

FCC ID: 2BEHS-LV-M9PRO Report No.: 18220WC40026301 Page 1 of 38

FCC Test Report

Applicant

ShenZhen LVTEL Communication Equipment

Co., Ltd

Address

2105A 2105, 21st Floor, Building 1, Yagang

Industry and Trade Building, No. 18 Fu'an

Avenue, Pinghu Street, Longgang District,

Shenzhen, China

Product Name

Bluetooth glasses

Report Date

Mar. 06, 2024

Shenzhen Anbotek Compliance Laboratory Limited

Report No.: 18220WC40026301 FCC ID: 2BEHS-LV-M9PRO Page 2 of 38

Contents

1. Gene	ral Information	nbotek Anl	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	br.	2000		AUD JEK		e _K
1.2	Client Information Description of Device	e (EUT)	otek	ν_{up_c}). h	Yar	,'oo'	P.L.	
1.3	Auxiliary Equipment	Used During 7	Test	.V	0 [†] 8 ^r	VUD.			70,
1.4.	Operation channel li Description of Test N	st Modes	Kupo,	- ek	-107e/	AUPO!	24		
1.5	. Measurement Uncer	tainty	,k An		. Mar.	امر	0016		
1.7.	Measurement Uncer Test Summary Description of Test F	21. P.1.	, ek	W.poter	Anba	.; ₍ ,	- Spotek	- Moore	!
M1.10	0. Test Equipment Lis	t ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	⁷ UD01		le _K	/oc/	P(4)	des .	:tel
2. Anten	Discialmer	"potek	Anbore	β Σι	woiek	Aupoter	Anbe		\19
2.1.	Conclusion	h. Hotek	Aupole	<i>Σ</i> ι		pobote	ik Wul	⁹ /	1
3. Cond	ucted Emission at AC EUT Operation Test Setup	power line	k Ant	ote.	AUR	ام.	otek	Yupo,	1
.3\1	EUT Operation	Le Vun	iek .	rupotek	Aupo.	ek K	potek	Aupore.	،. 1،
Anbo 3.2	Test Setup	pole" And	V		Anbo		7,046 _/	KUPO46.	1
3.3	Test Data	vupotek b	,000°	Pr.	ek An'	onte		k vup	, et
4. Occu	Test Setup Test Data pied Bandwidth EUT Operation Test Setup	- Apolok	- Pupoge	- Ans		anbotek		rek Fr.	1
4.1.	EUT Operation		Allpote	P.U.	-*&#</th><th>- abotel</th><th>dn4 Au</th><th>0, b</th><th> 1</th></tr><tr><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tr><tr><th>5 Mayir</th><th>num Conducted Outp EUT Operation Test Setup</th><th>ut Power</th><th>· e/·</th><th>abotek</th><th>Aupole</th><th>r Vien</th><th>-otek</th><th>Anboten</th><th> 1</th></tr><tr><th>5. Waxii</th><th>FUT Operation</th><th>potek OWCI</th><th>b</th><th>hotek</th><th>Anbore</th><th>ρ</th><th>W. Wek</th><th>abotek</th><th>۱۰</th></tr><tr><td>5.1</td><td>. Test Setup</td><td>botek A</td><td>100kg</td><td>p.O.V</td><td>Y0</td><td>olok</td><td>Vigo.</td><td></td><td>2</td></tr><tr><td>5.3</td><td>Test Data</td><td>bu. Zolok</td><td>Allpoter</td><td>Anbo</td><td></td><td>botek</td><td></td><td>-_K</td><td>2</td></tr><tr><th>6. Chan</th><th>rest Setup Test Data nel Separation EUT Operation Test Setup</th><th>Aug Jick</th><th>eotek</th><th>And</th><th>0, 1</th><th>y,,</th><th>pob</th><th>ye. Ar</th><th> 2</th></tr><tr><th>6.1</th><th>EUT Operation</th><th>Aupo.</th><th></th><th>iek (</th><th>Mpore.</th><th>V.</th><th>,e.Y.</th><th>opotek</th><th>2</th></tr><tr><td>6.2</td><td>Test Setup</td><td>k kopore</td><td>Y V</td><td></td><td>Anbotek</td><td>Anb</td><td></td><td>botek</td><td> 2</td></tr><tr><td>bote 6.3</td><td>Test Data per of Hopping Freque</td><td>otek Anbot</td><td>.e</td><td>3P</td><td>, nbotel</td><td>P.</td><td>/o0````</td><td>- Ali hotek</td><td>2</td></tr><tr><td>7. Numb</td><td>per of Hopping Freque</td><td>encies</td><td>,001/2/</td><td>100°</td><td>F "10,</td><td>04.6A</td><td>Autore</td><td></td><td>2</td></tr><tr><th>7.1</th><th>EUT Operation</th><th>Npc Pk</th><th>yerodz</th><th></th><th>r Vu.</th><th>······································</th><th>Anbeten</th><th></th><th>2</th></tr><tr><td>7.2</td><td>. Test Setup . Test Data</td><td>Anbolt</td><td>**************************************</td><td>anb'</td><td>24.672</td><td></td><td>700</td><td>iep. Vu</td><td>2</td></tr><tr><td>8 Dwell</td><td>Time k hotek</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>2</td></tr><tr><td>20 2 11 2 11 2 11 2 11 2 11 2 11 2 11 2</td><td>FLIT Operation</td><td>k anbotek</td><td>Anb</td><td>.el</td><td>sbotek</td><td>Aupo</td><td>, E</td><td>, otek</td><td>2</td></tr><tr><td>8.2</td><td>Test Setup</td><td>¹,000,</td><td>sk Pu</td><td>/20°</td><td>, ev</td><td>`</td><td>poter</td><td>VV_P</td><td> 2</td></tr><tr><td>8.3</td><td>Test Data</td><td>0, VII.</td><td>Ve/t</td><td>Nupoter.</td><td>Aug</td><td>*S#</td><td>~ Upotek</td><td>- Vupo,</td><td>2</td></tr><tr><td>9. Emiss</td><td>EUT Operation Test Setup Test Data EUT Operation EUT Operation Test Setup Test Data Sions in non-restricted EUT Operation EUT Operation</td><td>d frequency ba</td><td>inds</td><td>anbotek</td><td>Anbo</td><td></td><td>n. Botek</td><td>Pupot</td><td> 2</td></tr><tr><td>9.1.</td><td>EUT Operation</td><td><u>unbotek</u></td><td>YUD.</td><td><u></u></td><td>iek N</td><td>por</td><td></td><td>ekyo</td><td>2</td></tr><tr><td>9.2</td><td>Test Setup</td><td>, upakek</td><td>- bupor</td><td>ν_K</td><td>100 (e)4</td><td>Antooten</td><td>AUD.</td><td>-tek</td><td> 2</td></tr><tr><td>93</td><td>resupata</td><td>Pot .</td><td></td><td>e:</td><td>N</td><td></td><td></td><td>vo.,</td><td>:: Z(</td></tr></tbody></table>				

Report No.: 18220WC40026301	FCC ID	: 2BEHS	-LV-M9PR	O _{rek} F	Page 3 of 3	38
10. Band edge emissions (Radiated)	sk	otek A	Upore b	ojek	Anbotek	27
10.1. EUT Operation10.2. Test Setup	,	"po _{lok}	Anbore borek	Autotek Autotek		27
10.3. Test Data	otek	Aupo, K	W. Pr.	······	Anda	29
11. Emissions in frequency bands (below 10	GHz)	Pupote.	VU _D	,c.)	lotek An	30
11.1. EUT Operation	Anu		iek Vupe	·	botek	30
11.1. EUT Operation 11.2. Test Setup 11.3. Test Data	Anbu. Kkog	ke _k V.	Pozek	potek .	*Upolok	31 32
12. Emissions in frequency bands (above 10		botek	Aupore	Aur	anbotek	34
12.1. EUT Operation	0,0 , 5,	hotek	Anboten	Vup.	k	34
12.2. Test Setup 12.3. Test Data	iopo _{tek}	Yun Voley	Amorek	Pupo,	otek Ari	3 ² 35
APPENDIX I TEST SETUP PHOTOGRAP	PH	, 1000	ek Aupo	·	botek	38
APPENDIX II EXTERNAL PHOTOGRAPH		ek an	ookek ke	PO1 P	"polek	38 38

Report No.: 18220WC40026301 FCC ID: 2BEHS-LV-M9PRO Page 4 of 38

TEST REPORT

Applicant : ShenZhen LVTEL Communication Equipment Co., Ltd

Manufacturer : ShenZhen LVTEL Communication Equipment Co., Ltd

Product Name : Bluetooth glasses

Test Model No. : LV-M9 Pro

Reference Model No. : LV-M6 Pro, LV-M8 Pro

Trade Mark : N/A

Rating(s) : Input: 5V= 500mA(with DC 3.7V, 120mAh battery inside)

Test Standard(s) 47 CFR Part 15.247 ANSI C63.10-2020

The device described above is tested by Shenzhen Anbotek Compliance Laboratory Limited to determine the maximum emission levels emanating from the device and the severe levels of the device can endure and its performance criterion. The measurement results are contained in this test report and Shenzhen Anbotek Compliance Laboratory Limited is assumed full of responsibility for the accuracy and completeness of these measurements. Also, this report shows that the EUT (Equipment Under Test) is technically compliant with above listed standard(s) requirements. This report applies to above tested sample only and shall not be reproduced in part without written approval of Shenzhen Anbotek Compliance Laboratory Limited.

Date of Receipt:	Jan. 31, 2024
Date of Test:	Jan. 31, 2024 to Feb. 20, 2024
	ek Coprek Landorek Andorek Andor
Prepared By:	Stella Zhu
potek Anbotek Anbotek Anbotek	(Stella Zhu)
	Anbotek Anbotek Anbotek Anbotek
	Idward pan
Approved & Authorized Signer:	ek Anborek Anbore Ann
	(Edward Pan)

www.anbotek.com.cn

Report No.: 18220WC40026301 FCC ID: 2BEHS-LV-M9PRO Page 5 of 38

Revision History

	Report Version	Description	Issued Date
	Anbore R00 potek Ant	Original Issue.	Mar. 06, 2024
9,	Anbotek Anbotek	Anbotek Anbotek Anbotek	Anbotek Anbotek Ant
10	ore Ambotek Anbotek	Anbotek Anbotek Anbot	tek Anbotek Anboter

Report No.: 18220WC40026301 FCC ID: 2BEHS-LV-M9PRO Page 6 of 38

1. General Information

1.1. Client Information

Applicant	:	ShenZhen LVTEL Communication Equipment Co., Ltd				
Address	ddress : 2105A 2105, 21st Floor, Building 1, Yagang Industry and Trade Building 1, Yagang District, Shenzhen,					
Manufacturer	:	ShenZhen LVTEL Communication Equipment Co., Ltd				
Address : 2105A 2105, 21st Floor, Building 1, Yagang Industry and Trade No. 18 Fu'an Avenue, Pinghu Street, Longgang District, Shenz						
Factory	:	ShenZhen LVTEL Communication Equipment Co., Ltd				
Address	2105A 2105, 21st Floor, Building 1, Yagang Industry and Trade Building, No. 18 Fu'an Avenue, Pinghu Street, Longgang District, Shenzhen, China					

1.2. Description of Device (EUT)

Product Name	:	Bluetooth glasses
Test Model No.	:	LV-M9 Pro
Reference Model No.	:	LV-M6 Pro, LV-M8 Pro (Note: All samples are the same except the model number and appearance color, so we prepare "LV-M9 Pro" for test only.)
Trade Mark	:	N/A And tek Anbotek Anbotek Anbotek Anbotek Anbotek
Test Power Supply	:	DC 5V from Adapter input AC 120V/60Hz; DC 3.7V battery inside
Test Sample No.	:	1-2-1(Normal Sample), 1-2-2(Engineering Sample)
Adapter	:	N/A orek Anborek Anborek Anborek Anborek
RF Specification		
Operation Frequency	:	2402MHz to 2480MHz
Number of Channel	:	79 Anborek Anborek Anborek Anborek Anbore
Modulation Type	:	GFSK, π/4 DQPSK, 8DPSK
Antenna Type	:	Ceramic Antenna
Antenna Gain(Peak)	:	1.24 dBi
	20	A COLO MAN AND AND AND AND AND AND AND AND AND A

Remark:

- (1) All of the RF specification are provided by customer.
- (2) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

Report No.: 18220WC40026301 FCC ID: 2BEHS-LV-M9PRO Page 7 of 38

1.3. Auxiliary Equipment Used During Test

Title	Manufacturer	Model No.	Serial No.
Xiaomi 33W adapter	Xiaomi	MDY-11-EX	SA62212LA04358J

1.4. Operation channel list

Operation Band:

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
Ootek Ootek	2402	20 rek	2422	40	2442	60	2462
1 botek	2403	21	2423	41	2443	61,0000	2463
2 2 bo	2404	22	2424	42 Anbo	2444	rek 62 Anbo	2464
3	bote 2405 And	23	2425	43 An	2445	botel 63	2465
4	2406	24	2426	44	2446	64	2466
And 5	2407	Ant 25	2427	45	2447	65	2467
And Grek	2408	26	2428	46	2448	66	2468
7	2409	27. ^{nbox}	2429	47 Anbor	2449	ek 67 _{Amb} o	2469
8 And	2410 M	28 And	2430	otek 48 Ant	2450	68 N	2470
9 An	2411	100 ¹⁰ 29	2431	49	2451	69	2471
Anbort 10	2412	Anb 30	2432	50 ^k	2452	70	2472
An 91	2413	31	2433	510tek	2453	71 potek	2473
12	2414	32	2434	52 _{mb} ote	2454	72	2474
13Anbox	2415	ek 33 Anbo	2435	otek 53 Anb	2455 Andrew	73	2475 M
otek 14 Ank	2416	pote ^k 34 M	2436	54	2456	74	2476
nb ^{ot} 15	2417	10035	2437	55	2457	75 _k	2477
16	2418	36	2438	56	2458	An 76	2478
17° 100 100 100 100 100 100 100 100 100 10	2419	37, otek	2439	57	2459	77	2479
18,000°	2420	38 _{Anb} ol	2440	58	2460	78	2480 M
stek 19 Anb	2421	39	2441 M	59	2461	Ole - Vill	Jek-

Hotline

Report No.: 18220WC40026301 FCC ID: 2BEHS-LV-M9PRO Page 8 of 38

1.5. Description of Test Modes

Pretest Modes	Descriptions
Amborek TM1 bores	Keep the EUT in continuously transmitting mode (non-hopping) with GFSK modulation.
TM2	Keep the EUT in continuously transmitting mode (non-hopping) with π/4 DQPSK modulation.
TM3	Keep the EUT in continuously transmitting mode (non-hopping) with 8DPSK modulation.
TM4 ek	Keep the EUT in continuously transmitting mode (hopping) with GFSK modulation,.
Anborek TM5 polek	Keep the EUT in continuously transmitting mode (hopping) with π/4 DQPSK modulation.
Anbotek TM6 Anbotek	Keep the EUT in continuously transmitting mode (hopping) with 8DPSK modulation.

1.6. Measurement Uncertainty

Parameter	Uncertainty
Conducted emissions (AMN 150kHz~30MHz)	3.4dB
Occupied Bandwidth	925Hz sek Anborek Anborek
Conducted Output Power	0.76dB
Conducted Spurious Emission	1.24dB
Radiated spurious emissions (above 1GHz)	1G-6GHz: 4.78dB; 6G-18GHz: 4.88dB 18G-40GHz: 5.68dB
Radiated emissions (Below 30MHz)	3.53dB
Radiated spurious emissions (30MHz~1GHz)	Horizontal: 3.92dB; Vertical: 4.52dB

The measurement uncertainty and decision risk evaluated according to AB/WI-RF-F-032. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Report No.: 18220WC40026301 FCC ID: 2BEHS-LV-M9PRO Page 9 of 38

1.7. Test Summary

Test Items	Test Modes	Status
Antenna requirement	Anborek / Anboren	Ant P rek
Conducted Emission at AC power line	Mode1,2,3	P
Occupied Bandwidth	Mode1,2,3	P PART
Maximum Conducted Output Power	Mode1,2,3	P
Channel Separation	Mode4,5,6	upor Pk
Number of Hopping Frequencies	Mode4,5,6	Anb P tek
Dwell Time	Mode4,5,6	A'CP
Emissions in non-restricted frequency bands	Mode1,2,3,4,5,6	PARTE
Band edge emissions (Radiated)	Mode1,2,3	P
Emissions in frequency bands (below 1GHz)	Mode1,2,3	Upote P
Emissions in frequency bands (above 1GHz)	Mode1,2,3	Anbo P
Note: P: Pass N: N/A not applicable	Anbotek Anbotek	Anbor

Report No.: 18220WC40026301 FCC ID: 2BEHS-LV-M9PRO Page 10 of 38

1.8. Description of Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.:434132

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No. 434132.

ISED-Registration No.: 8058A

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registered and fully described in a report filed with the (ISED) Innovation, Science and Economic Development Canada. The acceptance letter from the ISED is maintained in our files. Registration 8058A.

Test Location

Shenzhen Anbotek Compliance Laboratory Limited.

1/F, Building D, Sogood Science and Technology Park, Sanwei community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China.

1.9. Disclaimer

- The test report is invalid if not marked with the signatures of the persons responsible for preparing and approving the test report.
- 2. The test report is invalid if there is any evidence and/or falsification.
- 3. The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein.
- 4. This document may not be altered or revised in any way unless done so by Anbotek and all revisions are duly noted in the revisions section.
- 5. Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.
- 6. The authenticity of the information provided by the customer is the responsibility of the customer and the laboratory is not responsible for its authenticity.

The laboratory is only responsible for the data released by the laboratory, except for the part provided by the applicant.

Report No.: 18220WC40026301 FCC ID: 2BEHS-LV-M9PRO Page 11 of 38

1.10. Test Equipment List

Cond	ucted Emission at A	C power line	Aupo	k spotel	Anbore	An
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due Date
. 1	L.I.S.N. Artificial Mains Network	Rohde & Schwarz	ENV216	100055	2023-10-12	2024-10-11
2 2 50 tek	Three Phase V- type Artificial Power Network	CYBERTEK	EM5040DT	E215040D T001	2023-07-05	2024-07-04
3	EMI Test Receiver	Rohde & Schwarz	ESCI	100627	2023-10-12	2024-10-11
4	Software Name EZ-EMC	Farad Technology	ANB-03A	N/A	rek /Anbotek	Anborotek

Occupied Bandwidth

Maximum Conducted Output Power

Channel Separation

Number of Hopping Frequencies

Dwell Time

Emissions in non-restricted frequency bands

	Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due Date
, y.	1	Constant Temperature Humidity Chamber	ZHONGJIAN	ZJ- KHWS80B	o ^{tek} N/A An	2023-10-16	2024-10-15
	2	DC Power Supply	IVYTECH	IV3605	1804D360 510	2023-10-20	2024-10-19
	301e	Spectrum Analyzer	Rohde & Schwarz	FSV40-N	101792	2023-05-26	2024-05-25
	4.nb	MXA Spectrum Analysis	KEYSIGHT	N9020A	MY505318 23	2023-02-23	2024-02-22
**	5 }	Oscilloscope	Tektronix	MDO3012	C020298	2023-10-12	2024-10-11
×ē	6	MXG RF Vector Signal Generator	Agilent	N5182A	MY474206 47	2023-02-23	2024-10-22

Hotline

Report No.: 18220WC40026301 FCC ID: 2BEHS-LV-M9PRO Page 12 of 38

018	And	otek pupo.	N. ak	-boye.	VU _D	ysio
	edge emissions (Ra sions in frequency ba		Aupo, polek	Anbotek	Aupoter.	Anbotek
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due Date
1 00	EMI Test Receiver	Rohde & Schwarz	ESR26	101481	2023-10-12	2024-10-11
2	EMI Preamplifier	SKET Electronic	LNPA- 0118G-45	SKET-PA- 002	2023-10-12	2024-10-11
3	Double Ridged Horn Antenna	SCHWARZBECK	BBHA 9120D	02555	2022-10-16	2025-10-15
nbote 4	EMI Test Software EZ-EMC	SHURPLE	N/A	N/A	Anbotek	Aupolek
5	Horn Antenna	A-INFO	LB-180400- KF	J21106062 8	2023-10-12	2024-10-11
6	Spectrum Analyzer	Rohde & Schwarz	FSV40-N	101792	2023-05-26	2024-05-25
re ^k 7	Amplifier	Talent Microwave	TLLA18G40 G-50-30	23022802	2023-05-25	2024-05-24

Emiss	sions in frequency ba	ands (below 1GHz)				
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due Date
1	EMI Test Receiver	Rohde & Schwarz	ESR26	101481	2023-10-12	2024-10-11
. 2	Pre-amplifier	SONOMA	310N	186860	2023-10-12	2024-10-11
34	Bilog Broadband Antenna	Schwarzbeck	VULB9163	345	2022-10-23	2025-10-22
Anistel	Loop Antenna (9K- 30M)	Schwarzbeck	FMZB1519 B	00053	2023-10-12	2024-10-11
5,00	EMI Test Software EZ-EMC	SHURPLE	N/A	N/A No	y Aupo	k Anbotek

Report No.: 18220WC40026301 FCC ID: 2BEHS-LV-M9PRO Page 13 of 38

2. Antenna requirement

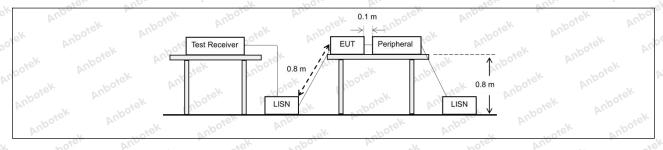
Test Requirement:

Refer to 47 CFR Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

2.1. Conclusion

The antenna is a Ceramic antenna which permanently attached, and the best case gain of the antenna is 1.24 dBi . It complies with the standard requirement.

Report No.: 18220WC40026301 FCC ID: 2BEHS-LV-M9PRO Page 14 of 38


3. Conducted Emission at AC power line

Test Requirement:	Refer to 47 CFR 15.207(a), Except section, for an intentional radiator public utility (AC) power line, the result back onto the AC power line on are band 150 kHz to 30 MHz, shall no measured using a 50 µH/50 ohms (LISN).	that is designed to be con adio frequency voltage that my frequency or frequencient t exceed the limits in the f	nected to the at is conducted es, within the ollowing table, as
spotek Anboy	Frequency of emission (MHz)	Conducted limit (dBµV)	i atek
YII.	Anbore Anbore	Quasi-peak	Average
Aupor Ar.	0.15-0.5	66 to 56*	56 to 46*
Test Limit:	0.5-5	56. An	46
VII.	5-30 And 5	60	50 PER AND
k Aupor K Ai.	*Decreases with the logarithm of t	he frequency.	
Test Method:	ANSI C63.10-2020 section 6.2	Anbores.	Aug
Procedure:	Refer to ANSI C63.10-2020 section line conducted emissions from un		

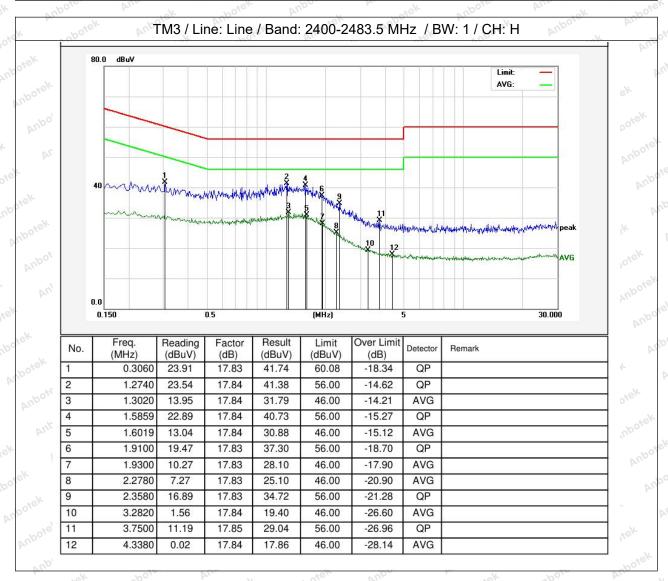
3.1. EUT Operation

Operating Envi	ronment:	Anbo	botek .	Aupote	Ann	Anborek	Anbo.
Test mode:	hopping) w 2: TX-π/4-[(non-hoppi 3: TX-8DPS	ith GFSK model of the GFSK (Norng) with $\pi/4$	odulation. n-Hopping): K DQPSK mod oping): Keep	eep the EU ⁻ ulation.	ontinuously trans T in continuousl continuously trai	y transmitting	g mode

3.2. Test Setup

Hotline

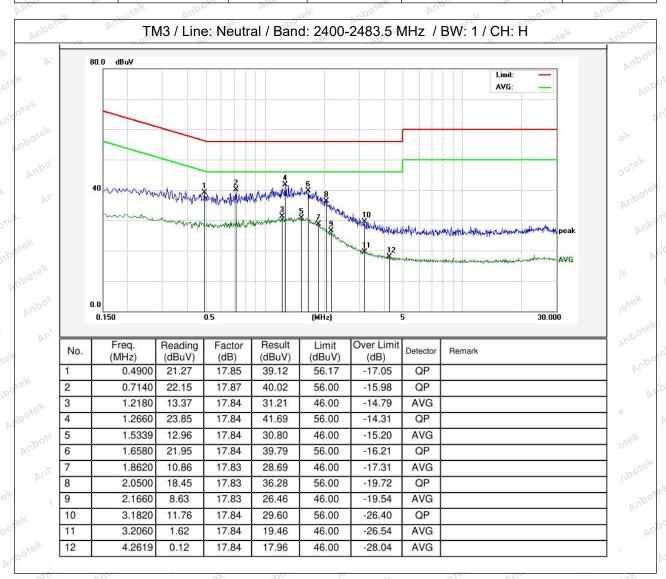
www.anbotek.com.cn


400-003-0500

Report No.: 18220WC40026301 FCC ID: 2BEHS-LV-M9PRO Page 15 of 38

3.3. Test Data

Temperature: 19	9.6 °C	Humidity:	67 %	Atmospheric Pressure:	101 kPa
-----------------	--------	-----------	------	-----------------------	---------



Report No.: 18220WC40026301 FCC ID: 2BEHS-LV-M9PRO Page 16 of 38

Temperature: 19.6 °C Humidity: 67 % Atmospheric Pressure: 101 kPa

Note: Only record the worst data in the report.

Report No.: 18220WC40026301 FCC ID: 2BEHS-LV-M9PRO Page 17 of 38

4. Occupied Bandwidth

Test Requirement:	47 CFR 15.215(c)
rest requirement.	
abotek Anbo.	Refer to 47 CFR 15.215(c), intentional radiators operating under the
	alternative provisions to the general emission limits, as contained in §§ 15.217 through 15.257 and in subpart E of this part, must be designed to
Test Limit:	ensure that the 20 dB bandwidth of the emission, or whatever bandwidth
rest Limit.	may otherwise be specified in the specific rule section under which the
	equipment operates, is contained within the frequency band designated in
upotek Aupo,	the rule section under which the equipment is operated.
To Selvetto al Anboren	ANSI C63.10-2020, section 7.8.6, For occupied bandwidth measurements,
Test Method:	use the procedure in 6.9.3. Frequency hopping shall be disabled for this test.
Anbo	The occupied bandwidth is the frequency bandwidth such that, below its
	lower and above its upper frequency limits, the mean powers are each equal
	to 0.5% of the total mean power of the given emission. The following
	procedure shall be used for measuring 99% power bandwidth:
	a) The instrument center frequency is set to the nominal EUT channel center
	frequency. The frequency span for the spectrum analyzer shall be between
	1.5 times and 5.0 times the OBW.
	b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to
	5% of the OBW, and VBW shall be at least three times the RBW, unless
Sorek Anbore	otherwise specified by the applicable requirement.
	c) Set the reference level of the instrument as required, keeping the signal
	from exceeding the maximum input mixer level for linear operation. In
	general, the peak of the spectral envelope shall be more than [10 log
otek Aupa	(OBW/RBW)] below the reference level. Specific guidance is given in
	4.1.6.2.
Dragadura, "otek	d) Step a) through step c) might require iteration to adjust within the
Procedure:	specified range.
	e) Video averaging is not permitted. Where practical, a sample detection and
	single sweep mode shall be used. Otherwise, peak detection and max-hold mode (until the trace stabilizes) shall be used.
	f) Use the 99% power bandwidth function of the instrument (if available) and
	report the measured bandwidth.
	g) If the instrument does not have a 99% power bandwidth function, then the
	trace data points are recovered and directly summed in linear power terms.
	The recovered amplitude data points, beginning at the lowest frequency, are
	placed in a running sum until 0.5% of the total is reached; that frequency is
	recorded as the lower frequency. The process is repeated until 99.5% of the
	total is reached; that frequency is recorded as the upper frequency. The 99%
	power bandwidth is the difference between these two frequencies.
	h) The occupied bandwidth shall be reported by providing spectral plot(s) of
	the measuring instrument display; the plot axes and the scale units per
	division shall be clearly labeled. Tabular data may be reported in addition to
	the plot(s).
	1 20

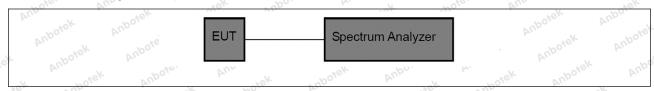
Report No.: 18220WC40026301 FCC ID: 2BEHS-LV-M9PRO Page 18 of 38

4.1. EUT Operation

Operating Environment:

1: TX-GFSK (Non-Hopping): Keep the EUT in continuously transmitting mode (non-

hopping) with GFSK modulation.


Test mode: 2: TX-π/4-DQPSK (Non-Hopping): Keep the EUT in continuously transmitting mode

(non-hopping) with $\pi/4$ DQPSK modulation.

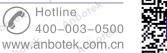
3: TX-8DPSK (Non-Hopping): Keep the EUT in continuously transmitting mode (non-

hopping) with 8DPSK modulation.

4.2. Test Setup

4.3. Test Data

T	emperature:	25.3 °C	Humidity:	48 %	Atmospheric Pressure:	101 kPa
---	-------------	---------	-----------	------	-----------------------	---------

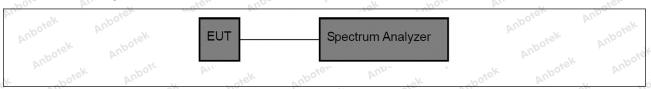

Report No.: 18220WC40026301 FCC ID: 2BEHS-LV-M9PRO Page 19 of 38

5. Maximum Conducted Output Power

Test Requirement:	47 CFR 15.247(b)(1)
Test Limit: ek Anborek Anborek Anborek	Refer to 47 CFR 15.247(b)(1), For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.
Test Method:	ANSI C63.10-2020, section 7.8.5
Anbotek	This is an RF-conducted test to evaluate maximum peak output power. Use a direct connection between the antenna port of the unlicensed wireless device and the spectrum analyzer, through suitable attenuation. Frequency hopping shall be disabled for this test. Use the following spectrum analyzer settings: a) Span: Approximately five times the 20 dB bandwidth, centered on a hopping channel. b) RBW > 20 dB bandwidth of the emission being measured. c) VBW ≥ RBW. d) Sweep: No faster than coupled (auto) time. e) Detector function: Peak.
Procedure:	f) Trace: Max-hold. g) Allow trace to stabilize.
	h) Use the marker-to-peak function to set the marker to the peak of the emission.i) The indicated level is the peak output power, after any corrections for
botek Anbotek	external attenuators and cables. j) A spectral plot of the test results and setup description shall be included in the test report.
	NOTE—A peak responding power meter may be used, where the power meter and sensor system video bandwidth is greater than the occupied bandwidth of the unlicensed wireless device, rather than a spectrum analyzer.

5.1. EUT Operation

70	Operating Envi	nment: Anborek Anborek Anborek Anborek Anborek Anborek	.
7	Test mode:	1: TX-GFSK (Non-Hopping): Keep the EUT in continuously transmitting mode (non hopping) with GFSK modulation. 2: TX- π /4-DQPSK (Non-Hopping): Keep the EUT in continuously transmitting mod (non-hopping) with π /4 DQPSK modulation. 3: TX-8DPSK (Non-Hopping): Keep the EUT in continuously transmitting mode (non-hopping) with 8DPSK modulation.	otek de mbote



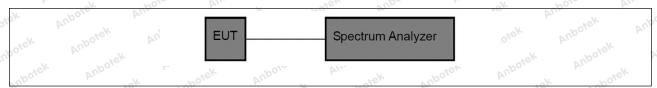
Report No.: 18220WC40026301 FCC ID: 2BEHS-LV-M9PRO Page 20 of 38

5.2. Test Setup

5.3. Test Data

	0.0	1000	10.000	Pil.	400 1.5
Temperature:	25.3 °C	Humidity:	48 %	Atmospheric Pressure:	101 kPa

Report No.: 18220WC40026301 FCC ID: 2BEHS-LV-M9PRO Page 21 of 38


6. Channel Separation

in in the second	1 700, by
Test Requirement:	47 CFR 15.247(a)(1)
Test Limit: Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek	Refer to 47 CFR 15.247(a)(1), Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.
Test Method:	ANSI C63.10-2020, section 7.8.2
Anborek	The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings: a) Span: Wide enough to capture the peaks of two adjacent channels. b) RBW: Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel. c) Video (or average) bandwidth (VBW) ≥ RBW. d) Sweep: No faster than coupled (auto) time. e) Detector function: Peak. f) Trace: Max-hold. g) Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. Compliance of an EUT with the appropriate regulatory limit shall be determined. A spectral plot of the data shall be included in the test report.

6.1. EUT Operation

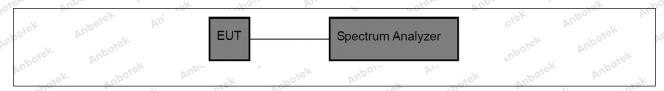
Operating Envi	ronment;ek Anborek Anborek Anborek Anborek Anbor
Test mode:	 4: TX-GFSK (Hopping): Keep the EUT in continuously transmitting mode (hopping) with GFSK modulation,. 5: TX-π/4-DQPSK (Hopping): Keep the EUT in continuously transmitting mode (hopping) with π/4 DQPSK modulation. 6: TX-8DPSK (Hopping): Keep the EUT in continuously transmitting mode (hopping) with 8DPSK modulation.

6.2. Test Setup

6.3. Test Data

Temperature:	25.3 °C	_{Anb} oHi	umidity: 48 %	6	Atmospheric Pressure:	101 kPa	^{yup} ote

Report No.: 18220WC40026301 FCC ID: 2BEHS-LV-M9PRO Page 22 of 38


7. Number of Hopping Frequencies

Test Requirement:	47 CFR 15.247(a)(1)(iii)
Test Limit: Anbotek Anbotek Anbotek Anbotek Anbotek	Refer to 47 CFR 15.247(a)(1)(iii), Fequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.
Test Method:	ANSI C63.10-2020, section 7.8.3
Anborek	The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings: a) Span: The frequency band of operation. Depending on the number of channels the device supports, it could be necessary to divide the frequency range of operation across multiple spans, to allow the individual channels to be clearly seen. b) RBW: To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller. c) VBW ≥ RBW. d) Sweep: No faster than coupled (auto) time. e) Detector function: Peak. f) Trace: Max-hold. g) Allow the trace to stabilize.
	It might prove necessary to break the span up into subranges to show clearly all of the hopping frequencies. Compliance of an EUT with the appropriate regulatory limit shall be determined for the number of hopping channels. A spectral plot of the data shall be included in the test report.

7.1. EUT Operation

Operating Envi	onment: Anbore Anbore Anbore Anborek Anborek
Test mode:	 4: TX-GFSK (Hopping): Keep the EUT in continuously transmitting mode (hopping) with GFSK modulation,. 5: TX-π/4-DQPSK (Hopping): Keep the EUT in continuously transmitting mode (hopping) with π/4 DQPSK modulation. 6: TX-8DPSK (Hopping): Keep the EUT in continuously transmitting mode (hopping) with 8DPSK modulation.

7.2. Test Setup

7.3. Test Data

Temperature: 25.3 °C Humidity: 48 % Atmospheric Pressure:	101 kPa
---	---------

Report No.: 18220WC40026301 FCC ID: 2BEHS-LV-M9PRO Page 23 of 38

8. Dwell Time

Test Requirement:	47 CFR 15.247(a)(1)(iii)
Test Limit: Anborek Anborek Anborek Anborek	Refer to 47 CFR 15.247(a)(1)(iii), Fequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.
Test Method:	ANSI C63.10-2020, section 7.8.4
	The dwell time per hop on a channel is the time from the start of the first transmission to the end of the last transmission for that hop. If the device has a single transmission per hop then the dwell time is the duration of that transmission. If the device has a multiple transmissions per hop then the dwell time is measured from the start of the first transmission to the end of the last transmission.
	The time of occupancy is the total time that the device dwells on a channel over an observation period specified in the regulatory requirement. To determine the time of occupancy the spectrum analyzer will be configured to measure both the dwell time per hop and the number of times the device transmits on a specific channel in a given period.
Procedure:	The EUT shall have its hopping function enabled. Compliance with the requirements shall be made with the minimum and with the maximum number of channels enabled. If the dwell time per channel does not vary with the number of channels than compliance with the requirements may be based on the minimum number of channels. If the device supports different dwell times per channel (example Bluetooth devices can dwell on a channel for 1, 3 or 5 time slots) then measurements can be limited to the longest dwell time with the minimum number of channels.
	Use the following spectrum analyzer settings to determine the dwell time per
	 hop: a) Span: Zero span, centered on a hopping channel. b) RBW shall be ≤ channel spacing and where possible RBW should be set >> 1 / T, where T is the expected transmission time per hop. c) Sweep time: Set so that the start of the first transmission and end of the
	last transmission for the hop are clearly captured. Setting the sweep time to be slightly longer than the hopping period per channel (hopping period =
	1/hopping rate) should achieve this. d) Use a video trigger, where possible with a trigger delay, so that the start of the transmission is clearly observed. The trigger level might need adjustment to reduce the chance of triggering when the system hops on an adjacent
	channel. e) Detector function: Peak. f) Trace: Clear-write, single sweep. g) Place markers at the start of the first transmission on the channel and at the end of the last transmission. The dwell time per hop is the time between

Report No.: 18220WC40026301 FCC ID: 2BEHS-LV-M9PRO Page 24 of 38

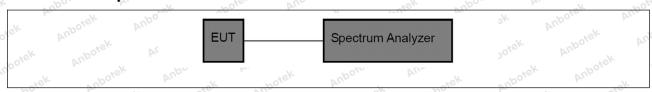
these two markers.

To determine the number of hops on a channel in the regulatory observation period repeat the measurement using a longer sweep time. When the device uses a single hopping sequence the period of measurement should be sufficient to capture at least 2 hops. When the device uses a dynamic hopping sequence, or the sequence varies, the period of measurement may need to capture multiple hops to better determine the average time of occupancy. Count the number of hops on the channel across the sweep time.

The average number of hops on the same channel within the regulatory observation period is calculated from the number of hops on the channel divided by the spectrum analyzer sweep time multiplied by the regulatory observation period. For example, if three hops are counted with an analyzer sweep time of 500 ms and the regulatory observation period is 10 s, then the number of hops in that ten seconds is $3 / 0.5 \times 10$, or 60 hops.

The average time of occupancy is calculated by multiplying the dwell time per hop by the number of hops in the observation period.

8.1. EUT Operation


Operating Environment:

4: TX-GFSK (Hopping): Keep the EUT in continuously transmitting mode (hopping) with GFSK modulation..

Test mode:

- 5: TX- π /4-DQPSK (Hopping): Keep the EUT in continuously transmitting mode (hopping) with π /4 DQPSK modulation.
- 6: TX-8DPSK (Hopping): Keep the EUT in continuously transmitting mode (hopping) with 8DPSK modulation.

8.2. Test Setup

8.3. Test Data

Temperature:	25.3 °C	Humidity:	48 %	Atmospheric Pressure:	101 kPa	Ç G
		-777				

Report No.: 18220WC40026301 FCC ID: 2BEHS-LV-M9PRO Page 25 of 38

9. Emissions in non-restricted frequency bands

Test Requirement:	47 CFR 15.247(d), 15.209, 15.205
Anbotek Anbotek Anbotek Anbotek Test Limit: Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek	Refer to 47 CFR 15.247(d), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required.
Test Method:	ANSI C63.10-2020 section 7.8.7
	7.8.7.1 General considerations To demonstrate compliance with the relative out-of-band emissions requirements conducted spurious emissions shall be measured for the transmit frequencies, per 5.5 and 5.6, and at the maximum transmit powers. Frequency hopping shall be disabled for this test with the exception of measurements at the allocated band-edges which shall be repeated with hopping enabled.
	Connect the primary antenna port through an attenuator to the spectrum analyzer input; in the results, account for all losses between the unlicensed wireless device output and the spectrum analyzer. The frequency range of testing shall span 30 MHz to 10 times the operating frequency and this may be done in a single sweep or, to aid resolution, across a number of sweeps. The resolution bandwidth shall be 100 kHz, video bandwidth 300 kHz, and a coupled sweep time with a peak detector.
Procedure:	The limit is based on the highest in-band level across all channels measured using the same instrument settings (resolution bandwidth of 100 kHz, video bandwidth of 300 kHz, and a coupled sweep time with a peak detector). To help clearly demonstrate compliance a display line may be set at the required offset (typically 20 dB) below the highest in-band level. Where the highest in-band level is not clearly identified in the out-of-band measurements a separate spectral plot showing the in-band level shall be provided.
	When conducted measurements cannot be made (for example a device with integrated, non-removable antenna) radiated measurements shall be used. The reference level for determining the limit shall be established by maximizing the field strength from the highest power channel and measuring using the resolution and video bandwidth settings and peak detector as described above. The field strength limit for spurious emissions outside of restricted-bands shall then be set at the required offset (typically 20 dB) below the highest in-band level. Radiated measurements will follow the standards measurement procedures described in Clause 6 with the exception that the resolution bandwidth shall be 100 kHz, video bandwidth

Report No.: 18220WC40026301 FCC ID: 2BEHS-LV-M9PRO Page 26 of 38

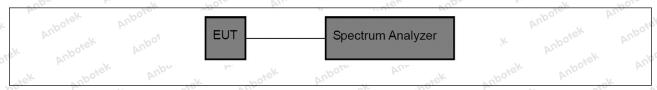
300 kHz, and a coupled sweep time with a peak detector. Note that use of wider measurement bandwidths are acceptable for measuring the spurious emissions provided that the peak detector is used and that the measured value of spurious emissions are compared to the highest in-band level measured with the 100 kHz / 300 kHz bandwidth settings to determine compliance.

7.8.7.2 Band-edges

Compliance with a relative limit at the band-edges (e.g., -20 dBc) shall be made on the lowest and on the highest channels with frequency hopping disabled and repeated with frequency hopping enabled. For the latter test the hopping sequence shall include the lowest and highest channels.

For measurements with the hopping disabled the analyzer screen shall clearly show compliance with the requirement within 10 MHz of the allocated band-edge.

For measurements with the hopping enabled the analyzer screen shall clearly show compliance with the requirement within 10 MHz of both of the allocated band-edges. This could require separate spectral plots for each band-edge.


9.1. EUT Operation

Operating Environment:

- 1: TX-GFSK (Non-Hopping): Keep the EUT in continuously transmitting mode (non-hopping) with GFSK modulation.
- 2: TX- π /4-DQPSK (Non-Hopping): Keep the EUT in continuously transmitting mode (non-hopping) with π /4 DQPSK modulation.
- 3: TX-8DPSK (Non-Hopping): Keep the EUT in continuously transmitting mode (non-hopping) with 8DPSK modulation.
- 4: TX-GFSK (Hopping): Keep the EUT in continuously transmitting mode (hopping) with GFSK modulation..
- 5: TX- π /4-DQPSK (Hopping): Keep the EUT in continuously transmitting mode (hopping) with π /4 DQPSK modulation.
- 6: TX-8DPSK (Hopping): Keep the EUT in continuously transmitting mode (hopping) with 8DPSK modulation.

9.2. Test Setup

Test mode:

9.3. Test Data

Temperature	e: 25.3 °C	Humidity:	48 %	Atmospheric Pressure:	101 kPa
-------------	------------	-----------	------	-----------------------	---------

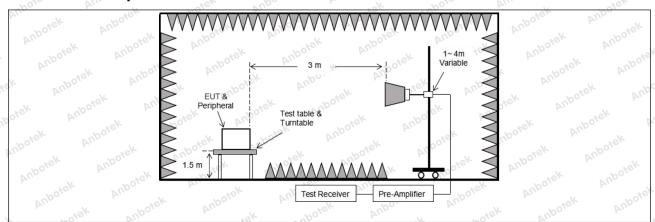
Report No.: 18220WC40026301 FCC ID: 2BEHS-LV-M9PRO Page 27 of 38

10. Band edge emissions (Radiated)

		10 VD		
Test Requirement:	restricted bands, as defined	In addition, radiated emissions d in § 15.205(a), must also comp ecified in § 15.209(a)(see § 15.2	ly with the	
k Anbotek Anbot	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)	
Stek	0.009-0.490	2400/F(kHz)	300 Mbott	
Spotek Anbo	0.490-1.705	24000/F(kHz)	30	
il. "Sk "Upojer	1.705-30.0	30	30	
Anbo. A. A.	30-88	100 **	3,ek nbore	
shotek Anbo.	88-216	150 **	3	
Arr. Shote	216-960	200 **	3 boten And	
Aupor Air	Above 960	500 Lorek Anborr	3 30 00	
** Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§ 15.231 and 15.241. In the emission table above, the tighter limit applies at the band edges. The emission limits shown in the above table are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9–90 kHz, 110–490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.				
Test Method:	ANSI C63.10-2020 section	6.10	sk Aupotes	
Procedure:	ANSI C63.10-2020 section	6.10.5.2	otek Anbotek	

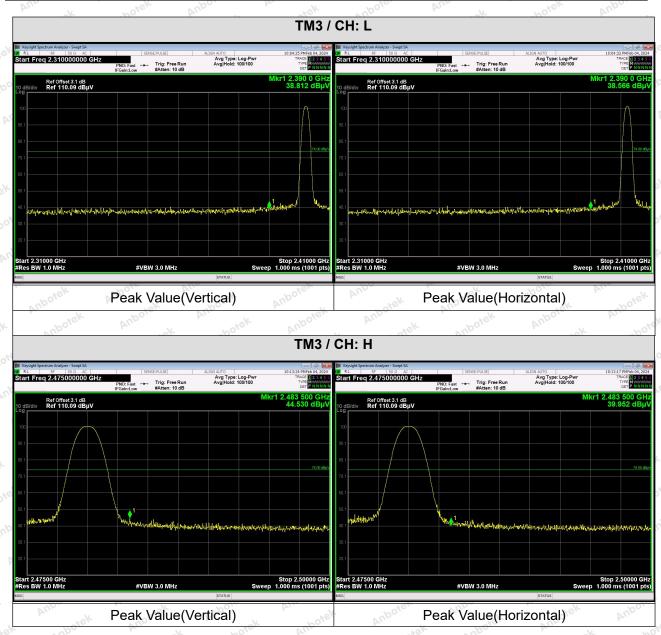
10.1. EUT Operation

	Operating Envir	onment: Anborek Anborek Anborek Anborek
20,0	Test mode:	1: TX-GFSK (Non-Hopping): Keep the EUT in continuously transmitting mode (non-hopping) with GFSK modulation. 2: TX-π/4-DQPSK (Non-Hopping): Keep the EUT in continuously transmitting mode (non-hopping) with π/4 DQPSK modulation. 3: TX-8DPSK (Non-Hopping): Keep the EUT in continuously transmitting mode (non-hopping) with 8DPSK modulation.



Report No.: 18220WC40026301 FCC ID: 2BEHS-LV-M9PRO Page 28 of 38

10.2. Test Setup



Report No.: 18220WC40026301 FCC ID: 2BEHS-LV-M9PRO Page 29 of 38

10.3. Test Data

Temperature: 25.3 °C Humidity: 48 % Atmospheric Pressure: 101 kPa

Note: When the PK measure result value is less than the AVG limit value, the AV measure result values test not applicable.

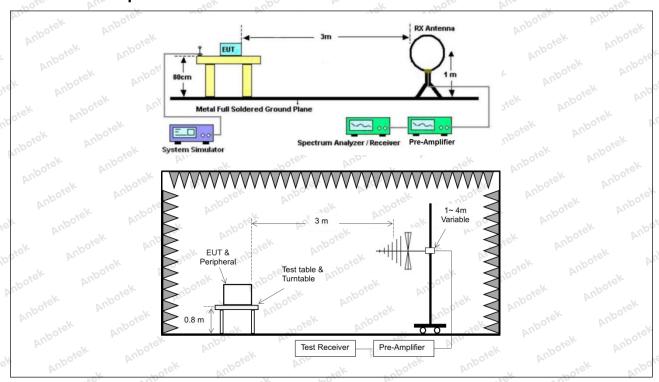
Report No.: 18220WC40026301 FCC ID: 2BEHS-LV-M9PRO Page 30 of 38

11. Emissions in frequency bands (below 1GHz)

Test Requirement:	restricted bands, as defined	In addition, radiated emissions d in § 15.205(a), must also compecified in § 15.209(a)(see § 15.2	ly with the
otek Anbotek Anbot	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
hotek Anbotek	0.009-0.490 0.490-1.705	2400/F(kHz) 24000/F(kHz)	300
Anbotek Anbotek	1.705-30.0 30-88	30 100 **	30
Anbotek Anbore	88-216 216-960	150 ** 200 **	3 3 Anno M
Anbore. And	Above 960	500 hotek Ambote	3
Test Limit: Anbotek Anbotek	intentional radiators operatifrequency bands 54-72 MH However, operation within the sections of this part, e.g., § In the emission table above The emission limits shown employing a CISPR quasi-part of the emission table above 100 miles above 100 miles and 100 miles and 100 miles and 100 miles are provided to the provided table of the provided table o	ragraph (g), fundamental emissing under this section shall not bz, 76-88 MHz, 174-216 MHz or hese frequency bands is permitt§ 15.231 and 15.241. In the tighter limit applies at the bin the above table are based on beak detector except for the frequency above 1000 MHz. Radiated emisted on measurements employing	e located in the 470-806 MHz. ed under other and edges. measurements uency bands 9–sion limits in
Test Method:	ANSI C63.10-2020 section	6.6.4 And	Aupore,
Procedure:	ANSI C63.10-2020 section	6.6.4	otek Anbotek

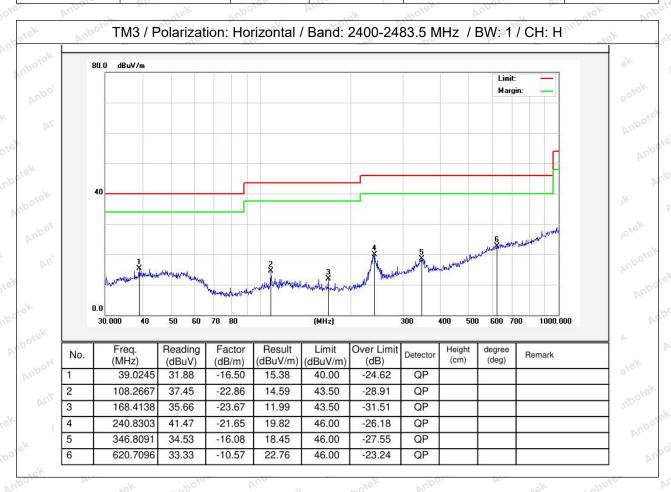
11.1. EUT Operation

	Operating Envir	onment:					Aupotek	Anbo
2,0	Test mode:	hopping) with 2: TX-π/4-DC (non-hopping	n GFSK modu QPSK (Non-H g) with π/4 DC ((Non-Hoppi	ulation. lopping): Keep QPSK modula ng): Keep the	the EUT ir	nuously transn n continuously itinuously trans	transmitting	mode



Report No.: 18220WC40026301 FCC ID: 2BEHS-LV-M9PRO Page 31 of 38

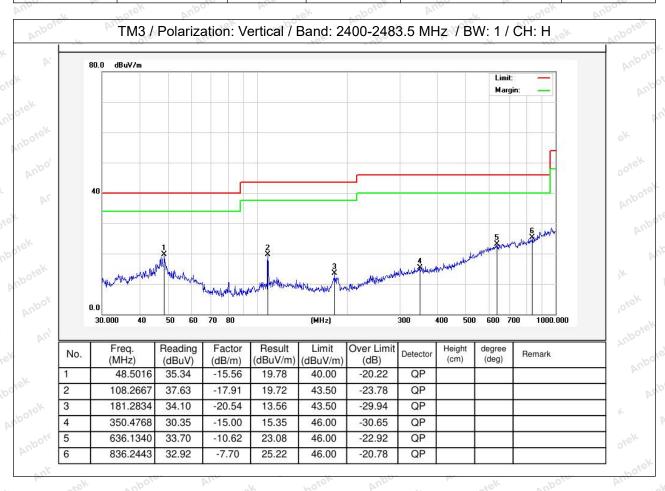
11.2. Test Setup



Report No.: 18220WC40026301 FCC ID: 2BEHS-LV-M9PRO Page 32 of 38

11.3. Test Data

The test results of 9kHz-30MHz was attenuated more than 20dB below the permissible limits, so the results don't record in the report.

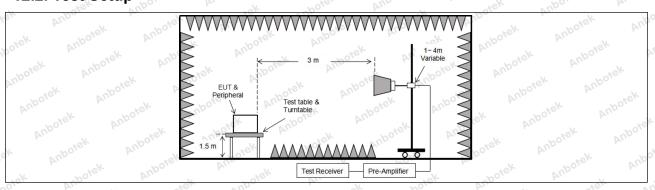

	Temperature:	25.3 °C	VUPO.	Humidity:	48%	Atmos	pheric Pre	ssure:	101 kPa
- 1	romporatare.	20.0		iditionty.	70 70	7 (11100	priorio i i e	oourc.	pero i ki a i

Report No.: 18220WC40026301 FCC ID: 2BEHS-LV-M9PRO Page 33 of 38

Temperature: 25.3 °C Humidity: 48 % Atmospheric Pressure: 101 kPa

Note: Only record the worst data in the report.

Report No.: 18220WC40026301 FCC ID: 2BEHS-LV-M9PRO Page 34 of 38


12. Emissions in frequency bands (above 1GHz)

Anbotek A	in § 15.209(a)(see § 15 Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance
	Any	Anbo, Air stek vupote,	(meters)
	0.009-0.490	2400/F(kHz)	300 000
poter Ande	0.490-1.705	24000/F(kHz)	30
	1.705-30.0	30	30 And
	30-88	100 ***	3,ek nbore
	88-216	150 **	A1 3
	216-960	200 **	3 botes Ans
	Above 960	500 horek Anbo	3
ootek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek	frequency bands 54-72 However, operation wit sections of this part, e. In the emission table a The emission limits she employing a CISPR qu 90 kHz, 110–490 kHz a these three bands are	perating under this section shall no 2 MHz, 76-88 MHz, 174-216 MHz of thin these frequency bands is perning., §§ 15.231 and 15.241. Bove, the tighter limit applies at the town in the above table are based of asi-peak detector except for the frand above 1000 MHz. Radiated en based on measurements employing.	or 470-806 MHz. nitted under other e band edges. on measurements equency bands 9– nission limits in
	Metector		
Test Method:	detector.	etion 6.64	ak abotek
Test Method:	ANSI C63.10-2020 sec ANSI C63.10-2020 sec	All. Call	potek Anbotek

12.1. EUT Operation

Operating Envi	ronment:			Anbois	Ann	Anbotek	Anbo
Test mode:	hopping) with 2: TX-π/4-D0 (non-hopping	h GFSK mod QPSK (Non-I g) with π/4 D K (Non-Hopp	lulation. Hopping): Kee QPSK modula ing): Keep the	p the EUT i	inuously transmonthing transmonthing in continuously intinuously transmonthing in the continuously transmonthinuously transmont	transmitting	mode

12.2. Test Setup

Report No.: 18220WC40026301 FCC ID: 2BEHS-LV-M9PRO Page 35 of 38

12.3. Test Data

Temperature: 25.3 °C	Humidity: 48 %	Atmospheric Pressure:	101 kPa
----------------------	----------------	-----------------------	---------

·	Po, VIII		TM2 / CUI- L	Ŧ	-h ⁰ / ₁	Di.
			TM3 / CH: L			
Peak value:						
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4804.00	27.29	15.27	42.56	74.00	-31.44	Vertical
7206.00	28.43	18.09	46.52	74.00	-27.48	Vertical
9608.00	29.30	23.76	53.06	74.00	-20.94	Vertical
12010.00	Aupole * Al	, e ^k	abotek Anb	74.00	otek Anbote	Vertical
14412.00	"Upo#sk	Anbo, ok	hojek b	74.00	iek ont	Vertical
4804.00	27.66	15.27	42.93	74.00	-31.07	Horizontal
7206.00	28.65	18.09	46.74	74.00	-27.26	Horizontal
9608.00	28.29	23.76	52.05	74.00	-21.95	Horizontal
12010.00	otek * Aupo	- V	iek Vupoje,	74.00	hotek	Horizontal
14412.00	woick*	Ooter Amb	sek spo	74.00	L bore	Horizontal
Average value:						
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	polarization
4804.00	16.67	15.27	31.94	54.00	-22.06	Vertical
7206.00	17.46	18.09	35.55	54.00	-18.45	Vertical
9608.00	18.32	23.76	42.08	54.00	-11.92	Vertical
12010.00	A CHECK	Aupoter Au	.ek	54.00	N Pro	Vertical
14412.00	And * * ek	abotek	Aupor K	54.00	Ipolog Aug	Vertical
4804.00	16.01	15.27	31.28	54.00	-22.72	Horizontal
7206.00	17,71	18.09	35.80	54.00	-18.20	Horizontal
9608.00	17.60	23.76	41.36	54.00	-12.64	Horizontal
12010.00	***	otek Wupos	K 1-04	54.00	Vup.	Horizontal
14412.00	4 ×	stek ont	ofer Ande	54.00	ek Aupor	Horizontal

Report No.: 18220WC40026301 FCC ID: 2BEHS-LV-M9PRO Page 36 of 38

				hotek	Anbor	*ek
			TM3 / CH: M			
Peak value:						
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4882.00	27.31	15.42	42.73	74.00	-31.27	Vertical
7323.00	28.28	18.02	46.30	74.00	-27.70	Vertical
9764.00	28.31	23.80	52.11	74.00	-21.89	Vertical
12205.00	ek * nbotek	Anbo.	hotek	74.00	And	Vertical
14646.00	* *	tek Aupote	Pur Sie	74.00	Aupo	Vertical
4882.00	27.36	15.42	42.78	74.00	-31.22	Horizontal
7323.00	28.64	18.02	46.66	74.00	-27.34	Horizontal
9764.00	27.99	23.80	51.79	74.00	-22.21	Horizontal
12205.00	* otek	Anboie	And	74.00	YUpo, ok	Horizontal
14646.00	A.T. Otek	Anbotek	Aupo	74.00	Anbois	Horizontal
Average value:						
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	polarization
4882.00	16.40	15.42	31.82	54.00	-22.18	Vertical
7323.00	17.56	18.02	35.58	54.00	-18.42	Vertical
9764.00	18.18	23.80	41.98	54.00	-12.02	Vertical
12205.00	k *upote	N Diek	anbotek	54.00	aboiek	Vertical
14646.00	otek * Anboti	And	sk spojek	54.00	k otek	Vertical
4882.00	15.92	15.42	31.34	54.00	-22.66	Horizontal
7323.00	17.27	18.02	35.29	54.00	-18.71	Horizontal
9764.00	18.11	23.80	41.91	54.00	12.09 And	Horizontal
12205.00	Anbotek	Anb.	abotek	54.00	wotek D	Horizontal
14646.00	* botek	Anbo	W. Olek	54.00	And	Horizontal

Report No.: 18220WC40026301 FCC ID: 2BEHS-LV-M9PRO Page 37 of 38

		abote.				
		-	TM3 / CH: H			
Peak value:						
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4960.00	27.58	15.58	43.16	74.00	-30.84	Vertical
7440.00	28.29	17.93	46.22	74.00	-27.78	Vertical
9920.00	28.86	23.83	52.69	74.00	-21.31	Vertical
12400.00	* work	Aupoles	Anti-	74.00	Aupo, K	Vertical
14880.00	* And	rek "potel	Aupo.	74.00	Anboie	Vertical
4960.00	27.43	15.58	43.01	74.00	-30.99	Horizontal
7440.00	28.67	17.93	46.60	74.00	-27.40	Horizontal
9920.00	28.67	23.83	52.50	74.00	-21.50	Horizontal
12400.00	Anb * *ek	abořek	Aupo	74.00	Vupote, Vu	Horizontal
14880.00	W.Apo.	Pr. Notek	Anbore	74.00	anboiek	Horizontal
Average value:						
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	polarization
4960.00	17.52	15.58	33.10	54.00	-20.90	Vertical
7440.00	18.57	17.93	36.50	54.00	-17.50	Vertical
9920.00	18.73	23.83	42.56	54.00	-11.44	Vertical N
12400.00	* * hotek	Anbo.	Polek	54.00	Aug Jek	Vertical
14880.00	* * *	sk Aupore	And	54.00	Anbo	Vertical
4960.00	17.36	15.58	32.94	54.00	-21.06	Horizontal
7440.00	18.64	17.93	oto ^k 36.57 kn ^{bc}	54.00	-17.43	Horizontal
9920.00	18.01	23.83	41.84	54.00 And	-12.16	Horizontal
12400.00	* totek	Aupoles	Aur	54.00	Upo. by	Horizontal
14880.00	An*	bolek	Aupo	54.00	Vupote. b	Horizontal

Remark:

- 1. Result =Reading + Factor
- 2. "*" means the test results were attenuated more than 20dB below the permissible limits, so the results don't record in the report.
- 3. Only the worst case is recorded in the report.

Report No.: 18220WC40026301 FCC ID: 2BEHS-LV-M9PRO Page 38 of 38

APPENDIX I -- TEST SETUP PHOTOGRAPH

Please refer to separated files Appendix I -- Test Setup Photograph_RF

APPENDIX II -- EXTERNAL PHOTOGRAPH

Please refer to separated files Appendix II -- External Photograph

APPENDIX III -- INTERNAL PHOTOGRAPH

Please refer to separated files Appendix III -- Internal Photograph

----- End of Report -----

