

Report No.: POCE231127015RL003

RF TEST REPORT

For

SHENZHEN ZHUOYONGHANG ELECTRONICS CO.,LTD

Product Name: Vehicle navigation

Test Model(s).: TS18

Report Reference No. : POCE231127015RL003

FCC ID : 2BECX-TS18

Applicant's Name : SHENZHEN ZHUOYONGHANG ELECTRONICS CO.,LTD

Address 4th Floor, B1 Building, Libang Science Park, Xitian Third Industrial Zone,

Gongming Street, Guangming New District, Shenzhen

Testing Laboratory : Shenzhen POCE Technology Co., Ltd.

Address

102 Building H1 & 1/F., Building H, Hongfa Science & Technology Park,

Toursey, Shinan Bearley Blatter Shanghan Guang China

Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China

FCC PART 2, FCC Part 22(H), FCC Part 27(C)

Test Specification Standard : ANSI C63.26-2015

KDB 971168 D01 Power Meas License Digital Systems v03r01

Date of Receipt : November 27, 2023

Date of Test: November 27, 2023 to December 19, 2023

Data of Issue : December 19, 2023

Result : Pass

Note: This report shall not be reproduced except in full, without the written approval of Shenzhen POCE Technology Co., Ltd. This document may be altered or revised by Shenzhen POCE Technology Co., Ltd. personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample

Revision History Of Report

Version	Description	REPORT No.	Issue Date
V1.0	Original	POCE231127015RL003	December 19, 2023
*		-00	

NOTE1:

The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

Compiled by:	Supervised by:	Approved by:
Ben Tang	Tomchen	Machael Mã
Ben Tang /Test Engineer	Tom Chen / Project Engineer	Machael Mo / Manager

CONTENTS

1 TEST SUMMARY	4
1.1 TEST STANDARDS	4
1.2 SUMMARY OF TEST RESULT	
2 GENERAL INFORMATION	
2.1 CLIENT INFORMATION	5
2.2 DESCRIPTION OF DEVICE (EUT)	5
2.3 DESCRIPTION OF TEST MODES	
2.4 DESCRIPTION OF SUPPORT UNITS	6
2.6 STATEMENT OF THE MEASUREMENT UNCERTAINTY	
2.7 IDENTIFICATION OF TESTING LABORATORY	
2.8 ANNOUNCEMENT	
3 EVALUATION RESULTS (EVALUATION)	9
3.1 Antenna requirement	9
3.1.1 Conclusion:	9
4 RADIO SPECTRUM MATTER TEST RESULTS (RF)	
4 RADIO SPECTROM MATTER TEST RESULTS (RF)	10
4.1 EFFECTIVE (ISOTROPIC) RADIATED POWER OUTPUT	
4.1.1 E.U.T. Operation:	
4.1.2 Test Setup Diagram:	
4.1 PEAK TO AVERAGE RATIO	
4.2.1 E.U.T. Operation: 4.2.2 Test Setup Diagram:	14
4.2.3 Test Data:	
4.3 BANDWIDTH	
4.3.1 E.U.T. Operation: 4.3.2 Test Setup Diagram:	16
4.3.3 Test Data:	16
4.4 OUT OF BAND EMISSION	17
4.4.1 E.U.T. Operation:	18
4.4.2 Test Setup Diagram:	
4.4.3 Test Data:	
4.5 Spurious Unwanted Emission	19
4.5.1 E.U.T. Operation:	
4.5.2 Test Setup Diagram:	
4.5.3 Test Data:	
4.6 FIELD STRENGTH OF RADIATED EMISSION-ABOVE 1GHz	
4.6.1 E.U.T. Operation:	23
4.6.2 Test Setup Diagram:	
4.7 FREQUENCY STABILITY	
4.7.1 E.U.T. Operation: 4.7.2 Test Setup Diagram:	
4.7.3 Test Data:	
5 TEST SETUP PHOTOS	
6 PHOTOS OF THE EUT	

TEST SUMMARY

The tests were performed according to following standards:

1.2 Summaria (=)

1.2 Summary of Test Result

Item	Method	Requirement	Result
Effective (Isotropic) Radiated Power Output	ANSI C63.26-2015, Section 5.2.4.2	47 CFR Part 2.1046, Part 22.913 47 CFR Part 2.1046, Part 27.50(h)(2)	Pass
Peak To Average Ratio	ANSI C63.26-2015, Section 5.2.3.4	47 CFR Part 2.1046, Part 22.913 (d) 47 CFR Part 2.1046, Part 27.50 47 CFR Part 2.1046, Part 96.41(g)	Pass
Bandwidth	ANSI C63.26-2015, Section 5.4	47 CFR Part 2.1049(h)	Pass
Out of Band Emission	47 CFR Part 22.917(b) ANSI C63.26-2015, Section 5.7.3 47 CFR Part 27 ANSI C63.26-2015, Section 5.7.3	47 CFR Part 2.1051, Part 22.917(a) 47 CFR Part 2.1051, Part 27.53(m)(4)	Pass
Spurious Unwanted Emission	47 CFR Part 22.917(b) ANSI C63.26-2015, Section 5.7.3 47 CFR Part 27 ANSI C63.26-2015, Section 5.7.3	47 CFR Part 2.1051, Part 22.917(a) 47 CFR Part 2.1051, Part 27.53(m)(4)	Pass
Field Strength of Radiated Emission- Below 1GHz	47 CFR Part 22.917(b) ANSI C63.26-2015, Section 5.7.3 47 CFR Part 27 ANSI C63.26-2015, Section 5.7.3	47 CFR Part 2.1051, Part 22.917(a) 47 CFR Part 2.1051, Part 27.53(m)(4)	Pass
Field Strength of Radiated Emission- Above 1GHz	47 CFR Part 22.917(b) ANSI C63.26-2015, Section 5.7.3 47 CFR Part 27 ANSI C63.26-2015, Section 5.7.3	47 CFR Part 2.1051, Part 22.917(a) 47 CFR Part 2.1051, Part 27.53(m)(4)	Pass
Frequency Stability	ANSI C63.26-2015, Section 5.6	47 CFR Part 2.1055, Part 22.355 47 CFR Part 2.1055, Part 27.54	Pass

2 GENERAL INFORMATION

2.1 Client Information

Applicant's Name : SHENZHEN ZHUOYONGHANG ELECTRONICS CO.,LTD

Address : 4th Floor, B1 Building, Libang Science Park, Xitian Third Industrial Zone,

Gongming Street, Guangming New District, Shenzhen

Manufacturer : SHENZHEN ZHUOYONGHANG ELECTRONICS CO.,LTD

Address: 4th Floor, B1 Building, Libang Science Park, Xitian Third Industrial Zone,

Gongming Street, Guangming New District, Shenzhen

2.2 Description of Device (EUT)

Product Name:	Vehicle navigation
Model/Type reference:	TS18
	TS6,TS7,T3L,T100,T5,TS10,TQ919,T527,9213,9216,9210,9260L,7212,7216、
Series Model:	7250,5716,9270,7260,5750,5760,9211,9212,5712,Y8,RK3326,RK3566,MK816 3,MTK8321,MTK8227L,Y6 ,8581,7862
Model Difference:	The product has many models, only the model name is different, and the other parts such as the circuit principle, pcb and electrical structure are the same.
Trade Mark:	N/A
Power Supply:	DC12V
Support Band	FDD Band 5;FDD Band 7;TDD Band 38
Transmit Frequency:	FDD Band 5: 824.7~848.3MHz
OCK	FDD Band 7: 2502.5~2567.5MHz
000	TDD Band 38: 2572.5~2617.5MHz
Receive Frequency:	FDD Band 5: 869.7~893.3MHz
	FDD Band 7: 2622.5~2687.5MHz
	TDD Band 38: 2572.5~2617.5MHz
Modulation Type:	QPSK, 16QAM
Power Class:	Class 3
Antenna Type:	External Antenna
Antenna Gain:	FDD Band 5: 3dBi (Provided by customer)
	FDD Band 7: 3dBi (Provided by customer)
	TDD Band 38: 3dBi (Provided by customer)
Hardware Version:	V1.0
Software Version:	V1.0

(Remark:The Antenna Gain is supplied by the customer.POCE is not responsible for This data and the related calculations associated with it)

2.3 Description of Test Modes

No	Title	Description
TM1	FDD-LTE Band 5	Low, Middle, High Channels
TM2	FDD-LTE Band 7	Low, Middle, High Channels
TM3	TDD-LTE Band 38	Low, Middle, High Channels

H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 5 of 33

Band5

Test Frequency ID	Bandwidth[MHz]	NUL	Frequency of Uplink(MHz)	NDL	Frequency of Downlink(MHz)
	1.4	20407	824.7	2407	869.7
Low Bongo	3	20415	825.5	2415	870.5
Low Range	5	20425	826.5	2425	871.5
	10	20450	829	2450	874.0
Mid Range	all	20525	836.5	2525	881.5
E	1.4	20643	848.3	2643	893.3
High Dange	3	20635	847.5	2635	892.5
High Range	5	20625	846.5	2625	891.5
OCE	10	20600	844	2600	889.0

Band7

Test Frequency ID	Bandwidth[MHz]	NUL	Frequency of Uplink(MHz)	NDL	Frequency of Downlink(MHz)
	5	20775	2502.5	2775	2622.5
	10	20800	2505	2825	2627.5
Low Range	15	20825	2507.5	2825	2627.5
	20	20850	2510	2850	2630.0
Mid Range	all	21100	2535	3100	2655.0
High Range	5	21425	2567.5	3425	2687.5
	10	21400	2565	2400	2685.0
	15	21375	2562.5	3375	2682.5
	20	21350	2560	3350	2680.0

Band38

Test Frequency 1D	Bandwidth[MHz]	EARFCN	Frequency (UL and DL)[MHz]
	5	37775	2572.5
Low Panga	10	37800	2575
Low Range	15	37820	2577.5
	20	37850	2580
Mid Range	all	38000	2595
High Range	5	38225	2617.5
	10	38200	2615
	15	38175	2612.5
	20	38150	2610

2.4 Description of Support Units

The EUT was tested as an independent device.

Effective (Isotropic) Radiated Power Output Peak To Average Ratio Bandwidth

Out of Band Emission

Spurious Unwanted Emission

Frequency Stability

r requericy Stability					
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
RF Test Software	TACHOY	RTS-01	V2.0.0.0	/	/
High Pass filter	ZHINAN	OQHPF1-M1.5- 18G-224	6210075	1	1
Power divider	MIDEWEST	PWD-2533	SMA-79	2023-05-11	2026-05-10
DC power	HP	66311B	38444359		/
RF Sensor Unit	Tachoy Information Technology(she nzhen) Co.,Ltd.	TR1029-2	000001	CE	1
Wideband radio communication tester	R&S	CMW500	113410	2023-06-13	2024-06-12
Vector signal generator	Keysight	N5181A	MY48180415	2023-11-09	2024-11-08
Signal generator	Keysight	N5182A	MY50143455	2023-12-28	2024-12-27
Spectrum Analyzer	Keysight	N9020A	MY53420323	2023-12-28	2024-12-27

Field Strength of Radi Field Strength of Radi			PC		
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
EMI Test software	Farad	EZ -EMC	V1.1.42	/	/
Positioning Controller	E 1	MF-7802	- 1	/	- ACF
High Pass filter	ZHINAN	OQHPF1-M1.5- 18G-224	6210075	1	PY
Amplifier(18-40G)	COM-POWER	AH-1840	10100008-1	2022-04-05	2025-04-04
Horn antenna	COM-POWER	AH-1840 (18-40G)	10100008	2023-04-05	2025-04-04
Loop antenna	ZHINAN	ZN30900C	ZN30900C	2021-07-05	2024-07-04
Cable(LF)#2	Schwarzbeck	1	DOY	2023-02-27	2024-02-26
Cable(LF)#1	Schwarzbeck	1	1	2023-02-27	2024-02-26
Cable(HF)#2	Schwarzbeck	AK9515E	96250	2023-02-28	2024-02-27
Cable(HF)#1	Schwarzbeck	SYV-50-3-1	1	2023-02-27	2024-02-26
Power amplifier(LF)	Schwarzbeck	BBV9743	9743-151	2023-06-13	2024-06-12
Power amplifier(HF)	Schwarzbeck	BBV9718	9718-282	2023-06-13	2024-06-12
Wideband radio communication tester	R&S	CMW500	113410	2023-06-13	2024-06-12
Spectrum Analyzer	R&S	FSP30	1321.3008K40 -101729-jR	2023-06-14	2024-06-13
Horn Antenna	Sunol Sciences	DRH-118	A091114	2023-05-13	2025-05-12
Broadband Antenna	Sunol Sciences	JB6 Antenna	A090414	2023-05-21	2025-05-20
Test Receiver	R&S	ESCI	102109	2023-06-13	2024-06-12

2.6 Statement Of The Measurement Uncertainty

Test Item	Measurement Uncertainty		
Conducted Disturbance (0.15~30MHz)	±3.41dB		
Occupied Bandwidth	±3.63%		
RF conducted power	±0.733dB		
RF power density	±0.234%		
Conducted Spurious emissions	±1.98dB		
Radiated Emission (Above 1GHz)	±5.46dB		
Radiated Emission (Below 1GHz)	±5.79dB		
Note: (1) This uncertainty represents an expanded u	ncertainty expressed at approximately the 95%		

2.7 Identification of Testing Laboratory

confidence level using a coverage factor of k=2.

Company Name:	Shenzhen POCE Technology Co., Ltd.
Address:	101-102 Building H5 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China
Phone Number:	+86-13267178997
Fax Number:	86-755-29113252

Identification of the Responsible Testing Location

Company Name:	Shenzhen POCE Technology Co., Ltd.				
Address:	101-102 Building H5 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China				
Phone Number:	+86-13267178997				
Fax Number:	86-755-29113252				
FCC Registration Number:	0032847402				
Designation Number:	CN1342				
Test Firm Registration Number:	778666				
A2LA Certificate Number:	6270.01				

2.8 Announcement

- (1) The test report reference to the report template version v0.
- (2) The test report is invalid if not marked with the signatures of the persons responsible for preparing, reviewing and approving the test report.
- (3) The test report is invalid if there is any evidence and/or falsification.
- (4) This document may not be altered or revised in any way unless done so by POCE and all revisions are duly noted in the revisions section.
- (5) Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.
- (6) The laboratory is only responsible for the data released by the laboratory, except for the part provided by the applicant.

H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 8 of 33

3 Evaluation Results (Evaluation)

3.1 Antenna requirement

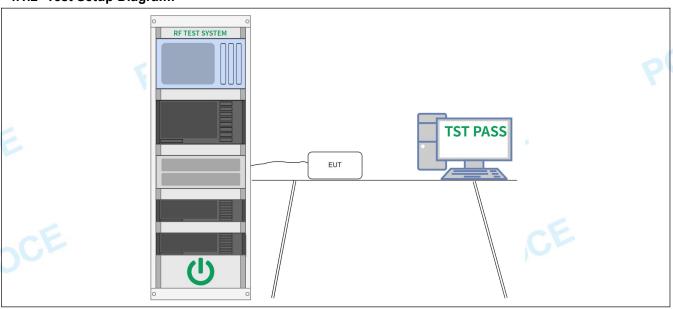
Test Requirement:

Refer to 47 CFR Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

3.1.1 Conclusion:

H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 9 of 33

4 Radio Spectrum Matter Test Results (RF)


4.1 Effective (Isotropic) Radiated Power Output

	oro, radiated i oner output
Test Requirement:	47 CFR Part 2.1046, Part 22.913 47 CFR Part 2.1046, Part 27.50(h)(2)
Test Limit:	The ERP of mobile transmitters and auxiliary test transmitters must not exceed 7 watts. Mobile stations are limited to 2.0 watts EIRP. All user stations are limited to 2.0
	watts transmitter output power.
Test Method:	ANSI C63.26-2015, Section 5.2.4.2
Procedure:	If the EUT cannot be configured to transmit continuously (i.e., burst duty cycle < 98%), then the following
CE	options can be implemented to facilitate measurement of the average power with an average power meter: a) A gated average power meter can be used to perform the measurement if the gating parameters can
	be adjusted such that the power is measured only during active transmission bursts at maximum output power levels.
OCE	b) A conventional average power meter with no signal gating capability can also be used if the
POS	measured burst duty cycle is constant (i.e., duty cycle variations are less than or equal to ±2%) by
	performing the measurement over the on/off burst cycles and then correcting (increasing) the
OCE	measured level by a factor equal to [10 log (1/duty cycle)]. See 5.2.4.3.4 for guidance with respect
200	to measuring the transmitter duty cycle.

4.1.1 E.U.T. Operation:

Operating Envir	Operating Environment:						
Temperature:	23.8 °C		Humidity:	55.8 %	Atmospheric Pressure:	102 kPa	
Pre test mode:	aC	TM1,	TM2, TM3		OCF		
Final test mode:	00	TM1,	TM2, TM3	<u> </u>			PO

4.1.2 Test Setup Diagram:

H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 10 of 33

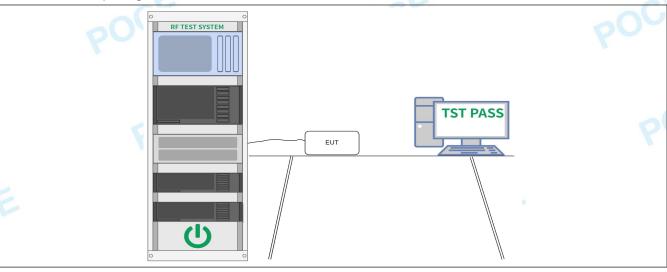
4.1.3 Test Data:

		Lī	ΓE Band 5				
Bandwidth	Modulation	Channel	ERP (d	Bm)	Limit (dBm)	Docult	
Bandwidth	Dandwidth		Vertical	Horizontal	LIIIIII (GBIII)	Result	
		Low	22.48	23.65			
	QPSK	Mid	22.75	21.71		PASS	
1.4MHz		High	23.31	22.68	38.45		
1.4WHZ	8	Low	22.45	23.60	38.45		
	16QAM	Mid	22.97	22.01		PASS	
		High	23.75	23.71	-5		
;E		Low	22.48	21.16	OCF	PASS	
	QPSK	Mid	21.10	22.62			
2041.1-		High	21.37	21.14	20.45		
3MHz	16QAM	Low	21.73	21.40	38.45		
		Mid	21.23	22.10			
		High	21.21	21.31	PO		
		Low	21.85	21.70			
	QPSK	Mid	21.35	21.19		PASS	
5MHz	CE	High	21.50	21.28	20.45	OCE	
SIVIFIZ		Low	21.31	21.53	38.45		
	16QAM	Mid	21.08	21.65		PASS	
		High	21.37	21.45			
	OCE	Low	21.17	21.05		aC.	
	QPSK	Mid	21.03	21.10		PASS	
40041		High	21.21	21.11	38.45	-	
10MHz		Low	21.14	21.72	30.45		
	16QAM	Mid	21.93	21.25		PASS	
	00	High	21.28	21.06		P	

	LTE Band 7						
Danada ai alkla	NA alvelation	01	EIRP (d	lBm)	Limit (dPm)	Decell	
Bandwidth	Modulation	Channel	Vertical	Horizontal	Limit (dBm)	Result	
5MHz	QPSK	Low	22.37	22.45		PASS	
		Mid	22.77	22.96			
		High	22.53	22.61	20.00		
	P	Low	22.28	22.28	33.00		
	16QAM	Mid	22.67	22.93		PASS	
		High	22.64	22.75			
E		Low	22.85	23.51	OCE		
	QPSK	Mid	22.04	22.25	0	PASS	
10MHz		High	22.94	22.49	33.00		
TUIVITZ		Low	22.36	22.47	33.00		
OCE	16QAM	Mid	22.08	22.60		PASS	
OO.		High	22.73	23.72	PO		
		Low	22.14	22.40			
	QPSK	Mid	22.52	23.78		PASS	
15MHz	CE	High	23.35	23.31	33.00	SCE	
TOWINZ		Low	22.59	22.27	33.00		
	16QAM	Mid	23.89	22.13		PASS	
	<u> </u>	High	23.62	22.47			
	CE		22.17	22.28		a CI	
	QPSK	Mid	22.38	22.22		PASS	
20MHz		High	22.64	23.64	33.00		
ZUIVITZ		Low	22.75	24.77	33.00		
	16QAM	Mid	22.79	23.28		PASS	
	00	High	23.96	24.62		p(

		LT	E Band 38				
Dondwidth	Modulation	Chamal	EIRP (c	IBm)	Limit (dBm)	Darrit	
Bandwidth	Dandwidth	Channel	Vertical	Horizontal	Lilliit (dBill)	Result	
	P	Low	24.93	25.54			
	QPSK	Mid	24.84	25.61		PASS	
		High	25.51	23.79	200.00		
5MHz		Low	24.87	24.83	33.00		
	16QAM	Mid	26.24	25.49		PASS	
		High	24.01	24.78			
		Low	24.06	24.32	-5		
10MHz	QPSK	Mid	23.50	23.07	33.00	PASS	
		High	23.46	24.46			
		Low	25.28	24.91			
	16QAM	Mid	24.05	24.81		PASS	
OCE		High	24.70	24.52	SOC		
		Low	23.54	24.81	P		
	QPSK	Mid	24.79	24.39		PASS	
451411		High	24.17	24.81	00.00		
15MHz		Low	23.53	23.10	33.00	JCF	
	16QAM	Mid	23.61	24.45	P	PASS	
		High	23.56	24.12			
		Low	24.77	24.45			
	QPSK	Mid	24.88	23.82		PASS	
000411-	200	High	24.22	23.59	00.00	PU	
20MHz		Low	23.30	24.01	33.00		
	16QAM	Mid	24.40	24.18		PASS	
		High	23.91	24.36			

Max. Please Refer to FCC-LTE Appendix Test Data B5,B7,B38 for Details.


4.2 Peak To Average Ratio

Test Requirement:	47 CFR Part 2.1046, Part 22.913 (d) 47 CFR Part 2.1046, Part 27.50 47 CFR Part 2.1046, Part 96.41(g)
Test Limit:	The peak-to-average ratio (PAR) of the transmission must not exceed 13 dB. The peak-to-average ratio (PAR) of the transmission must not exceed 13 dB.
Test Method:	ANSI C63.26-2015, Section 5.2.3.4
Procedure:	a) Set resolution/measurement bandwidth ≥ OBW or specified reference bandwidth. b) Set the number of counts to a value that stabilizes the measured CCDF curve. c) Set the measurement interval as follows: 1) For continuous transmissions, set to the greater of [10 × (number of points in sweep) × (transmission symbol period)] or 1 ms. 2) For burst transmissions, employ an external trigger that is synchronized with the EUT burst timing sequence, or use the internal burst trigger with a trigger level that allows the burst to stabilize. Set the measurement interval to a time that is less than or equal to the burst duration. 3) If there are several carriers in a single antenna port, the peak power shall be determined foreach individual carrier (by disabling the other carriers while measuring the required carrier)and the total peak power calculated from the sum of the individual carrier peak powers. d) Record the maximum PAPR level associated with a probability of 0.1%. e) The peak power level is calculated form the sum of the PAPR value from step d) to the measured average power.

4.2.1 E.U.T. Operation:

Operating Environment:		~C		OCE
Temperature: 23.8 °C	Humidity:	55.8 %	Atmospheric Pressure:	102 kPa
Pre test mode:	TM1, TM2, TM3			
Final test mode:	TM1, TM2, TM3			

4.2.2 Test Setup Diagram:

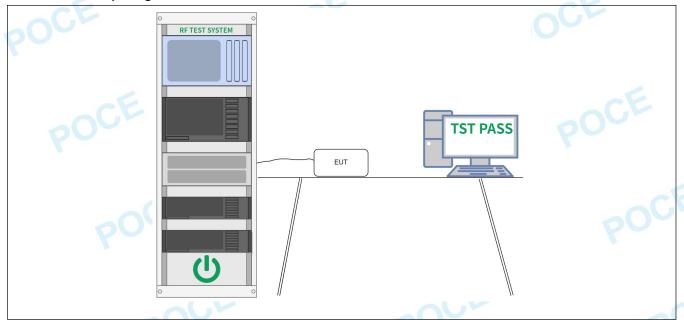
4.2.3 Test Data:

Please Refer to FCC-LTE Appendix Test Data B5,B7,B38 for Details.

H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 14 of 33

4.3 Bandwidth

4.3 Bandwidth	
Test Requirement:	47 CFR Part 2.1049(h)
Test Limit:	OBW: No limit, only for report use. EBW: No limit, only for report use.
Test Method:	ANSI C63.26-2015, Section 5.4
Procedure:	OBW:
CE	a) The spectrum analyzer center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be set wide enough to capture all modulation products including the emission skirts (typically a span of 1.5 × OBW is sufficient). b) The nominal IF filter 3 dB bandwidth (RBW) shall be in the range of 1% to 5% of the anticipated OBW, and the VBW shall be set ≥ 3 × RBW. c) Set the reference level of the instrument as required to prevent the signal amplitude from exceeding the maximum spectrum analyzer input mixer level for linear operation. See guidance provided in 4.2.3.
POCE	NOTE—Step a), step b), and step c) may require iteration to adjust within the specified tolerances. d) Set the detection mode to peak, and the trace mode to max-hold. e) If the instrument does not have a 99% OBW function, recover the trace data points and sum directly in linear power terms. Place the recovered amplitude data points, beginning at the lowest frequency, in a running sum until 0.5% of the total is reached. Record that frequency as the lower OBW frequency. Repeat the process until 99.5% of the total is reached and record that frequency as the upper OBW frequency. The 99% power OBW can be determined by computing the difference these two frequencies. f) The OBW shall be reported and plot(s) of the measuring instrument display shall be provided with the test report. The frequency and amplitude axis and scale shall be clearly labeled. Tabular data can be reported in addition to the plot(s).
POC	EBW: a) The spectrum analyzer center frequency is set to the nominal EUT channel center frequency. The span range for the spectrum analyzer shall be wide enough to see sufficient roll off of the signal to make the measurement. b) The nominal RBW shall be in the range of 1% to 5% of the anticipated OBW, and the VBW shall be set ≥ 3 × RBW. c) Set the reference level of the instrument as required to prevent the signal amplitude from exceeding the maximum spectrum analyzer input mixer level for linear operation. See guidance provided in 4.2.3. NOTE—Step a), step b), and step c) may require iteration to adjust within the specified tolerances.
E	d) The dynamic range of the spectrum analyzer at the selected RBW shall be more than 10 dB below the target "-X dB" requirement, i.e., if the requirement calls for measuring the -26 dB OBW, the spectrum analyzer noise floor at the selected RBW shall be at least 36 dB below the reference level. e) Set spectrum analyzer detection mode to peak, and the trace mode to max hold. f) Determine the reference value by either of the following: 1) Set the EUT to transmit a modulated signal. Allow the trace to stabilize. Set the spectrum analyzer marker to the highest level of the displayed trace (this is the reference value). 2) Set the EUT to transmit an unmodulated carrier. Set the spectrum analyzer marker to the level of the carrier. g) Determine the "-X dB amplitude" as equal to (Reference Value - X). Alternatively, this calculation can be performed on the spectrum analyzer using the delta-marker
OCE	measurement function. h) If the reference value was determined using an unmodulated carrier, turn the EUT modulation on,then either clear the existing trace or start a new trace on the spectrum analyzer and allow the new


trace to stabilize. Otherwise the trace from step f) shall be used for step i).
i) Place two markers, one at the lowest and the other at the highest frequency of the envelope of the spectral display such that each marker is at or slightly below the "-X dB amplitude" determined in step f). If a marker is below this "-X dB amplitude" value it should be as close as possible to this value. The OBW is the positive frequency difference between the two markers. The spectral envelope can cross the "-X dB amplitude" at multiple points. The lowest or highest frequency shall be selected as the frequencies that are the farthest away from the center frequency at which the spectral envelope crosses the "-X dB amplitude."
j) The OBW shall be reported by providing plot(s) of the measuring instrument display, to include markers depicting the relevant frequency and amplitude information (e.g., marker table). The frequency and amplitude axis and scale shall

be clearly labeled. Tabular data may be reported in addition to the plot(s).

4.3.1 E.U.T. Operation:

Operating Environment:					~(
Temperature:	23.8 °C		Humidity:	55.8 %	Atmospheric Pressure:	102 kPa
Pre test mode: TM1,		TM2, TM3				
Final test mode: TM1,		TM2, TM3				

4.3.2 Test Setup Diagram:

4.3.3 Test Data:

Please Refer to FCC-LTE Appendix Test Data B5,B7,B38 for Details.

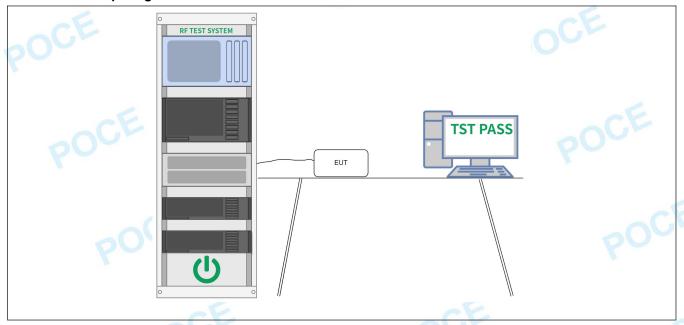
H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 16 of 33

4.4 Out of Band Emission

4.4 Out of Band Emi	ssion
Test Requirement:	47 CFR Part 2.1051, Part 22.917(a) 47 CFR Part 2.1051, Part 27.53(m)(4)
Test Limit:	The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB. (4) For mobile digital stations, the attenuation factor shall be not less than 40 + 10 log (P) dB on all frequencies between the channel edge and 5 megahertz from the channel edge, 43 + 10 log (P) dB on all frequencies between 5 megahertz and X megahertz from the channel edge, and 55 + 10 log (P) dB on all frequencies more than X megahertz from the channel edge, where X is the greater of 6 megahertz or the actual emission bandwidth as defined in paragraph (m)(6) of this section. In addition, the attenuation factor shall not be less that 43 + 10 log (P) dB on all frequencies between 2490.5 MHz and 2496 MHz and 55 + 10 log (P) dB at or below 2490.5 MHz. Mobile Satellite Service licensees operating on frequencies below 2495 MHz may also submit a documented interference complaint against BRS licensees operating on channel BRS Channel 1 on the same terms and conditions as adjacent channel BRS or EBS licensees.
Test Method:	47 CFR Part 22.917(b) ANSI C63.26-2015, Section 5.7.3 47 CFR Part 27 ANSI C63.26-2015, Section 5.7.3
Procedure:	Compliance with these rules is based on the use of measurement instrumentation employing a resolution bandwidth of 1 MHz or greater. However, in the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. A narrower resolution bandwidth is permitted in all cases to improve measurement accuracy provided the measured power is integrated over the full required measurement bandwidth (
POC	a) Set the spectrum analyzer center frequency to the block, band, or channel edge frequency. b) Set the span wide enough to capture the fundamental emission closest to the authorized block or band edge, and to include all modulation products that spill into the immediately adjacent frequency band. In some cases, it may be possible to set the center frequency and span so as to encompass the fundamental emission and the unwanted out-of-band (band-edge) emissions on either side of the authorized block, band, or channel. This can be accomplished with a single (slow) sweep, if adequate overload protection and sufficient dynamic range can be maintained. c) Set the number of points in sweep ≥ 2 × span / RBW.
E	d) Sweep time should be auto for peak detection. For rms detection the sweep time should be set as follows: 1) If the device can be configured to transmit continuously (duty cycle ≥ 98%), set the (sweep time) > (number of points in sweep) × (symbol period) (e.g., by a factor of 10 × symbol period × number of points). Increasing the sweep time (i.e., slowing the sweep speed) will allow for averaging over multiple symbols 2) If the device cannot transmit continuously (duty cycle < 98%), a gated sweep
OCE	shall be used when possible (i.e., gate triggered such that the analyzer only sweeps when the device is transmitting at full power), set the sweep time > (number of points in sweep) × (symbol period) but the sweep time shall always be maintained at a value that is less than or equal to the minimum transmission time. 3) If the device cannot be configured to transmit continuously (duty cycle < 98%) and a freerunning sweep must be used, set the sweep time so that the averaging is performed over multiple on/off cycles by setting the sweep time > (number of points in sweep) × (transmitter period) (i.e., the transmit on-time + the off-time). The spectrum analyzer readings shall subsequently be corrected by [10 log (1/duty cycle)]. This assumes that the transmission period and duty cycle is relatively
H1 Building 102 H Building 1/E H	ongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China

constant (duty cycle variation $\leq \pm 2\%$).

4) If the device cannot be configured to transmit continuously and a free-running sweep must beused, and if the transmissions exhibit a non-constant duty cycle (duty cycle variations > ±2%),set the sweep time so that the averaging is performed over the on-period by setting the sweep time > (symbol period) × (number of points), while also maintaining the sweep time <(transmitter on-time). The trace mode shall be set to max hold, since not every display point will be averaged only over just the on-time. Thus, multiple sweeps (e.g., 100) in maximum hold are necessary to ensure that the maximum power is measured.


e) The test report shall include the plots of the measuring instrument display and the measured data.

f) See Annex I for example emission mask plots.

4.4.1 E.U.T. Operation:

Operating Environment:							
Temperature:	23.8 °C		Humidity:	55.8 %	Atmospheric Pressure:	102 kPa	
Pre test mode: TM1,			TM2, TM3		DO.		
Final test mode:			TM2, TM3				

4.4.2 Test Setup Diagram:

4.4.3 Test Data:

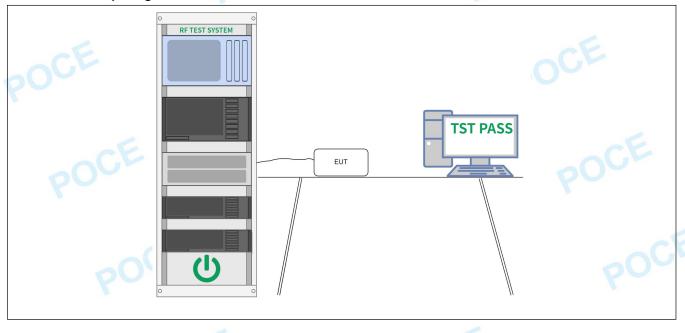
Please Refer to FCC-LTE Appendix Test Data B5,B7,B38 for Details.

H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 18 of 33

4.5 Spurious Unwanted Emission

Test Requirement:	47 CFR Part 2.1051, Part 22.917(a)
	47 CFR Part 2.1051, Part 27.53(m)(4)
Test Limit:	The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB. (4) For mobile digital stations, the attenuation factor shall be not less than 40 + 10 log (P) dB on all frequencies between the channel edge and 5 megahertz from the channel edge, 43 + 10 log (P) dB on all frequencies between 5 megahertz and X
CE	megahertz from the channel edge, and 55 + 10 log (P) dB on all frequencies more than X megahertz from the channel edge, where X is the greater of 6 megahertz or the actual emission bandwidth as defined in paragraph (m)(6) of this section. In addition, the attenuation factor shall not be less that 43 + 10 log (P) dB on all frequencies between 2490.5 MHz and 2496 MHz and 55 + 10 log (P) dB at or below 2490.5 MHz. Mobile Satellite Service licensees operating on frequencies below 2495 MHz may also submit a documented interference complaint against BRS licensees operating on channel BRS Channel 1 on the same terms and conditions as adjacent channel BRS or EBS licensees.
Test Method:	47 CFR Part 22.917(b) ANSI C63.26-2015, Section 5.7.3 47 CFR Part 27 ANSI C63.26-2015, Section 5.7.3
Procedure:	Compliance with these rules is based on the use of measurement instrumentation
	employing a resolution bandwidth of 1 MHz or greater. However, in the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. A narrower resolution bandwidth is permitted in all cases to improve measurement accuracy provided the measured power is integrated over the full required measurement bandwidth (a) Set the spectrum analyzer center frequency to the block, band, or channel edge frequency.
	b) Set the span wide enough to capture the fundamental emission closest to the authorized block or band edge, and to include all modulation products that spill into the immediately adjacent frequency band. In some cases, it may be possible to set the center frequency and span so as to encompass the fundamental emission and the unwanted out-of-band (band-edge) emissions on either side of the authorized block, band, or channel. This can be accomplished with a single (slow) sweep, if adequate overload protection and sufficient dynamic range can be maintained. c) Set the number of points in sweep ≥ 2 × span / RBW.
	d) Sweep time should be auto for peak detection. For rms detection the sweep time
	should be set as
	follows: 1) If the device can be configured to transmit continuously (duty cycle ≥ 98%), set the (sweep time) > (number of points in sweep) × (symbol period) (e.g., by a factor of 10 × symbol period × number of points). Increasing the sweep time (i.e., slowing the sweep speed) will allow for averaging over multiple symbols 2) If the device correct transmit continuously (duty cycle < 00%), a geted given.
	2) If the device cannot transmit continuously (duty cycle < 98%), a gated sweep shall be used when possible (i.e., gate triggered such that the analyzer only sweeps when the device is transmitting at full power), set the sweep time > (number of points in sweep) × (symbol period) but the sweep time shall always be maintained at a value that is less than or equal to the minimum transmission time.
	3) If the device cannot be configured to transmit continuously (duty cycle < 98%) and a freerunning sweep must be used, set the sweep time so that the averaging is performed over multiple on/off cycles by setting the sweep time > (number of points in sweep) × (transmitter period) (i.e., the transmit on-time + the off-time). The spectrum analyzer readings shall subsequently be corrected by [10 log (1/duty cycle)]. This assumes that the transmission period and duty cycle is relatively
OCE	constant (duty cycle variation ≤ ±2%). 4) If the device cannot be configured to transmit continuously and a free-running longfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China

H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 19 of 33


sweep must be used, and if the transmissions exhibit a non-constant duty cycle (duty cycle variations > $\pm 2\%$),set the sweep time so that the averaging is performed over the on-period by setting the sweep time > (symbol period) × (number of points), while also maintaining the sweep time <(transmitter on-time). The trace mode shall be set to max hold, since not every display pointwill be averaged only over just the on-time. Thus, multiple sweeps (e.g., 100) in maximum hold are necessary to ensure that the maximum power is measured.

- e) The test report shall include the plots of the measuring instrument display and the measured data.
- f) See Annex I for example emission mask plots.

4.5.1 E.U.T. Operation:

Operating Envir	onment:					
Temperature:	23.8 °C		Humidity:	55.8 %	Atmospheric Pressure:	102 kPa
Pre test mode:		TM1,	TM2, TM3			E
Final test mode	TM1,	TM2, TM3				

4.5.2 Test Setup Diagram:

4.5.3 Test Data:

Please Refer to FCC-LTE Appendix Test Data B5,B7,B38 for Details.

4.6 Field Strength of Radiated Emission-Above 1GHz

	f Radiated Emission-Above 1GHz
Test Requirement:	47 CFR Part 2.1051, Part 22.917(a) 47 CFR Part 2.1051, Part 27.53(m)(4)
Test Limit:	The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB.
CE	(4) For mobile digital stations, the attenuation factor shall be not less than 40 + 10 log (P) dB on all frequencies between the channel edge and 5 megahertz from the channel edge, 43 + 10 log (P) dB on all frequencies between 5 megahertz and X megahertz from the channel edge, and 55 + 10 log (P) dB on all frequencies more than X megahertz from the channel edge, where X is the greater of 6 megahertz or the actual emission bandwidth as defined in paragraph (m)(6) of this section. In addition, the attenuation factor shall not be less that 43 + 10 log (P) dB on all frequencies between 2490.5 MHz and 2496 MHz and 55 + 10 log (P) dB at or below 2490.5 MHz. Mobile Satellite Service licensees operating on frequencies below 2495 MHz may also submit a documented interference complaint against BRS licensees operating on channel BRS Channel 1 on the same terms and conditions as adjacent channel BRS or EBS licensees.
Test Method:	47 CFR Part 22.917(b) ANSI C63.26-2015, Section 5.7.3 47 CFR Part 27 ANSI C63.26-2015, Section 5.7.3
Procedure:	
POCE	Compliance with these rules is based on the use of measurement instrumentation employing a resolution bandwidth of 1 MHz or greater. However, in the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed. A narrower resolution bandwidth is permitted in all cases to improve measurement accuracy provided the measured power is integrated over the full required measurement bandwidth (
POC	 a) Set the spectrum analyzer center frequency to the block, band, or channel edge frequency. b) Set the span wide enough to capture the fundamental emission closest to the authorized block or band edge, and to include all modulation products that spill into the immediately adjacent frequency band. In some cases, it may be possible to set the center frequency and
	span so as to encompass the fundamental emission and the unwanted out-of-band (band-edge)
P	emissions on either side of the authorized block, band, or channel. This can be accomplished with a single (slow) sweep, if adequate overload protection and sufficient dynamic range can be
	maintained. c) Set the number of points in sweep ≥ 2 × span / RBW. d) Sweep time should be auto for peak detection. For rms detection the sweep time should be set as follows:
OCE	1) If the device can be configured to transmit continuously (duty cycle ≥ 98%), set the (sweeptime) > (number of points in sweep) × (symbol period) (e.g., by a factor of 10 × symbol period × number of points). Increasing the sweep time (i.e., slowing the sweep speed) will allow for averaging over multiple symbols 2) If the device cannot transmit continuously (duty cycle < 98%), a gated sweep shall be used
OCE	when possible (i.e., gate triggered such that the analyzer only sweeps when the device is transmitting at full power), set the sweep time > (number of points in sweep) × (symbol period) but the sweep time shall always be maintained at a value that is less than or equal to the minimum transmission time.

3) If the device cannot be configured to transmit continuously (duty cycle < 98%) and a freerunning sweep must be used, set the sweep time so that the averaging is performed over

multiple on/off cycles by setting the sweep time > (number of points in sweep) × (transmitter

period) (i.e., the transmit on-time + the off-time). The spectrum analyzer readings shall

subsequently be corrected by [10 log (1/duty cycle)]. This assumes that the transmission

period and duty cycle is relatively constant (duty cycle variation ≤ ±2%).

4) If the device cannot be configured to transmit continuously and a free-running sweep must be

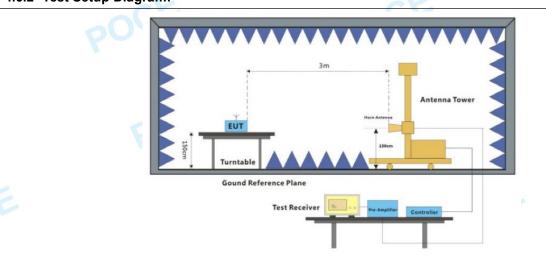
used, and if the transmissions exhibit a non-constant duty cycle (duty cycle variations $> \pm 2\%$).

set the sweep time so that the averaging is performed over the on-period by setting the sweep

time > (symbol period) × (number of points), while also maintaining the sweep time <

(transmitter on-time). The trace mode shall be set to max hold, since not every display point

will be averaged only over just the on-time. Thus, multiple sweeps (e.g., 100) in maximum


hold are necessary to ensure that the maximum power is measured.

- e) The test report shall include the plots of the measuring instrument display and the measured data.
- f) See Annex I for example emission mask plots.

4.6.1 E.U.T. Operation:

Operating Environment:				OCH
Temperature: 23.8 °C	Humidity:	55.8 %	Atmospheric Pressure:	102 kPa
Pre test mode:	TM1, TM2, TM3			
Final test mode:	TM1, TM2, TM3			

4.6.2 Test Setup Diagram:

H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 23 of 33

4.6.3 Test Data: LTE Band 5 Spurious Emission Limit Frequency Reading Bandwidth Channel Result Level Factor (MHz) (dBm) Polarization (dBm) (dB) (dBm) 1649.40 Vertical 7.29 -33.22-40.51 2474.10 V 9.41 -42.86-13.00**PASS** -52.27 3298.80 ٧ 12.69 -41.89 -54.58 Low 1649.40 Horizontal 7.29 -35.87-43.16 2474.10 9.41 -43.95 -13.00 **PASS** Н -53.36 3298.80 Н 12.69 -42.35-55.04 1673.00 Vertical 7.32 -33.30 -40.62٧ 2509.50 9.39 -43.87 -13.00**PASS** -53.26 3346.00 ٧ 12.78 -42.02 -54.80 1.4MHz Mid 1673.00 7.32 Horizontal -42.81 -35.492509.50 Н 9.39 -43.74-13.00**PASS** -53.13 3346.00 Н 12.78 -42.76-55.54 1696.60 Vertical 7.33 -33.90-41.23-41.47 **PASS** 2544.90 9.46 -13.00-50.933393.20 ٧ 12.71 -43.04-55.75 High 1696.60 Horizontal 7.33 -33.30-40.63**PASS** 2544.90 Н 9.46 -42.86-13.00-52.32 3393.20 Н 12.71 -43.30-56.01 1651.00 Vertical -41.11 7.36 -33.752476.50 ٧ 9.51 -41.65 **PASS** -13.00-51.16 3302.00 12.72 -42.69 -55.41 Low 1651.00 Horizontal 7.36 -34.03 -41.39 2476.50 Η 9.51 -41.18 -13.00 **PASS** -50.69 3302.00 Η -56.59 12.72 -43.871673.00 Vertical 7.41 -34.13-41.54 3MHz V 2509.50 9.52 -41.99-13.00 **PASS** -51.51 ٧ 3346.00 12.73 -43.10-55.83 Mid -34.47 1673.00 Horizontal 7.41 -41.88 2509.50 9.52 -42.66 -13.00 **PASS** -52.18 3346.00 Н -54.99 12.73 -42.261695.00 Vertical 7.52 -35.29-42.81 High -13.00 **PASS** 2542.50 ٧ 9.46 -42.11 -51.57 3390.00 ٧ 12.81 -42.93 -55.74 1695.00 7.52 -35.94 Horizontal -43.46

H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 24 of 33

		2542.50	Н	-52.45	9.46	-42.99	-13.00	PASS
		3390.00	Н	-56.46	12.81	-43.65		
	20	1653.00	Vertical	-41.01	7.61	-33.40		OO
	P	2479.50	V	-53.48	9.49	-43.99	-13.00	PASS
		3306.00	V	-56.21	12.86	-43.35		
	Low	1653.00	Horizontal	-43.35	7.61	-35.74		
		2479.50	Н	-50.57	9.49	-41.08	-13.00	PASS (
		3306.00	Н	-55.49	12.86	-42.63		N.
		1673.00	Vertical	-42.58	7.72	-34.86		
		2509.50	V	-53.20	9.53	-43.67	-13.00	PASS
		3346.00	V	-56.03	12.84	-43.19		
5MHz	Mid	1673.00	Horizontal	-41.22	7.72	-33.50		
		2509.50	Н	-52.55	9.53	-43.02	-13.00	PASS
		3346.00	H	-55.99	12.84	-43.15	CE.	
OCL		1693.00	Vertical	-42.21	7.79	-34.42	UF	
		2539.50	V	-50.52	9.53	-40.99	-13.00	PASS
		3386.00	V	-56.36			-43.47	
	High	1693.00	Horizontal	-43.17	7.79	-35.38		
_0		2539.50	Н	-50.77	9.53	-41.24	-13.00	PASS
PO		3386.00	Н	-56.79	12.89	-43.90		
		1658.00	Vertical	-40.98	7.81	-33.17		
		2487.00	V	-53.14	9.56	-43.58	-13.00	PASS
	20C	3316.00	V	-56.66	12.91	-43.75		OC.
	Low	1650.00	Horizontal		7.81	-33.68		
		1658.00		-41.49	1.01	-33.00		
		2487.00	Н	-41.49 -53.19	9.56	-43.63	-13.00	PASS
				-53.19			-13.00	PASS
		2487.00	Н	-53.19 -55.67	9.56	-43.63	-13.00	PASS
10MHz	P	2487.00 3316.00	H H	-53.19 -55.67 -40.54	9.56 12.91	-43.63 -42.76	-13.00	PASS
10MHz	P	2487.00 3316.00 1673.00	H H Vertical	-53.19 -55.67 -40.54 -51.68	9.56 12.91 7.83	-43.63 -42.76 -32.71		P
10MHz	Mid	2487.00 3316.00 1673.00 2509.50	H H Vertical	-53.19 -55.67 -40.54 -51.68 -56.94	9.56 12.91 7.83 9.59	-43.63 -42.76 -32.71 -42.09		P
10MHz	Mid	2487.00 3316.00 1673.00 2509.50 3346.00	H H Vertical V	-53.19 -55.67 -40.54 -51.68 -56.94 -43.01	9.56 12.91 7.83 9.59 12.94	-43.63 -42.76 -32.71 -42.09 -44.00		p(
10MHz	Mid	2487.00 3316.00 1673.00 2509.50 3346.00 1673.00	H H Vertical V V Horizontal	-53.19 -55.67 -40.54 -51.68 -56.94 -43.01 -50.72	9.56 12.91 7.83 9.59 12.94 7.83	-43.63 -42.76 -32.71 -42.09 -44.00 -35.18	-13.00	PASS
10MHz		2487.00 3316.00 1673.00 2509.50 3346.00 1673.00 2509.50	H H Vertical V V Horizontal	-53.19 -55.67 -40.54 -51.68 -56.94 -43.01 -50.72 -57.29	9.56 12.91 7.83 9.59 12.94 7.83 9.59	-43.63 -42.76 -32.71 -42.09 -44.00 -35.18 -41.13	-13.00	PASS
	Mid High	2487.00 3316.00 1673.00 2509.50 3346.00 1673.00 2509.50 3346.00	H H Vertical V V Horizontal H	-53.19 -55.67 -40.54 -51.68 -56.94 -43.01 -50.72 -57.29 -42.23	9.56 12.91 7.83 9.59 12.94 7.83 9.59 12.94	-43.63 -42.76 -32.71 -42.09 -44.00 -35.18 -41.13 -44.35	-13.00	PASS
		2487.00 3316.00 1673.00 2509.50 3346.00 1673.00 2509.50 3346.00 1688.00	H H Vertical V V Horizontal H H Vertical	-53.19 -55.67 -40.54 -51.68 -56.94 -43.01 -50.72 -57.29 -42.23 -52.43	9.56 12.91 7.83 9.59 12.94 7.83 9.59 12.94 7.89 9.62	-43.63 -42.76 -32.71 -42.09 -44.00 -35.18 -41.13 -44.35 -34.34	-13.00	PASS
		2487.00 3316.00 1673.00 2509.50 3346.00 1673.00 2509.50 3346.00 1688.00 2532.00 3376.00	H H Vertical V V Horizontal H H Vertical V	-53.19 -55.67 -40.54 -51.68 -56.94 -43.01 -50.72 -57.29 -42.23 -52.43 -40.51	9.56 12.91 7.83 9.59 12.94 7.83 9.59 12.94 7.89 9.62 7.29	-43.63 -42.76 -32.71 -42.09 -44.00 -35.18 -41.13 -44.35 -34.34 -42.81 -33.22	-13.00	PASS
10MHz		2487.00 3316.00 1673.00 2509.50 3346.00 1673.00 2509.50 3346.00 1688.00 2532.00	H H Vertical V V Horizontal H H Vertical V	-53.19 -55.67 -40.54 -51.68 -56.94 -43.01 -50.72 -57.29 -42.23 -52.43	9.56 12.91 7.83 9.59 12.94 7.83 9.59 12.94 7.89 9.62	-43.63 -42.76 -32.71 -42.09 -44.00 -35.18 -41.13 -44.35 -34.34 -42.81	-13.00	PASS

			LTE Band	d 7				
		_	5	Spurious Emi	ssion			
Bandwidth	Channel	Frequency (MHz)	Polarization	Reading (dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	Result
	7-2	5005.00	Vertical	-42.48	7.29	-35.19		
		7507.50	V	-52.82	9.41	-43.41	-25.00	PASS
	1	10010.00	V	-55.76	12.69	-43.07		
	Low	5005.00	Horizontal	-41.02	7.29	-33.73		
		7507.50	Н	-52.12	9.41	-42.71	-25.00	PASS
		10010.00	Н	-54.75	12.69	-42.06		
		5070.00	Vertical	-42.80	7.32	-35.48		
		7605.00	V	-51.24	9.39	-41.85	-25.00	PASS
		10140.00	V	-55.16	12.78	-42.38		
5MHz	Mid	5070.00	Horizontal	-41.92	7.32	-34.60		
		7605.00	н	-51.20	9.39	-41.81	-25.00	PASS
OC.		10140.00	H	-55.61	12.78	-42.83		
		5135.00	Vertical	-41.47	7.33	-34.14		
		7702.50	V	-50.78	9.46	-41.32	-25.00	PASS
	CE	10270.00	V	-55.46	12.71	-42.75		E
	High	5135.00	Horizontal	-41.24	7.33	-33.91	00	PASS
		7702.50	Н	-52.16	9.46	-42.70	-25.00	
		10270.00	Н	-57.49	12.71	-44.78		
		5010.00	Vertical	-42.97	7.36	-35.61	-25.00	PASS
	000	7515.00	V	-51.51	9.51	-42.00		
		10020.00	V	-57.42	12.72	-44.70		
	Low	5010.00	Horizontal	-42.00	7.36	-34.64		
10MHz		7515.00	Н	-53.45	9.51	-43.94	-25.00	PASS
	0	10020.00	Н	-56.61	12.72	-43.89		0
		5070.00	Vertical	-41.00	7.41	-33.59		
	Mid	7605.00	V	-51.89	9.52	-42.37	-25.00	PASS
		10140.00	V	-55.90	12.73	-43.17		
		5070.00	Horizontal	-42.81	7.41	-35.40		
		7605.00	Н	-50.81	9.52	-41.29	-25.00	PASS
		10140.00	Н	-54.76	12.73	-42.03		
		5130.00	Vertical	-40.56	7.52	-33.04	6	
		7695.00	V	-52.57	9.46	-43.11	-25.00	PASS
		10260.00	V	-57.35	12.81	-44.54		
	High	5130.00	Horizontal	-41.45	7.52	-33.93		
		7695.00	Н	-52.56	9.46	-43.10	-25.00	PASS

	1				T	1	1	
		10260.00	Н	-55.23	12.81	-42.42		
		5015.00	Vertical	-40.72	7.61	-33.11		
	20	7522.50	V	-51.19	9.49	-41.70	-25.00	PASS
		10030.00	V	-55.75	12.86	-42.89		1
	Low	5015.00	Horizontal	-43.02	7.61	-35.41		
		7522.50	Н	-52.38	9.49	-42.89	-25.00	PASS
		10030.00	Н	-56.55	12.86	-43.69		
		5070.00	Vertical	-42.25	7.72	-34.53		
		7605.00	V	-51.39	9.53	-41.86	-25.00	PASS
ACM II	N 4: -I	10140.00	V	-54.84	12.84	-42.00		
15MHz	Mid	5070.00	Horizontal	-42.63	7.72	-34.91		
		7605.00	Н	-51.15	9.53	-41.62	-25.00	PASS
		10140.00	Н	-57.33	12.84	-44.49		
		5125.00	Vertical	-42.05	7.79	-34.26	- E	
		7687.50	V	-52.29	9.53	-42.76	-25.00	PASS
		10250.00	V	-56.98	12.89	-44.09		
	High	5125.00	Horizontal	-41.00	7.79	-33.21		
		7687.50	Н	-52.23	9.53	-42.70	-25.00	PASS
	CE	10250.00	Н	-55.54	12.89	-42.65		
PU		5020.00	Vertical	-41.81	7.81	-34.00	20	
		7530.00	V	-52.47	9.56	-42.91	-25.00	PASS
		10040.00	V	-55.35	12.91	-42.44		
	Low	5020.00	Horizontal	-40.98	7.81	-33.17		(
20MHz	DO	7530.00	Н	-51.77	9.56	-42.21	-25.00	PASS
		10040.00	Н	-55.70	12.91	-42.79		
		5070.00	Vertical	-41.86	7.83	-34.03		
	Mid	7605.00	V	-50.68	9.59	-41.09	-25.00	PASS
	D	10140.00	V	-56.11	12.94	-43.17		P
		5070.00	Horizontal	-41.57	7.83	-33.74		
		7605.00	Н	-52.63	9.59	-43.04	-25.00	PASS
		10140.00	Н	-55.29	12.94	-42.35		
		5120.00	Vertical	-41.39	7.89	-33.50		
		7680.00	V	-53.37	9.62	-43.75	-25.00	PASS
		10240.00	V	-42.48	7.29	-35.19		
	High	5120.00	Horizontal	-52.82	9.41	-43.41		
		7680.00	G	-55.76	12.69	-43.07	-25.00	PASS
		10240.00	Н	-41.02	7.29	-33.73		

LTE Band 38									
				Spurious Emi	ssion				
Bandwidth	Channel	Frequency (MHz)	Polarization	Reading (dBm)	Factor (dB)	Level (dBm)	Limit (dBm)	Result	
		5145.00	Vertical	-40.58	7.29	-33.29			
		7717.50	V	-51.89	9.41	-42.48	-25.00	PASS	
	Low	10290.00	V	-55.21	12.69	-42.52			
	LOW	5145.00	Horizontal	-41.25	7.29	-33.96			
		7717.50	Н	-53.18	9.41	-43.77	-25.00	PASS	
		10290.00	H	-57.47	12.69	-44.78			
		5190.00	Vertical	-42.18	7.32	-34.86			
		7785.00	V	-52.27	9.39	-42.88	-25.00	PASS	
5MHz	Mid	10380.00	V	-56.60	12.78	-43.82			
SIVITZ	IVIIU	5190.00	Horizontal	-42.52	7.32	-35.20	CE.		
OCE		7785.00	A CHUV	-50.72	9.39	-41.33	-25.00	PASS	
		10380.00	Н	-55.41	12.78	-42.63			
		5235.00	Vertical	-41.75	7.33	-34.42			
		7852.50	V	-51.50	9.46	-42.04	-25.00	PASS	
20		10470.00	V	-54.99	12.71	-42.28	000		
PO	High	5235.00	Horizontal	-41.40	7.33	-34.07	1		
		7852.50	Н	-51.20	9.46 -41.74	-25.00	PASS		
		10470.00	Н	-56.61	12.71	-43.90		CE	
	200	5150.00	Vertical	-40.91	7.36	-33.55		Or.	
400411-	P	7725.00	V	-52.34	9.51	-42.83	-25.00	PASS	
10MHz	Low	10300.00	V	-56.61	12.72	-43.89			
		5150.00	Horizontal	-40.65	7.36	-33.29	-25.00	PASS	
	0	7725.00	Н	-51.00	9.51	-41.49		00	
		10300.00	Н	-55.12	12.72	-42.40			
		5190.00	Vertical	-42.23	7.41	-34.82			
		7785.00	V	-52.76	9.52	-43.24	-25.00	PASS	
	NA: al	10380.00	V	-56.26	12.73	-43.53			
	Mid	5190.00	Horizontal	-42.78	7.41	-35.37			
		7785.00	Н	-51.23	9.52	-41.71	-25.00	PASS	
ac.		10380.00	Н	-54.56	12.73	-41.83			
CE		5230.00	Vertical	-42.90	7.52	-35.38			
		7845.00	V	-50.81	9.46	-41.35	-25.00	PASS	
		10460.00	V	-56.50	12.81	-43.69			
	High	5230.00	Horizontal	-41.35	7.52	-33.83	CE	S	

		7845.00	Н	-50.82	9.46	-41.36	-25.00	PASS
		10460.00	Н	-56.45	12.81	-43.64		
	60	5155.00	Vertical	-42.11	7.61	-34.50		OO
		7732.50	V	-51.27	9.49	-41.78	-25.00	PASS
	Law	10310.00	V	-56.89	12.86	-44.03		
	Low	5155.00	Horizontal	-41.10	7.61	-33.49		
		7732.50	Н	-52.07	9.49	-42.58	-25.00	PASS
		10310.00	Н	-55.62	12.86	-42.76		
		5190.00	Vertical	-41.04	7.72	-33.32		
		7785.00	V	-52.65	9.53	-43.12	-25.00	PASS
451411-	Mid	10380.00	V	-56.69	12.84	-43.85		
15MHz	IVIIG	5190.00	Horizontal	-41.63	7.72	-33.91		
		7785.00	Н	-51.37	9.53	-41.84	-25.00	PASS
		10380.00	Н	-56.48	12.84	-43.64	aE.	
		5225.00	Vertical	-42.38	7.79	-34.59	0	
		7837.50	V	-52.29	9.53	-42.76	-25.00	PASS
		10450.00	V	-56.05	12.89	-43.16		
	High	5225.00	Horizontal	-41.25	7.79	-33.46		
		7837.50	Н	-52.50	9.53	-42.97	-25.00	PASS
		10450.00	Н	-55.94	12.89	-43.05	PU	
		5160.00	Vertical	-42.80	7.81	-34.99		
001411		7740.00	V	-51.04	9.56	-41.48	-25.00	PASS
20MHz	Low	10320.00	V	-57.13	12.91	-44.22		OC!
	50-	5160.00	Horizontal	-41.67	7.81	-33.86	-25.00	PASS
		7740.00	Н	-52.27	9.56	-42.71		
		10320.00	Н	-55.93	12.91	-43.02		
		5190.00	Vertical	-41.97	7.83	-34.14		-(
	P	7785.00	V	-51.51	9.59	-41.92	-25.00	PASS
	No. 1	10380.00	V	-57.12	12.94	-44.18		
	Mid	5190.00	Horizontal	-41.40	7.83	-33.57		
		7785.00	Н	-51.80	9.59	-42.21	-25.00	PASS
		10380.00	Н	-55.70	12.94	-42.76		
		5220.00	Vertical	-41.09	7.89	-33.20		
		7830.00	V	-51.18	9.62	-41.56	-25.00	PASS
		10440.00	V	-40.58	7.29	-33.29		
	High	5220.00	Horizontal	-51.89	9.41	-42.48		
		7830.00	Н	-55.21	12.69	-42.52	-25.00	PASS
		10440.00	Н	-41.25	7.29	-33.96		

4.7 Frequency Stability

Test Requirement:	47 CFR Part 2.1055, Part 22.355 47 CFR Part 2.1055, Part 27.54
Test Limit:	+/- 2.5ppm
	The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block.
Test Method:	ANSI C63.26-2015, Section 5.6
Procedure:	Frequency stability over variations in temperature:
	a) Supply the EUT with a nominal 60 Hz ac voltage, dc voltage, or install a new or fully charged battery in the EUT.
	b) If possible a dummy load should be connected to the EUT because an antenna near the metallic
	walls of an environmental test chamber could affect the output frequency of the EUT. If the EUT is
	equipped with a permanently attached, adjustable-length antenna, the EUT should be placed in the
	center of the chamber with the antenna adjusted to the shortest length possible. c) Turn on the EUT, and tune it to the center frequency of the operating band. d) Couple the transmitter output to the measuring instrument through a suitable attenuator and coaxial
	cable. If connection to the EUT output is not possible, make the measurement by connecting an
	antenna to the measuring instrument with a suitable length of coaxial cable and placing the
	measuring antenna near the EUT (e.g., 15 cm away). NOTE—An instrument that has an adequate level of accuracy as specified by the procuring or regulatory authority is the recommended measuring instrument.
	e) Adjust the location of the measurement antenna and the controls on the measurement instrument to obtain a suitable signal level (i.e., a level that will not overload the measurement instrument, but is
	strong enough to allow measurement of the operating or fundamental frequency of the EUT).
	Adjust the detector bandwidth and span settings to achieve a resolution capable of accurate
	frequency measurements over the applicable frequency stability limits. f) Turn the EUT off, and place it inside the environmental temperature chamber. For devices that
	have oscillator heaters, energize only the heater circuit. g) Set the temperature control on the chamber to the highest temperature specified
	in the regulatory requirements for the type of device, and allow the oscillator heater and the chamber
	temperature to stabilize. Unless otherwise instructed by the regulatory authority, this temperature should be 50 °C.
	h) While maintaining a constant temperature inside the environmental chamber, turn on the EUT and
	allow sufficient time for the EUT temperature to stabilize. i) Measure the frequency.
	j) Switch off the EUT, but do not switch off the oscillator heater. k) Lower the chamber temperature to the next level that is required by the standard and allow the
	temperature inside the chamber to stabilize. Unless otherwise instructed by the regulators, this
	temperature step should be 10 °C. I) Repeat step h) through step k) down to the lowest specified temperature. Unless
	otherwise instructed by the regulators, this temperature should be -30 °C.

H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 30 of 33

When the frequency stability limit is stated as being sufficient such that the fundamental emissions

stay within the authorized bands of operation, a reference point shall be established at the

applicable unwanted emissions limit using a RBW equal to the RBW required by the unwanted

emissions specification of the applicable regulatory standard. These reference points measured

using the lowest and highest channel of operation shall be identified as fL and fH respectively. The

worst-case frequency offset determined in the above methods shall be added or subtracted from the

values of fL and fH and the resulting frequencies must remain within the band.

m) The following additional information is required for equipment incorporating heater type crystal

oscillators to be used in mobile stations except for battery powered, hand carried, and portable

equipment having mean output power lower than the threshold specified.

1) Measurement data showing variation in transmitter output frequency from a cold start and the

elapsed time necessary for the frequency to stabilize within the applicable tolerance. Tests

shall be made after temperature stabilization at each of the ambient temperature levels

required by the standard.

2) Beginning at each temperature level specified, the frequency shall be measured within 60 s

after application of primary power to the transmitter and at intervals of no more than 60 s

thereafter until 10 min have elapsed or until sufficient measurements are obtained to indicate

clearly that the frequency has stabilized within the applicable tolerance, whichever time

period is greater.

3) The elapsed time necessary for the frequency to stabilize within the applicable tolerance from

each beginning temperature level as determined from the tests specified in this paragraph shall

be specified in the instruction book for the transmitter furnished to the user.

4) When it is impracticable to subject the complete transmitter to this test because of its physical

dimensions or power rating, only its frequency determining and stabilizing portions need be tested.

Frequency stability when varying supply voltage:

a) Couple the transmitter output to the measuring instrument through a suitable attenuator and coaxial

cable. If connection to the EUT output is not possible make the measurement by connecting an

antenna to the measuring instrument with a suitable length of coaxial cable and placing the

measuring antenna near the EUT (e.g., 15 cm away)

b) Supply the EUT with nominal ac or dc voltage. The supply voltage shall be measured at the input

to the cable normally provided with the equipment, or at the power supply terminals if cables are

not normally provided. Effects on frequency of transmitter keying (except for broadcast

transmitters) and any heating element cycling at the nominal supply voltage and at each extreme

H1 Building 102, H Building 1/F, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 31 of 33

also shall be shown.

- c) Turn on the EUT, and couple its output to a frequency counter or other frequencymeasuring instrument.
- d) Tune the EUT to the center frequency of the operating band. Adjust the location of the

measurement antenna and the controls on the measurement instrument to obtain a suitable signal

level (i.e., a level that will not overload the measurement instrument, but is strong enough to allow

measurement of the operating or fundamental frequency of the EUT). Adjust the detector

bandwidth and span settings to achieve a resolution capable of accurate frequency measurements

over the applicable frequency stability limits.

NOTE—An instrument that has an adequate level of accuracy as specified by the procuring or regulatory

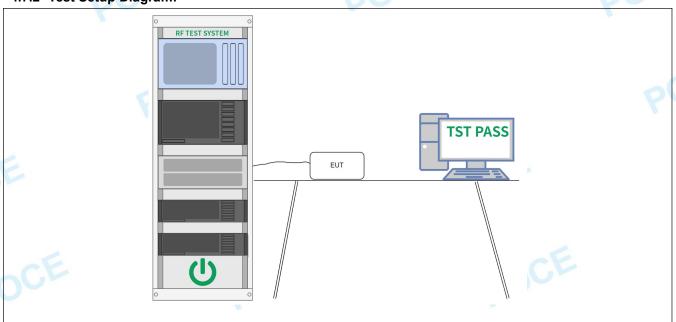
authority is the recommended measuring instrument.

- e) Measure the frequency.
- f) Unless otherwise specified, vary primary supply voltage from 85% to 115% of the nominal value

for other than hand carried battery equipment.

g) For hand carried, battery powered equipment, reduce the primary ac or dc supply voltage to the

battery operating end point, which shall be specified by the manufacturer.


h) Repeat the frequency measurement.

NOTE—For band-edge compliance, it can be required to make these measurements at the low and high channel of the operating band.

4.7.1 E.U.T. Operation:

Operating Environment:							
Temperature:	23.8 °C		Humidity:	55.8 %	Atmospheric Pressure:	102 kPa	
Pre test mode:		TM1,	TM2, TM3				
Final test mode:		TM1,	TM2, TM3		-CE		

4.7.2 Test Setup Diagram:

4.7.3 Test Data:

Please Refer to FCC-LTE Appendix Test Data B5,B7,B38 for Details.

5 TEST SETUP PHOTOS

Refer to Appendix - Test Setup Photos

6 PHOTOS OF THE EUT

Refer to Appendix - EUT Photos