

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

TEST REPORT FCC Rules and Regulations Part PART 15.249

Report Reference No...... CTA24011100501

FCC ID...... 2BEJ8-A8

Compiled by

(position+printed name+signature.. File administrators Zoey Cao

Supervised by

(position+printed name+signature.. Project Engineer Amy Wen

Approved by

(position+printed name+signature.. RF Manager Eric Wang

Date of issue...... Jan. 15, 2024

Testing Laboratory Name Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community,

Fuhai Street, Bao'an District, Shenzhen, China

Applicant's name...... SHENZHEN WENTELMICRO ELECTRONIC CO., LTD.

2nd Floor, Annex Building, Corrente Building, No. 1 Ganli 5th

Road, Jihua Street, Longgang District, Shenzhen, China

Standard FCC Rules and Regulations PART 15.249

Shenzhen CTA Testing Technology Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen CTA Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen CTA Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test item description WIRELESS GUITAR	RSYSIEM
---------------------------------------	---------

Trade Mark N/A

Manufacturer SHENZHEN WENTELMICRO ELECTRONIC CO., LTD.

Model/Type reference...... A8

Listed Models A9, KT-6, B9

Modulation GFSK

Frequency.......2402-2480MHz

Ratings DC 3.7V From battery and DC 5.0V From external circuit

CTATESTING

Result.....PASS

CTATESTIN

Page 2 of 27 Report No.: CTA24011100501

TEST REPORT

Equipment under Test : WIRELESS GUITAR SYSTEM

: A8 Model /Type

CTATESTING : A9, KT-6, B9 Listed Models

Applicant SHENZHEN WENTELMICRO ELECTRONIC CO., LTD.

Address 2nd Floor, Annex Building, Corrente Building, No. 1 Ganli 5th

Road, Jihua Street, Longgang District, Shenzhen, China

SHENZHEN WENTELMICRO ELECTRONIC CO., LTD. Manufacturer

: 2nd Floor, Annex Building, Corrente Building, No. 1 Ganli 5th CTA TESTING Address

Road, Jihua Street, Longgang District, Shenzhen, China

CTATES	
CTATT	STING
Test Result:	PASS

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test CTA TESTING laboratory.

Page 3 of 27 Report No.: CTA24011100501

Contents

		TEST STANDARDS TESTING	
		TATES	
	1.	TEST STANDARDS	4
	25 000 Turks	CIA	10
2	<u>2.</u>	SUMMARY	<u>5</u>
2	2.1.	General Remarks	5
	2.2.	Product Description	5 5
	2.3.	Equipment Under Test	5
	2.4.	Short description of the Equipment under Test (EUT)	5
	2.5.	EUT operation mode	6
	2.6.	Block Diagram of Test Setup	6
	2.7.	Modifications	6
-		Modifications	· ·
		CTA.	
;	<u>3.</u>	TEST ENVIRONMENT	7
_			NG
		C C I	CTING
	3.1.	Address of the test laboratory	TED 7
	3.2.	Test Facility	CTA 7
;	3.3.	Environmental conditions	CTATES 7 7 7 7 8
;	3.4.	Summary of measurement results	8
;	3.5.	Statement of the measurement uncertainty	8
;	3.6.	Equipments Used during the Test	8
		STING	
4	4	TEST CONDITIONS AND RESULTS	10
	Catter C	LEGI CONDITIONS AND RESCEIGNMENT	
		7ESI.	
		4.1. AC Power Conducted Emission	
		4.2. Radiated Emission and Band Edges	13
		4.3. 20dB Bandwidth Measurement	19
		4.4. Antenna Requirement	21
		CENTAL DESCRIPTION OF THE PROPERTY OF THE PROP	
<u> </u>	<u>5.</u>	TEST SETUP PHOTOS OF THE EUT	<u> 22</u>
	c	TEST BUOTOS OF THE EUT	2.3
TES	<u>0.</u>	TEST PHOTOS OF THE EUT	<u> 23</u>
ATES		TEST PHOTOS OF THE EUT	
		CTATESTING CTATESTING	

Page 4 of 27 Report No.: CTA24011100501

1. <u>TEST STANDARDS</u>

The tests were performed according to following standards:

FCC Rules Part 15.249: Operation within the bands 902 - 928 MHz, 2400 - 2483.5 MHz, 5725 -5875 MHz, and 24.0 - 24.25 GHz.

ANSI C63.10:2013: American National Standard for Testing Unlicensed Wireless Devices

Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40GHz
Range of 9 kHz to 40GHz Range of 9 kHz to 40GHz CTATESTING

Report No.: CTA24011100501

2. SUMMARY

2.1. General Remarks

2.1. General Remarks			
Date of receipt of test sample	:	Jan. 11, 2024	-ING
Testing commenced on	CF	Jan. 11, 2024	CTATESTIN
Testing concluded on	:	Jan. 15, 2024	
		15 15, 252 1	

	resting concluded on	Jan. 15, 2024
	2.2. Product Description	
CIL	Name of EUT	WIRELESS GUITAR SYSTEM
	Model Number	A8
	Power Rating	DC 3.7V From battery and DC 5.0V From external circuit
	Adapter information (Auxiliary test supplied by test Lab):	Model: EP-TA20CBC Input: AC 100-240V 50/60Hz Output: DC 5V 2A
	Sample ID:	CTA240111005-1# (Engineer sample) CTA240111005-2# (Normal sample)
	Operation frequency	2402-2480MHz
	Modulation	GFSK
	Antenna Type	PCB antenna
	Antenna Gain	0.00 dBi

2.3. Equipment Under Test

Power supply system utilised

Power supply system utilised Power supply voltage : ○ 230V / 50 Hz ○ 120V / 60Hz ○ 12 V DC ○ 24 V DC
O 12 V DC O 24 V DC
● Other (specified in blank below)
Other (specified in blank below) DC 3.7V From battery and DC 5.0V From external circuit

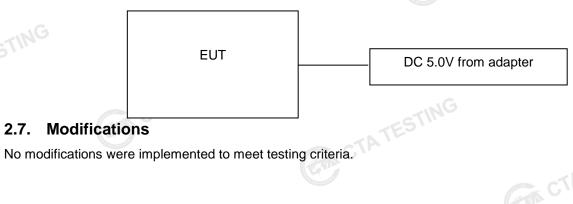
2.4. Short description of the Equipment under Test (EUT)

For more details, refer to the user's manual of the EUT.

Page 6 of 27 Report No.: CTA24011100501

2.5. EUT operation mode

The Applicant use Key to control the EUT for staying in continuous transmitting and receiving mode for testing .There is 79 channels provided to the EUT. Channel Low, Mid and High was selected to test.


Operation Frequency:

	oporation i requestoj.			
	Channel	Free	quency (MHz)	
	00		2402	
	01	CVI	2403	
	i i		Co. We	C
	38		2440	
	39		2441	
CTATE	40		2442	
'C'	ESTIN		:	
	77	ING	2479	
	78		2480	
		CTA CTA	CTATEST!	NG
			CTA	
	Test frequency:			
	Frequency			

Test frequency:

Channel	Frequency (MHz)
Low	2402
Mid	2441
High	2480
	CTATES CTATES

2.6. Block Diagram of Test Setup

3. TEST ENVIRONMENT

3.1. Address of the test laboratory

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Baoʻan District, Shenzhen, China

3.2. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 517856 Designation Number: CN1318

Shenzhen CTA Testing Technology Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

Industry Canada Registration Number. Is: 27890 CAB identifier: CN0127

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing.

A2LA-Lab Cert. No.: 6534.01

Shenzhen CTA Testing Technology Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

3.3. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Radiated Emission:

Temperature:	23 ° C
Humidity:	48 %
NG	
Atmospheric pressure:	950-1050mbar

AC Main Conducted testing:

AC Main Conducted testing:		
Temperature:	24 ° C	NG.
G		GTING
Humidity:	45 %	TES.
Towns and the second	St. III	
Atmospheric pressure:	950-1050mbar	

Conducted testing:

conducted testing:	
Temperature:	24 ° C
Humidity:	45 %
-55711	
Atmospheric pressure:	950-1050mbar
	CTATESTING

Page 8 of 27 Report No.: CTA24011100501

3.4. Summary of measurement results

FCC PART 15.249			
FCC Part 15.249(a)	Field Strength of Fundamental	PASS	
FCC Part 15.209	Spurious Emission	PASS	
FCC Part 15.209	Band edge	PASS	
FCC Part 15.215(c)	20dB bandwidth	PASS	
FCC Part 15.207	Conducted Emission	PASS	
FCC Part 15.203	Antenna Requirement	PASS	

3.5. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the Shenzhen CTA Testing Technology Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for Shenzhen CTA Testing Technology Co., Ltd.:

Test	Range	Measurement Uncertainty	Notes
Radiated Emission	9KHz~30MHz	3.02 dB	(1)
Radiated Emission	30~1000MHz	4.06 dB	(1)
Radiated Emission	1~18GHz	5.14 dB	(1)
Radiated Emission	18-40GHz	5.38 dB	(1)
Conducted Disturbance	0.15~30MHz	2.14 dB	(1)
Output Peak power	30MHz~18GHz	0.55 dB	(1)
Power spectral density	/	0.57 dB	(1)
Spectrum bandwidth	/	1.1%	(1)
Radiated spurious emission (30MHz-1GHz)	30~1000MHz	4.10 dB	(1)
Radiated spurious emission (1GHz-18GHz)	1~18GHz	4.32 dB	(1)
Radiated spurious emission (18GHz-40GHz)	18-40GHz	5.54 dB	(1)

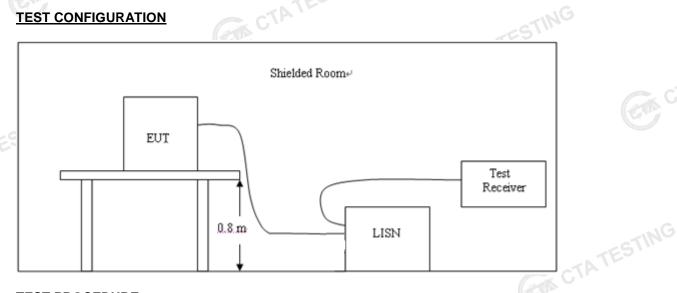
OTA TESTING This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

3.6. Equipments Used during the Test

Test Equipment	Manufacturer	Model No.	Equipment No.	Calibration Date	Calibration Due Date
LISN	R&S	ENV216	CTA-308	2023/08/02	2024/08/01
LISN	R&S	ENV216	CTA-314	2023/08/02	2024/08/01
EMI Test Receiver	R&S	ESPI	CTA-307	2023/08/02	2024/08/01
EMI Test Receiver	R&S	ESCI	CTA-306	2023/08/02	2024/08/01
Spectrum Analyzer	Agilent	N9020A	CTA-301	2023/08/02	2024/08/01

			(54)			TESI"			
	Report No.: CTA2401	1100501			Page 9 of 27				
	Spectrum Analyzer	R&S	FSP	CTA-337	2023/08/02	2024/08/01			
	Vector Signal generator	Agilent	N5182A	CTA-305	2023/08/02	2024/08/01			
	Analog Signal Generator	R&S	SML03	CTA-304	2023/08/02	2024/08/01			
	WIDEBAND RADIO COMMUNICATION TESTER	CMW500	R&S	CTA-302	2023/08/02	2024/08/01			
	Temperature and humidity meter	Chigo	ZG-7020	CTA-326	2023/08/02	2024/08/01			
	Ultra-Broadband Antenna	Schwarzbeck	VULB9163	CTA-310	2023/10/17	2024/10/16			
	Horn Antenna	Schwarzbeck	BBHA 9120D	CTA-309	2023/10/13	2024/10/12			
CTATE	Loop Antenna	Zhinan	ZN30900C	CTA-311	2023/10/17	2024/10/16			
1	Horn Antenna	Beijing Hangwei Dayang	OBH100400	CTA-336	2021/08/07	2024/08/06			
	Amplifier	Schwarzbeck	BBV 9745	CTA-312	2023/08/02	2024/08/01			
	Amplifier	Taiwan chengyi	EMC051845B	CTA-313	2023/08/02	2024/08/01			
	Directional coupler	NARDA	4226-10	CTA-303	2023/08/02	2024/08/01			
	High-Pass Filter	XingBo	XBLBQ-GTA18	CTA-402	2023/08/02	2024/08/01			
	High-Pass Filter	XingBo	XBLBQ-GTA27	CTA-403	2023/08/02	2024/08/01			
	Automated filter bank	Tonscend	JS0806-F	CTA-404	2023/08/02	2024/08/01			
	Power Sensor	Agilent	U2021XA	CTA-405	2023/08/02	2024/08/01			
	Amplifier	Schwarzbeck	BBV9719	CTA-406	2023/08/02	2024/08/01			

	Test Equipment	Manufacturer	Model No.	Version number	Calibration Date	Calibration Due Date
CTATE	EMI Test Software	Tonscend	TS®JS32-RE	5.0.0.2	N/A	N/A
	EMI Test Software	Tonscend	TS®JS32-CE	5.0.0.1	N/A	N/A
	RF Test Software	Tonscend	TS®JS1120-3	3.1.65	N/A	N/A
	RF Test Software	Tonscend	TS®JS1120	3.1.46	N/A	N/A
					CT	A
G						



Report No.: CTA24011100501 Page 10 of 27

4. TEST CONDITIONS AND RESULTS

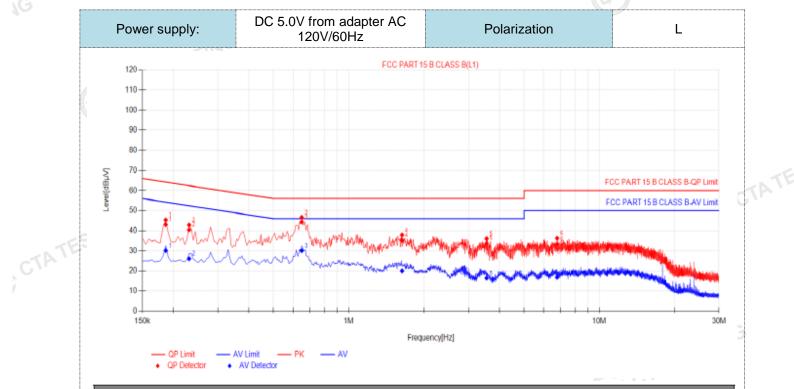
4.1. AC Power Conducted Emission

TEST CONFIGURATION

TEST PROCEDURE

- 1, The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10.
- 2, Support equipment, if needed, was placed as per ANSI C63.10.
- 3, All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10.
- 4, If a EUT received DC power from the USB Port of Notebook PC, the PC's adapter received power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5, All support equipments received AC power from a second LISN, if any.
- 6, The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7, Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.

AC Power Conducted Emission Limit

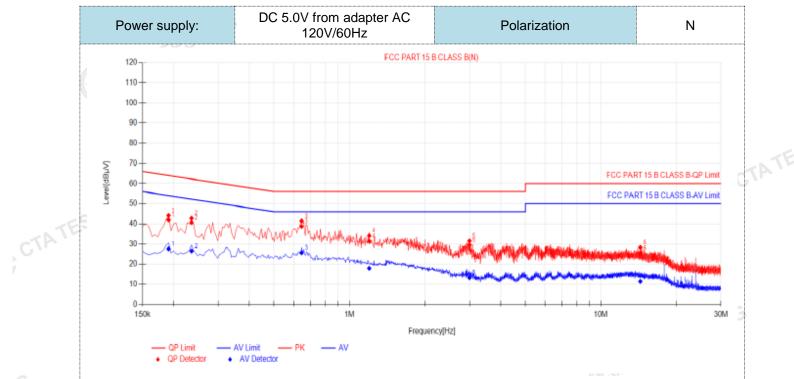

For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following:

Frequency range (MHz)	Limit (dBuV)
Frequency range (wiriz)	Quasi-peak	Average
0.15-0.5	66 to 56*	56 to 46*
0.5-5	56	46
5-30	60	50
* Decreases with the logarithm of the frequency	ency.	

TEST RESULTS

- All modes of GFSK were tested at Low, Middle, and High channel; only the worst result of GFSK CH19 was reported as below:
- Both 120 VAC, 50/60 Hz and 240 VAC, 50/60 Hz power supply have been tested, only the worst result CTATE! of 120 VAC, 60 Hz was reported as below:.

Report No.: CTA24011100501 Page 11 of 27



Fina	l Data Lis	st									
NO.	Freq. [MHz]	Factor [dB]	QP Reading[dB µV]	QP Value [dBµV]	QP Limit [dBµV]	QP Margin [dB]	AV Reading [dBμV]	ΑV Value [dBμV]	ΑV Limit [dBμV]	AV Margin [dB]	Verdict
1	0.186	10.03	33.00	43.03	64.21	21.18	20.05	30.08	54.21	24.13	PASS
2	0.231	10.00	30.48	40.48	62.41	21.93	16.12	26.12	52.41	26.29	PASS
3	0.6495	9.98	34.37	44.35	56.00	11.65	20.08	30.06	46.00	15.94	PASS
4	1.6305	9.91	25.34	35.25	56.00	20.75	10.20	20.11	46.00	25.89	PASS
5	3.552	9.96	23.82	33.78	56.00	22.22	6.46	16.42	46.00	29.58	PASS
6	6.792	10.26	23.10	33.36	60.00	26.64	6.56	16.82	50.00	33.18	PASS
,	.QP Value tor (dB)=ins	,		• .	,	` ,		G 1			
	//argin(dB)		,			•					
1). AVN	/largin(dB)	= AV Lim	it (dBµV)	 AV Val 	ue (dBµV	')					

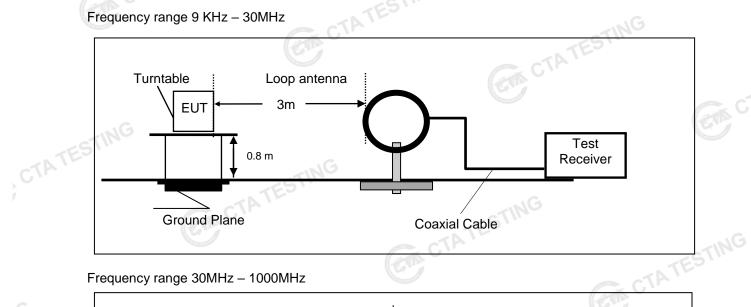
- 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)
- 3). QPMargin(dB) = QP Limit (dB μ V) QP Value (dB μ V)
- 4). AVMargin(dB) = AV Limit (dBμV) AV Value (dBμV) CTA TESTING

CTATE

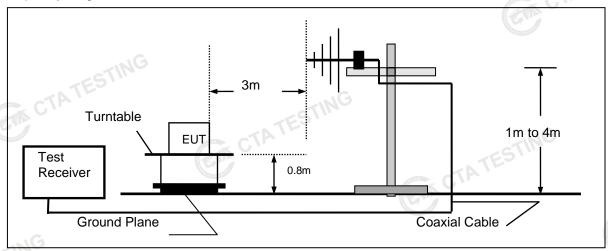
Report No.: CTA24011100501 Page 12 of 27

Final	l Data Lis	st										
NO.	Freq. [MHz]	Factor [dB]	QP Reading[dB μV]	QP Value [dBµV]	QP Limit [dBµV]	QP Margin [dB]	AV Reading [dBμV]	AV Value [dBµV]	ΑV Limit [dBμV]	AV Margin [dB]	Verdict	
1	0.1905	9.99	32.04	42.03	64.01	21.98	17.60	27.59	54.01	26.42	PASS	
2	0.2355	10.00	30.64	40.64	62.25	21.61	16.53	26.53	52.25	25.72	PASS	
3	0.645	10.11	28.61	38.72	56.00	17.28	15.55	25.66	46.00	20.34	PASS	
4	1.1985	10.18	21.28	31.46	56.00	24.54	7.75	17.93	46.00	28.07	PASS	
5	2.9985	10.24	19.31	29.55	56.00	26.45	3.09	13.33	46.00	32.67	PASS	
6	14.325	10.42	15.06	25.48	60.00	34.52	1.05	11.47	50.00	38.53	PASS	
Note:1)	.QP Value	(dBµV)=	QP Read	ling (dBµ	V)+ Facto	or (dB)						_KA
2). Fact	tor (dB)=ins	sertion lo	ss of LISI	N (dB) + 0	Cable los	s (dB)						C , , ,
3). QPN	Margin(dB)	= QP Lin	nit (dBµV)	- QP Va	ılue (dBµ	V)						
~///	/largin(dB)					•						

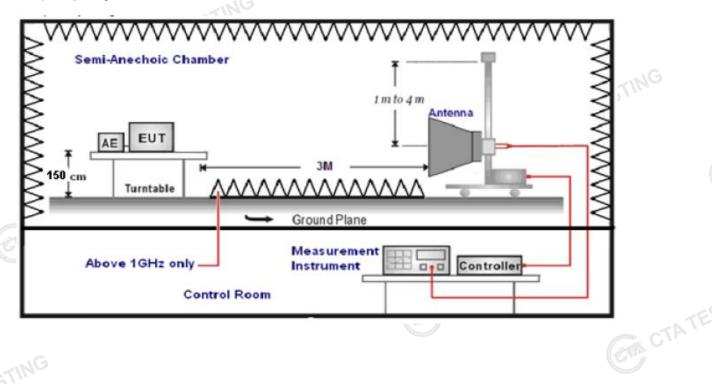
- 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)
- 3). QPMargin(dB) = QP Limit (dB μ V) QP Value (dB μ V)
- AV' 4). $AVMargin(dB) = AV Limit (dB\mu V) - AV Value (dB\mu V)$


CTATE

Report No.: CTA24011100501 Page 13 of 27


4.2. Radiated Emission and Band Edges

TEST CONFIGURATION


Frequency range 9 KHz - 30MHz

Frequency range 30MHz - 1000MHz

Frequency range above 1GHz-25GHz

Report No.: CTA24011100501

TEST PROCEDURE

- 1. The EUT was placed on a turn table which is 0.8m above ground plane when testing frequency range 9 KHz -25GHz.
- Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0°C to 360°C to acquire the highest emissions from EUT.
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- Repeat above procedures until all frequency measurements have been completed.
- The EUT minimum operation frequency was 26MHz and maximum operation frequency was 1910MHz.so radiated emission test frequency band from 9KHz to 25GHz.
- 6. The distance between test antenna and EUT as following table states:

Test Frequency range	Test Antenna Type	Test Distance
9KHz-30MHz	Active Loop Antenna	3
30MHz-1GHz	Ultra-Broadband Antenna	3
1GHz-18GHz	Double Ridged Horn Antenna	3
18GHz-25GHz	Horn Anternna	1

Setting test receiver/spectrum as following table states:

Test Frequency range	Test Receiver/Spectrum Setting	Detector
9KHz-150KHz	RBW=200Hz/VBW=3KHz,Sweep time=Auto	QP
150KHz-30MHz	RBW=9KHz/VBW=100KHz,Sweep time=Auto	QP
30MHz-1GHz	RBW=120KHz/VBW=1000KHz,Sweep time=Auto	QP
1GHz-40GHz	Peak Value: RBW=1MHz/VBW=3MHz, Sweep time=Auto Average Value: RBW=1MHz/VBW=10Hz, Sweep time=Auto	Peak

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG

Where FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)
RA = Reading Amplitude	AG = Amplifier Gain
AF = Antenna Factor	

Transd=AF +CL-AG

RADIATION LIMIT

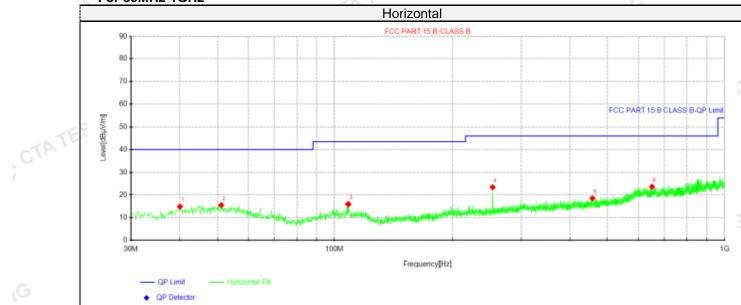
According 15.249, the field strength of emissions from intentional radiators operated within 2400MHz-2483.5 MHz shall not exceed 94dBµV/m (50mV/m):

FCC PART 15.249(d) Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in §15.209, whichever is the lesser attenuation.

In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply CTATE with the radiated emission limits specified in §15.209(a)

Radiated emission limits

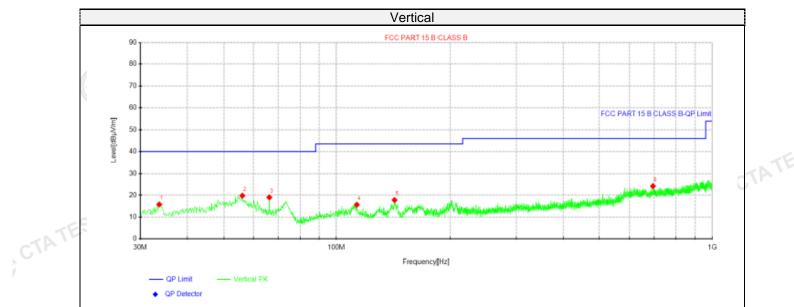
Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (µV/m)	
0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)	
0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)	
1.705-30	3	20log(30)+ 40log(30/3)	30	
30-88	3	40.0	100	
88-216	3 (1)	43.5	150	
216-960	3	46.0	200	
Above 960	3	54.0	500	
TEST RESULTS Remark:			COM C.	TAIL


Remark: .an

Report No.: CTA24011100501

Page 15 of 27

- This test was performed with EUT in X, Y, Z position and the worse case was found when EUT in X position.
- 2. Both modes of GFSK were tested at Low, Middle, and High channel and recorded worst mode at GFSK
- Radiated emission test from 9 KHz to 10th harmonic of fundamental was verified, and no emission found except system noise floor in 9 KHz to 30MHz and not recorded in this report.


For 30MHz-1GHz

Susp	ected Data	List							
NO.	Freq. [MHz]	Reading [dBµV]	Level [dBµV/m]	Factor [dB/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity
1	40.0638	27.00	14.77	-12.23	40.00	25.23	100	6	Horizontal
2	51.0975	26.98	15.43	-11.55	40.00	24.57	100	269	Horizontal
3	108.448	29.48	15.87	-13.61	43.50	27.63	100	224	Horizontal
4	253.1	35.96	23.37	-12.59	46.00	22.63	100	269	Horizontal
5	457.527	28.38	18.44	-9.94	46.00	27.56	100	123	Horizontal
6	650.315	28.78	23.59	-5.19	46.00	22.41	100	314	Horizontal
). Fact	or(dB/m)=	uV/m)= Read Antenna Fad imit (dBµV/n	tor (dB/m) -	+ Cable Id	(dB/m) oss (dB) - Pre	e Amplifier g	ain (dB)		GIA.

3). Margin(dB) = Limit (dB μ V/m) - Level (dB μ V/m) CTA TESTING

Report No.: CTA24011100501 Page 16 of 27

Susp	Suspected Data List											
NO	Freq.	Reading	Level	Factor	Limit	Margin	Height	Angle	Delesite			
NO.	[MHz]	[dBµV]	[dBµV/m]	[dB/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity			
1	33.6375	29.88	15.73	-14.15	40.00	24.27	100	33	Vertical			
2	56.0688	31.97	19.76	-12.21	40.00	20.24	100	342	Vertical			
3	66.2538	33.43	18.99	-14.44	40.00	21.01	100	360	Vertical			
4	113.177	29.49	15.58	-13.91	43.50	27.92	100	360	Vertical			
5	142.883	33.84	17.74	-16.10	43.50	25.76	100	112	Vertical			
6	694.813	29.41	24.17	-5.24	46.00	21.83	100	112	Vertical			

Note:1).Level ($dB\mu V/m$)= Reading ($dB\mu V$)+ Factor (dB/m)

2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB)

3). Margin(dB) = Limit (dB μ V/m) - Level (dB μ V/m)

CTATESTING CTATESTING

CTAT

Report No.: CTA24011100501

For 1GHz to 25GHz

GFSK (above 1GHz)

Freque	Frequency(MHz):			2402		Polarity:		HORIZONTAL		
Frequency (MHz)	Emis Le (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
2402.00	98.51	PK	114.00	15.49	109.79	27.47	3.43	42.18	-11.28	
2402.00	79.75	AV	94.00	14.25	91.03	27.47	3.43	42.18	-11.28	
4804.00	49.34	PK	74.00	24.66	53.61	32.33	5.12	41.72	-4.27	
4804.00	41.16	AV	54.00	12.84	45.43	32.33	5.12	41.72	-4.27	
7206.00	49.91	PK	74.00	24.09	50.43	36.6	6.49	43.61	-0.52	
7206.00	36.32	AV	54.00	17.68	36.84	36.6	6.49	43.61	-0.52	

-NG								-		
Freque	Frequency(MHz):			2402		Polarity:		VERTICAL		
Frequency (MHz)	_	sion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
2402.00	96.69	PK	114.00	17.31	107.97	27.47	3.43	42.18	-11.28	
2402.00	77.23	AV	94.00	16.77	88.51	27.47	3.43	42.18	-11.28	
4804.00	47.37	PK	74.00	26.63	51.64	32.33	5.12	41.72	-4.27	
4804.00	39.09	AV	54.00	14.91	43.36	32.33	5.12	41.72	-4.27	
7206.00	47.28	PK	74.00	26.72	47.80	36.6	6.49	43.61	-0.52	
7206.00	34.62	AV	54.00	19.38	35.14	36.6	6.49	43.61	-0.52	

Freque	ncy(MHz)	:	2441		Polarity:		HORIZONTAL		
Frequency (MHz)	Emis Lev (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2441.00	97.94	PK	114.00	16.06	109.19	27.52	3.45	42.22	-11.25
2441.00	78.29	AV	94.00	15.71	89.54	27.52	3.45	942.22	-11.25
4882.00	50.78	PK	74.00	23.22	54.66	32.6	5.34	41.82	-3.88
4882.00	46.20	AV	54.00	7.80	50.08	32.6	5.34	41.82	-3.88
7323.00	49.08	PK	74.00	24.92	49.19	36.8	6.81	43.72	-0.11
7323.00	39.35	AV	54.00	14.65	39.46	36.8	6.81	43.72	-0.11

Frequency(MHz):			2441		Polarity:		VERTICAL		
Frequency (MHz)	Emis Lev (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2441.00	96.20	PK	114.00	17.80	107.45	27.52	3.45	42.22	-11.25
2441.00	77.11	AV	94.00	16.89	88.36	27.52	3.45	42.22	-11.25
4882.00	49.83	PK	74.00	24.17	53.71	32.6	5.34	41.82	-3.88
4882.00	44.48	AV	54.00	9.52	48.36	32.6	5.34	41.82	-3.88
7323.00	48.67	PK	74.00	25.33	48.78	36.8	6.81	43.72	-0.11
7323.00	38.94	AV	54.00	15.06	39.05	36.8	6.81	43.72	-0.11
			•						

Freque	ncy(MHz)	:	2480		Polarity:		HORIZONTAL			
Frequency (MHz)	Emission Level (dBuV/m)		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
2480.00	97.54	PK	114.00	16.46	107.65	27.7	4.47	42.28	-10.11	
2480.00	80.67	AV	94.00	13.33	90.78	27.7	4.47	42.28	-10.11	
4960.00	51.68	PK	74.00	22.32	54.76	32.73	5.66	41.47	-3.08	
4960.00	46.62	AV	54.00	7.38	49.70	32.73	5.66	41.47	-3.08	
7440.00	51.83	PK	74.00	22.17	51.38	37.04	7.25	43.84	0.45	
7440.00	40.79	AV	54.00	13.21	40.34	37.04	7.25	43.84	0.45	
									CTP CTP	

Page 18 of 27 Report No.: CTA24011100501

Frequency(MHz):			2480		Polarity:		VERTICAL			
Frequency (MHz)	Emis Lev (dBu)	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
2480.00	95.63	PK	114.00	18.37	105.74	27.7	4.47	42.28	-10.11	
2480.00	79.02	AV	94.00	14.98	89.13	27.7	4.47	42.28	-10.11	
4960.00	50.38	PK	74.00	23.62	53.46	32.73	5.66	41.47	-3.08	
4960.00	44.65	AV	54.00	9.35	47.73	32.73	5.66	41.47	-3.08	
7440.00	49.68	PK	74.00	24.32	49.23	37.04	7.25	43.84	0.45	
7440.00	38.50	AV	54.00	15.50	38.05	37.04	7.25	43.84	0.45	
REMARKS: 1. 2. 3.	Correctior Margin va	n Factor (dB. lue = Limit v	m) =Raw Value (d m) = Antenna Fac alue- Emission lev	tor (dB/m)+Cable el.	Factor (dB)- P	re-amplifier			CTA CTA	

REMARKS:

- Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
- Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)- Pre-amplifier
- Margin value = Limit value- Emission level.
- -- Mean the PK detector measured value is below average limit.
- The other emission levels were very low against the limit.

Results of Band Edges Test (Radiated)

Freque	ncy(MHz)	:	24	02	Pola	rity:	HORIZONTAL		
Frequency (MHz)	Emis Lev (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2390.00	60.93	PK	74	13.07	71.35	27.42	4.31	42.15	-10.42
2390.00	43.72	AV	54	10.28	54.14	27.42	4.31	42.15	-10.42
Freque	ncy(MHz)	:	24	02	Pola	rity:		VERTICAL	•
Frequency (MHz)	Emis Lev (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2390.00	58.40	PK	74	15.60	68.82	27.42	4.31	42.15	-10.42
2390.00	41.85	AV	54	12.15	52.27	27.42	4.31	42.15	-10.42
Freque	ncy(MHz)	:	2480		Polarity:		Н	ORIZONTA	۸L
Frequency (MHz)	Emis Lev (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2483.50	60.38	PK	74	13.62	70.49	27.7	4.47	42.28	-10.11
2483.50	42.97	AV	54	11.03	53.08	27.7	4.47	42.28	-10.11
Freque	ncy(MHz)	:	24	80	Pola	rity:		VERTICAL	
Frequency (MHz)	Emis Lev (dBu)		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2483.50	57.74	PK	74	16.26	67.85	27.7	4.47	42.28	-10.11
2483.50	40.23	AV	54	13.77	50.34	27.7	4.47	42.28	-10.11

Note:

- Emission level (dBuV/m) = Meter Reading+ antenna Factor+ cable loss- preamp factor. 1)
- 2) Margin value = Limits-Emission level.
- 3) -- Mean the PK detector measured value is below average limit.
- 4) The other emission levels were very low against the limit.
- RBW1MHz VBW3MHz Peak detector is for PK value; RBW 1MHz VBW10Hz Peak detector is for AV value. CTATEST

Page 19 of 27 Report No.: CTA24011100501

4.3. 20dB Bandwidth Measurement

TEST CONFIGURATION

TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 30KHz RBW and 300KHz VBW.

The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus CTA TESTING 20dB.

LIMIT

N/A

TEST RESULTS

Modulation	Channel	20dB bandwidth (MHz)	Result						
CTATE	Low	1.375							
GFSK	Mid	1.392	PASS						
10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	High	1.393	.61	ING					
Note: 1.The test results including the cable lose.									

Report No.: CTA24011100501 Page 20 of 27

Page 21 of 27 Report No.: CTA24011100501

4.4. Antenna Requirement

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

And according to FCC 47 CFR Section 15.247 (c), if transmitting antennas of directional gain greater than CTATE 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

The maximum gain of antenna was 0.00 dBi.

Remark: The antenna Remark: The antenna gain is provided by the customer, if the data provided by the customer is not accurate, Shenzhen CTA Testing Technology Co., Ltd. does not assume any responsibility. CTATES

Report No.: CTA24011100501 Page 22 of 27

5. Test Setup Photos of the EUT

TATESTING

Report No.: CTA24011100501 Page 23 of 27

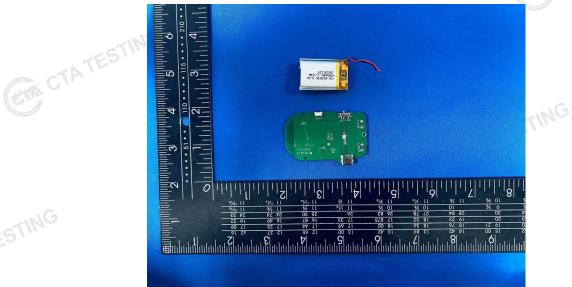
6. Test Photos of the EUT

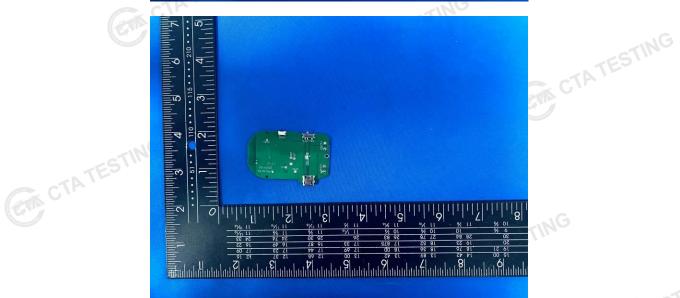
TATESTING

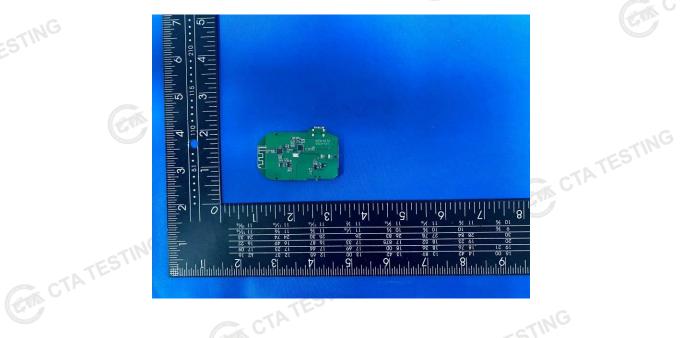
Report No.: CTA24011100501 Page 24 of 27

TESTING

Report No.: CTA24011100501 Page 25 of 27

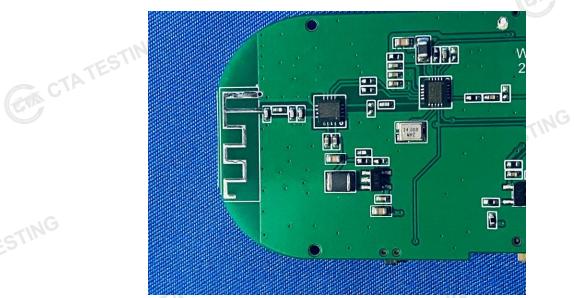






ESTING

Report No.: CTA24011100501 Page 26 of 27



CTATES.

CTATESTING

Page 27 of 27 Report No.: CTA24011100501

.....End of Report.....