

Shenzhen HTT Technology Co., Ltd.

Report No.: HTT202404147F03

TEST Report

Applicant: YEAHER INC.

Address of Applicant: 51 Steel Dr, Unit A, New Castle, DE 19720 United States

Manufacturer: Nimo Direct Inc.

Address of 51 Steel Dr, Unit A, New Castle, DE 19720 United States

Manufacturer:

Equipment Under Test (EUT)

Product Name: MINI PC

Model No.: MPL1P

Series model: MPL1W

Trade Mark: N/A

FCC ID: 2BEMH-MPL1P

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: Apr. 11, 2024

Date of Test: Apr. 11, 2024 ~ Apr. 19, 2024

Date of report issued: Apr. 19, 2024

Test Result: PASS *

* In the configuration tested, the EUT complied with the standards specified above.

1. Version

Version No.	Date	Description
00	Apr. 19, 2024	Original

Tested/ Prepared By	Heber He Date:	Apr. 19, 2024
	Project Engineer	
Check By:	Bruce 2hu Date:	Apr. 19, 2024
	Reviewer	
Approved By :	Kein You HTT Date:	Apr. 19, 2024
	Authorized Signature	

2. Contents

	Page
1. VERSION	2
2. CONTENTS	3
3. TEST SUMMARY	4
4. GENERAL INFORMATION	
4.1. GENERAL DESCRIPTION OF EUT 4.2. TEST MODE 4.3. DESCRIPTION OF SUPPORT UNITS 4.4. DEVIATION FROM STANDARDS 4.5. ABNORMALITIES FROM STANDARD CONDITIONS 4.6. TEST FACILITY 4.7. TEST LOCATION 4.8. ADDITIONAL INSTRUCTIONS	
6. TEST RESULTS AND MEASUREMENT DATA	9
6.1. CONDUCTED EMISSIONS 6.2. CONDUCTED OUTPUT POWER 6.3. CHANNEL BANDWIDTH. 6.4. POWER SPECTRAL DENSITY 6.5. BAND EDGES 6.5.1 Conducted Emission Method 6.5.2 Radiated Emission Method 6.6. SPURIOUS EMISSION 6.6.1 Conducted Emission Method 6.6.2 Radiated Emission Method 6.7. ANTENNA REQUIREMENT	
7. TEST SETUP PHOTO	30
8 FUT CONSTRUCTIONAL DETAILS	30

3. Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Output Power	15.247 (b)(3)	Pass
Channel Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Spurious Emission	15.205/15.209	Pass

Remarks:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. Test according to ANSI C63.10:2013

Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes			
Radiated Emission	30~1000MHz	3.45 dB	(1)			
Radiated Emission	1~18GHz 3.54 dB		(1)			
Radiated Emission	18-40GHz	5.38 dB	(1)			
Conducted Disturbance 0.15~30MHz 2.66 dB (1)						
Note (1): The measurement uncertainty is for coverage factor of k=2 and a level of confidence of 95%.						

4. General Information

4.1. General Description of EUT

Gonorai Booonpaon of Eo i		
Product Name:	MINI PC	
Model No.:	MPL1P	
Series model:	MPL1W	
Test sample(s) ID:	HTT202404147-1(Engineer sample) HTT202404147-2(Normal sample)	
Operation frequency	2402~2480 MHz	
Number of Channels	40	
Modulation Type	GFSK	
Channel separation	2MHz	
Antenna Type:	FPC Antenna	
Antenna Gain:	3.11 dBi	
Power Supply:	DC 12.0V From External Circuit	
Adapter Information:	MODEL:SOY-1200300US-459 INPUT:100-240V~ 50/60Hz 0.9A Max OUTPUT:12.0V=3.0A 36.0W	

Channel	Frequency(MHz)	Channel	Frequency(MHz)	
0	2402	20	2442	
1	2404	21	2444	
2	2406	22	2446	
3	2408	23	2448	
4	2410	24	2450	
5	2412	25	2452	
6	2414	26	2454	
7	2416	27	2456	
8	2418	28	2458	
9	2420	29	2460	
10	2422	30	2462	
11	2424	31	2464	
12	2426	32	2466	
13	2428	33	2468	
14	2430	34	2470	
15	2432	35	2472	
16	2434	36	2474	
17	2436	37	2476	
18	2438	38	2478	
19	2440	39	2480	

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2440MHz
The Highest channel	2480MHz

4.2. Test mode

Transmitting mode Keep the EUT in continuously transmitting mode.

Remark: During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

4.3. Description of Support Units

None.

4.4. Deviation from Standards

None.

4.5. Abnormalities from Standard Conditions

None.

4.6. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 779513 Designation Number: CN1319

Shenzhen HTT Technology Co.,Ltd. has been accredited on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

A2LA-Lab Cert. No.: 6435.01

Shenzhen HTT Technology Co.,Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

4.7. Test Location

All tests were performed at:

Shenzhen HTT Technology Co.,Ltd.

1F, Building B, Huafeng International Robotics Industrial Park, Hangcheng Road, Nanchang Community, Xixiang Street, Bao'an District, Shenzhen, Guangdong, China

Tel: 0755-23595200 Fax: 0755-23595201

4.8. Additional Instructions

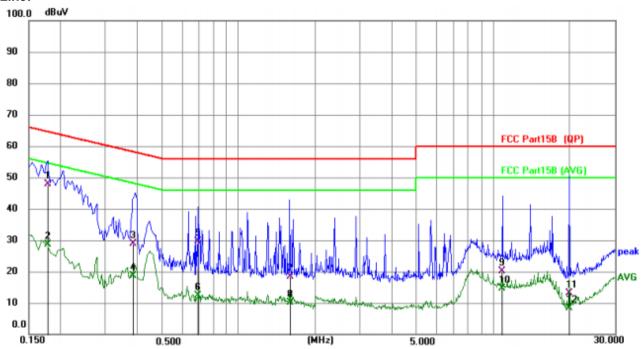
Test Software	Special AT test command provided by manufacturer to Keep the EUT in continuously transmitting mode and hopping mode
Power level setup	Default

5. Test Instruments list

Item	Test Equipment	Test Equipment Manufacturer		Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	3m Semi- Anechoic Chamber	Shenzhen C.R.T technology co., LTD	9*6*6	HTT-E028	Aug. 10 2021	Aug. 09 2024
2	Control Room	Shenzhen C.R.T technology co., LTD	4.8*3.5*3.0	HTT-E030	Aug. 10 2021	Aug. 09 2024
3	EMI Test Receiver	Rohde&Schwar	ESCI7	HTT-E022	Apr. 26 2023	Apr. 25 2024
4	Spectrum Analyzer	Rohde&Schwar	FSP	HTT-E037	Apr. 26 2023	Apr. 25 2024
5	Coaxial Cable	ZDecl	ZT26-NJ-NJ-0.6M	HTT-E018	Apr. 26 2023	Apr. 25 2024
6	Coaxial Cable	ZDecl	ZT26-NJ-SMAJ-2M	HTT-E019	Apr. 26 2023	Apr. 25 2024
7	Coaxial Cable	ZDecl	ZT26-NJ-SMAJ-0.6M	HTT-E020	Apr. 26 2023	Apr. 25 2024
8	Coaxial Cable	ZDecl	ZT26-NJ-SMAJ-8.5M	HTT-E021	Apr. 26 2023	Apr. 25 2024
9	Composite logarithmic antenna	Schwarzbeck	VULB 9168	HTT-E017	May. 21 2023	May. 20 2024
10	Horn Antenna	Schwarzbeck	BBHA9120D	HTT-E016	May. 20 2023	May. 19 2024
11	Loop Antenna	Zhinan	ZN30900C	HTT-E039	Apr. 26 2023	Apr. 25 2024
12	Horn Antenna	Beijing Hangwei Dayang	OBH100400	HTT-E040	Apr. 26 2023	Apr. 25 2024
13	low frequency Amplifier	Sonoma Instrument	310	HTT-E015	Apr. 26 2023	Apr. 25 2024
14	high-frequency Amplifier	HP	8449B	HTT-E014	Apr. 26 2023	Apr. 25 2024
15	Variable frequency power Shenzhen Anbiao supply Instrument Co., Ltd		ANB-10VA	HTT-082	Apr. 26 2023	Apr. 25 2024
16	EMI Test Receiver			Apr. 26 2023	Apr. 25 2024	
17	Artificial Mains	Rohde & Schwarz	ESH3-Z5	HTT-E006	May. 23 2023	May. 22 2024
18	Artificial Mains	Rohde & Schwarz	ENV-216	HTT-E038	May. 23 2023	May. 22 2024
19	Cable Line			HTT-E001	Apr. 26 2023	Apr. 25 2024
20	Attenuator	Robinson	6810.17A	HTT-E007	Apr. 26 2023	Apr. 25 2024
21	Variable frequency power supply	Shenzhen Yanghong Electric Co., Ltd	YF-650 (5KVA)	HTT-E032	Apr. 26 2023	Apr. 25 2024
22	Control Room	Shenzhen C.R.T technology co., LTD	8*4*3.5	HTT-E029	Aug. 10 2021	Aug. 09 2024
23	DC power supply	Agilent	E3632A	HTT-E023	Apr. 26 2023	Apr. 25 2024
24	EMI Test Receiver	Agilent	N9020A	HTT-E024	Apr. 26 2023	Apr. 25 2024
25	Analog signal generator	Agilent	N5181A	HTT-E025	Apr. 26 2023	Apr. 25 2024
26	Vector signal generator	Agilent	N5182A	HTT-E026	Apr. 26 2023	Apr. 25 2024
27	Power sensor	Keysight	U2021XA	HTT-E027	Apr. 26 2023	Apr. 25 2024
28	Temperature and humidity meter	Shenzhen Anbiao Instrument Co., Ltd	TH10R	HTT-074	Apr. 28 2023	Apr. 27 2024
29	Radiated Emission Test Software	Farad	EZ-EMC	N/A	N/A	N/A
30	Conducted Emission Test Software	Farad	EZ-EMC	N/A	N/A	N/A
31	RF Test Software	panshanrf	TST	N/A	N/A	N/A

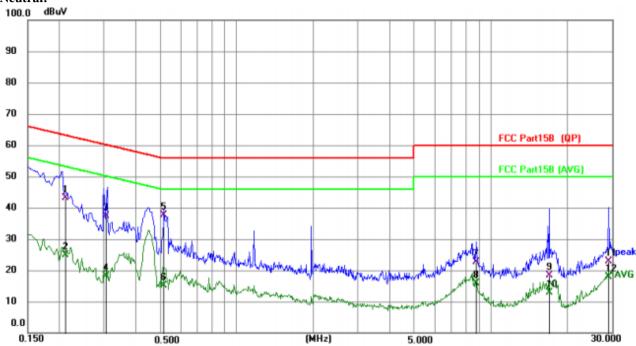
6. Test results and Measurement Data

6.1. Conducted Emissions


Test Method: ANSI C63.10:2013 Test Frequency Range: 150KHz to 30MHz Class / Severity: Class B Receiver setup: RBW=9KHz, VBW=30KHz, Sweep time=au Limit: Frequency range (MHz) Quasi-pe 0.15-0.5 66 to 5 0.5-5 56	Limit (dBuV) ak Average 6* 56 to 46*						
Class / Severity: Class B Receiver setup: RBW=9KHz, VBW=30KHz, Sweep time=au Limit: Frequency range (MHz) Quasi-pe 0.15-0.5 66 to 5	Limit (dBuV) ak Average 6* 56 to 46*						
Receiver setup: RBW=9KHz, VBW=30KHz, Sweep time=au Limit: Frequency range (MHz) Quasi-pe 0.15-0.5 66 to 5	Limit (dBuV) ak Average 6* 56 to 46*						
Limit: Frequency range (MHz) Quasi-pe	Limit (dBuV) ak Average 6* 56 to 46*						
0.15-0.5 Quasi-pe	ak Average 6* 56 to 46*						
0.15-0.5 66 to 5	6* 56 to 46*						
	46						
* Decreases with the logarithm of the frequency	50 mcv						
- · ·	nioy.						
Test procedure: 1. The E.U.T and simulators are connected line impedance stabilization network (L.I. 500hm/50uH coupling impedance for the 2. The peripheral devices are also connected LISN that provides a 500hm/50uH coupling termination. (Please refer to the block diaphotographs).	Remark E.U.T EMI Receiver 1. The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 500hm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through a LISN that provides a 500hm/50uH coupling impedance for the measuring equipment. (2) The peripheral devices are also connected to the main power through a LISN that provides a 500hm/50uH coupling impedance with 500hm termination. (Please refer to the block diagram of the test setup and						
positions of equipment and all of the inte according to ANSI C63.10:2013 on cond	•						
Test Instruments: Refer to section 6.0 for details							
Test mode: Refer to section 5.2 for details							
Test environment: Temp.: 25 °C Humid.: 52%	Temp.: 25 °C Humid.: 52% Press.: 1012mbar						
Test voltage: AC 120V, 60Hz	1						
Test results: PASS							

Remark: Both high and low voltages have been tested to show only the worst low voltage test data.

Measurement data:



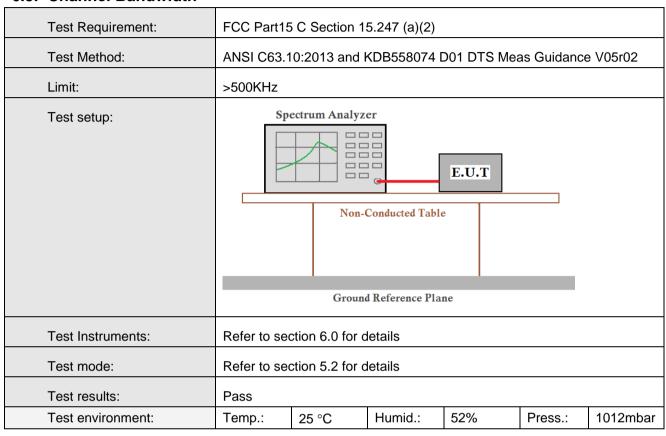
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz		dB	dBuV	dBuV	dB	Detector
1	*	0.1785	37.70	10.19	47.89	64.56	-16.67	QP
2		0.1785	18.33	10.19	28.52	54.56	-26.04	AVG
3		0.3863	18.65	10.26	28.91	58.14	-29.23	QP
4		0.3863	8.32	10.26	18.58	48.14	-29.56	AVG
5		0.6919	19.20	10.34	29.54	56.00	-26.46	QP
6		0.6919	1.96	10.34	12.30	46.00	-33.70	AVG
7		1.5983	8.06	10.40	18.46	56.00	-37.54	QP
8		1.5983	-0.26	10.40	10.14	46.00	-35.86	AVG
9		10.8741	9.25	10.76	20.01	60.00	-39.99	QP
10		10.8741	3.94	10.76	14.70	50.00	-35.30	AVG
11		19.9060	1.82	11.28	13.10	60.00	-46.90	QP
12		19.9060	-2.99	11.28	8.29	50.00	-41.71	AVG

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz		dB	dBuV	dBuV	dB	Detector
1		0.2113	32.92	10.21	43.13	63.15	-20.02	QP
2		0.2113	14.65	10.21	24.86	53.15	-28.29	AVG
3		0.3059	27.10	10.23	37.33	60.08	-22.75	QP
4		0.3059	7.83	10.23	18.06	50.08	-32.02	AVG
5	*	0.5135	27.29	10.29	37.58	56.00	-18.42	QP
6		0.5135	4.84	10.29	15.13	46.00	-30.87	AVG
7		8.7764	11.86	10.81	22.67	60.00	-37.33	QP
8		8.7764	5.15	10.81	15.96	50.00	-34.04	AVG
9		16.9646	7.11	11.22	18.33	60.00	-41.67	QP
10		16.9646	1.73	11.22	12.95	50.00	-37.05	AVG
11		29.2054	11.35	11.44	22.79	60.00	-37.21	QP
12		29.2054	6.53	11.44	17.97	50.00	-32.03	AVG

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Los

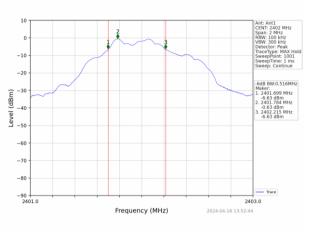
6.2. Conducted Output Power


Test Requirement: Test Method:	FCC Part15 C Section 15.247 (b)(3) ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V05r02						
Limit:	30dBm						
Test setup:	Power Meter E.U.T Non-Conducted Table Ground Reference Plane						
Test Instruments:	Refer to section 6.0 for details						
Test mode:	Refer to section 5.2 for details						
Test results:	Pass						
Test environment:	emp.: 25 °C Humid.: 52	Press.: 1012mbar					

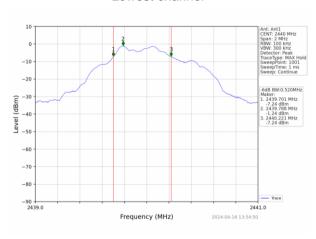
Measurement Data

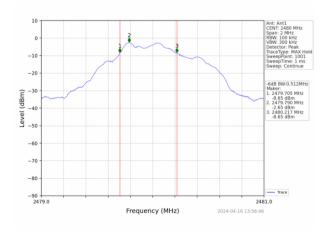
Test channel	Peak Output Power (dBm)	Limit(dBm)	Result
Lowest	-0.55		
Middle	-1.23	30.00	Pass
Highest	-2.60		

6.3. Channel Bandwidth

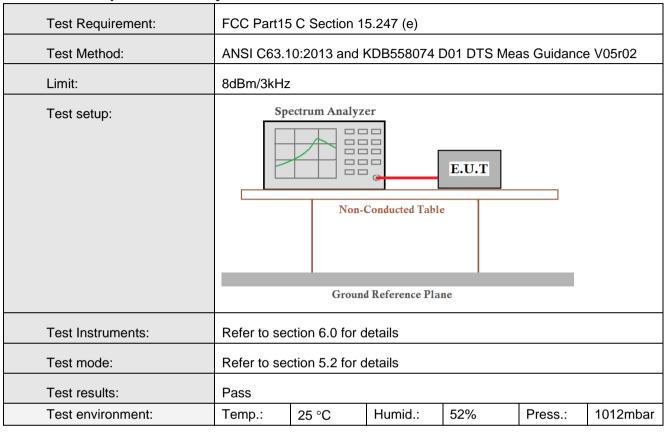


Measurement Data


Test channel	Channel Bandwidth (MHz)	Limit(KHz)	Result
Lowest	0.516		
Middle	0.520	>500	Pass
Highest	0.512		

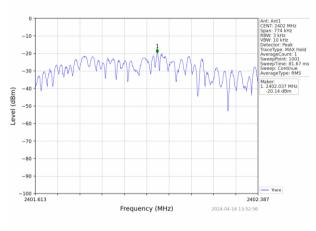

Test plot as follows:

Lowest channel

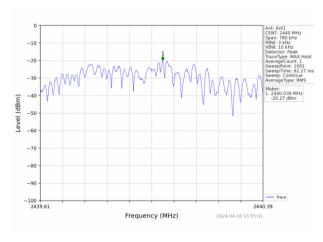

Middle channel

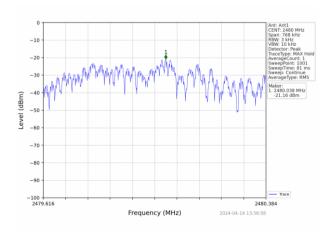
Highest channel

6.4. Power Spectral Density



Measurement Data

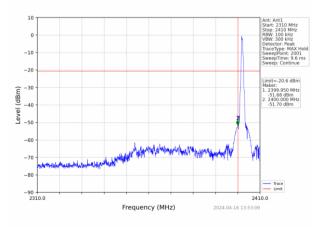

Test channel	Power Spectral Density (dBm/3kHz)	Limit(dBm/3kHz)	Result
Lowest	-20.14		
Middle	-20.27	8.00	Pass
Highest	-21.16		

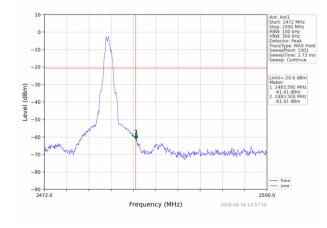

Test plot as follows:

Lowest channel

Middle channel

Highest channel




6.5. Band edges

6.5.1 Conducted Emission Method

	liiou					1
Test Requirement:	FCC Part15	C Section 1	5.247 (d)			
Test Method:	ANSI C63.1	10:2013 and I	KDB558074 [D01 DTS Me	as Guidance	e V05r02
Limit:	spread spe power that below that i highest leve	kHz bandwidt ctrum intentic is produced b n the 100 kH el of the desir easurement.	onal radiator in the state of the intention of the intention of the state of the st	s operating, to onal radiator suithin the bar	he radio fre shall be at le nd that cont	quency east 20 dB ains the
Test setup:	Sp					
Test Instruments:	Refer to see	ction 6.0 for c	letails			
Test mode:	Refer to see	ction 5.2 for c	letails			
Test results:	Pass					
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar

Test plot as follows:

Lowest channel

Highest channel

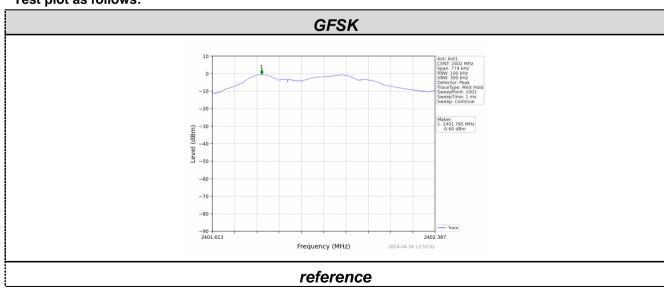
6.5.2 Radiated Emission Method

Test Requirement:	FCC Part15 C Section 15.209 and 15.205							
Test Method:	ANSI C63.10):2013						
Test Frequency Range:	All of the restrict bands were tested, only the worst band's (2310MHz to 2500MHz) data was showed.							
Test site:	Measuremer	nt Distance:	3m					
Receiver setup:	Frequency	/ Detec	ctor	RBW	VBW	/ V	/alue	
·	Above 1GH	Pea	ık	1MHz	3MH	z F	Peak	
	Above IGF	RM	S	1MHz	3MH	z Av	erage	
Limit:	Fred	quency	Lim	it (dBuV	/m @3m	n) V	′alue	
	Abov	e 1GHz		54.0 74.0			erage Peak	
Test setup:	Tum Tablew-<150cm>	EUT+		est Antenna Im 4m Pr	?			
Test Procedure:	determine 2. The EUT antenna, value tower. 3. The anten ground to horizontal measuren 4. For each s and then t and the ro the maxim 5. The test-r Specified 6. If the emis the limit s of the EUT have 10db peak or av sheet. 7. The radiat And found	d at a 3 met at the position was set 3 m which was not an height is determine to and vertical nent. Suspected eache antenna to a table was num reading eceiver syst Bandwidth was ion level of pecified, the T would be read margin wowerage methal the X axis	er camber of the high eters awa nounted on varied from maximal polarization was tuned from the EUT of the EUT	The tall ghest race y from the top one of the top one of the EUT of to heigh om 0 deret to Peanum Hollin peak could be otherwis tested or crified are perform y which is	ble was diation. The interfer to e of the fine anten was arrangees to ak Detect d Mode, mode we stopped the en e by or and then runned in X it is wors	rotated 360 erence-rece riable-heigh four meters field strengt and are set to anged to its anged	eiving at antenna above the h. Both to make the worst case 4 meters es to find and wer than eak values at did not eak, quasi-ea data positioning.	
Test Instruments:	Refer to sect	e mode is re		ine repo	DIT.			
Test mode:								
	Refer to section 5.2 for details							
Test results:	Pass							
Test environment:	Temp.:	25 °C	Humid.:	52%	, !	Press.:	1012mbar	

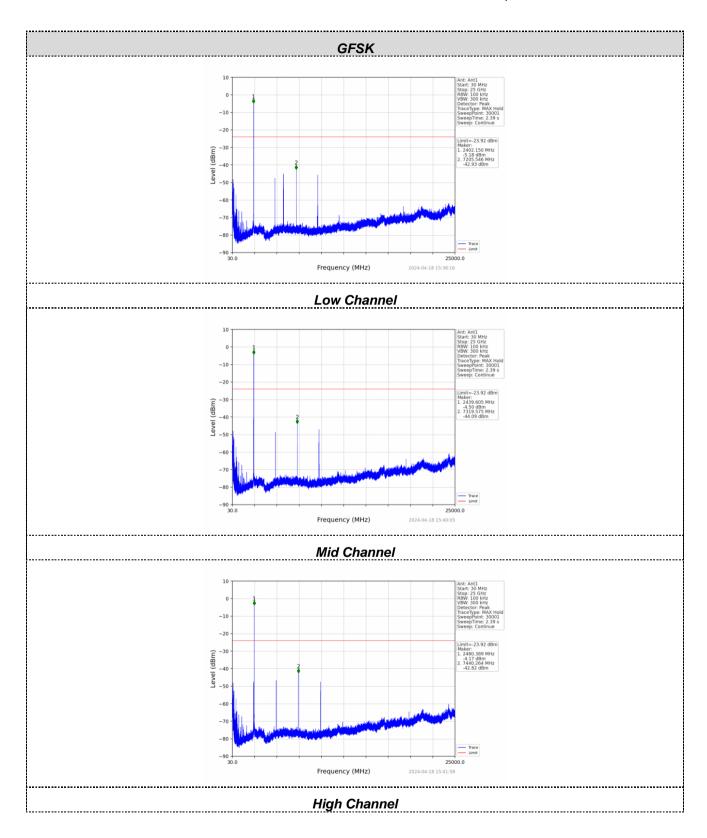
Measurement Data

Operation Mode: GFSK

Freque	ncy(MHz)	:	24	02	Pola	arity:	Н	ORIZONTA	\L
Frequency (MHz)	Emis Le [,] (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2390.00	61.20	PK	74	12.80	62.59	27.2	4.31	32.9	-1.39
2390.00	45.68	AV	54	8.32	47.07	27.2	4.31	32.9	-1.39
Freque	ncy(MHz)	:	24	02	Pola	arity:		VERTICAL	
Frequency (MHz)	Emis Le [,] (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2390.00	60.08	PK	74	13.92	61.47	27.2	4.31	32.9	-1.39
2390.00	45.71	AV	54	8.29	47.10	27.2	4.31	32.9	-1.39
Freque	ncy(MHz)	:	24	80	P ola	arity:	н	IORIZONTA	۱L
Frequency (MHz)	Emis Le (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2483.50	56.66	PK	74	17.34	57.59	27.4	4.47	32.8	-0.93
2483.50	44.66	AV	54	9.34	45.59	27.4	4.47	32.8	-0.93
Freque	ncy(MHz)	:	24	80	Pola	arity:		VERTICAL	
Frequency (MHz)	Emis Le (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2483.50	54.43	PK	74	19.57	55.36	27.4	4.47	32.8	-0.93
2483.50	43.22	AV	54	10.78	44.15	27.4	4.47	32.8	-0.93

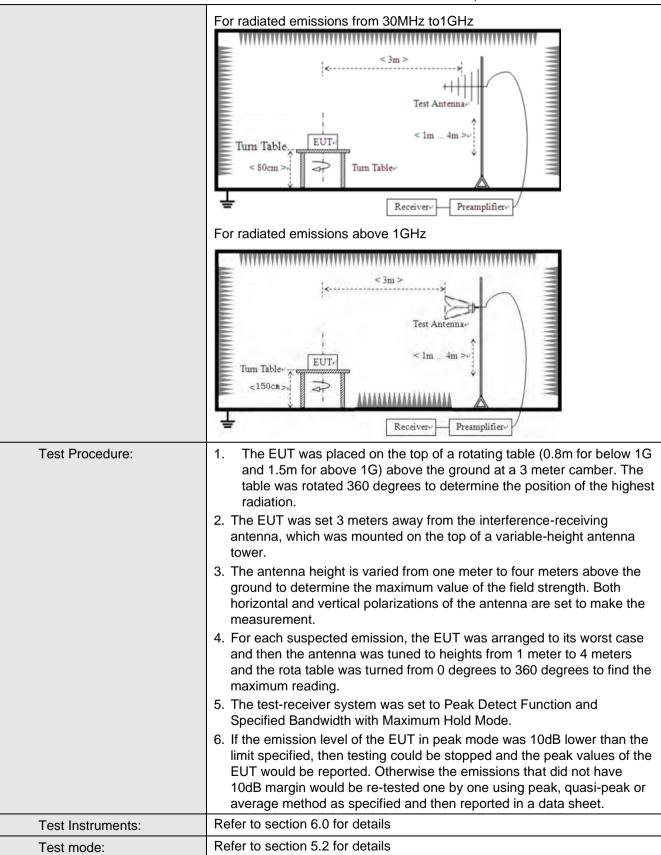


6.6. Spurious Emission


6.6.1 Conducted Emission Method

0.0.1 Conducted Emission Me	tiioa						
Test Requirement:	FCC Part15	C Section 1	5.247 (d)				
Test Method:	ANSI C63.	10:2013 and I	KDB558074 I	D01 DTS Mea	as Guidanc	e V05r02	
Limit:	spread spe power that below that i highest leve	any 100 kHz bandwidth outside the frequency band in which the read spectrum intentional radiator is operating, the radio frequency wer that is produced by the intentional radiator shall be at least 20 dB ow that in the 100 kHz bandwidth within the band that contains the hest level of the desired power, based on either an RF conducted or a liated measurement.					
Test setup:	Sp						
Test Instruments:	Refer to se	ction 6.0 for c	letails				
Test mode:	Refer to se	ction 5.2 for c	letails				
Test results:	Pass						
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar	

Test plot as follows:



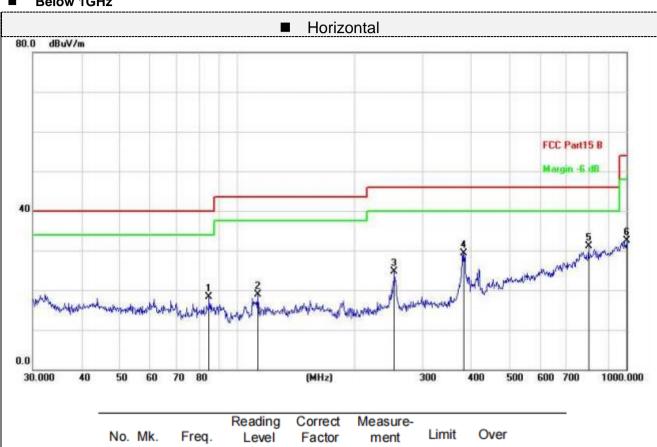
6.6.2 Radiated Emission Method

Test Requirement:	FCC Part15 C Section	on 15	5.209					
Test Method:	ANSI C63.10:2013							
Test Frequency Range:	9kHz to 25GHz							
Test site:	Measurement Distar	nce: 3	3m					
Receiver setup:	Frequency		Detector	RB\	W	VBW	Value	
	9KHz-150KHz	Qı	ıasi-peak	200H	Hz	600Hz	Quasi-peak	
	150KHz-30MHz	Qı	ıasi-peak	9KF	Ιz	30KHz	z Quasi-peak	
	30MHz-1GHz	ă	ıasi-peak	120K	Ήz	300KH	z Quasi-peak	
	Above 1GHz		Peak	1MF	Ηz	3MHz	z Peak	
	Above 10112		Peak	1MF	Ηz	10Hz	Average	
Limit:	Frequency		Limit (u\	//m)	>	/alue	Measurement Distance	
	0.009MHz-0.490M	lHz	2400/F(k	(Hz)		QP	300m	
	0.490MHz-1.705M	lHz	24000/F(KHz)		QP	30m	
	1.705MHz-30MH	lz	30		QP		30m	
	30MHz-88MHz		100		QP			
	88MHz-216MHz	<u> </u>	150		QP			
	216MHz-960MH	Z	200		QP		3m	
	960MHz-1GHz		500		QP			
	Above 1GHz		500		Average			
			5000		Peak			
Test setup:	For radiated emission	ns fr	om 9kHz to	30MH	z	********	W	
	Turn Table	UT+	< 3m > Te: za Turn Table»	lm Rece		, A		

Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar
Test voltage:	AC 120V, 6	0Hz				
Test results:	Pass					

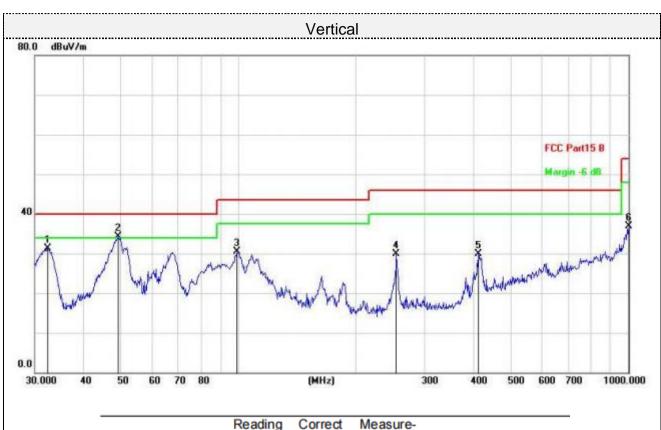
Measurement data:

Remark:


Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

■ 9kHz~30MHz

The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.



Below 1GHz

MHz dBuV dB/m dBuV/m dB/m dB/m dB/m dB Detector 1 84.9995 33.67 -15.45 18.22 40.00 -21.78 QP 2 113.3163 32.61 -13.74 18.87 43.50 -24.63 QP 3 253.8367 36.08 -11.44 24.64 46.00 -21.36 QP 4 382.5879 37.96 -8.62 29.34 46.00 -16.66 QP 5 798.9797 30.82 0.20 31.02 46.00 -14.98 QP 6 1000.0000 28.93 3.60 32.53 54.00 -21.47 QP	No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
2 113.3163 32.61 -13.74 18.87 43.50 -24.63 QP 3 253.8367 36.08 -11.44 24.64 46.00 -21.36 QP 4 382.5879 37.96 -8.62 29.34 46.00 -16.66 QP 5 * 798.9797 30.82 0.20 31.02 46.00 -14.98 QP			MHz	dBuV	dB/m	dBuV/m	dB/m	dB	Detector
3 253.8367 36.08 -11.44 24.64 46.00 -21.36 QP 4 382.5879 37.96 -8.62 29.34 46.00 -16.66 QP 5 * 798.9797 30.82 0.20 31.02 46.00 -14.98 QP	1		84.9995	33.67	-15.45	18.22	40.00	-21.78	QP
4 382.5879 37.96 -8.62 29.34 46.00 -16.66 QP 5 * 798.9797 30.82 0.20 31.02 46.00 -14.98 QP	2		113.3163	32.61	-13.74	18.87	43.50	-24.63	QP
5 * 798.9797 30.82 0.20 31.02 46.00 -14.98 QP	3		253.8367	36.08	-11.44	24.64	46.00	-21.36	QP
	4		382.5879	37.96	-8.62	29.34	46.00	-16.66	QP
6 1000.0000 28.93 3.60 32.53 54.00 -21.47 QP	5	*	798.9797	30.82	0.20	31.02	46.00	-14.98	QP
	6		1000.0000	28.93	3.60	32.53	54.00	-21.47	QP

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dB/m	dB	Detector
1		32.4059	42.98	-11.68	31.30	40.00	-8.70	QP
2	*	49.1865	45.46	-11.17	34.29	40.00	-5.71	QP
3		99.1797	45.36	-14.89	30.47	43.50	-13.03	QP
4		253.8367	41.39	-11.44	29.95	46.00	-16.05	QP
5		411.8240	37.42	-7.59	29.83	46.00	-16.17	QP
6	-	1000.0000	33.33	3.60	36.93	54.00	-17.07	QP

Final Level =Receiver Read level + Correct Factor

■ Above 1-25GHz

Frequency(MHz):			2402		Polarity:		HORIZONTAL		
Frequency (MHz)	Emission Level (dBuV/m)		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor
4804.00	58.91	PK	74	15.09	53.21	(dB/m) 31	(dB) 6.5	31.8	(dB/m) 5.7
4804.00	41.62	AV	54	12.38	35.92	31	6.5	31.8	5.7
7206.00	54.11	PK	74	19.89	41.46	36	8.15	31.5	12.65
7206.00	44.92	AV	54	9.08	32.27	36	8.15	31.5	12.65

Freque	ncy(MHz)	:	2402		Polarity:		VERTICAL		
Frequency (MHz)	Emission Level (dBuV/m)		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4804.00	59.27	PK	74	14.73	53.57	31	6.5	31.8	5.7
4804.00	42.99	AV	54	11.01	37.29	31	6.5	31.8	5.7
7206.00	53.04	PK	74	20.96	40.39	36	8.15	31.5	12.65
7206.00	44.10	AV	54	9.90	31.45	36	8.15	31.5	12.65

Frequency(MHz):			2440		Polarity:		HORIZONTAL		
Frequency (MHz)	Emission Level (dBuV/m)		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4880.00	61.04	PK	74	12.96	54.88	31.2	6.61	31.65	6.16
4880.00	43.43	AV	54	10.57	37.27	31.2	6.61	31.65	6.16
7320.00	53.36	PK	74	20.64	40.41	36.2	8.23	31.48	12.95
7320.00	43.18	AV	54	10.82	30.23	36.2	8.23	31.48	12.95

Freque	ncy(MHz)	:	2440		Polarity:		VERTICAL		
Frequency (MHz)	Emission Level (dBuV/m)		Limit (dBuV/m)	Margin (dB)	Raw Value	Antenna Factor	Cable Factor	Pre- amplifier	Correction Factor
(****:2)			(4247111)	(42)	(dBuV)	(dB/m)	(dB)	(dB)	(dB/m)
4880.00	60.77	PK	74	13.23	54.61	31.2	6.61	31.65	6.16
4880.00	42.90	AV	54	11.10	36.74	31.2	6.61	31.65	6.16
7320.00	53.30	PK	74	20.70	40.35	36.2	8.23	31.48	12.95
7320.00	43.39	AV	54	10.61	30.44	36.2	8.23	31.48	12.95

Frequency(MHz):			2480		Polarity:		HORIZONTAL		
Frequency (MHz)	Emission Level (dBuV/m)		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4960.00	62.62	PK	74	11.38	55.96	31.4	6.76	31.5	6.66
4960.00	42.85	AV	54	11.15	36.19	31.4	6.76	31.5	6.66
7440.00	54.49	PK	74	19.51	41.19	36.4	8.35	31.45	13.3
7440.00	45.95	AV	54	8.05	32.65	36.4	8.35	31.45	13.3

Freque	ncy(MHz)	:	2480		Polarity:		VERTICAL		
Frequency (MHz)	Emission Level (dBuV/m)		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4960.00	63.55	PK	74	10.45	56.89	31.4	6.76	31.5	6.66
4960.00	42.87	AV	54	11.13	36.21	31.4	6.76	31.5	6.66
7440.00	53.92	PK	74	20.08	40.62	36.4	8.35	31.45	13.3
7440.00	43.92	AV	54	10.08	30.62	36.4	8.35	31.45	13.3

Remark:

⁽¹⁾ Data of measurement within this frequency range shown "--- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

⁽²⁾ When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed.

6.7. Antenna Requirement

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited

FCC CFR Title 47 Part 15 Subpart C Section 15.247(c) (1) (I):

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

Antenna Connected Construction

The maximum gain of antenna was 3.11 dBi.

Remark: The antenna gain is provided by the customer, if the data provided by the customer is not accurate, Shenzhen HTT Technology Co., Ltd. does not assume any responsibility.

7. Test Setup Photo

Reference to the appendix I for details.

8. EUT Constructional Details

Reference to the appendix II for details.

