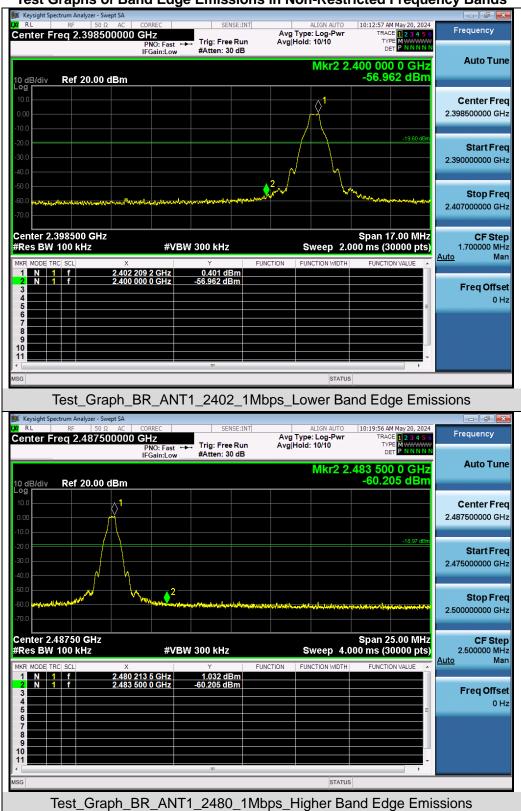


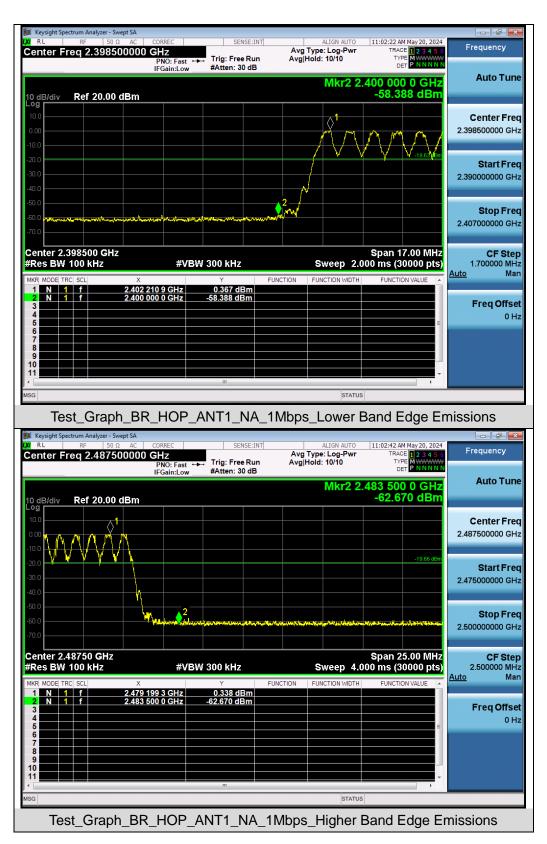












Test Graphs of Band Edge Emissions in Non-Restricted Frequency Bands



9. Radiated Spurious Emission

9.1 Measurement Limit

15.209 Limit in the below table has to be followed

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009~0.490	2400/F(kHz)	300
0.490~1.705	24000/F(kHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

Note: All modes were tested for restricted band radiated emission, the test records reported below are the worst result compared to other modes.

9.2 Measurement Procedure

- 1. The EUT was placed on the top of the turntable 0.8 or 1.5 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 3 meters far away from the turntable.
- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emission, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 6. For emissions above 1GHz, use 1MHz RBW and 3MHz VBW for peak reading. Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- 7. When the radiated emissions limits are expressed in terms of the average value of the emissions, and pulsed operation is employed, the measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection"

Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.

absolute voltage during a 0.1 second interval during which the field strength is at its maximum values.

- 8. If the emissions level of the EUT in peak mode was 3 dB lower than the average limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method for below 1GHz.
- 9. For testing above 1GHz, the emissions level of the EUT in peak mode was lower than average limit (that means the emissions level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
- 10. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. High Low scan is not required in this case.

Spectrum Parameter	Setting
Start ~Stop Frequency	9KHz~150KHz/RB 200Hz for QP
Start ~Stop Frequency	150KHz~30MHz/RB 9KHz for QP
Start ~Stop Frequency	30MHz~1000MHz/RB 120KHz for QP
Start ~Stop Frequency	1GHz~26.5GHz 1MHz/3MHz for Peak, 1MHz/3MHz for Average

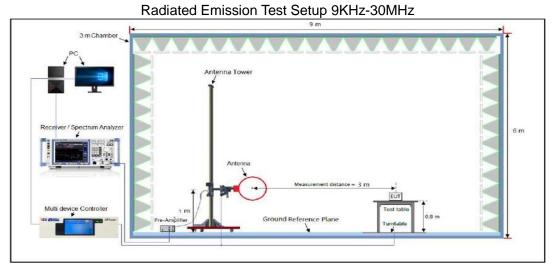
The following table is the setting of spectrum analyzer and receiver.

Receiver Parameter	Setting
Start ~Stop Frequency	9KHz~150KHz/RB 200Hz for QP
Start ~Stop Frequency	150KHz~30MHz/RB 9KHz for QP
Start ~Stop Frequency	30MHz~1000MHz/RB 120KHz for QP

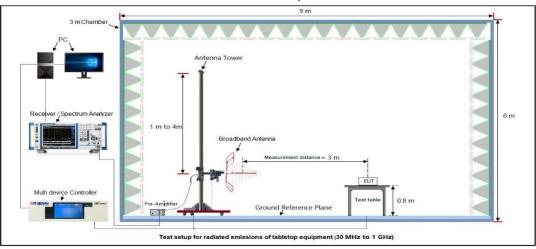
• Quasi-Peak Measurements below 1GHz

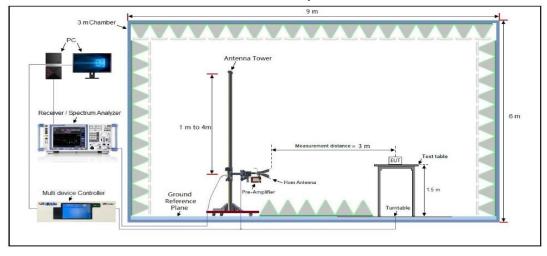
- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. Span was set greater than 1MHz
- 3. RBW = as shown in the table above
- 4. Detector = CISPR quasi-peak
- 5. Sweep time = auto couple
- 6. Trace was allowed to stabilize

• Peak Measurements above 1GHz


- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 1MHz
- 3. VBW = 3MHz
- 4. Detector = peak
- 5. Sweep time = auto couple
- 6. Trace mode = max hold
- 7. Trace was allowed to stabilize

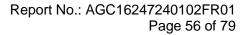
<u>Average Measurements above 1GHz</u>


- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 1MHz
- 3. VBW \geq [3 × RBW]
- 4. Detector = Power averaging (rms)
- 5. Averaging type = power (i.e., rms)
- 6. Sweep time = auto
- 7. Perform a trace average of at least 100 traces.
- 8. The applicable correction factor is [10*log (1 / D)], where D is the duty cycle. The factor had been edited in the "Input Correction" of the Spectrum Analyzer.


9.3 Measurement Setup (Block Diagram of Configuration)

Radiated Emission Test Setup 30MHz-1000MHz

Radiated Emission Test Setup Above 1000MHz



9.4 Measurement Result

Radiated Emission Below 30MHz

The amplitude of spurious emissions from 9kHz to 30MHz which are attenuated more than 20 dB below the permissible value need not be reported.

			Rad	liated	Emis	sion Test R	esults at 3	BOMHz-1	GH	z				
EUT Name	Blue	tooth H	leads	set			Мос	del Nam	е		K	10H		
Temperature	22.6	°C					Rela	ative Hu	mic	lity	6	0.1%	6	
Pressure	960ŀ	nPa					Test	t Voltag	е		N	lorm	al V	/oltag
Test Mode	Mod	e 9					Ant	enna Po	olari	ty	Н	loriz	onta	al
72.0	dBuV/m													
												it: rgin:		
	www.men	1 interna	ssecolded	www.	I Ngul Maria	San Marina Ma Marina Marina M	geoglien-shadarshadarsh	on the second			5	un yanan	Juri	
				10 80	l Ny Marine	E Ministration (MHz)	ordelling, stradensk dører				5		100	
-8 30.00		50		70 80 Rea	ading	(MHz)	Measure	300			600		100	00.000
-8 30.00	0 40	50 5. F	60	70 BO Rea	ading	(MHz) Correct	Measure	300 4	it	500	600 Er			_
-8 30.00	0 40	50 50 K. F	60	70 BO Rea Le	ading	(MH₂) Correct Factor	Measure	300 4 2- Lim	it //m	500 Ove	600 EF	700 Dete		_
-8 30.00 N	10 40	50 50 K. F	60 Freq. MHz 5664	70 80 Re: Le d	ading evel IBuV	(MHz) Correct Factor dB	Measure ment dBuV/m	300 A E- Lim dBuV	it //m 0	500 Ove	600 er	700 Dete	ector	_
-8 30.00 N	00 40 10. Mł	50 50 K. F N 46.6	60 Freq. MHz 5664 1231	70 80 Re; Le d	ading evel IBuV 6.81	(MHz) Correct Factor dB 13.43	Measure ment dBuV/m 20.24	300 4 e- Lim dBuV 40.0	it //m 0	500 Ove dB -19.7	600 er 76 52	700 Dete	ector eak eak	r
-8 30.00 	00 40 10. Mk	50 50 (. F 121.1	60 Freq. MHz 5664 1231 3514	70 80 Re: d	ading evel IBuV 6.81 5.65	(МН₂) Соггесt Factor dB 13.43 16.33	Measure ment dBuV/m 20.24 21.98	300 A E- Lim 40.0 43.5	it //m 0 0	500 500 dB -19.7 -21.5	600 er 76 52 38	700 Dete pe pe	ector eak eak	- r -
-8 30.00 	00 40 lo. Mk 1 2 3	50 50 50 46.(121.1 444.(60 Freq. MHz 5664 1231 3514 1826	70 80 Re: d d (ading evel IBuV 6.81 5.65 5.69	(МН₂) Соггесt Factor dB 13.43 16.33 24.93	Measure ment dBuV/m 20.24 21.98 30.62	300 A E- Lim 40.0 43.5 46.0	it //m 0 0 0	500 500 0Ve dB -19.7 -21.5	600 er 76 52 38 24	700 Dete pe pe	ector eak eak eak	- - -

				na	lateu	LIIIIS		counto c		MHz-1GI				
EUT Name	BI	ueto	oth F	leads	set			Μ	lode	l Name		K	10H	
Temperature	22	2.6℃	1					R	elati	ve Humi	dity	6	0.1%	
Pressure	96	50hF	'a					Т	est V	/oltage		Ν	lormal	Volta
Test Mode	Μ	ode	9					A	nten	na Pola	rity	V	ertical	
72.0	dBuVa	/m												
												Lim Mai	iit: - rgin: -	
-													5	e X
32			_							4		m	Moundary	J/M
											ka J aAN	14C		
		1			2		3			how the heres	www.www.ww	٧		
d.	ANNON	*	hohelennalena	www.	2	aliana ananto	3	And and the strate of the	manum	warman Japan	www.walary	Y		
h	VANNAN	1	hohelaninaina	ww	2 	nhhuhhut	Z Antonio () () () () () () () () () () () () ()	Charles mary A	protection	un and have	how you want have	Y		
۸. –	WARNER !!	1 ******	hohelaningang	un la un	2 X Maria Ali va Ali va Ali va Ali va	nhan harrat	and an international states of the states of	Cherton and a start of the	production and	union data	han ya Makalan M	V		
h. 	and the second second	1 	hohelantinakona	oprillerall	2 X Vale Alexandre	nhan harar	andre Witting Witting data - roc	Charlos and a start of the	production and	un mbrian	and the second se	¥		
_	What Med	1 X	halanaana	opri Jarah	2 ж	nhan yahan da	A A A A A A A A A A A A A A A A A A A	Chestersterstersterster	brather and	normalitaria	and the second se	¥		
-8 30.0		1 *******	50		2 × •••••••••••••••••••••••••••••••••••	nhis y _h atrah	анин-маралия (MHz)	Protostanta porta	and 10-100			600		
-8					70 80	ading	(MHz)	Meas	30	0 400	500	600		
-8 30.0		40	50		70 80 Re		(MHz)		30 ure-			600		
-8 30.0	000	40	50 F	60	70 80 Re	ading	(MH2) Correct	Meas	30 ure- nt	0 400	500 Ove	600 ECO		
-8 30.0	000	40	50 F	⁶⁰	70 80 Re Le	ading	(MH₂) Correct Factor	Meas	30 ure- nt	0 400 Limit	500 Ove	e00	700 1	1000.000
-8 30.0	000 No.	40	50 F 40.1	60 Freq. MHz	70 80 Re Le	ading evel BuV	(MH₂) Correct Factor dB	Meas mer dBuV/	30 ure- nt m 0	0 400 Limit dBuV/m	500 Ove	600 er	700 1 Detect	1000.000 tor k
-8 30.0	000 No.	40 Mk.	50 F 40.1	60 Freq. MHz 1347 3593	70 80 Re Le	ading evel BuV 7.00	(MH₂) Correct Factor dB 16.90	Meast mer dBuV/ 23.9	30 ure- nt /m 0	0 400 Limit dBuV/m 40.00	500 Ove dB -16.1	600 er 10	700 1 Detect	tor k
-8 30.0	000 No. 1 2	40 Mk.	50 F M 40.1 73.3	60 Freq. MHz 1347 3593 3506	70 80 Re Le	ading evel BuV 7.00 7.34	(MH₂) Correct Factor dB 16.90 16.97	Measi mer dBuV/ 23.9 24.3	30 ure- nt (m 0 1 9	0 400 Limit dBuV/m 40.00 40.00	500 Ove dB -16.1 -15.6	600 er 10 59	700 1 Detect peal	tor k k k
-8 30.0	No.	40 Mk.	50 F 40.1 73.3 145.3	60 Freq. MHz 1347 3593 3506 7426	70 80 Re Le	ading evel BuV 7.00 7.34 7.29	(мн₂) Correct Factor dB 16.90 16.97 18.20	Measi mer dBuV/ 23.9 24.3 25.4	30 ure- nt 0 1 9 5	0 400 Limit dBuV/m 40.00 40.00 43.50	500 Ove dB -16.1 -15.6 -18.0	600 er 10 59 01 35	700 1 Detect peal peal	tor k k k k

				Ra	Idia	ted En	nissi	ion Test Re	esults	s at 3	OMH:	z-1G⊦	łz				
EUT Name	E	Bluet	tooth	Head	lset					Mod	el Na	me		k	(10		
Temperature	e 2	2.6°	с							Rela	tive	Humie	dity	6	60.1%		
Pressure	ç	60h	Pa							Test	Volta	age		Ν	lorma	l Volta	ige
Test Mode	Ν	/lode	e 9							Ante	enna	Polar	ity	F	lorizoi	ntal	
72.0	dBuV	/m															
32			2. 	nte anno 1				3 The second se		- Maylad are the		, m [‡]	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	M (nit: argin:		
-8	.000	10	50	60	70	80		(MHz)			300	400	500	600	700	1000.00	n
		Mk		Freq		Readi Leve		Correct Factor		asure ent	-	imit	Ov				-
				MHz		dBu∖	/	dB	dBu	ıV/m	dE	3uV/m	dl	В	Deteo	ctor	
	1		40	.559	1	6.2	8	13.86	20	.14	40	0.00	-19	.86	pea	ak	
	2		49	.186	5	6.4	2	13.26	19	.68	4(00.0	-20	.32	pea	ak	
	3			.328		6.3		16.02		34		3.50	-21		pea		
	4			.6554		5.7		24.81		.54		6.00	-15		pea		
	5			2142		6.4		25.17		.65		6.00	-14		pea		
	6	*	900	.1474	4	5.6	3	31.78	37	.41	46	6.00	-8.	59	pea	ak	

			ка	alate	ed Er	nissi	ion Test R	esuits at	JUIVI	HZ-IGF	1Z		
EUT Name	Bluet	ooth I	Head	set				Мо	del N	Name		K10	
Temperature	22.6°	С						Re	lative	e Humi	dity	60.1%	
Pressure	960h	960hPa								Test Voltage			oltage
Test Mode	Mode	9						An	tenn	a Polar	ity	Vertical	
72.0	dBuV/m												
32												.imit: — 4argin: —	
hari	huddendursch	hundhelae	nter ¹	ann	Maryholyy	hund-how	2 An Indonesian International	hadd yn ar yw ar	NW W	have been the	- Angen Marked		
-8 30.00		50		70 81	0		(MHz)		300	400			0.000
-8 30.00		50		70 84		ing		Measu	300 re-				
-8 30.00	00 40	50 . F	60	70 84	o Readi	ing 21	(MH2) Correct	Measu	300 re-	400	500 600		D0.000
-8 30.00	00 40	50 . F	60	70 80	₀ Readi Leve	ing el	(MH2) Correct Factor	Measu	300 re-	400 Limit	500 600 Over	0 700 100	D0.000
-8 30.00	00 40 No. Mk	50 . F	⁶⁰ Freq. MHz 7588	70 80	• Readi Leve dBu\	ing el V	(MHz) Correct Factor dB	Measu ment dBuV/n	300 re-	400 Limit dBuV/m	500 600 Over dB	Detector	D0.000
-8 30.00	³⁰ 40 No. Mk	50 . F	60 Freq. MHz 7588 3285	70 84	eadi Leve dBu\ 7.5	ing el V 3 2	(MH₂) Correct Factor dB 17.06	Measu ment dBuV/m 24.59	300 re-	400 Limit dBu∨/m 40.00	500 600 Over dB -15.41	Detector peak peak	D0.000
-8 30.00	³⁰ 40 No. Mk 1 2	50 . F 63.7 126.3	⁶⁰ Freq. MHz 7588 3285 0607	70 80	eadi Leve dBu\ 7.5	ing el 3 2	(MH₂) Correct Factor dB 17.06 17.86	Measu ment dBuV/m 24.59 25.28	300 re-	400 Limit dBuV/m 40.00 43.50	500 600 Over dB -15.41 -18.22	Detector peak peak peak	D0.000
-8 30.00	²⁰ 40 No. Mk 1 2 3	50 . F 126.3 321.0	⁶⁰ Freq. MHz 7588 3285 0607 1198	70 80	eadi Leve dBu\ 7.5 7.4 6.6	ing el 3 2 1 6	(мн₂) Соггесt Factor dB 17.06 17.86 20.26	Measu ment dBuV/m 24.59 25.28 26.87	300 re-	400 Limit dBuV/m 40.00 43.50 46.00	500 600 Over dB -15.41 -18.22 -19.13	Detector peak peak peak peak	D0.000

RESULT: Pass

Note: 1. Factor=Antenna Factor + Cable loss, Margin=Measurement-Limit.

UT Name	Bluetooth He	eadset	Mode	el Name	K10H	
emperature	22.6 ℃		Rela	tive Humidity	60.1%	
ressure	960hPa		Test	Voltage	Norma	I Voltage
est Mode	Mode 7		Ante	nna Polarity	Horizo	ntal
			·			
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	value Type
4804.000	47.63	0.08	47.71	74	-26.29	peak
4804.000	38.42	0.08	38.5	54	-15.5	AVG
7206.000	42.16	2.21	44.37	74	-29.63	peak
7206.000	32.69	2.21	34.9	54	-19.1	AVG
Remark:	· · · · · · · · · · · · · · · · · · ·					
itternark.						
	nna Factor + Cabl	e Loss – Pre-	amplifier.			
	nna Factor + Cable Bluetooth He			el Name	K10H	
Factor = Anter			Mode	el Name tive Humidity	K10H 60.1%	
Factor = Anter	Bluetooth He		Mode		60.1%	l Voltage
Factor = Anter	Bluetooth He		Mode Rela Test	tive Humidity	60.1%	I Voltage
Factor = Anter	Bluetooth He 22.6℃ 960hPa Mode 7	eadset	Mode Rela Test Ante	tive Humidity Voltage nna Polarity	60.1% Norma Vertica	I Voltage
Factor = Anter	Bluetooth He 22.6°C 960hPa Mode 7 Meter Reading	eadset Factor	Mode Rela Test Ante Emission Level	tive Humidity Voltage nna Polarity	60.1% Norma Vertica Margin	l Voltage I
Factor = Anter	Bluetooth He 22.6°C 960hPa Mode 7 Meter Reading (dBµV)	eadset Factor (dB)	Mode Rela Test Ante Emission Level (dBµV/m)	tive Humidity Voltage nna Polarity Limits (dBµV/m)	60.1% Norma Vertica Margin (dB)	I Voltage I Value Type
Factor = Anter	Bluetooth He 22.6℃ 960hPa Mode 7 Meter Reading (dBµV) 48.65	Factor (dB) 0.08	Mode Rela Test Ante Emission Level (dBµV/m) 48.73	tive Humidity Voltage nna Polarity Limits (dBµV/m) 74	60.1% Norma Vertica Margin (dB) -25.27	I Voltage I Value Type peak
Factor = Anter	Bluetooth He 22.6 °C 960hPa Mode 7 Meter Reading (dBμV) 48.65 37.52	Factor (dB) 0.08 0.08	Mode Rela Test Ante Emission Level (dBµV/m) 48.73 37.6	tive Humidity Voltage nna Polarity Limits (dBµV/m) 74 54	60.1% Norma Vertica Margin (dB) -25.27 -16.4	I Voltage I Value Type peak AVG
Factor = Anter	Bluetooth He 22.6 °C 960hPa Mode 7 Meter Reading (dBµV) 48.65 37.52 42.53	Factor (dB) 0.08 0.08 2.21	Mode Rela Test Ante Emission Level (dBμV/m) 48.73 37.6 44.74	tive Humidity Voltage nna Polarity Limits (dBµV/m) 74 54 74	60.1% Norma Vertica Margin (dB) -25.27 -16.4 -29.26	I Voltage I Value Type peak AVG peak
Factor = Anter	Bluetooth He 22.6 °C 960hPa Mode 7 Meter Reading (dBμV) 48.65 37.52	Factor (dB) 0.08 0.08	Mode Rela Test Ante Emission Level (dBµV/m) 48.73 37.6	tive Humidity Voltage nna Polarity Limits (dBµV/m) 74 54	60.1% Norma Vertica Margin (dB) -25.27 -16.4	I Voltage I Value Type peak AVG
Factor = Anter	Bluetooth He 22.6 °C 960hPa Mode 7 Meter Reading (dBµV) 48.65 37.52 42.53	Factor (dB) 0.08 0.08 2.21	Mode Rela Test Ante Emission Level (dBµV/m) 48.73 37.6 44.74	tive Humidity Voltage nna Polarity Limits (dBµV/m) 74 54 74	60.1% Norma Vertica Margin (dB) -25.27 -16.4 -29.26	I Voltage I Value Type peak AVG peak

Radiated Emissions Test Results Above 1GHz

RESULT: Pass

EUT Name	Bluetooth He	eadset	Mod	el Name	K10H	
Temperature	22.6 ℃		Rela	tive Humidity	60.1%	
Pressure	960hPa		Test	Voltage	Norma	l Voltage
est Mode	Mode 8		Ante	nna Polarity	Horizor	ntal
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	value Type
4882.000	47.98	0.14	48.12	74	-25.88	peak
4882.000	38.23	0.14	38.37	54	-15.63	AVG
7323.000	43.08	2.36	45.44	74	-28.56	peak
7323.000	32.87	2.36	35.23	54	-18.77	AVG
Remark:						1
	na Factor + Cabl	e Loss – Pre-	amplifier.			
Factor = Anten						
	na Factor + Cabl			el Name	K10H	
Factor = Anten			Mod	el Name tive Humidity	K10H 60.1%	
Factor = Anten	Bluetooth He		Mod Rela		60.1%	l Voltage
Factor = Anten EUT Name Femperature	Bluetooth He		Mod Rela Test	tive Humidity	60.1%	•
Factor = Anten	Bluetooth He 22.6℃ 960hPa Mode 8	eadset	Mod Rela Test Ante	tive Humidity Voltage nna Polarity	60.1% Norma Vertica	•
Factor = Anten	Bluetooth He 22.6℃ 960hPa Mode 8 Meter Reading	eadset Factor	Mod Rela Test Ante Emission Level	tive Humidity Voltage Inna Polarity	60.1% Norma Vertica Margin	•
Factor = Anten	Bluetooth He 22.6°C 960hPa Mode 8 Meter Reading (dBµV)	eadset Factor (dB)	Mod Rela Test Ante Emission Level (dBµV/m)	tive Humidity Voltage mna Polarity Limits (dBµV/m)	60.1% Norma Vertica Margin (dB)	l Value Type
Factor = Anten	Bluetooth He 22.6℃ 960hPa Mode 8 Meter Reading (dBµV) 46.99	Factor (dB) 0.14	Mod Rela Test Ante Emission Level (dBµV/m) 47.13	tive Humidity Voltage mna Polarity Limits (dBµV/m) 74	60.1% Norma Vertica Margin (dB) -26.87	l Value Type peak
Factor = Anten	Bluetooth He 22.6°C 960hPa Mode 8 Meter Reading (dBµV) 46.99 37.43	Factor (dB) 0.14 0.14	Mod Rela Test Ante Emission Level (dBµV/m) 47.13 37.57	tive Humidity Voltage mna Polarity Limits (dBµV/m) 74 54	60.1% Norma Vertica Margin (dB) -26.87 -16.43	Value Type peak AVG
Factor = Anten	Bluetooth He 22.6 °C 960hPa Mode 8 Meter Reading (dBμV) 46.99 37.43 41.68	Factor (dB) 0.14 0.14 2.36	Моd Rela Test Ante Emission Level (dBµV/m) 47.13 37.57 44.04	tive Humidity Voltage mna Polarity Limits (dBµV/m) 74 54 74	60.1% Norma Vertica Margin (dB) -26.87 -16.43 -29.96	Value Type peak AVG peak
Factor = Anten	Bluetooth He 22.6°C 960hPa Mode 8 Meter Reading (dBµV) 46.99 37.43	Factor (dB) 0.14 0.14	Mod Rela Test Ante Emission Level (dBµV/m) 47.13 37.57	tive Humidity Voltage mna Polarity Limits (dBµV/m) 74 54	60.1% Norma Vertica Margin (dB) -26.87 -16.43	Value Type peak AVG
Factor = Anten	Bluetooth He 22.6 °C 960hPa Mode 8 Meter Reading (dBμV) 46.99 37.43 41.68	Factor (dB) 0.14 0.14 2.36	Моd Rela Test Ante Emission Level (dBµV/m) 47.13 37.57 44.04	tive Humidity Voltage mna Polarity Limits (dBµV/m) 74 54 74	60.1% Norma Vertica Margin (dB) -26.87 -16.43 -29.96	Value Type peak AVG peak

Radiated Emissions Test Results for Above 1GHz

RESULT: Pass

EUT Name	Bluetooth Hea	adset	Model	Name	K10H	
Temperature	22.6 ℃		Relati	ve Humidity	60.1%	
Pressure	960hPa		Test V	oltage	Normal	/oltage
Test Mode	Mode 9		Anten	na Polarity	Horizont	al
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	
4960.000	48.69	0.22	48.91	74	-25.09	peak
4960.000	37.52	0.22	37.74	54	-16.26	AVG
7440.000	42.43	2.64	45.07	74	-28.93	peak
7440.000	31.25	2.64	33.89	54	-20.11	AVG
Remark:						
Factor = Anter	nna Factor + Cable Bluetooth Hea			Name	K10H	
EUT Name			Model	Name ve Humidity	K10H 60.1%	
EUT Name Temperature	Bluetooth Hea		Model Relati		-	/oltage
EUT Name Temperature Pressure	Bluetooth Hea		Model Relati Test V	ve Humidity	60.1%	/oltage
EUT Name Temperature Pressure Test Mode	Bluetooth Hea 22.6℃ 960hPa Mode 9	adset	Model Relati Test V Anten	ve Humidity /oltage na Polarity	60.1% Normal V Vertical	
EUT Name Temperature Pressure Test Mode	Bluetooth Hea 22.6℃ 960hPa Mode 9 Meter Reading	adset Factor	Model Relativ Test V Anten Emission Level	ve Humidity /oltage na Polarity Limits	60.1% Normal V	Voltage Value Type
EUT Name Temperature Pressure Test Mode Frequency (MHz)	Bluetooth Hea 22.6℃ 960hPa Mode 9 Meter Reading (dBµV)	adset Factor (dB)	Model Relativ Test V Anten	ve Humidity Voltage na Polarity Limits (dBµV/m)	60.1% Normal V Vertical Margin (dB)	- Value Type
EUT Name Temperature Pressure Test Mode Frequency (MHz) 4960.000	Bluetooth Hea 22.6℃ 960hPa Mode 9 Meter Reading (dBµV) 47.63	adset Factor	Model Relativ Test V Anten Emission Level	ve Humidity foltage na Polarity Limits (dBµV/m) 74	60.1% Normal V Vertical	
EUT Name Temperature Pressure Test Mode Frequency (MHz) 4960.000 4960.000	Bluetooth Hea 22.6°C 960hPa Mode 9 Meter Reading (dBµV) 47.63 37.54	Adset Factor (dB) 0.22	Model Relativ Test V Anten Emission Level (dBµV/m) 47.85 37.76	ve Humidity Voltage na Polarity Limits (dBµV/m)	60.1% Normal V Vertical Margin (dB) -26.15 -16.24	- Value Type peak AVG
EUT Name Temperature Pressure Test Mode Frequency (MHz) 4960.000	Bluetooth Hea 22.6℃ 960hPa Mode 9 Meter Reading (dBµV) 47.63	Factor (dB) 0.22 0.22	Model Relatin Test V Anten Emission Level (dBµV/m) 47.85	ve Humidity oltage na Polarity Limits (dBµV/m) 74 54	60.1% Normal V Vertical Margin (dB) -26.15	- Value Type peak
EUT Name Temperature Pressure Test Mode Frequency (MHz) 4960.000 4960.000 7440.000	Bluetooth Hea 22.6 °C 960hPa Mode 9 Meter Reading (dBµV) 47.63 37.54 41.25	Adset Factor (dB) 0.22 0.22 2.64	Model Relativ Test V Anten Emission Level (dBµV/m) 47.85 37.76 43.89	ve Humidity oltage na Polarity Limits (dBµV/m) 74 54 74	60.1% Normal V Vertical Margin (dB) -26.15 -16.24 -30.11	- Value Type peak AVG peak
EUT Name Temperature Pressure Test Mode Frequency (MHz) 4960.000 4960.000 7440.000	Bluetooth Hea 22.6 °C 960hPa Mode 9 Meter Reading (dBµV) 47.63 37.54 41.25	Adset Factor (dB) 0.22 0.22 2.64	Model Relativ Test V Anten Emission Level (dBµV/m) 47.85 37.76 43.89	ve Humidity oltage na Polarity Limits (dBµV/m) 74 54 74	60.1% Normal V Vertical Margin (dB) -26.15 -16.24 -30.11	- Value Type peak AVG peak

Any report having not been signed by authorized approver, or having been altered without authorization, or having not been stamped by the "Dedicated Testing/Inspection Stamp" is deemed to be invalid. Copying or excerpting portion of, or altering the content of the report is not permitted without the written authorization of AGC. The test results presented in the report apply only to the tested sample. Any objections to report issued by AGC should be submitted to AGC within 15days after the issuance of the test report. Further enquiry of validity or verification of the test report should be addressed to AGC by agc01@agccert.com.

22.6℃ 960hPa		F	• • • • • • • • •		
960hPa		-	Relative Humidity	60.1%	
		1	Test Voltage	Norma	I Voltage
Mode 7		ŀ	Antenna Polarity	Horizo	ntal
Meter Reading	Factor	Emission L	_evel Limits	Margin	Value Type
(dBµV)	(dB)	(dBµV/m	n) (dBµV/m)	(dB)	value Type
48.63	0.08	48.71	74	-25.29	peak
37.91	0.08	37.99	54	-16.01	AVG
41.35	2.21	43.56	74	-30.44	peak
31.24	2.21	33.45	54	-20.55	AVG
na Factor + Cable	e Loss – Pre-	amplifier.			
Bluetooth He	eadset	N	Model Name	K10	
22.6 ℃		F	Relative Humidity	60.1%	
960hPa		1	Test Voltage	Norma	I Voltage
Mode 7		ŀ	Antenna Polarity	Vertica	I
Motor Pooding	Factor	Emission		Margin	
				÷	Value Type
, , ,	(<i>'</i> ,		, , ,		peak
					AVG
					peak
					AVG
51.00	2.21	33.00	04	-20.14	7/0
					+
					<u> </u>
a Fastar I Cable		amplifiar			
	(dBµV) 48.63 37.91 41.35 31.24 Da Factor + Cable Bluetooth He 22.6 °C 960hPa Mode 7 Meter Reading (dBµV) 37.61 38.62 42.48 31.65	(dBµV) (dB) 48.63 0.08 37.91 0.08 41.35 2.21 31.24 2.21 a a a Factor + Cable Loss – Pre- Bluetooth Headset 22.6 °C 960hPa Mode 7 Meter Reading Factor (dBµV) (dB) 37.61 0.08 38.62 0.08 42.48 2.21 31.65 2.21	(dBµV) (dB) (dBµV/m 48.63 0.08 48.71 37.91 0.08 37.99 41.35 2.21 43.56 31.24 2.21 33.45 ma Factor + Cable Loss – Pre-amplifier. Image: Comparison of Comp	(dBµV) (dB) (dBµV/m) (dBµV/m) 48.63 0.08 48.71 74 37.91 0.08 37.99 54 41.35 2.21 43.56 74 31.24 2.21 33.45 54 a - - - ba Factor + Cable Loss – Pre-amplifier. Model Name 22.6 °C Relative Humidity 960hPa Test Voltage Mode 7 Antenna Polarity Meter Reading Factor Emission Level Limits (dBµV) (dB) (dBµV/m) (dBµV/m) 37.61 0.08 37.69 74 38.62 0.08 38.7 54 42.48 2.21 44.69 74 31.65 2.21 33.86 54	(dBµV) (dB) (dBµV/m) (dB) 48.63 0.08 48.71 74 -25.29 37.91 0.08 37.99 54 -16.01 41.35 2.21 43.56 74 -30.44 31.24 2.21 33.45 54 -20.55 na Factor + Cable Loss – Pre-amplifier. Image: Comparison of the comparison of

Radiated Emissions Test Results Above 1GHz

RESULT: Pass

UT Name	Bluetooth He	Bluetooth Headset		el Name	K10		
emperature	22.6 ℃	22.6 ℃		Relative Humidity		60.1%	
ressure	960hPa		Test	Voltage	Norma	Voltage	
est Mode	Mode 8	Mode 8		Antenna Polarity Horiz		ntal	
					·		
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)	value Type	
4882.000	45.96	0.14	46.1	74	-27.9	peak	
4882.000	37.12	0.14	37.26	54	-16.74	AVG	
7323.000	41.54	2.36	43.9	74	-30.1	peak	
7323.000	32.95	2.36	35.31	54	-18.69	AVG	
Remark:							
Factor = Anter	nna Factor + Cabl	e Loss – Pre-	amplifier.				
Factor = Anten	Bluetooth He			el Name	K10		
			Mod	el Name tive Humidity	K10 60.1%		
UT Name	Bluetooth He		Mod		60.1%	Voltage	
UT Name emperature	Bluetooth He		Mod Rela Test	tive Humidity	60.1%	0	
UT Name emperature ressure est Mode	Bluetooth He 22.6℃ 960hPa Mode 8	eadset	Mod Rela Test Ante	tive Humidity Voltage nna Polarity	60.1% Norma Vertica	0	
UT Name emperature ressure est Mode	Bluetooth He 22.6°C 960hPa Mode 8 Meter Reading	eadset Factor	Mode Rela Test Ante Emission Level	tive Humidity Voltage nna Polarity	60.1% Norma Vertica Margin		
CUT Name Comperature Pressure Cest Mode Frequency (MHz)	Bluetooth He 22.6°C 960hPa Mode 8 Meter Reading (dBµV)	eadset Factor (dB)	Mod Rela Test Ante Emission Level (dBµV/m)	tive Humidity Voltage nna Polarity Limits (dBµV/m)	60.1% Normal Vertica Margin (dB)	l Value Type	
UT Name emperature ressure est Mode Frequency (MHz) 4882.000	Bluetooth He 22.6℃ 960hPa Mode 8 Meter Reading (dBµV) 47.65	Factor (dB) 0.14	Mode Rela Test Ante Emission Level (dBµV/m) 47.79	tive Humidity Voltage nna Polarity Limits (dBµV/m) 74	60.1% Norma Vertica Margin (dB) -26.21	Value Type	
UT Name emperature ressure est Mode Frequency (MHz) 4882.000 4882.000	Bluetooth He 22.6 °C 960hPa Mode 8 Meter Reading (dBμV) 47.65 38.42	Factor (dB) 0.14 0.14	Mode Rela Test Ante Emission Level (dBµV/m) 47.79 38.56	tive Humidity Voltage nna Polarity Limits (dBµV/m) 74 54	60.1% Normal Vertica Margin (dB) -26.21 -15.44	- Value Type peak AVG	
UT Name emperature ressure est Mode Frequency (MHz) 4882.000 4882.000 7323.000	Bluetooth He 22.6 °C 960hPa Mode 8 Meter Reading (dBμV) 47.65 38.42 42.05	Eadset Factor (dB) 0.14 0.14 2.36	Mode Rela Test Ante Emission Level (dBμV/m) 47.79 38.56 44.41	tive Humidity Voltage nna Polarity Limits (dBµV/m) 74 54 74	60.1% Normal Vertica Margin (dB) -26.21 -15.44 -29.59	Value Type peak AVG peak	
UT Name emperature ressure est Mode Frequency (MHz) 4882.000 4882.000	Bluetooth He 22.6 °C 960hPa Mode 8 Meter Reading (dBμV) 47.65 38.42	Factor (dB) 0.14 0.14	Mode Rela Test Ante Emission Level (dBµV/m) 47.79 38.56	tive Humidity Voltage nna Polarity Limits (dBµV/m) 74 54	60.1% Normal Vertica Margin (dB) -26.21 -15.44	- Value Type peak AVG	
UT Name emperature ressure est Mode Frequency (MHz) 4882.000 4882.000 7323.000	Bluetooth He 22.6 °C 960hPa Mode 8 Meter Reading (dBμV) 47.65 38.42 42.05	Eadset Factor (dB) 0.14 0.14 2.36	Mode Rela Test Ante Emission Level (dBμV/m) 47.79 38.56 44.41	tive Humidity Voltage nna Polarity Limits (dBµV/m) 74 54 74	60.1% Normal Vertica Margin (dB) -26.21 -15.44 -29.59	Value Type peak AVG peak	
UT Name emperature ressure est Mode Frequency (MHz) 4882.000 4882.000 7323.000	Bluetooth He 22.6 °C 960hPa Mode 8 Meter Reading (dBμV) 47.65 38.42 42.05	Eadset Factor (dB) 0.14 0.14 2.36	Mode Rela Test Ante Emission Level (dBμV/m) 47.79 38.56 44.41	tive Humidity Voltage nna Polarity Limits (dBµV/m) 74 54 74	60.1% Normal Vertica Margin (dB) -26.21 -15.44 -29.59	Value Type peak AVG peak	

Radiated Emissions Test Results for Above 1GHz

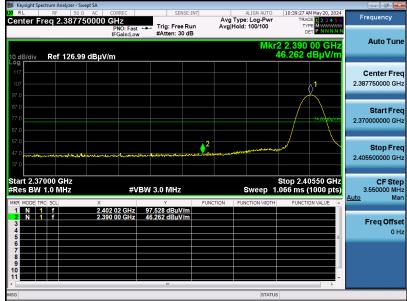
RESULT: Pass

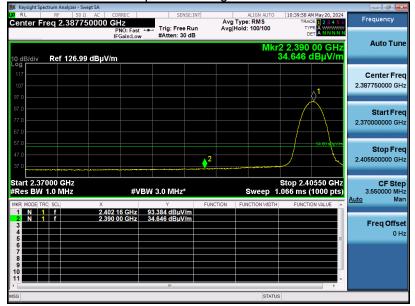
Radiated Emissions Te	est Results for Above 1GHz
-----------------------	----------------------------

EUT Name	Bluetooth Hea	Bluetooth Headset		l Name	K10		
Temperature	22.6°C		Relati	Relative Humidity		60.1%	
Pressure	960hPa		Test V	Test Voltage		Normal Voltage	
Fest Mode	Mode 9		Anten	Antenna Polarity		Horizontal	
Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Value Type	
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)		
4960.000	47.12	0.22	47.34	74	-26.66	peak	
4960.000	38.52	0.22	38.74	54	-15.26	AVG	
7440.000	41.67	2.64	44.31	74	-29.69	peak	
7440.000	32.33	2.64	34.97	54	-19.03	AVG	
Remark: Eactor = Anter	na Factor + Cable	loss – Pre-	amplifier				
Factor = Anter	nna Factor + Cable						
	Bluetooth Hea			I Name	K10		
Factor = Anter			Mode	l Name ve Humidity	K10 60.1%		
Factor = Anter	Bluetooth Hea		Model Relati			Voltage	
Factor = Anter EUT Name Femperature	Bluetooth Hea		Model Relati Test V	ve Humidity	60.1%	/oltage	
Factor = Anter EUT Name Femperature Pressure Fest Mode	Bluetooth Hea 22.6℃ 960hPa		Model Relati Test V	ve Humidity /oltage	60.1% Normal V Vertical		
Factor = Anter EUT Name Femperature Pressure	Bluetooth Hea 22.6℃ 960hPa Mode 9	adset	Model Relati Test V Anten	ve Humidity /oltage na Polarity	60.1%	Voltage Value Type	
Factor = Anter	Bluetooth Hea 22.6℃ 960hPa Mode 9 Meter Reading	adset Factor	Model Relati Test V Anten Emission Level	ve Humidity /oltage na Polarity Limits	60.1% Normal Vertical Margin		
Factor = Anter	Bluetooth Hea 22.6℃ 960hPa Mode 9 Meter Reading (dBµV)	adset Factor (dB)	Model Relati Test V Anten Emission Level (dBµV/m)	ve Humidity /oltage na Polarity Limits (dBµV/m)	60.1% Normal Vertical Margin (dB)	- Value Type	
Factor = Anter EUT Name Femperature Pressure Fest Mode Frequency (MHz) 4960.000	Bluetooth Hea 22.6℃ 960hPa Mode 9 Meter Reading (dBµV) 47.88	Adset Factor (dB) 0.22	Model Relati Test V Anten Emission Level (dBµV/m) 48.1	ve Humidity foltage na Polarity Limits (dBµV/m) 74	60.1% Normal V Vertical Margin (dB) -25.9	Value Type	
Factor = Anter EUT Name Femperature Pressure Fest Mode Frequency (MHz) 4960.000	Bluetooth Hea 22.6°C 960hPa Mode 9 Meter Reading (dBµV) 47.88 37.46	Factor (dB) 0.22 0.22	Model Relati Test V Anten Emission Level (dBµV/m) 48.1 37.68	ve Humidity /oltage na Polarity Limits (dBµV/m) 74 54	60.1% Normal V Vertical Margin (dB) -25.9 -16.32	- Value Type peak AVG	
Factor = Anter EUT Name Femperature Pressure Fest Mode Frequency (MHz) 4960.000 4960.000 7440.000	Bluetooth Hea 22.6 °C 960hPa Mode 9 Meter Reading (dBµV) 47.88 37.46 42.51	Factor (dB) 0.22 0.22 2.64	Model Relati Test V Anten Emission Level (dBµV/m) 48.1 37.68 45.15	ve Humidity /oltage na Polarity Limits (dBµV/m) 74 54 74	60.1% Normal V Vertical Margin (dB) -25.9 -16.32 -28.85	Value Type peak AVG peak	

RESULT: Pass

Note:

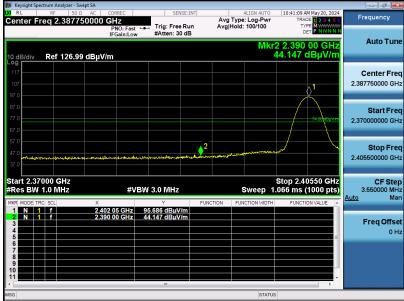

- 1. The amplitude of other spurious emissions from 1G to 25 GHz which are attenuated more than 20 dB below the permissible value need not be reported.
- 2. Factor = Antenna Factor + Cable loss Pre-amplifier gain, Margin = Emission Level-Limit.
- 3. The "Factor" value can be calculated automatically by software of measurement system.


EUT Name	Bluetooth Headset	Model Name	К10Н
Temperature	25℃	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 7	Antenna Polarity	Horizontal

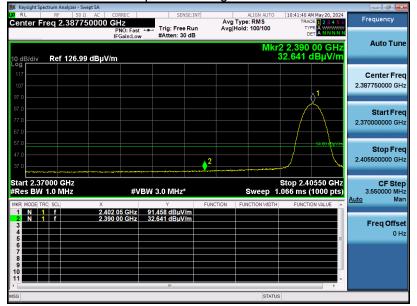
Band Edge Emission Test Results for Restricted Bands

Test Graph for Peak Measurement

Test Graph for Average Measurement



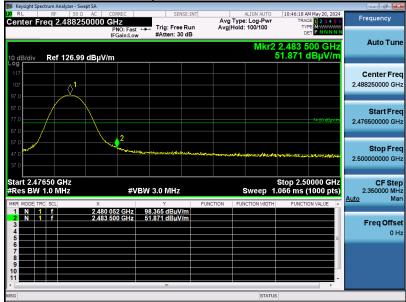
RESULT: Pass



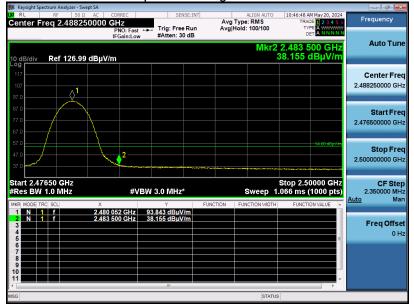
EUT Name	Bluetooth Headset	Model Name	K10H
Temperature	25 ℃	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 7	Antenna Polarity	Vertical

Test Graph for Peak Measurement

Test Graph for Average Measurement



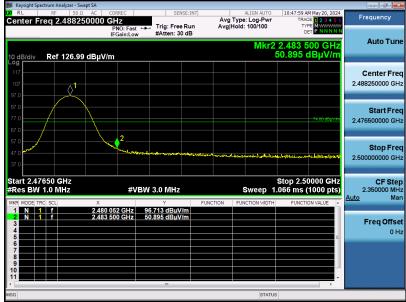
RESULT: Pass



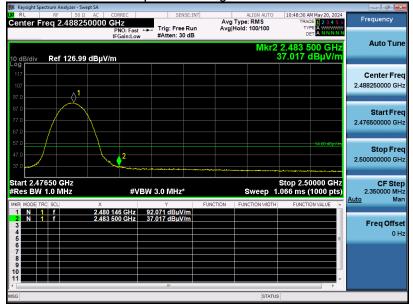
EUT Name	Bluetooth Headset	Model Name	K10H
Temperature	25 ℃	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 9	Antenna Polarity	Horizontal

Test Graph for Peak Measurement

Test Graph for Average Measurement



RESULT: Pass



EUT Name	Bluetooth Headset	Model Name	K10H
Temperature	25 ℃	Relative Humidity	55.4%
Pressure	960hPa	Test Voltage	Normal Voltage
Test Mode	Mode 9	Antenna Polarity	Vertical

Test Graph for Peak Measurement

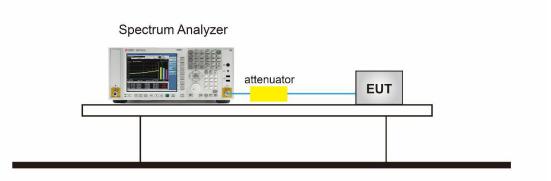
Test Graph for Average Measurement

RESULT: Pass

Note: The factor had been edited in the "Input Correction" of the Spectrum Analyzer.

10. Number of Hopping Frequency Measurement

10.1 Provisions Applicable


This frequency hopping system must employ a minimum of 15 hopping channels.

10.2 Measurement Procedure

The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings:

- 1. Span = The frequency band of operation. Depending on the number of channels the device
- 2. supports, it may be necessary to divide the frequency range of operation across multiple spans, to allow the individual channels to be clearly seen.
- 3. RBW: To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller.
- 4. VBW \geq RBW
- 5. Sweep time = Auto couple
- 6. Detector = Peak
- 7. Trace mode = Max hold
- 8. Allow the trace to stabilize

10.3 Measurement Setup (Block Diagram of Configuration)

10.4 Measurement Result

Test Data of Number of Hopping Frequency					
Test Mode Number of Hopping Frequency Limits Pass or Fail					
8DPSK Hopping78>=15Pass					

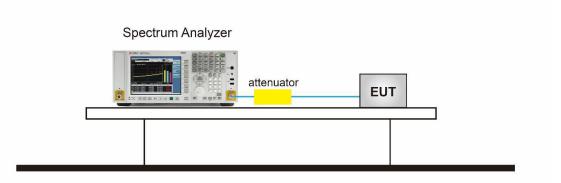
📁 Keysight Spectrum Analyzer - Swept SA	•			• •	
RL RF 50 Ω AC Center Freq 2.44175000		SENSE:INT	ALIGN AUTO Avg Type: Log-Pwr	10:53:26 AM May 20, 2024 TRACE 1 2 3 4 5 6	Frequency
10 dB/div Ref 30.00 dBm	PNO: Fast +++ Tr	ig: Free Run .tten: 40 dB	Avg Hold: 100/100	1 2.475 06 GHz 0.973 dBm	Auto Tune
20.0					Center Freq 2.441750000 GHz
0.00 - 1444 1444 1444 1444 1444 1444 1444 1	ฦฦ๛ฦฦ๛ฦ๙๛๛๛๚	MMMMMANA	ᠵᡶᡊ᠋ᢧᢦᡇᡘ᠊ᢛᢦᡟᠬᢦᡟᡘᡟᡧᡐᡝ	านทั้งหังคายที่มีหนังกุ	Start Freq 2.400000000 GHz
-10.0					Stop Freq 2.483500000 GHz
-30.0 Ú					CF Step 8.350000 MHz <u>Auto</u> Man
-50.0				\	Freq Offset 0 Hz
Center 2.44175 GHz #Res BW 200 kHz	#VBW 620	0 kHz	Sweep 1	Span 83.50 MHz 998 ms (1000 pts)	
MSG			STATUS		
Test_Grap	h_EDR_HOF	P_ANT1_N	A_3Mbps_N	umber of Hop	ping

Test Graphs of Number of Hopping Frequency

Note: All mode rates are tested and evaluated, 8DPSK modulated 3DH5 mode is the worst case and documented in the report.

11. Time of Occupancy (Dwell Time) Measurement

11.1 Provisions Applicable


The maximum permissible time of occupancy is 400ms within a period of 400ms multiplied by the number of hopping channels employed.

11.2 Measurement Procedure

The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings:

- 1. Span = Zero span, centered on a hopping channel.
- 2. RBW shall be \leq channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel.
- 3. VBW \geq RBW
- 4. Sweep time = As necessary to capture the entire dwell time per hopping channel
- 5. Detector = Peak
- 6. Trace mode = Free Run
- 7. Use the marker-delta function to determine the transmit time per hop. If this value varies with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this test for each variation in transmit time. An oscilloscope may be used instead of a spectrum analyzer. The EUT shall show compliance with the appropriate regulatory limit for the number of hopping channels. A plot of the data shall be included in the test report.

11.3 Measurement Setup (Block Diagram of Configuration)

11.4 Measurement Result

Test Data of Dwell Time					
Channel	Time of Pulse for 3DH5 (ms)	Number of hops in the period specified in the requirements	Dwell Time (ms)	Limit (ms)	Pass or Fail
2402	2.886	26.0*4	300.144	400	Pass
2441	2.886	27.0*4	311.688	400	Pass
2480	2.886	27.0*4	311.688	400	Pass