

RF TEST REPORT

Report No.: POCE231127015RL001

For

SHENZHEN ZHUOYONGHANG ELECTRONICS CO.,LTD

Product Name: Vehicle navigation
Test Model(s).: TS18

Report Reference No. : POCE231127015RL001

FCC ID : 2BECX-TS18

Applicant's Name : SHENZHEN ZHUOYONGHANG ELECTRONICS CO.,LTD

Address 4th Floor, B1 Building, Libang Science Park, Xitian Third Industrial Zone,

Gongming Street, Guangming New District, Shenzhen

Testing Laboratory : Shenzhen POCE Technology Co., Ltd.

Address 102 Building H1 & 1/F., Building H, Hongfa Science & Technology Park,

Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China

Test Specification Standard : 47 CFR Part 15.247

Date of Receipt : November 27, 2023

Date of Test : November 27, 2023 to December 19, 2023

Data of Issue : December 19, 2023

Result : Pass

Note: This report shall not be reproduced except in full, without the written approval of Shenzhen POCE Technology Co., Ltd. This document may be altered or revised by Shenzhen POCE Technology Co., Ltd. personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample

H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 1 of 82

Revision History Of Report

Version	Description	REPORT No.	Issue Date
V1.0	Original	POCE231127015RL001	December 19, 2023
	1		•
			6
	AC	-00	

NOTE1:

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

Compiled by:	Supervised by:	Approved by:
Sen Tang	Tomchen	Machoel Mrs
Ben Tang /Test Engineer	Tom Chen / Project Engineer	Machael Mo / Manager

H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 2 of 82

CONTENTS

1 IEST SUMMARY	ɔ
1.1 Test Standards	5 5
2 GENERAL INFORMATION	
2.1 CLIENT INFORMATION	6
2.3 DESCRIPTION OF TEST MODES	8 9
2.7 IDENTIFICATION OF TESTING LABORATORY	11 11
3 EVALUATION RESULTS (EVALUATION)	
3.1 Antenna requirement	12
4 RADIO SPECTRUM MATTER TEST RESULTS (RF)	13
4.1 Occupied Bandwidth	13
4.1.1 E.U.T. Operation: 4.1.2 Test Setup Diagram:	14
4.1.3 Test Data:	
4.2.1 E.U.T. Operation: 4.2.2 Test Setup Diagram:	15
4.2.3 Test Data:	
4.3 CHANNEL SEPARATION	
4.3.1 E.U.T. Operation: 4.3.2 Test Setup Diagram: 4.3.3 Test Data:	16
4.4 NUMBER OF HOPPING FREQUENCIES	
4.4.1 E.U.T. Operation: 4.4.2 Test Setup Diagram: 4.4.3 Test Data:	17
4.5 DWELL TIME	18
4.5.1 E.U.T. Operation: 4.5.2 Test Setup Diagram: 4.5.3 Test Data:	19
4.6 EMISSIONS IN NON-RESTRICTED FREQUENCY BANDS	
4.6.1 E.U.T. Operation: 4.6.2 Test Setup Diagram: 4.6.3 Test Data:	20
4.7 BAND EDGE EMISSIONS (RADIATED)	
4.7.1 E.U.T. Operation: 4.7.2 Test Setup Diagram: 4.7.3 Test Data:	21 21
4.8 EMISSIONS IN FREQUENCY BANDS (BELOW 1GHz)	
4.8.1 E.U.T. Operation: 4.8.2 Test Data:	27
4.9 EMISSIONS IN FREQUENCY BANDS (ABOVE 1GHz)	

	4.9.2 Test Data:	31
5 1	TEST SETUP PHOTOS	34
6 F	PHOTOS OF THE EUT	34
ΑP	PPENDIX	35
	120dB Bandwidth	
	3. Spurious Emissions	46
	5. CARRIER FREQUENCIES SEPARATION (HOPPING)	67
	6. NUMBER OF HOPPING CHANNEL (HOPPING)	72 74

1 TEST SUMMARY

1.1 Test Standards

The tests were performed according to following standards:

47 CFR Part 15.247: Operation within the bands 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz

1.2 Summary of Test Result

Item	Standard	Method	Requirement	Result
Antenna requirement	47 CFR Part 15.247		47 CFR 15.203	Pass
Conducted Emission at AC power line	47 CFR Part 15.247	ANSI C63.10-2013 section 6.2	-CE	Pass
Occupied Bandwidth	47 CFR Part 15.247	ANSI C63.10-2013, section 7.8.7 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.215(c)	Pass
Maximum Conducted Output Power	47 CFR Part 15.247	ANSI C63.10-2013, section 7.8.5 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(b)(1)	Pass
Channel Separation	47 CFR Part 15.247	ANSI C63.10-2013, section 7.8.2 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(a)(1)	Pass
Number of Hopping Frequencies	47 CFR Part 15.247	ANSI C63.10-2013, section 7.8.3 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(a)(1)(iii)	Pass
Dwell Time	47 CFR Part 15.247	ANSI C63.10-2013, section 7.8.4 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(a)(1)(iii)	Pass
Emissions in non-restricted frequency bands	47 CFR Part 15.247	ANSI C63.10-2013 section 7.8.8 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(d), 15.209, 15.205	Pass
Band edge emissions (Radiated)	47 CFR Part 15.247	ANSI C63.10-2013 section 6.10 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(d), 15.209, 15.205	Pass
Emissions in frequency bands (below 1GHz)	47 CFR Part 15.247	ANSI C63.10-2013 section 6.6.4 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(d), 15.209, 15.205	Pass
Emissions in frequency bands (above 1GHz)	47 CFR Part 15.247	ANSI C63.10-2013 section 6.6.4 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(d), 15.209, 15.205	Pass

2 GENERAL INFORMATION

2.1 Client Information

Applicant's Name : SHENZHEN ZHUOYONGHANG ELECTRONICS CO.,LTD

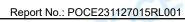
Address : 4th Floor, B1 Building, Libang Science Park, Xitian Third Industrial Zone,

Gongming Street, Guangming New District, Shenzhen

Manufacturer : SHENZHEN ZHUOYONGHANG ELECTRONICS CO.,LTD

Address: 4th Floor, B1 Building, Libang Science Park, Xitian Third Industrial Zone,

Gongming Street, Guangming New District, Shenzhen


2.2 Description of Device (EUT)

Product Name:	Vehicle navigation
Model/Type reference:	TS18
	TS6,TS7,T3L,T100,T5,TS10,TQ919,T527,9213,9216,9210,9260L,7212,7216、
Series Model:	7250,5716,9270,7260,5750,5760,9211,9212,5712,Y8,RK3326,RK3566,MK816 3,MTK8321,MTK8227L,Y6 ,8581,7862
Model Difference:	The product has many models, only the model name is different, and the other parts such as the circuit principle, pcb and electrical structure are the same.
Trade Mark:	N/A
Power Supply:	DC12V
Operation Frequency:	2402MHz to 2480MHz
Number of Channels:	79
Modulation Type:	GFSK, π/4 DQPSK, 8DPSK
Antenna Type:	External Antenna
Antenna Gain:	0dBi
Hardware Version:	V1.0
Software Version:	V1.0

(Remark:The Antenna Gain is supplied by the customer.POCE is not responsible for This data and the related calculations associated with it)

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	21	2422MHz	41	2442MHz	61	2462MHz
2	2403MHz	22	2423MHz	42	2443MHz	62	2463MHz
3	2404MHz	23	2424MHz	43	2444MHz	63	2464MHz
4	2405MHz	24	2425MHz	44	2445MHz	64	2465MHz
5	2406MHz	25	2426MHz	45	2446MHz	65	2466MHz
6	2407MHz	26	2427MHz	46	2447MHz	66	2467MHz
7	2408MHz	27	2428MHz	47	2448MHz	67	2468MHz
8	2409MHz	28	2429MHz	48	2449MHz	68	2469MHz
9	2410MHz	29	2430MHz	49	2450MHz	69	2470MHz
10	2411MHz	30	2431MHz	50	2451MHz	70	2471MHz
11	2412MHz	31	2432MHz	51	2452MHz	71	2472MHz
12	2413MHz	32	2433MHz	52	2453MHz	72	2473MHz
13	2414MHz	33	2434MHz	53	2454MHz	73	2474MHz
14	2415MHz	34	2435MHz	54	2455MHz	74	2475MHz
15	2416MHz	35	2436MHz	55	2456MHz	75	2476MHz
16	2417MHz	36	2437MHz	56	2457MHz	76	2477MHz
17	2418MHz	37	2438MHz	57	2458MHz	77	2478MHz
18	2419MHz	38	2439MHz	58	2459MHz	78	2479MHz

H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 6 of 82

19	2420MHz	39	2440MHz	59	2460MHz	79	2480MHz
20	2421MHz	4 0	2441MHz	60	2461MHz	61	2462MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Test channel	Frequency (MHz)
rest channel	BDR/EDR
Lowest channel	2402MHz
Middle channel	2441MHz
Highest channel	2480MHz

2.3 Description of Test Modes

No	Title	Description
TM1	TX-GFSK (Non-	Keep the EUT in continuously transmitting mode (non-hopping) with
	Hopping)	GFSK modulation.
TM2	TX-Pi/4DQPSK (Non-	Keep the EUT in continuously transmitting mode (non-hopping) with
I IVIZ	Hopping)	Pi/4DQPSK modulation.
TM3	TX-8DPSK (Non-	Keep the EUT in continuously transmitting mode (non-hopping) with
	Hopping)	8DPSK modulation.
TM4	TX-GFSK (Hopping)	Keep the EUT in continuously transmitting mode (hopping) with
11014		GFSK modulation,.
TM5	TX-Pi/4DQPSK	Keep the EUT in continuously transmitting mode (hopping) with
LINIS	(Hopping)	Pi/4DQPSK modulation.
TMG	TV SDDSK (Hanning)	Keep the EUT in continuously transmitting mode (hopping) with
TM6	TX-8DPSK (Hopping)	8DPSK modulation.
Remark	:Only the data of the worst	mode would be recorded in this report.

2.4 Description of Support Units

The EUT was tested as an independent device.

H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 8 of 82

2.5 Equipments Used During The Test

Conducted Emission at AC power line							
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date		
loop antenna	EVERFINE	LLA-2	80900L-C	2023-02-27	2024-02-26		
Power absorbing	SCHWARZ	MESS-	1	2023-02-28	2024-02-27		
clamp	BECK	ELEKTRONIK	/	2023-02-20	2024-02-21		
Electric Network	SCHWARZ BECK	CAT5 8158	CAT5 8158#207	1	1		
Cable	SCHWARZ BECK	1	POO	2023-12-27	2024-12-26		
Pulse Limiter	SCHWARZ BECK	VTSD 9561-F Pulse limiter 10dB Ateennator	561-G071	2023-02-27	2024-02-26		
50ΩCoaxial Switch	Anritsu	MP59B	M20531		/		
Test Receiver	Rohde & Schwarz	ESPI TEST RECEIVER	ID:1164.6607K 03-102109- MH	2023-06-13	2024-06-12		
L.I.S.N	R&S	ESH3-Z5	831.5518.52	2023-12-28	2024-12-27		

Occupied Bandwidth
Maximum Conducted Output Power
Channel Separation
Number of Hopping Frequencies

Dwell Time

Emissions in non-restricted frequency bands

= meetine mineral recurrency warner						
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date	
RF Test Software	TACHOY	RTS-01	V2.0.0.0	1	/	
High Pass filter	ZHINAN	OQHPF1-M1.5- 18G-224	6210075	/	1	
Power divider	MIDEWEST	PWD-2533	SMA-79	2023-05-11	2026-05-10	
DC power	HP	66311B	38444359	/		
RF Sensor Unit	Tachoy Information Technology(she nzhen) Co.,Ltd.	TR1029-2	000001	/	1	
Wideband radio communication tester	R&S	CMW500	113410	2023-06-13	2024-06-12	
Vector signal generator	Keysight	N5181A	MY48180415	2023-11-09	2024-11-08	
Signal generator	Keysight	N5182A	MY50143455	2023-12-28	2024-12-27	
Spectrum Analyzer	Keysight	N9020A	MY53420323	2023-12-28	2024-12-27	
		·			•	

Band edge emissions (Radiated)

Emissions in frequency bands (below 1GHz) Emissions in frequency bands (above 1GHz)

Emilodiono in moquoni	y ballac labore is				
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
EMI Test software	Farad	EZ -EMC	V1.1.42	/	1
Positioning Controller	1	MF-7802	1	/	1
High Pass filter	ZHINAN	OQHPF1-M1.5- 18G-224	6210075	1	1
Amplifier(18-40G)	COM-POWER	AH-1840	10100008-1	2022-04-05	2025-04-04
Horn antenna	COM-POWER	AH-1840 (18-40G)	10100008	2023-04-05	2025-04-04
Loop antenna	ZHINAN	ZN30900C	ZN30900C	2021-07-05	2024-07-04
Cable(LF)#2	Schwarzbeck	- 1	1	2023-02-27	2024-02-26
Cable(LF)#1	Schwarzbeck	1	1	2023-02-27	2024-02-26
Cable(HF)#2	Schwarzbeck	AK9515E	96250	2023-02-28	2024-02-27
Cable(HF)#1	Schwarzbeck	SYV-50-3-1	1	2023-02-27	2024-02-26
Power amplifier(LF)	Schwarzbeck	BBV9743	9743-151	2023-06-13	2024-06-12
Power amplifier(HF)	Schwarzbeck	BBV9718	9718-282	2023-06-13	2024-06-12
Wideband radio communication tester	R&S	CMW500	113410	2023-06-13	2024-06-12
Spectrum Analyzer	R&S	FSP30	1321.3008K40 -101729-jR	2023-06-14	2024-06-13
Horn Antenna	Sunol Sciences	DRH-118	A091114	2023-05-13	2025-05-12
Broadband Antenna	Sunol Sciences	JB6 Antenna	A090414	2023-05-21	2025-05-20
Test Receiver	R&S	ESCI	102109	2023-06-13	2024-06-12

2.6 Statement Of The Measurement Uncertainty

Test Item	Measurement Uncertainty
Conducted Disturbance (0.15~30MHz)	±3.41dB
Occupied Bandwidth	±3.63%
RF conducted power	±0.733dB
RF power density	±0.234%
Conducted Spurious emissions	±1.98dB
Radiated Emission (Above 1GHz)	±5.46dB
Radiated Emission (Below 1GHz)	±5.79dB
Note: (1) This uncertainty represents an expanded ur	certainty expressed at approximately the 95%

2.7 Identification of Testing Laboratory

confidence level using a coverage factor of k=2.

Company Name:	Shenzhen POCE Technology Co., Ltd.
Address:	101-102 Building H5 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China
Phone Number:	+86-13267178997
Fax Number:	86-755-29113252

Identification of the Responsible Testing Location

Company Name:	Shenzhen POCE Technology Co., Ltd.				
Address:	101-102 Building H5 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China				
Phone Number:	+86-13267178997				
Fax Number:	86-755-29113252				
FCC Registration Number:	0032847402				
Designation Number:	CN1342				
Test Firm Registration Number:	778666				
A2LA Certificate Number:	6270.01				

2.8 Announcement

- (1) The test report reference to the report template version v0.
- (2) The test report is invalid if not marked with the signatures of the persons responsible for preparing, reviewing and approving the test report.
- (3) The test report is invalid if there is any evidence and/or falsification.
- (4) This document may not be altered or revised in any way unless done so by POCE and all revisions are duly noted in the revisions section.
- (5) Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.
- (6) The laboratory is only responsible for the data released by the laboratory, except for the part provided by the applicant.

H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 11 of 82

3 Evaluation Results (Evaluation)

3.1 Antenna requirement

Test Requirement:

Refer to 47 CFR Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

3.1.1 Conclusion:

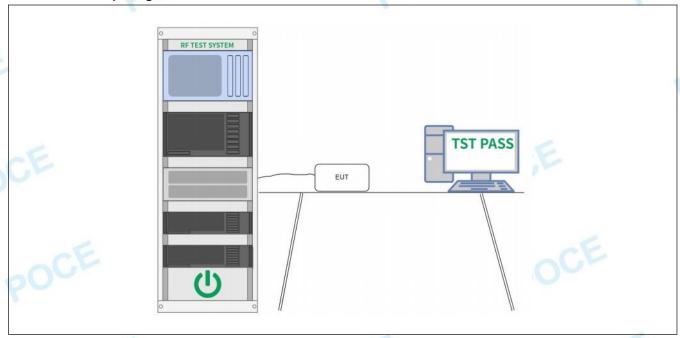
H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 12 of 82

4 Radio Spectrum Matter Test Results (RF)

4.1 Occupied Bandwidth

Test Requirement:	47 CFR 15.215(c)
·	
Test Limit:	Refer to 47 CFR 15.215(c), intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§ 15.217 through 15.257 and in subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated.
Test Method:	ANSI C63.10-2013, section 7.8.7, For occupied bandwidth measurements, use the procedure in 6.9.2. KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	a) The spectrum analyzer center frequency is set to the nominal EUT channel center frequency. The span range for the EMI receiver or spectrum analyzer shall be between two times and five times the OBW. b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW and video bandwidth (VBW) shall be approximately three times RBW, unless otherwise specified by the applicable requirement. c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak
POU	of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2. d) Steps a) through c) might require iteration to adjust within the specified tolerances. e) The dynamic range of the instrument at the selected RBW shall be more than 10 dB below the target "-xx dB down" requirement; that is, if the requirement calls for
POO	measuring the -20 dB OBW, the instrument noise floor at the selected RBW shall be at least 30 dB below the reference value. f) Set detection mode to peak and trace mode to max hold. g) Determine the reference value: Set the EUT to transmit an unmodulated carrier or modulated signal, as applicable. Allow the trace to stabilize. Set the spectrum analyzer marker to the highest level of the displayed trace (this is the reference value).
	h) Determine the "-xx dB down amplitude" using [(reference value) - xx]. Alternatively, this calculation may be made by using the marker-delta function of the instrument. i) If the reference value is determined by an unmodulated carrier, then turn the EUT modulation ON, and either clear the existing trace or start a new trace on the spectrum analyzer and allow the new trace to stabilize. Otherwise, the trace from
E	step g) shall be used for step j). j) Place two markers, one at the lowest frequency and the other at the highest frequency of the envelope of the spectral display, such that each marker is at or slightly below the "-xx dB down amplitude" determined in step h). If a marker is below this "-xx dB down amplitude" value, then it shall be as close as possible to this value. The occupied bandwidth is the frequency difference between the two markers. Alternatively, set a marker at the lowest frequency of the envelope of the spectral display, such that the marker is at or slightly below the "-xx dB down amplitude" determined in step h). Reset the marker-delta function and move the
OCE	marker to the other side of the emission until the delta marker amplitude is at the same level as the reference marker amplitude. The marker-delta frequency reading at this point is the specified emission bandwidth. k) The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may be reported in addition to the plot(s).

4.1.1 E.U.T. Operation:


Operating Environment:

H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 13 of 82

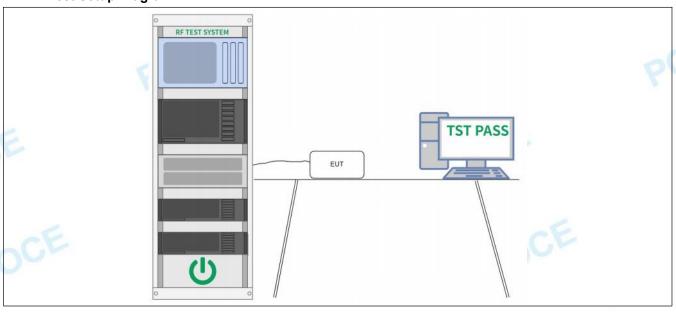
Temperature:	23.8 °C		Humidity:	55.8 %	Atmospheric Pressure:	102 kPa
Pre test mode:		TM1,	TM2, TM3			
Final test mode:	_	TM1,	TM2, TM3		OCE	_0

4.1.2 Test Setup Diagram:

4.1.3 Test Data:

Please Refer to Appendix for Details.

H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 14 of 82


4.2 Maximum Conducted Output Power

Test Requirement:	47 CFR 15.247(b)(1)
Test Limit:	Refer to 47 CFR 15.247(b)(1), For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.
Test Method:	ANSI C63.10-2013, section 7.8.5 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	This is an RF-conducted test to evaluate maximum peak output power. Use a direct connection between the antenna port of the unlicensed wireless device and the spectrum analyzer, through suitable attenuation. The hopping shall be disabled for this test: a) Use the following spectrum analyzer settings: 1) Span: Approximately five times the 20 dB bandwidth, centered on a hopping channel.
	 2) RBW > 20 dB bandwidth of the emission being measured. 3) VBW >= RBW. 4) Sweep: Auto. 5) Detector function: Peak. 6) Trace: Max hold.
POCE	 b) Allow trace to stabilize. c) Use the marker-to-peak function to set the marker to the peak of the emission. d) The indicated level is the peak output power, after any corrections for external attenuators and cables. e) A plot of the test results and setup description shall be included in the test report. NOTE—A peak responding power meter may be used, where the power meter and sensor system video bandwidth is greater than the occupied bandwidth of the unlicensed wireless device, rather than a spectrum analyzer.

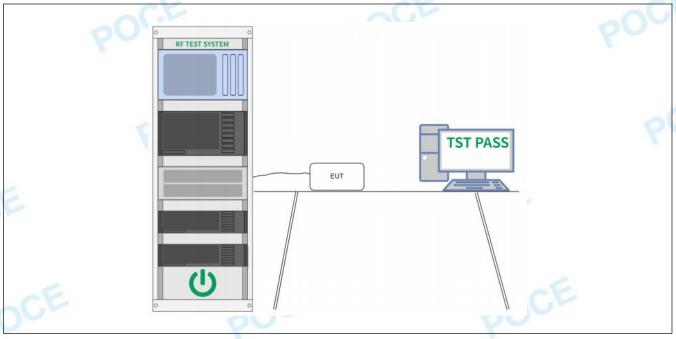
4.2.1 E.U.T. Operation:

Operating Environment:							
Temperature:							
Pre test mode: TM1, TM2, TM3			1	00			
Final test mode:	00~	TM1,	TM2, TM3	0			00

4.2.2 Test Setup Diagram:

4.2.3 Test Data:

Please Refer to Appendix for Details.


4.3 Channel Separation

Test Requirement:	47 CFR 15.247(a)(1)
Test Limit:	Refer to 47 CFR 15.247(a)(1), Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.
Test Method:	ANSI C63.10-2013, section 7.8.2 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings: a) Span: Wide enough to capture the peaks of two adjacent channels. b) RBW: Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel. c) Video (or average) bandwidth (VBW) ≥ RBW. d) Sweep: Auto. e) Detector function: Peak.
POCE	f) Trace: Max hold. g) Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. Compliance of an EUT with the appropriate regulatory limit shall be determined. A plot of the data shall be included in the test report.

4.3.1 E.U.T. Operation:

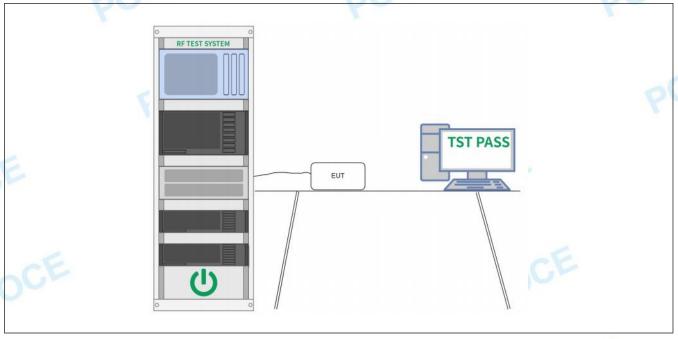
Operating Environment:				CE
Temperature: 23.8 °C	Humidity:	55.8 %	Atmospheric Pressure: 102 kPa	
Pre test mode:	TM4, TM5, TM6	II.	1	
Final test mode:	TM4, TM5, TM6			

4.3.2 Test Setup Diagram:

4.3.3 Test Data:

Please Refer to Appendix for Details.

H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 16 of 82


4.4 Number of Hopping Frequencies

4.4 Number of Hop	ping i requencies
Test Requirement:	47 CFR 15.247(a)(1)(iii)
Test Limit:	Refer to 47 CFR 15.247(a)(1)(iii), Fequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.
Test Method:	ANSI C63.10-2013, section 7.8.3 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings: a) Span: The frequency band of operation. Depending on the number of channels the device supports, it may be necessary to divide the frequency range of operation across multiple spans, to allow the individual channels to be clearly seen. b) RBW: To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller. c) VBW ≥ RBW. d) Sweep: Auto.
POCE	e) Detector function: Peak. f) Trace: Max hold. g) Allow the trace to stabilize. It might prove necessary to break the span up into subranges to show clearly all of the hopping frequencies. Compliance of an EUT with the appropriate regulatory limit shall be determined for the number of hopping channels. A plot of the data shall be included in the test report.

4.4.1 E.U.T. Operation:

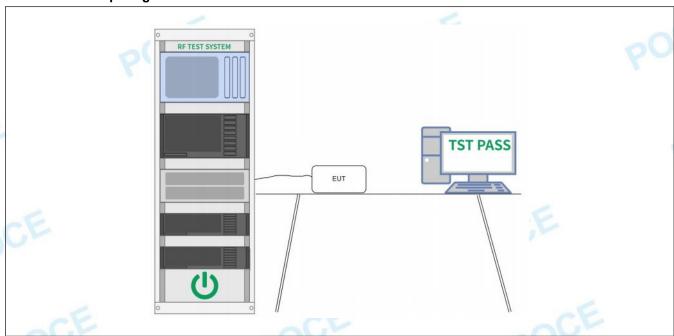
Operating Environment:						PO
Temperature:	23.8 °C		Humidity:	55.8 %	Atmospheric Pressure:	102 kPa
Pre test mode: TM4, TM		TM5, TM6				
Final test mode:		TM4,	TM5, TM6		aF.	

4.4.2 Test Setup Diagram:

4.4.3 Test Data:

Please Refer to Appendix for Details.

4.5 Dwell Time


Test Requirement:	47 CFR 15.247(a)(1)(iii)
Test Limit:	Refer to 47 CFR 15.247(a)(1)(iii), Fequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.
Test Method:	ANSI C63.10-2013, section 7.8.4 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings: a) Span: Zero span, centered on a hopping channel. b) RBW shall be <= channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel. c) Sweep: As necessary to capture the entire dwell time per hopping channel; where possible use a video trigger and trigger delay so that the transmitted signal starts a little to the right of the start of the plot. The trigger level might need slight adjustment to prevent triggering when the system hops on an adjacent channel; a second plot might be needed with a longer sweep time to show two successive hops on a channel. d) Detector function: Peak. e) Trace: Max hold. Use the marker-delta function to determine the transmit time per hop. If this value varies with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this test for each variation in transmit time. Repeat the measurement using a longer sweep time to determine the number of
POC	Repeat the measurement using a longer sweep time to determine the number of hops over the period specified in the requirements. The sweep time shall be equal to, or less than, the period specified in the requirements. Determine the number of hops over the sweep time and calculate the total number of hops in the period specified in the requirements, using the following equation: (Number of hops in the period specified in the requirements) = (number of hops on spectrum analyzer) × (period specified in the requirements / analyzer sweep time) The average time of occupancy is calculated from the transmit time per hop multiplied by the number of hops in the period specified in the requirements. If the number of hops in a specific time varies with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this test for each variation. The measured transmit time and time between hops shall be consistent with the values described in the operational description for the EUT.

4.5.1 E.U.T. Operation:

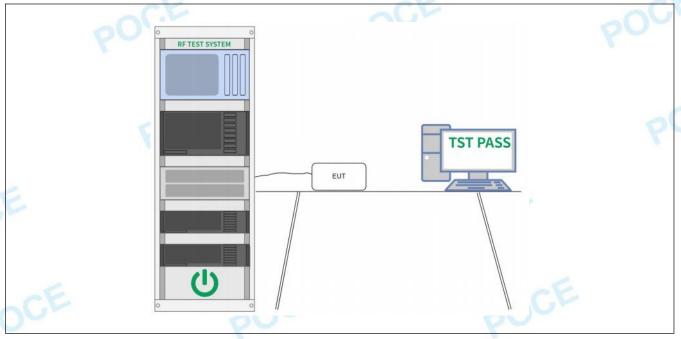
Operating Enviro	onment:		-CE		OCE	
Temperature:	23.8 °C		Humidity:	55.8 %	Atmospheric Pressure:	102 kPa
Pre test mode:		TM4,	TM5, TM6			
Final test mode:		TM4,	TM5, TM6			

H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 18 of 82

4.5.2 Test Setup Diagram:

4.5.3 Test Data:

Please Refer to Appendix for Details.


4.6 Emissions in non-restricted frequency bands

Test Requirement:	47 CFR 15.247(d), 15.209, 15.205
Test Limit:	Refer to 47 CFR 15.247(d), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required.
Test Method:	ANSI C63.10-2013 section 7.8.8 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	Conducted spurious emissions shall be measured for the transmit frequency, per 5.5 and 5.6, and at the maximum transmit powers. Connect the primary antenna port through an attenuator to the spectrum analyzer input; in the results, account for all losses between the unlicensed wireless device output and the spectrum analyzer. The instrument shall span 30 MHz to 10 times the operating frequency in GHz, with a resolution bandwidth of 100 kHz, video bandwidth of 300 kHz, and a coupled sweep time with a peak detector. The band 30 MHz to the highest frequency may be split into smaller spans, as long as the entire spectrum is covered.

4.6.1 E.U.T. Operation:

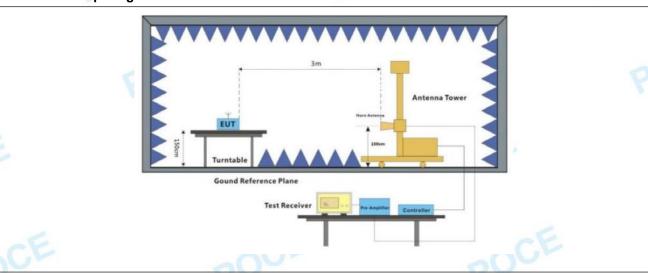
Operating Environment:	ac.E	OCE
Temperature: 23.8 °C	Humidity: 55.8 % Atmosphe	eric Pressure: 102 kPa
Pre test mode:	TM1, TM2, TM3, TM4, TM5, TM6	
Final test mode:	TM1, TM2, TM3, TM4, TM5, TM6	

4.6.2 Test Setup Diagram:

4.6.3 Test Data:

Please Refer to Appendix for Details.

H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 20 of 82


4.7 Band edge emissions (Radiated)

Test Requirement:	restricted bands, as defin	d), In addition, radiated emission ed in § 15.205(a), must also coi in § 15.209(a)(see § 15.205(c)).	mply with the radiated
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
	0.009-0.490	2400/F(kHz)	300
	0.490-1.705	24000/F(kHz)	30
	1.705-30.0	30	30
	30-88	100 **	3
	88-216	150 **	3
	216-960	200 **	3
	Above 960	500	3
	radiators operating under 54-72 MHz, 76-88 MHz, these frequency bands is and 15.241.	paragraph (g), fundamental emistration to the located of this section shall not be located 174-216 MHz or 470-806 MHz. It permitted under other sections	d in the frequency bands However, operation within of this part, e.g., §§ 15.231
POCE	The emission limits show employing a CISPR quas 110–490 kHz and above	ve, the tighter limit applies at the n in the above table are based of i-peak detector except for the fr 1000 MHz. Radiated emission li ents employing an average dete	on measurements equency bands 9–90 kHz, mits in these three bands
Test Method:	ANSI C63.10-2013 section KDB 558074 D01 15.247		aE.
Procedure:	ANSI C63.10-2013 section	on 6.10.5.2	2000

4.7.1 E.U.T. Operation:

Operating Envir	onment:						
Temperature:	23.8 °C		Humidity:	55.8 %	Atmospheric Pressure:	102 kPa	
Pre test mode:		TM1,	TM2, TM3		-CE		-C
Final test mode:	0	TM1,	TM2, TM3		200		200

4.7.2 Test Setup Diagram:

H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 21 of 82

4 *

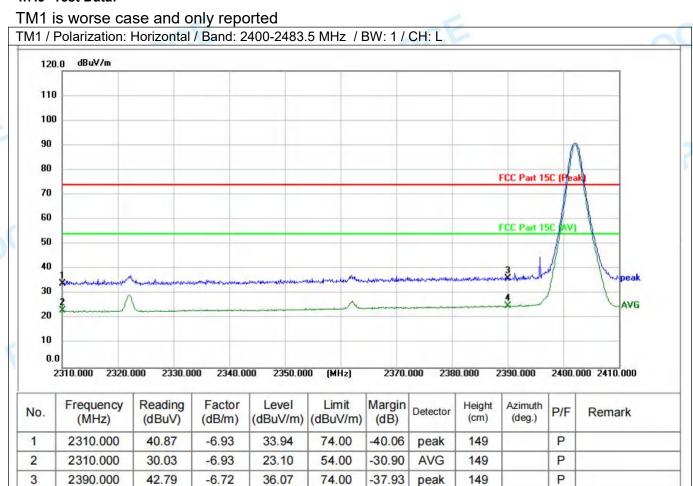
2390.000

31.80

-6.72

25.08

54.00


AVG

-28.92

149

P

4.7.3 Test Data:

P

Р

149

149

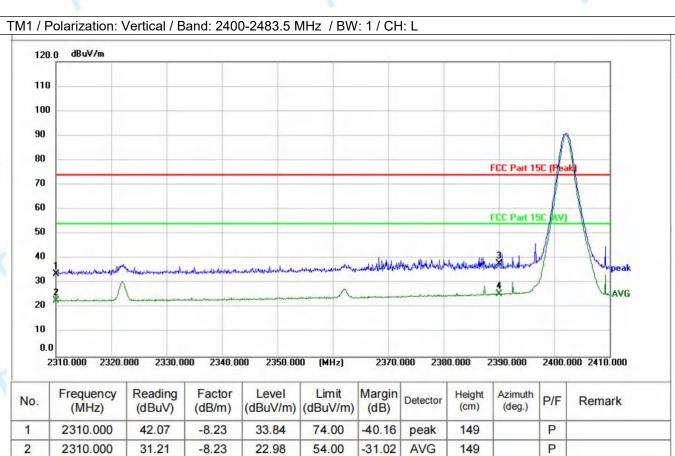
2390.000

2390.000

3

4

-7.91


-7.91

38.02

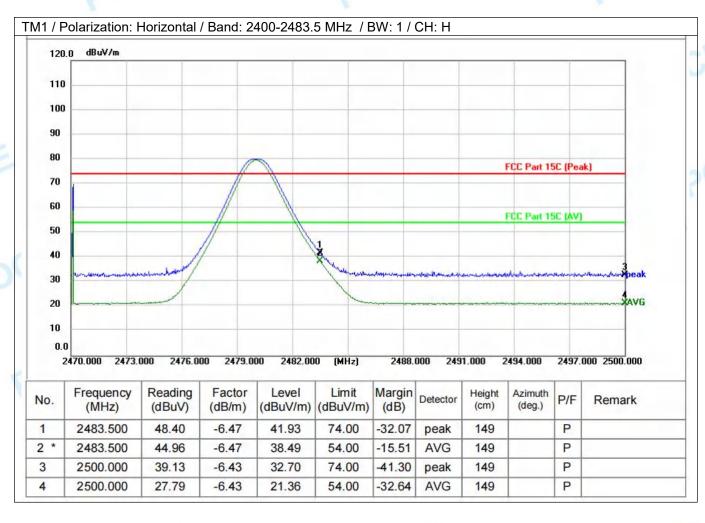
25.61

45.93

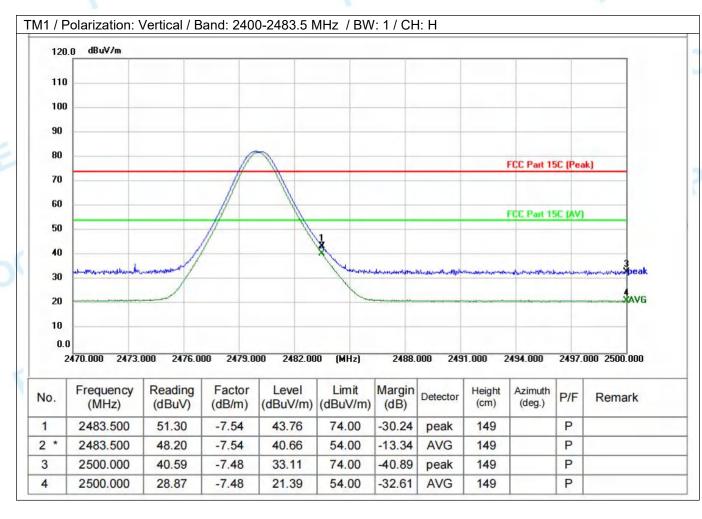
33.52

74.00

54.00


-35.98

-28.39


peak

AVG

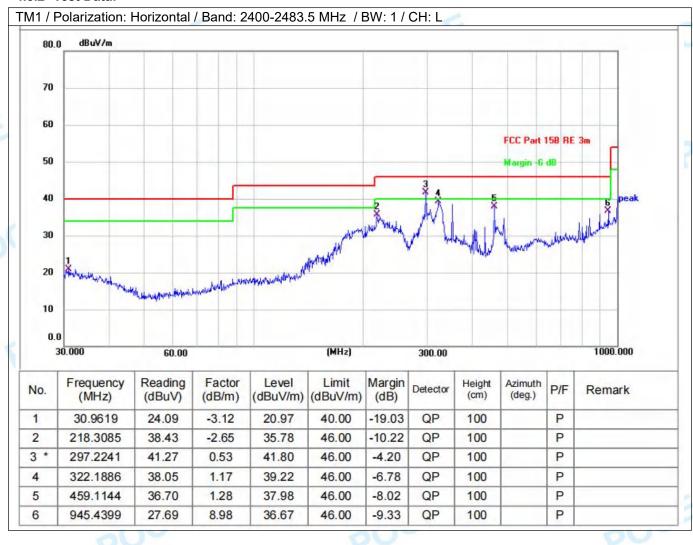
Report No.: POCE231127015RL001

4.8 Emissions in frequency bands (below 1GHz)

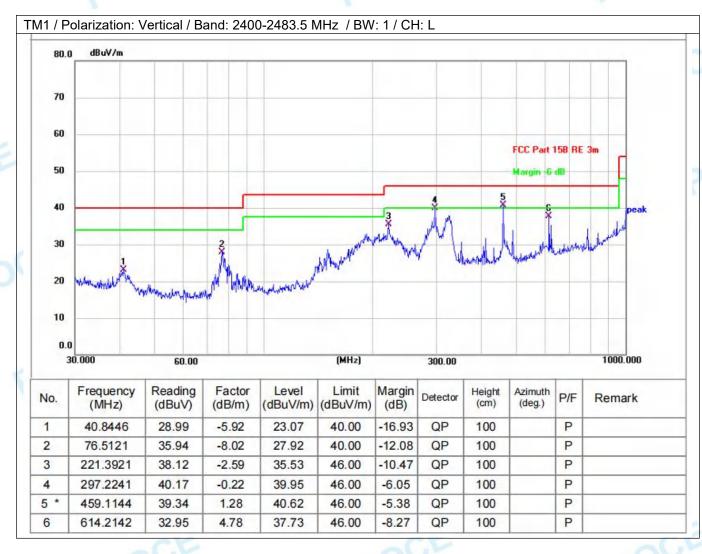
4.8 Emissions in fit Test Requirement:	requency bands (bel	· · · · · · · · · · · · · · · · · · ·	iono which fall in the
rest Requirement.		d), In addition, radiated emiss	
		ned in § 15.205(a), must also d	
		in § 15.209(a)(see § 15.205(c	
Test Limit:	Frequency (MHz)	Field strength	Measurement
		(microvolts/meter)	distance
			(meters)
	0.009-0.490	2400/F(kHz)	300
	0.490-1.705	24000/F(kHz)	30
	1.705-30.0	30	30
	30-88	100 **	3
	88-216	150 **	3
	216-960	200 **	3
			3
	Above 960	500	
	** Except as provided in	paragraph (g), fundamental er	missions from intentional
	radiators operating unde	r this section shall not be locat	ted in the frequency bands
	54-72 MHz, 76-88 MHz,	174-216 MHz or 470-806 MHz	z. However, operation within
	these frequency bands is	s permitted under other section	ns of this part, e.g., §§ 15.231
	and 15.241.	•	, , ,
		ove, the tighter limit applies at	the band edges.
		n in the above table are base	
		si-peak detector except for the	
		1000 MHz. Radiated emission	
		ents employing an average de	
T 4 NA . 41 I		. , , , , ,	icotor.
Test Method:	ANSI C63.10-2013 secti		
	KDB 558074 D01 15.247	7 Meas Guidance v05r02	
	360 degrees to determine b. For above 1GHz, the	or 10 meter semi-anechoic char e the position of the highest ra EUT was placed on the top of meter fully-anechoic chamber.	idiation. a rotating table 1.5 meters
	degrees to determine the	e position of the highest radiati 10 meters away from the inter	on.
	which was mounted on t	he top of a variable-height ante	enna tower.
	d. The antenna height is	varied from one meter to four	meters above the ground to
	determine the maximum	value of the field strength. Bot	h horizontal and vertical
		nna are set to make the measu	
	e. For each suspected e	mission, the EUT was arrange	d to its worst case and then
		o heights from 1 meter to 4 me	
		na was tuned to heights 1 met	
		es to 360 degrees to find the r	
		m was set to Peak Detect Fun	
	Bandwidth with Maximur		
		f the EUT in peak mode was 1	OdB lower than the limit
		ould be stopped and the peak	
		emissions that did not have 10	
		peak, quasi-peak or average r	nethod as specified and then
	reported in a data sheet.		
		west channel, the middle chan	
		ments are performed in X, Y, Z	
	Transmitting mode, and	found the X axis positioning wi	
	Repeat above procedu		ired was complete.
		res until all frequencies measu	ured was complete.
	Remark:	res until all frequencies measu	
	Remark: 1) For emission below 10	res until all frequencies measu GHz, through pre-scan found t	
	Remark: 1) For emission below 10 channel. Only the worst	res until all frequencies measu GHz, through pre-scan found to case is recorded in the report.	he worst case is the lowest
	Remark: 1) For emission below 10 channel. Only the worst 2) The field strength is contact.	res until all frequencies measu GHz, through pre-scan found t case is recorded in the report. alculated by adding the Antenr	he worst case is the lowest na Factor, Cable Factor &
	Remark: 1) For emission below 1channel. Only the worst 2) The field strength is concerning. Preamplifier. The basic of	res until all frequencies measu GHz, through pre-scan found to case is recorded in the report.	he worst case is the lowest na Factor, Cable Factor & tion is as follows:

H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 26 of 82

Report No.: POCE231127015RL001


Preamplifier Factor

3) Scan from 9kHz to 25GHz, the disturbance above 12.75GHz and below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported. Fundamental frequency is blocked by filter, and only spurious emission is shown.


4.8.1 E.U.T. Operation:

Operating Envir	onment:		CE		OCE	
Temperature:	23.8 °C	OL	Humidity:	55.8 %	Atmospheric Pressure:	102 kPa
Pre test mode:		TM1				
Final test mode:		TM1				

4.8.2 Test Data:

4.9 Emissions in frequency bands (above 1GHz)

Test Requirement:	15.205(a), must also con	ssions which fall in the restricted nply with the radiated emission	
20	15.209(a)(see § 15.205(c)).`	00
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
	0.009-0.490	2400/F(kHz)	300
	0.490-1.705	24000/F(kHz)	30
	1.705-30.0	30	30
	30-88	100 **	3
	88-216	150 **	3
	216-960	200 **	3
	Above 960	500	3
	** Except as provided in radiators operating unde 54-72 MHz, 76-88 MHz, these frequency bands is and 15.241.	paragraph (g), fundamental em r this section shall not be locate 174-216 MHz or 470-806 MHz. s permitted under other sections	nissions from intentional ed in the frequency bands However, operation within s of this part, e.g., §§ 15.231
POCE	The emission limits show employing a CISPR quas 110–490 kHz and above are based on measurem	ove, the tighter limit applies at the on in the above table are based si-peak detector except for the the 1000 MHz. Radiated emission ents employing an average det	on measurements frequency bands 9–90 kHz, limits in these three bands
Test Method:	ANSI C63.10-2013 section KDB 558074 D01 15.247		aE.
Procedure:	above the ground at a 3 360 degrees to determin b. For above 1GHz, the labove the ground at a 3 degrees to determine the c. The EUT was set 3 or which was mounted on the d. The antenna height is determine the maximum polarizations of the antene e. For each suspected enthe antenna was tuned to below 30MHz, the antene was turned from 0 degree f. The test-receiver systems.	EUT was placed on the top of a or 10 meter semi-anechoic chase the position of the highest race EUT was placed on the top of a meter fully-anechoic chamber. The position of the highest radiation 10 meters away from the interference to form a varied from one meter to four invalue of the field strength. Both and are set to make the measure mission, the EUT was arranged to heights from 1 meter to 4 meters to 360 degrees to find the mass was set to Peak Detect Fundaments.	mber. The table was rotated diation. I rotating table 1.5 meters The table was rotated 360 on. I rerence-receiving antenna, nna tower. Interest above the ground to a horizontal and vertical rement. I to its worst case and then ters (for the test frequency of er) and the rotatable table laximum reading.
	specified, then testing coreported. Otherwise the tested one by one using reported in a data sheet.	f the EUT in peak mode was 10 buld be stopped and the peak va emissions that did not have 10c peak, quasi-peak or average m	alues of the EUT would be dB margin would be re- nethod as specified and then
	i. The radiation measure Transmitting mode, and j. Repeat above procedu Remark: 1) For emission below 10 channel. Only the worst (2) The field strength is carried preamplifier. The basic elements is carried to the strength of the strength is carried to the strength of	ments are performed in X, Y, Z found the X axis positioning wh res until all frequencies measured. GHz, through pre-scan found the case is recorded in the report. alculated by adding the Antennatequation with a sample calculati	axis positioning for ich it is the worst case. red was complete. The worst case is the lowest a Factor, Cable Factor & on is as follows:
-nce		equation with a sample calculati er Reading + Antenna Factor +	

H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 30 of 82

Report No.: POCE231127015RL001

Preamplifier Factor

3) Scan from 9kHz to 25GHz, the disturbance above 12.75GHz and below 30MHz was very low. The points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported. Fundamental frequency is blocked by filter, and only spurious emission is shown.

4.9.1 E.U.T. Operation:

Operating Envir	onment:		CE		OCE	
Temperature:	23.8 °C	OL	Humidity:	55.8 %	Atmospheric Pressure:	102 kPa
Pre test mode:		TM1,	TM2, TM3			
Final test mode:		TM1,	TM2, TM3			

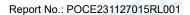
4.9.2 Test Data:

TM1 is worse case and only reported

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1	4804.000	39.13	-0.90	38.23	74.00	-35.77	peak	149		Р	
2	4804.000	28.28	-0.90	27.38	54.00	-26.62	AVG	149		Р	
3	7206.000	35.18	4.13	39.31	74.00	-34.69	peak	149		Р	
4	7206.000	24.72	4.13	28.85	54.00	-25.15	AVG	149		Р	
5	9608.000	36.52	8.09	44.61	74.00	-29.39	peak	149		Р	
6 *	9608.000	25.09	8.09	33.18	54.00	-20.82	AVG	149		Р	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1	4804.000	38.15	-0.28	37.87	74.00	-36.13	peak	149		Р	
2	4804.000	27.67	-0.28	27.39	54.00	-26.61	AVG	149		Р	
3	7206.000	36.47	4.09	40.56	74.00	-33.44	peak	149		Р	
4	7206.000	24.71	4.09	28.80	54.00	-25.20	AVG	149		Р	
5	9608.000	35.88	8.02	43.90	74.00	-30.10	peak	149		Р	
6 *	9608.000	25.20	8.02	33.22	54.00	-20.78	AVG	149		Р	

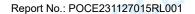
H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 31 of 82


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1	4882.000	39.17	-0.03	39.14	74.00	-34.86	peak	149		Р	
2	4882.000	27.52	-0.03	27.49	54.00	-26.51	AVG	149		Р	
3	7323.000	35.73	4.36	40.09	74.00	-33.91	peak	149		Р	
4	7323.000	24.51	4.36	28.87	54.00	-25.13	AVG	149		Р	
5	9764.000	36.63	8.13	44.76	74.00	-29.24	peak	149		Р	
6 *	9764.000	25.19	8.13	33.32	54.00	-20.68	AVG	149		Р	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1	4882.000	39.12	-0.64	38.48	74.00	-35.52	peak	149		Р	
2	4882.000	28.05	-0.64	27.41	54.00	-26.59	AVG	149		Р	
3	7323.000	36.32	4.31	40.63	74.00	-33.37	peak	149		Р	
4	7323.000	24.49	4.31	28.80	54.00	-25.20	AVG	149		Р	
5	9764.000	36.35	8.09	44.44	74.00	-29.56	peak	149		Р	
6 *	9764.000	25.19	8.09	33.28	54.00	-20.72	AVG	149		Р	

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1	4960.000	38.88	-0.37	38.51	74.00	-35.49	peak	149		Р	
2	4960.000	27.62	-0.37	27.25	54.00	-26.75	AVG	149		Р	
3	7440.000	37.03	4.49	41.52	74.00	-32.48	peak	149		Р	
4	7440.000	24.37	4.49	28.86	54.00	-25.14	AVG	149		Р	
5	9920.000	36.67	8.08	44.75	74.00	-29.25	peak	149		Р	
6 *	9920.000	25.70	8.08	33.78	54.00	-20.22	AVG	149		Р	

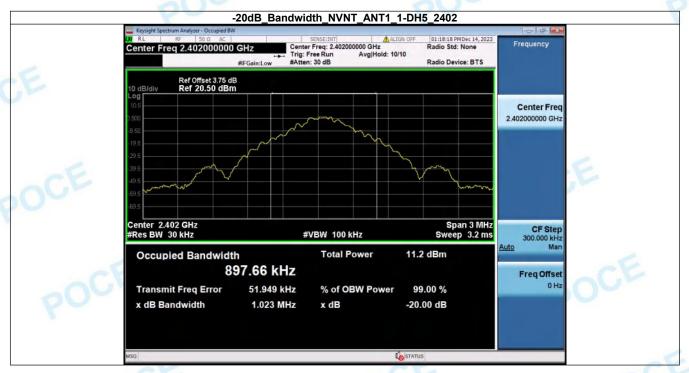
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Height (cm)	Azimuth (deg.)	P/F	Remark
1	4960.000	37.93	0.23	38.16	74.00	-35.84	peak	149		Р	
2	4960.000	27.02	0.23	27.25	54.00	-26.75	AVG	149		Р	
3	7440.000	35.69	4.64	40.33	74.00	-33.67	peak	149		Р	
4	7440.000	24.38	4.64	29.02	54.00	-24.98	AVG	149		Р	
5	9920.000	35.79	8.23	44.02	74.00	-29.98	peak	149		Р	
6 *	9920.000	25.69	8.23	33.92	54.00	-20.08	AVG	149		Р	

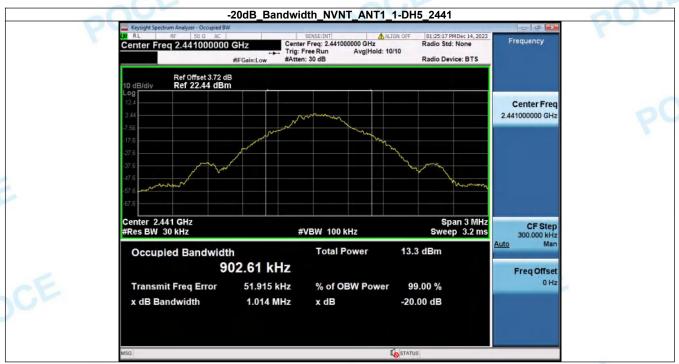


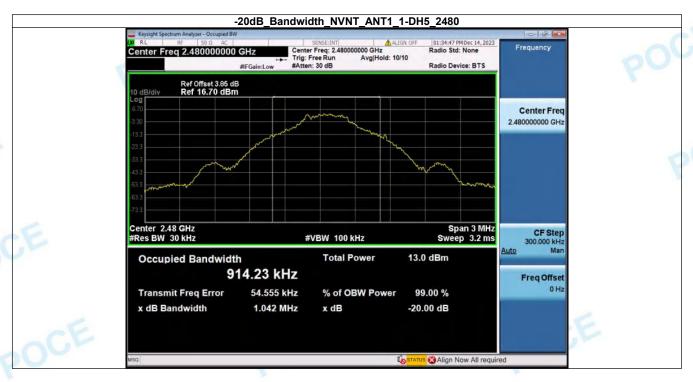
5 TEST SETUP PHOTOS

Refer to Appendix - Test Setup Photos

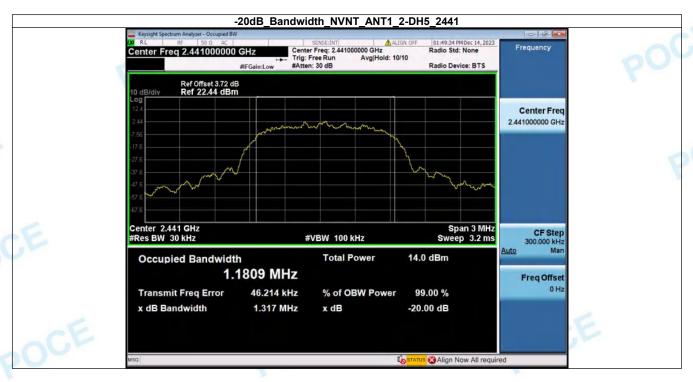
6 PHOTOS OF THE EUT


Refer to Appendix - EUT Photos

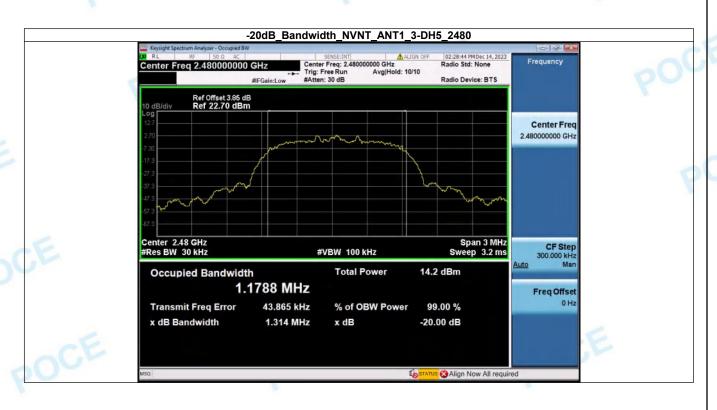


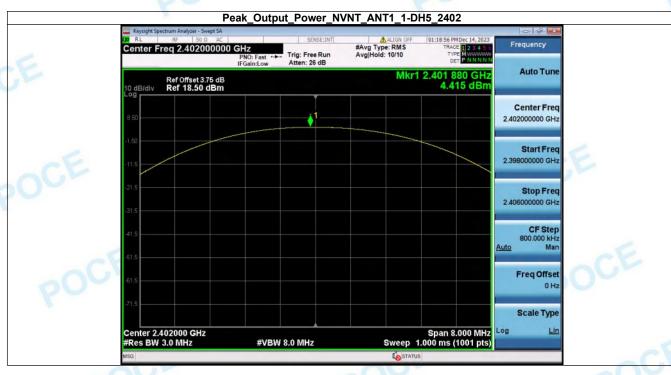

1. -20dB Bandwidth

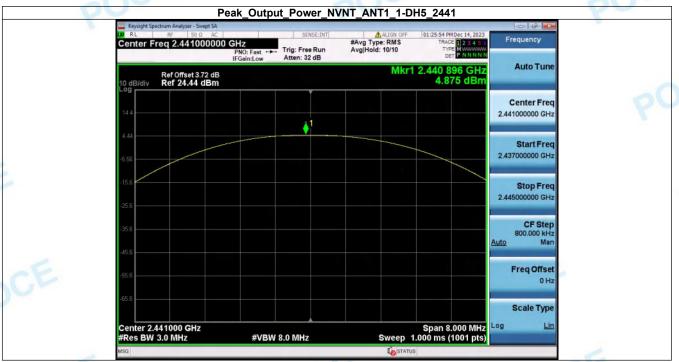
Condition	Antenna	Modulation	Frequency (MHz)	-20dB BW(MHz)	if larger than CFS
NVNT	ANT1	1-DH5	2402.00	1.023	Yes
NVNT	ANT1	1-DH5	2441.00	1.014	Yes
NVNT	ANT1	1-DH5	2480.00	1.042	Yes
NVNT	ANT1	2-DH5	2402.00	1.331	Yes
NVNT	ANT1	2-DH5	2441.00	1.317	Yes
NVNT	ANT1	2-DH5	2480.00	1.312	Yes
NVNT	ANT1	3-DH5	2402.00	1.300	Yes
NVNT	ANT1	3-DH5	2441.00	1.332	Yes
NVNT	ANT1	3-DH5	2480.00	1.314	Yes



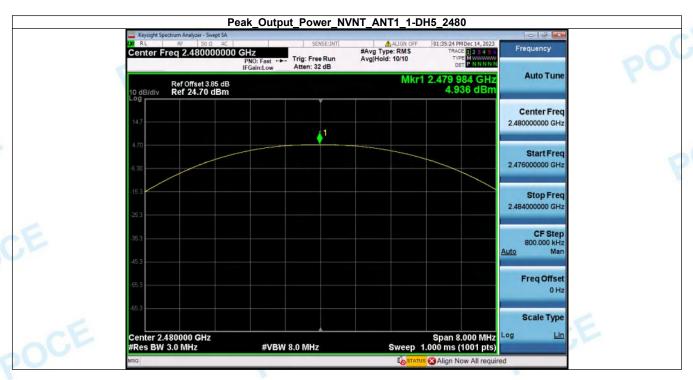
H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 36 of 82



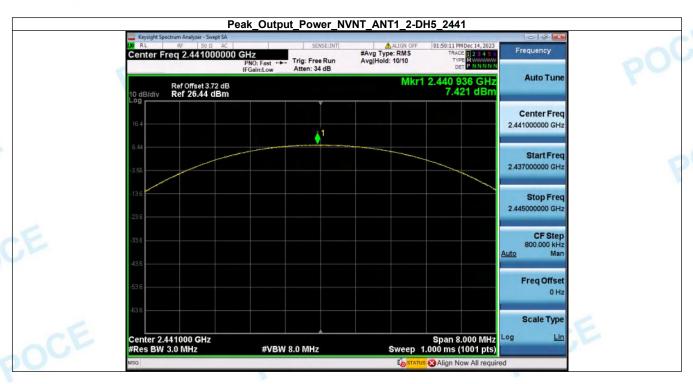


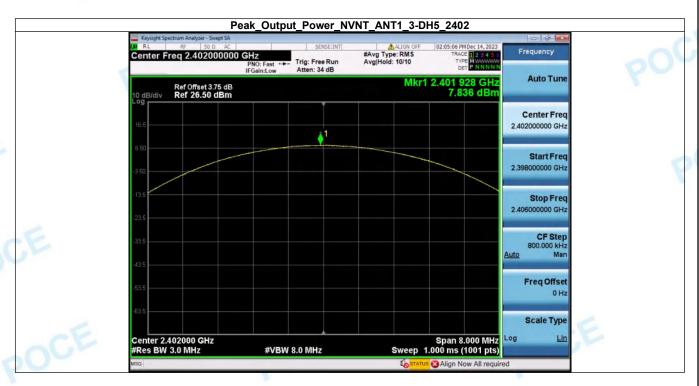


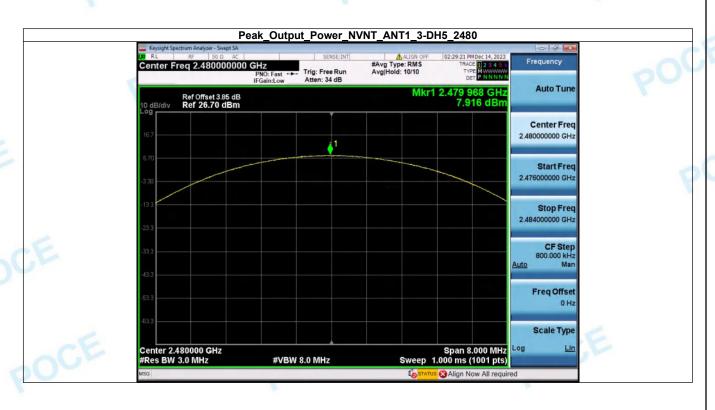
2. Peak Output Power


Condition	Antenna	Modulation	Frequency (MHz)	Max. Conducted Power(dBm)	Max. Conducted Power(mW)	Limit(mW)	Result
NVNT	ANT1	1-DH5	2402.00	4.42	2.76	125	Pass
NVNT	ANT1	1-DH5	2441.00	4.88	3.07	125	Pass
NVNT	ANT1	1-DH5	2480.00	4.94	3.12	125	Pass
NVNT	ANT1	2-DH5	2402.00	7.13	5.16	125	Pass
NVNT	ANT1	2-DH5	2441.00	7.42	5.52	125	Pass
NVNT	ANT1	2-DH5	2480.00	7.35	5.44	125	Pass
NVNT	ANT1	3-DH5	2402.00	7.84	6.08	125	Pass
NVNT	ANT1	3-DH5	2441.00	7.96	6.26	125	Pass
NVNT	ANT1	3-DH5	2480.00	7.92	6.19	125	Pass




H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 41 of 82





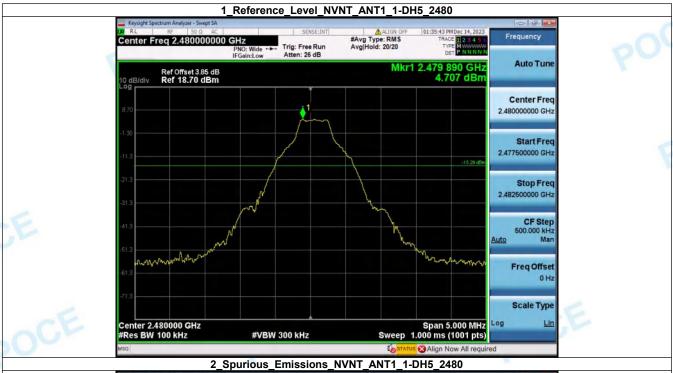
H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 44 of 82

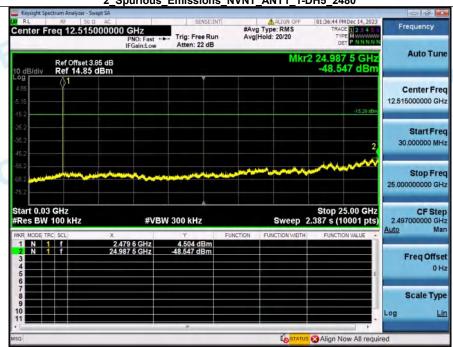
Freq Offset

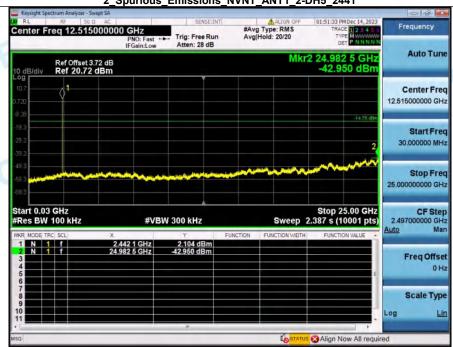
Scale Type

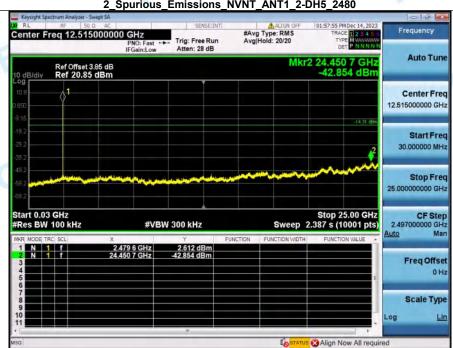
3. Spurious Emissions

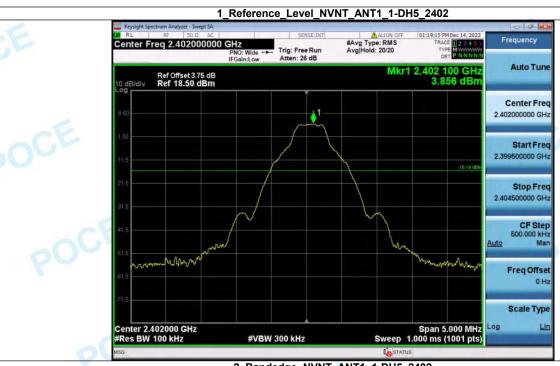
Condition	Antenna	Modulation TX Mode		Spurious MAX.Value(dBm)	Limit	Result
NVNT	ANT1	1-DH5	2402.00	-49.387	-16.144	Pass
NVNT	ANT1	1-DH5	2441.00	-49.643	-15.259	Pass
NVNT	ANT1	1-DH5	2480.00	-48.547	-15.293	Pass
NVNT	ANT1	2-DH5	2402.00	-43.153	-14.457	Pass
NVNT	ANT1	2-DH5	2441.00	-42.950	-14.778	Pass
NVNT	ANT1	2-DH5	2480.00	-42.854	-14.311	Pass
NVNT	ANT1	3-DH5	2402.00	-42.744	-14.479	Pass
NVNT	ANT1	3-DH5	2441.00	-43.240	-14.219	Pass
NVNT	ANT1	3-DH5	2480.00	-42.992	-14.409	Pass

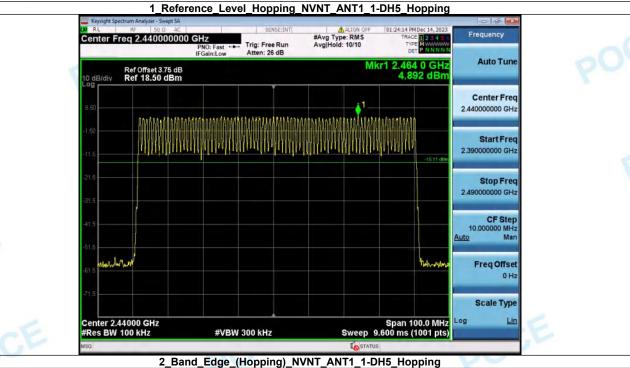

3.820 dBi -49.387 dBi

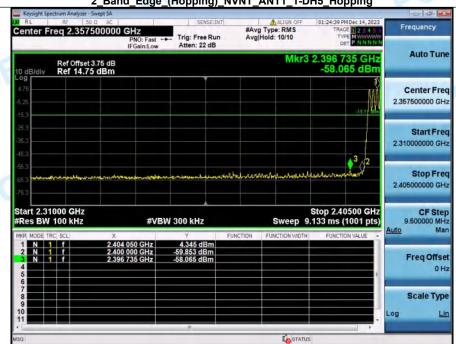


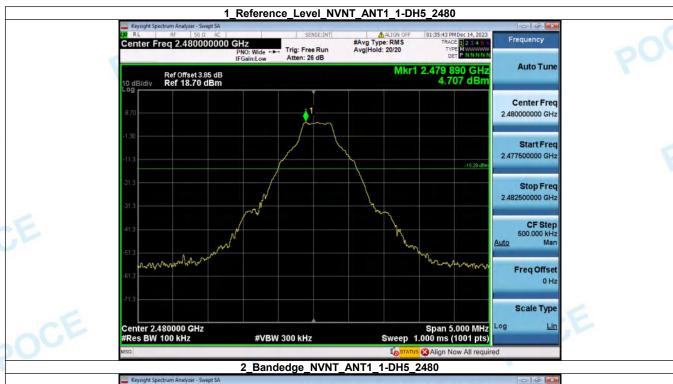


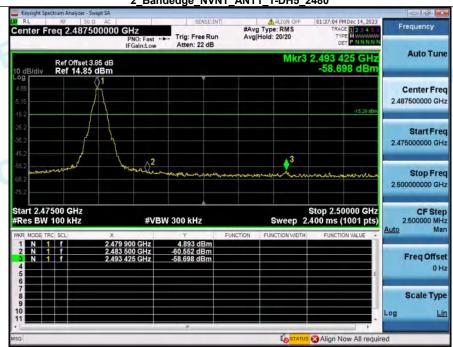


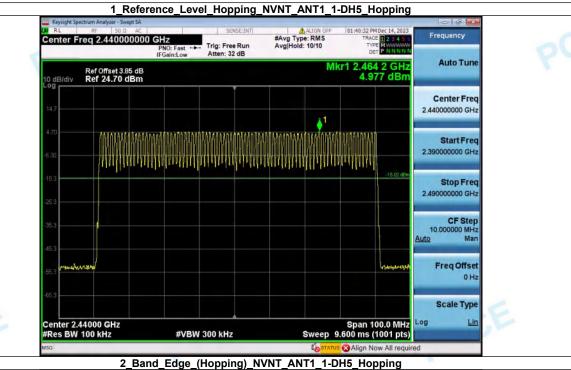


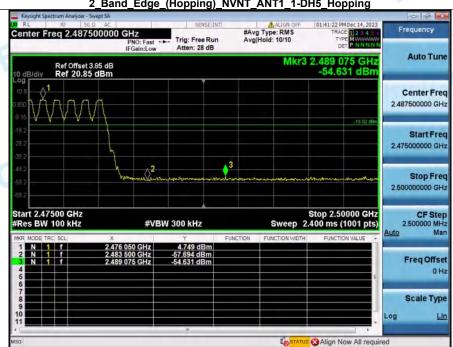

4. Bandedge

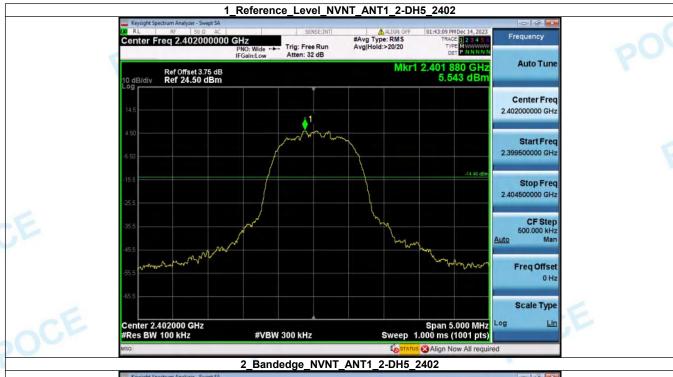

Condition	Antenna	Modulation	TX Mode	Bandedge MAX.Value	Limit	Result
NVNT	ANT1	1-DH5	2402.00	-55.576	-16.144	Pass
NVNT	ANT1	1-DH5	Hopping_LCH	-58.065	-15.108	Pass
NVNT	ANT1	1-DH5	2480.00	-58.698	-15.293	Pass
NVNT	ANT1	1-DH5	Hopping_HCH	-54.631	-15.023	Pass
NVNT	ANT1	2-DH5	2402.00	-52.687	-14.457	Pass
NVNT	ANT1	2-DH5	Hopping_LCH	-53.368	-14.334	Pass
NVNT	ANT1	2-DH5	2480.00	-55.028	-14.311	Pass
NVNT	ANT1	2-DH5	Hopping_HCH	-58.692	-14.134	Pass
NVNT	ANT1	3-DH5	2402.00	-51.378	-14.479	Pass
NVNT	ANT1	3-DH5	Hopping_LCH	-54.119	-14.344	Pass
NVNT	ANT1	3-DH5	2480.00	-55.151	-14.409	Pass
NVNT	ANT1	3-DH5	Hopping_HCH	-54.476	-14.035	Pass



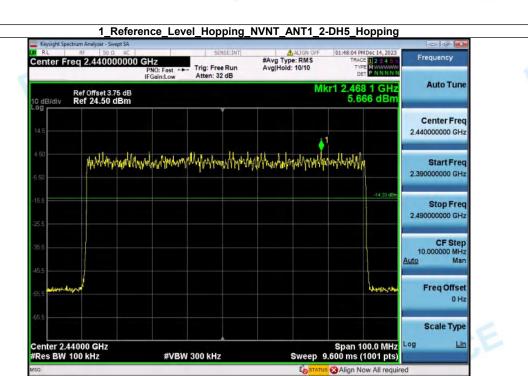


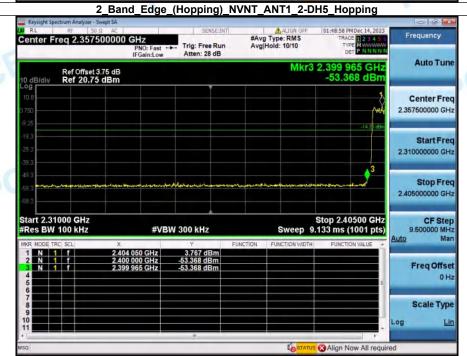




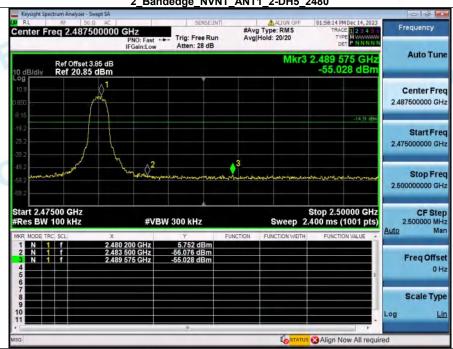


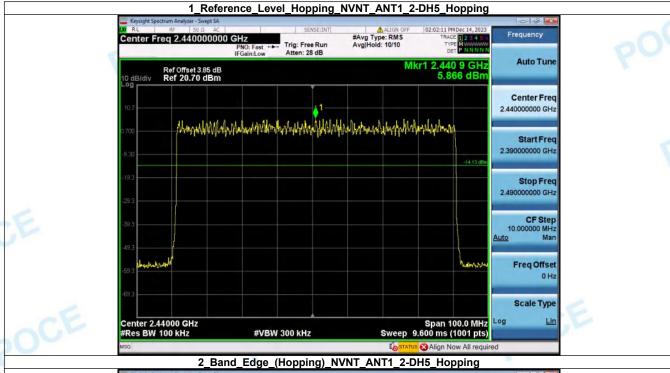


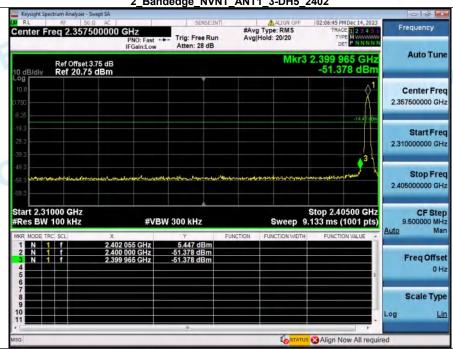


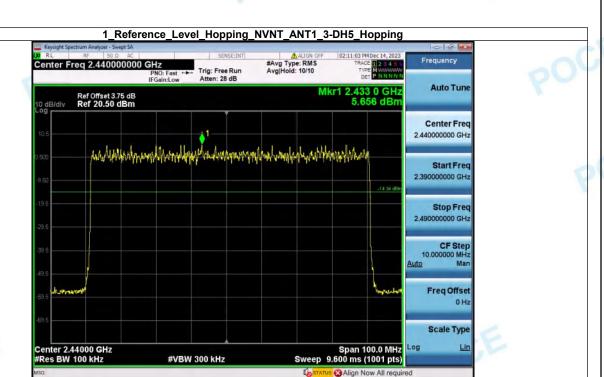


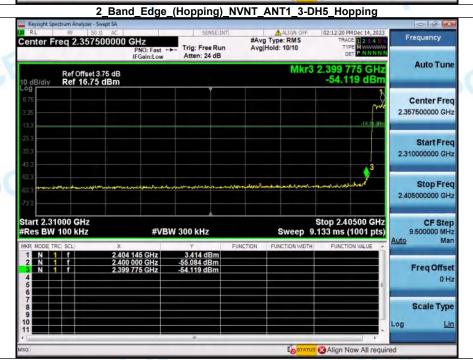


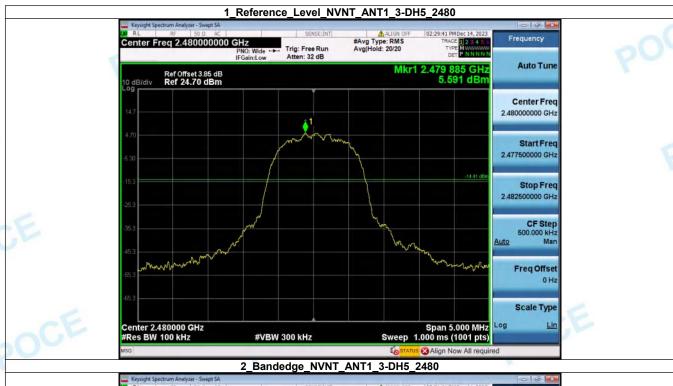


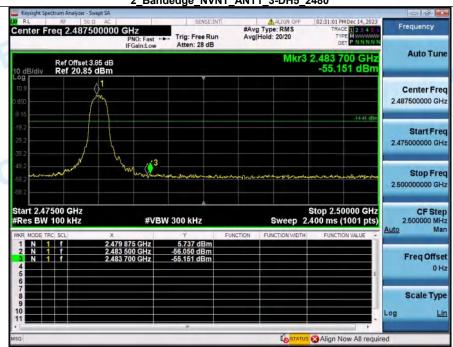


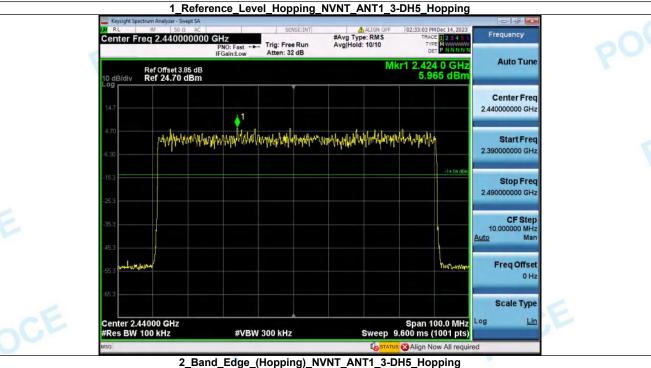

Report No.: POCE231127015RL001

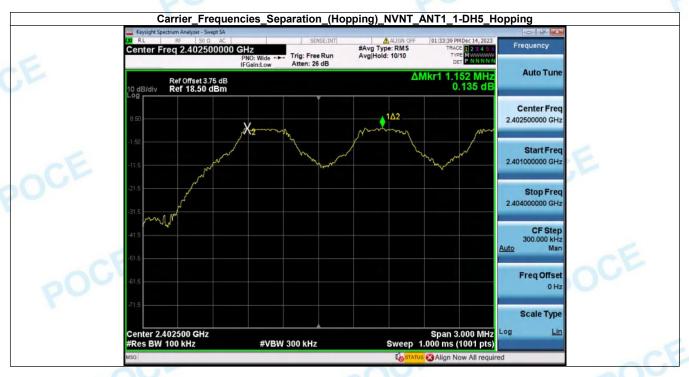


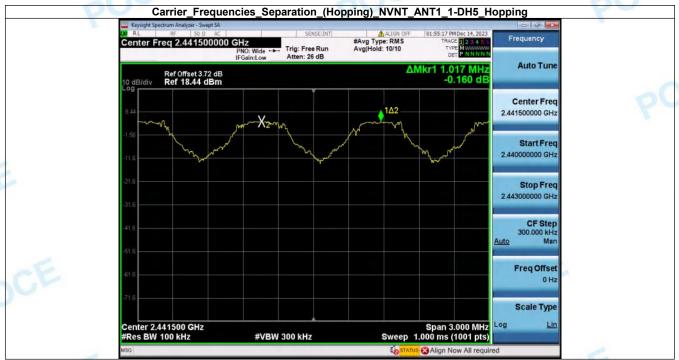




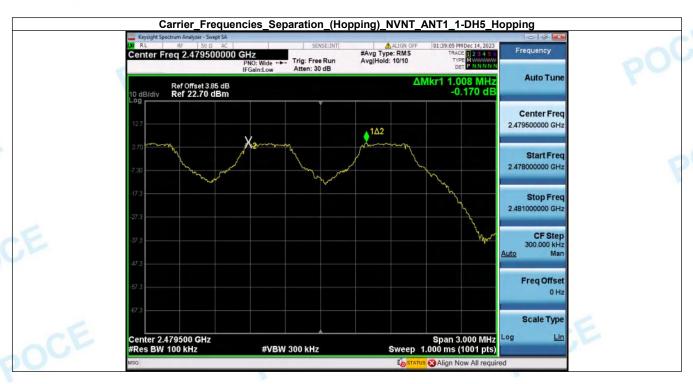


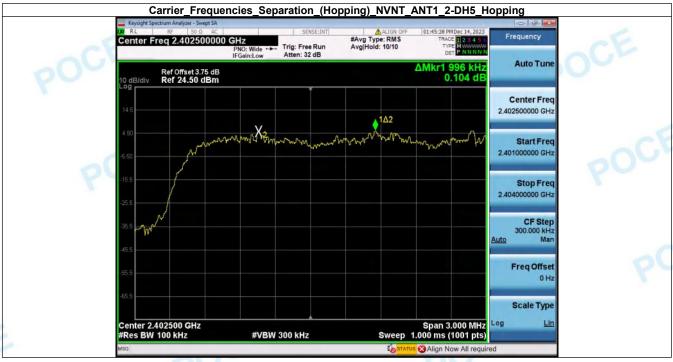


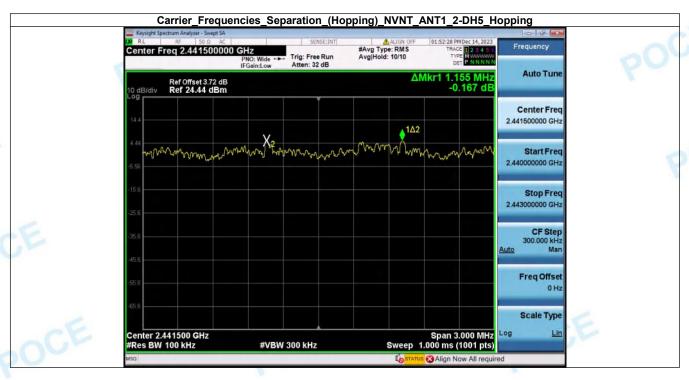




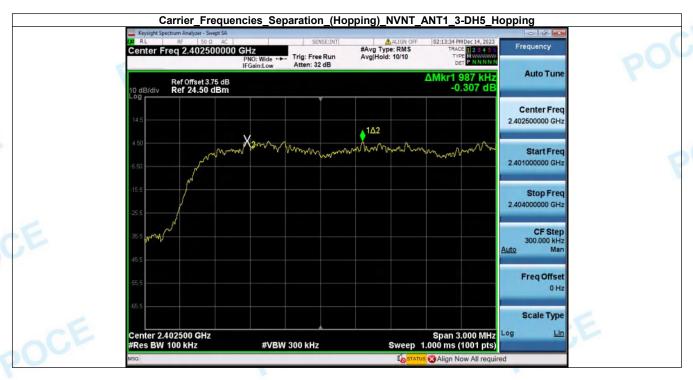
5. Carrier Frequencies Separation (Hopping)

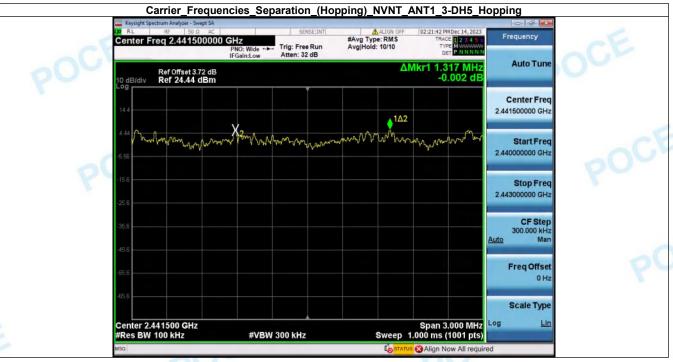

Condition	Antenna	Modulation	Frequency(MHz)	Hopping NO.0 (MHz)	Hopping NO.1 (MHz)	Carrier Frequencies Separation(MHz)	Limit(MHz)	Result
NVNT	ANT1	1-DH5	2402.00	2401.894	2403.046	1.15	0.682	Pass
NVNT	ANT1	1-DH5	2441.00	2441.059	2442.076	1.02	0.676	Pass
NVNT	ANT1	1-DH5	2480.00	2478.885	2479.893	1.01	0.695	Pass
NVNT	ANT1	2-DH5	2402.00	2402.056	2403.052	1.00	0.887	Pass
NVNT	ANT1	2-DH5	2441.00	2441.059	2442.214	1.16	0.878	Pass
NVNT	ANT1	2-DH5	2480.00	2478.885	2480.043	1.16	0.875	Pass
NVNT	ANT1	3-DH5	2402.00	2401.873	2402.860	0.99	0.867	Pass
NVNT	ANT1	3-DH5	2441.00	2440.885	2442.202	1.32	0.888	Pass
NVNT	ANT1	3-DH5	2480.00	2478.876	2480.037	1.16	0.876	Pass

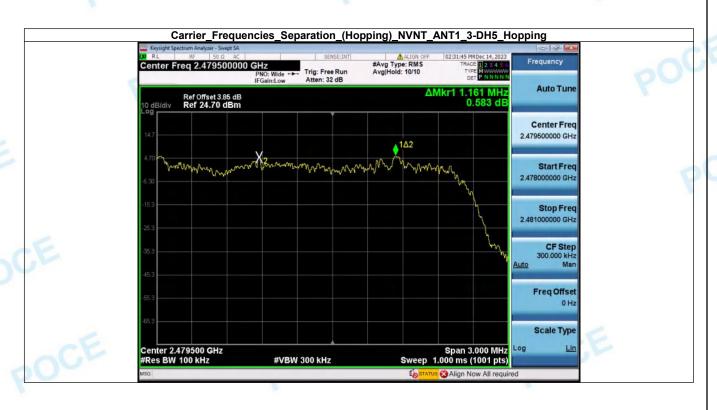


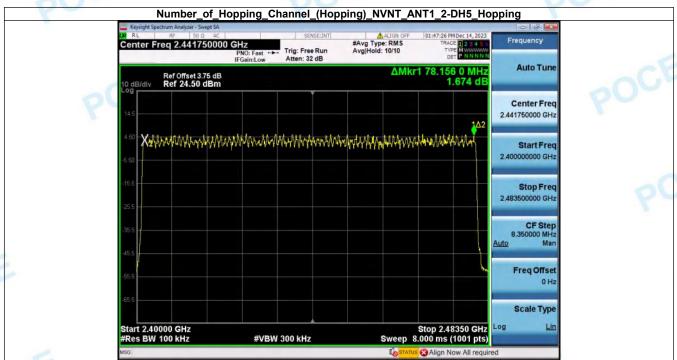

H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Page 67 of 82 Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

Report No.: POCE231127015RL001

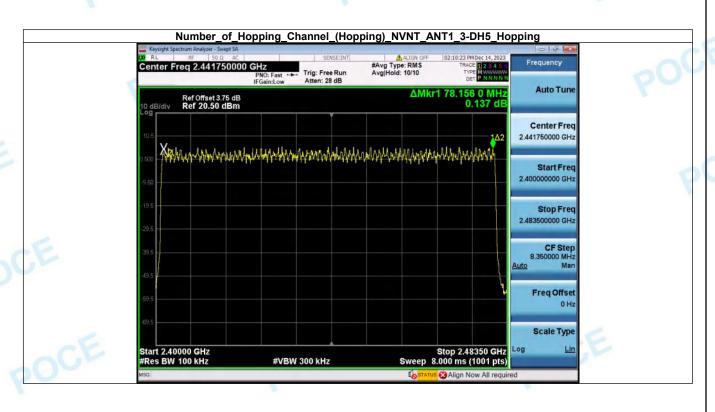




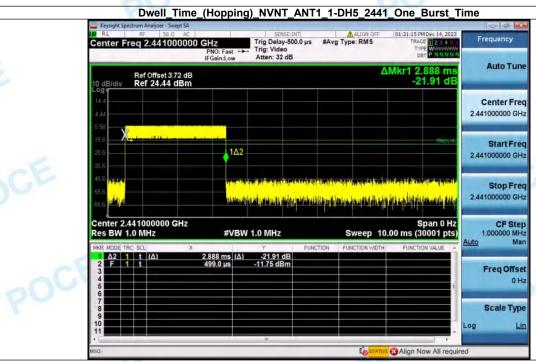


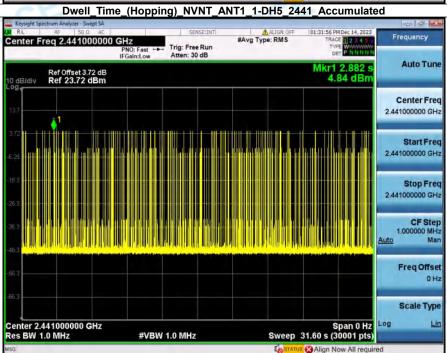


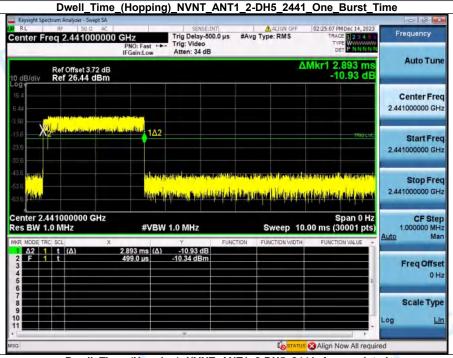
6. Number of Hopping Channel (Hopping)

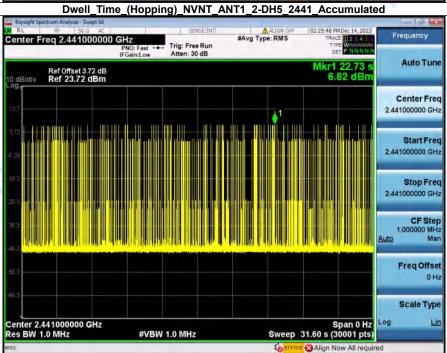

Condition	Antenna	Modulation	Hopping Num	Limit	Result
NVNT	ANT1	1-DH5	79	15	Pass
NVNT	ANT1	2-DH5	79	15	Pass
NVNT	ANT1	3-DH5	79	15	Pass

H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23010613 Web: http://www.dace-lab.com E-mail: service@dace-lab.com Page 72 of 82






7. Dwell Time (Hopping)


Condition	Antenna	Packet Type	Pulse Time(ms)	Hops	Dwell Time(ms)	Limit(s)	Result
NVNT	ANT1	1-DH5	2.888	109.00	314.792	0.40	Pass
NVNT	ANT1	2-DH5	2.893	105.00	303.730	0.40	Pass
NVNT	ANT1	3-DH5	2.894	102.00	295.222	0.40	Pass
NVNT	ANT1	1-DH1	0.384	320.00	122.880	0.40	Pass
NVNT	ANT1	1-DH3	1.640	156.00	255.840	0.40	Pass
NVNT	ANT1	2-DH1	0.393	320.00	125.653	0.40	Pass
NVNT	ANT1	2-DH3	1.645	163.00	268.135	0.40	Pass
NVNT	ANT1	3-DH1	0.393	320.00	125.653	0.40	Pass
NVNT	ANT1	3-DH3	1.643	164.00	269.506	0.40	Pass

