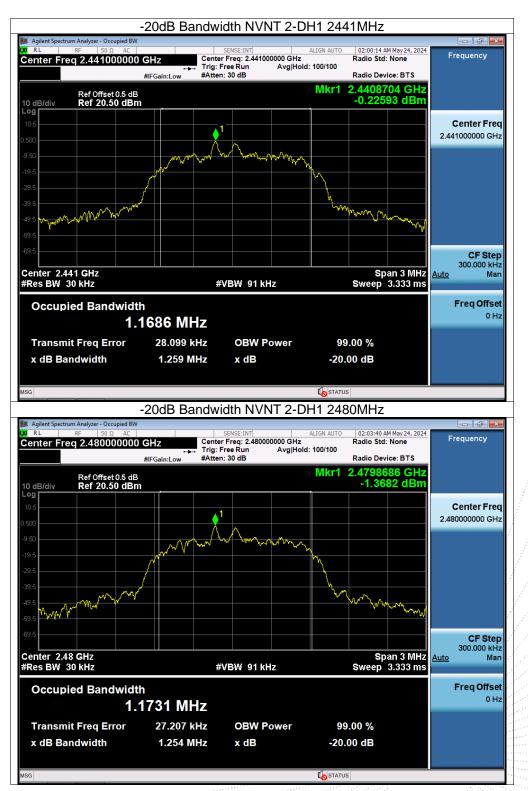
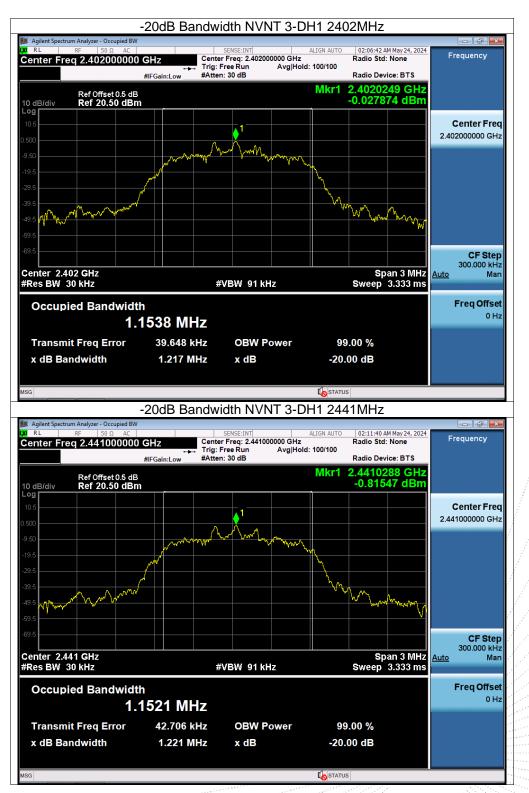


79



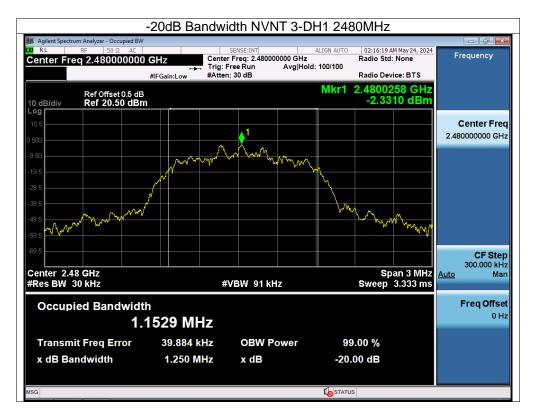
No.: BCTC/RF-EMC-005

79



еро

79



79

No.: BCTC/RF-EMC-005

Page: 53 of 79

11. Maximum Peak Output Power

11.1 Block Diagram Of Test Setup

EUT	SPECTRUM
	ANALYZER

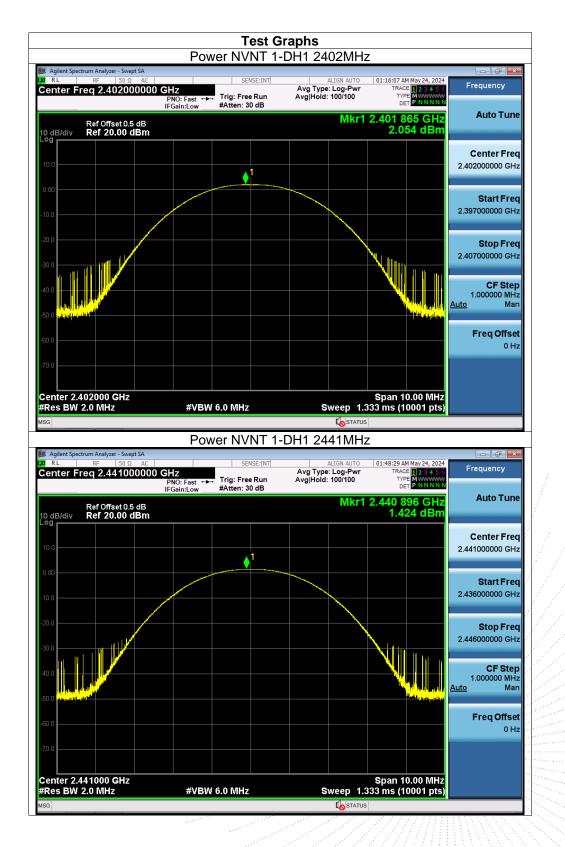
11.2 Limit

FCC Part15 (15.247) , Subpart C							
Section	n Test Item Limit Frequency Range (MHz) Result						
15.247(b)(1)	Peak Output Power	0.125 watt or 21dBm	2400-2483.5	PASS			

11.3 Test procedure

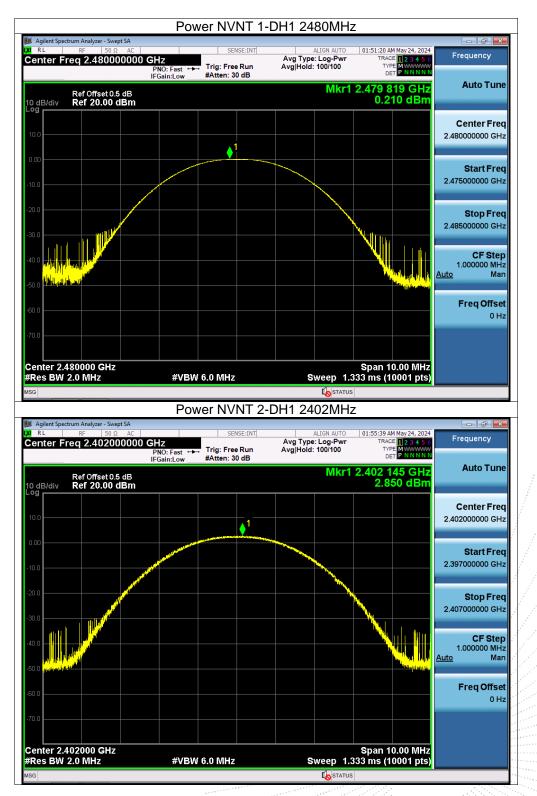
1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

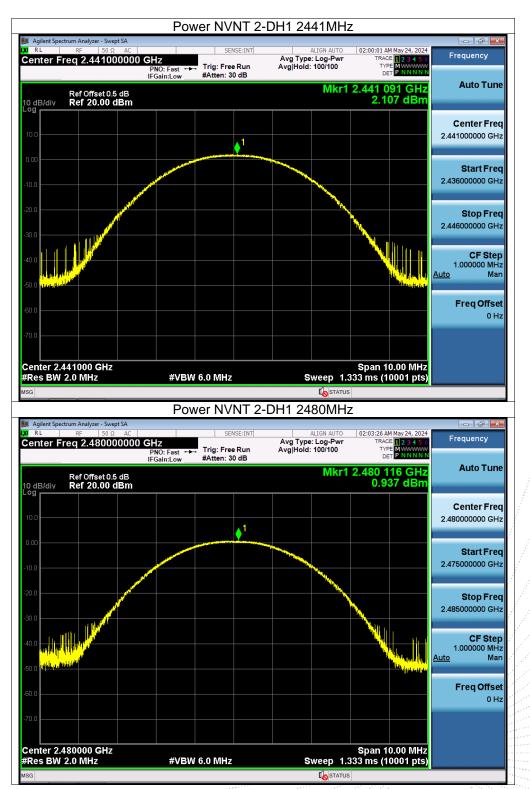
2. Set the spectrum analyzer: RBW = 2MHz. VBW = 6MHz. Sweep = auto; Detector Function = Peak.

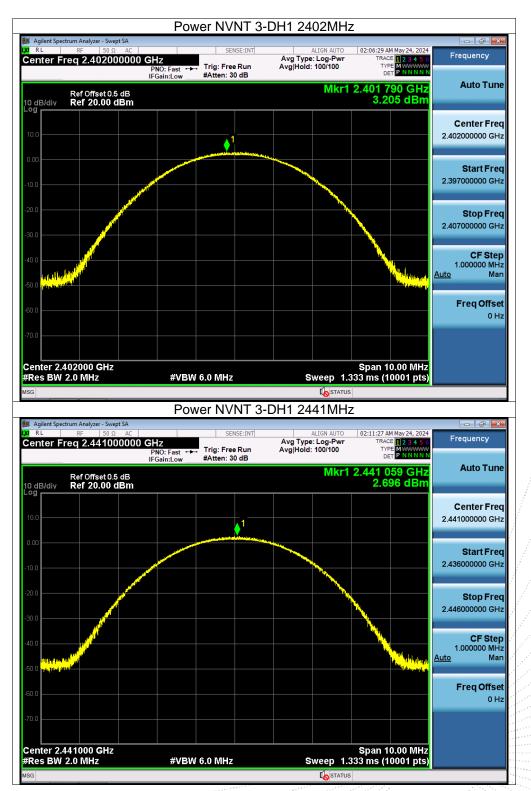

3. Keep the EUT in transmitting at lowest, medium and highest channel individually. Record the max value.

11.4 Test Result

Temperature:	26 °C	Relative Humidity: 54%
Test Voltage:	DC 3.7V	Remark: N/A
		\sim NNNNNN H $HH///////////$

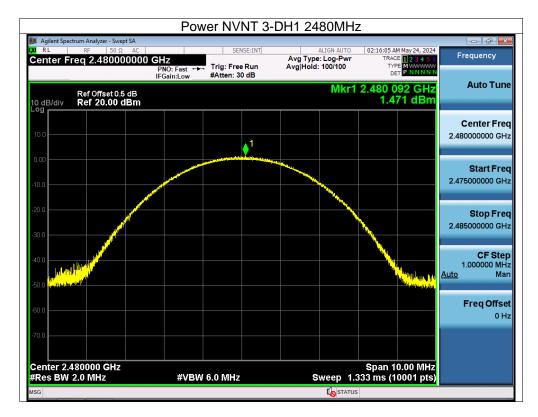

Condition	Mode	Frequency (MHz)	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	1-DH1	2402	2.05	21	Pass
NVNT	1-DH1	2441	1.42	21	Pass
NVNT	1-DH1	2480	0.21	21	Pass
NVNT	2-DH1	2402	2.85	21	Pass
NVNT	2-DH1	2441	2.11	21	Pass
NVNT	2-DH1	2480	0.94	21	Pass
NVNT	3-DH1	2402	3.21	21	Pass
NVNT	3-DH1	2441	2.7	21	Pass
NVNT	3-DH1	2480	1.47	21	Pass





JC JC PPR

еро


79

No.: BCTC/RF-EMC-005

Page: 59 of 79

12. **Hopping Channel Separation**

12.1 Block Diagram Of Test Setup

12.2 Limit

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 0.125W.

12.3 Test procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

2. Set the spectrum analyzer: RBW = 30kHz. VBW = 100kHz , Span = 2.0MHz. Sweep = auto; Detector Function = Peak. Trace = Max hold.

3. Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. The limit is specified in one of the subparagraphs of this Section Submit this plot.

0.814

0.833

Temperature:	26 ℃			Relativ	e Humidity:	54%	
Test Voltage:	DC 3.7V	1000 A.		Remar	k:	N/A	
			and the second sec				
Condition	Mode	Hopping Freq1 (MHz)	Hop Freq2	ping (MHz)	HFS (MHz)	Limit (MHz)	Verdict
NVNT	1-DH1	2401.868	2402	.868	1	0.572	Pass
NVNT	1-DH1	2440.868	2441	.868	1	0.609	Pass
NVNT	1-DH1	2478.868	2479	.868	1	0.583	Pass
NVNT	2-DH1	2401.868	2402	.868	1	0.834	Pass
NVNT	2-DH1	2440.868	2441	.868	1	0.839	Pass
NVNT	2-DH1	2478.868	2479	.868	1	0.836	Pass
NVNT	3-DH1	2402.024	2403	.026	1.002	0.811	Pass

2442.026

2480.028

12.4 Test Result

3-DH1

3-DH1

2441.026

2479.028

NVNT

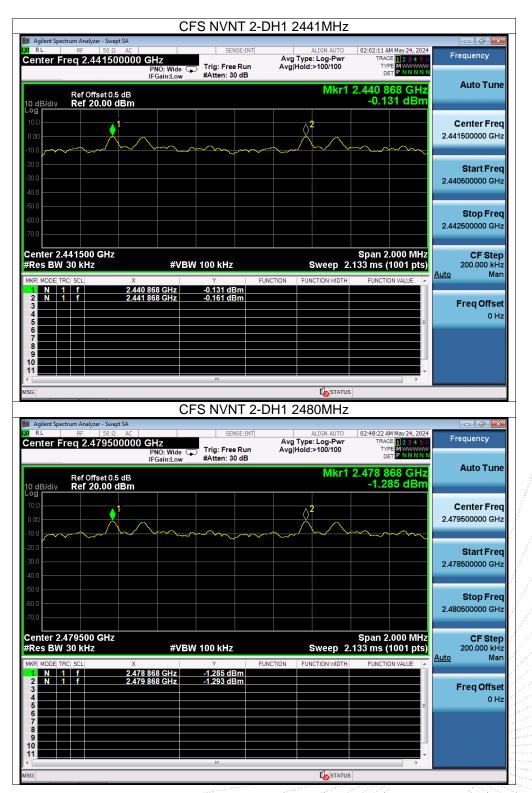
NVNT

1

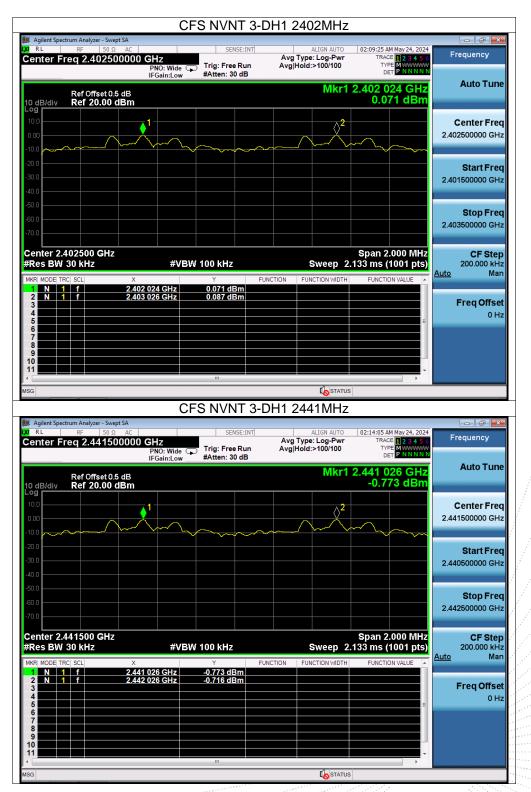
1

Pass

Pass


Edition: B.2

No.: BCTC/RF-EMC-005



JC JC PPR

еро

TE OVE

CFS NVNT 3-DH1 2480MHz							
	SENSE:INT	ALIGN AUTO Avg Type: Log-Pwr Avg Hold:>100/100	02:18:26 AM May 24, 2024 TRACE 1 2 3 4 5 6 TYPE M WWWWW	Frequency			
Ref Offset 0.5 dB	Atten: 30 dB	Mkr1	2.479 028 GHz -2.008 dBm	Auto Tune			
Log 10.0 0.00 -10.0		²	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Center Freq 2.479500000 GHz			
-20.0				Start Fred 2.478500000 GHz			
-50.0 -60.0 -70.0				Stop Fred 2.480500000 GH:			
Center 2.479500 GHz #Res BW 30 kHz #VBW 10	00 kHz	Sweep 2	Span 2.000 MHz .133 ms (1001 pts)	CF Step 200.000 kH Auto Mar			
MKR MODE TRC SCL X 1 N 1 f 2.479 028 GHz -2 2 N 1 f 2.480 028 GHz -2 3	Y FUNC 2.008 dBm 2.060 dBm	CTION FUNCTION WIDTH	FUNCTION VALUE	Freq Offset			
6 7 8 9 10							
11 ∢ (MSG		STATUS	×				

13. Number Of Hopping Frequency

13.1 Block Diagram Of Test Setup

13.2 Limit

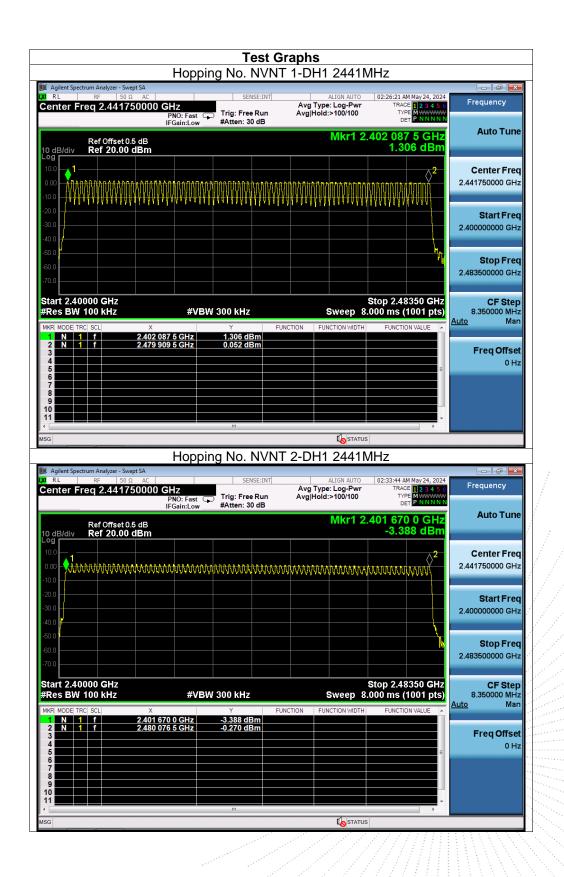
Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

13.3 Test procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

2. Set the spectrum analyzer: RBW = 100kHz. VBW = 300kHz. Sweep = auto; Detector Function = Peak. Trace = Max hold.

3. Allow the trace to stabilize. It may prove necessary to break the span up to sections. in order to clearly show all of the hopping frequencies. The limit is specified in one of the subparagraphs of this Section.
4. Set the spectrum analyzer: Start Frequency = 2.4GHz, Stop Frequency = 2.4835GHz. Sweep=auto;


13.4 Test Result

Temperature:	26 ℃	Relative Humidity:	54%]
Test Voltage:	DC 3.7V	Remark:	N/A				1		
				1	1	1	/	1. J.	

Condition	Mode	Hopping Number	Limit	Verdict
NVNT	1-DH1	79	15	Pass
NVNT	2-DH1	79	15	Pass
NVNT	3-DH1	79	15	Pass

Hopping No. NVNT 3-DH1 2441MHz								
Agilent Spectrum Analyzer - Swept SA M RL RF 50 Ω AC Center Freq 2.441750000 GHz PNO: FasileGaint on Elegation PNO: FasileGaint on Elegation		ALIGN AUTO Avg Type: Log-Pwr Avg Hold:>100/100	02:39:17 AM May 24, 2024 TRACE 1 2 3 4 5 6 TYPE MWWWW DET P N N N N	Frequency				
Ref Offset 0.5 dB 10 dB/div Ref 20.00 dBm	10 dB/div Ref 20.00 dBm -0.436 dBm							
	MMMMMMMMM	anananaana		Center Freq 2.441750000 GHz				
-20.0				Start Freq 2.400000000 GHz				
-50.0			u	Stop Freq 2.483500000 GHz				
Start 2.40000 GHz #Res BW 100 kHz #\	/BW 300 kHz		Stop 2.48350 GHz 000 ms (1001 pts)	CF Step 8.350000 MHz Auto Man				
MKR MODE TRC SCL X 1 1 f 2.401 837 0 GHz 2 2 N 1 f 2.479 993 0 GHz 3 4 5 5 5	Y FUN -0.436 dBm -0.117 dBm	CTION FUNCTION WIDTH	FUNCTION VALUE	<u>Auto</u> Man Freq Offset 0 Hz				
6 7 8 9 10 11								
MSG	m	To STATUS	Þ					

14. Dwell Time

14.1 Block Diagram Of Test Setup

14.2 Limit

Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

14.3 Test procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

2. Set spectrum analyzer span = 0. Centred on a hopping channel;

3. Set RBW = 1MHz and VBW = 3MHz.Sweep = as necessary to capture the entire dwell time per hopping channel. Set the EUT for DH5, DH3 and DH1 packet transmitting.

4. Use the marker-delta function to determine the dwell time. If this value varies with different modes of operation (e.g., data rate, modulation format, etc.), repeat this test for each variation. The limit is specified in one of the subparagraphs of this Section. Submit this plot(s).

14.4 Test Result

DH5 Packet permit maximum 1600 / 79 / 6 hops per second in each channel (5 time slots RX, 1 time slot TX).

DH3 Packet permit maximum 1600 / 79 / 4 hops per second in each channel (3 time slots RX, 1 time slot TX).

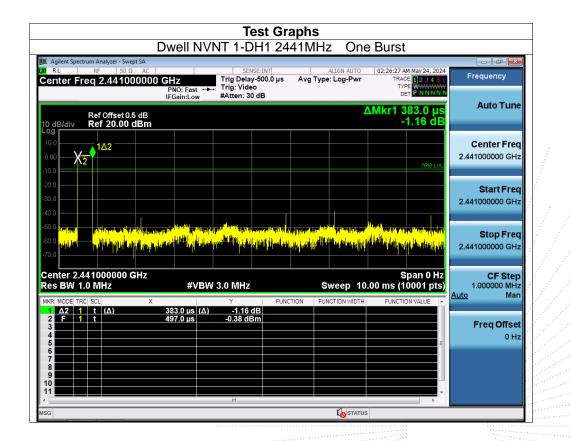
DH1 Packet permit maximum 1600 / 79 /2 hops per second in each channel (1 time slot RX, 1 time slot TX). So, the Dwell Time can be calculated as follows:

No.: BCTC/RF-EMC-005

Page: 69 of

Edition: B.2

ТC


PR

^epoi

Temperature:	26 ℃	Relative Humidity:	54%
Test Voltage:	DC 3.7V	Remark:	N/A

Condition	Mode	Frequency (MHz)	Pulse Time (ms)	Total Dwell Time (s)	Limit (s)	Verdict
NVNT	1-DH1	2441	0.383	0.123	0.4	Pass
NVNT	1-DH3	2441	1.639	0.262	0.4	Pass
NVNT	1-DH5	2441	2.887	0.308	0.4	Pass
NVNT	2-DH1	2441	0.393	0.126	0.4	Pass
NVNT	2-DH3	2441	1.645	0.263	0.4	Pass
NVNT	2-DH5	2441	2.892	0.308	0.4	Pass
NVNT	3-DH1	2441	0.392	0.125	0.4	Pass
NVNT	3-DH3	2441	1.643	0.263	0.4	Pass
NVNT	3-DH5	2441	2.894	0.309	0.4	Pass

TE OVE

	Dw	ell NV	NT 1-DH	3 2441	MHz	One	e Burst			
LXI RL F		NO: Fast 🔸	SENSE: Trig Delay-50 Trig: Video #Atten: 30 dE	00.0 µs A		LIGN AUTO	TRAC	M May 24, 2024 CE 1 2 3 4 5 6 PE WWWWWWW	Frequ	iency
10 dB/div R	ef Offset 0.5 dB ef 20.00 dBm	Gain:Low	#Atten: 30 dr	5		Δ		. <mark>639 ms</mark> 2.28 dB	Αι	ito Tun
10.0 0.00 -10.0	1 <u>42</u>							TRIG LVL	Cen 2.44100	i ter Fre 0000 GH
-20.0									St 2.44100	art Fre 0000 G⊢
-50.0 -60.0	and the solution of the soluti	addae production <mark>T</mark> agar officially a	n a stal a temperatur a tem Risea a ta temperatur a temperatur	n de la dela de la de Transla e a de la de T		<mark>indika dalah Tilangan dalah k</mark>	n Film dadi Nanjar	de de la compo Notal de la compo Notal de la compositione	S1 2.44100	t op Fre 0000 G⊢
Center 2.441 Res BW 1.0 M		#VBW	V 3.0 MHz		Sv	veep 10		pan 0 Hz 0001 pts)		CF Ste 0000 M⊦ Ma
MKR MODE TRC SO 1 A2 1 t 2 F 1 t 3	t (Δ) 1.6	39 ms (Δ) 44.0 μs	Y 2.28 dB -15.53 dBm	FUNCTION	FUN	CTION WIDTH	FUNCTI	DN VALUE		e q Offs e 0 ⊦
۲ آ			m					Þ		

Dwell NVNT 1-DH5 2441MHz One Burst L Agil 02:42:03 AM May 24, 2024 ALIGN AUTO Avg Type: Log-Pwr Frequency Trig Delay-500.0 μs Trig: Video #Atten: 30 dB Center Freq 2.441000000 GHz ACE 1 2 3 4 5 TYPE DET PNO: Fast • IFGain:Low ΔMkr1 2.887 ms -0.84 dB Auto Tune Ref Offset 0.5 dB Ref 20.00 dBm l0 dB/di -og r **Center Freq** 2.441000000 GHz <u>1∆2</u> X.m.padrumpaan.tom.co Start Freq 2.441000000 GHz Stop Freq المحافظ والمراجع والمحافظ والمحافظ والمحافظ والمحافظ والمحافظ والمحافظ والمحافظ والمحافظ والمحافظ الم 2.441000000 GHz Center 2.441000000 GHz Res BW 1.0 MHz Span 0 Hz Sweep 10.00 ms (10001 pts) CF Step 1.000000 MHz Man #VBW 3.0 MHz <u>Auto</u> 2.887 ms (Δ) 485.0 μs 2 <u>1</u> t (Δ) -0.84 dE **Freq Offset** 0 Hz **STATUS**

79

		II NVNT 2-	DH1 2441	1MHz On	e Burst	
Agilent Spectrum Analyzer R RL RF Center Freq 2.44	50 Ω AC 1000000 GHz	Fast ↔ Trig De	deo	ALIGN AUTO Avg Type: Log-Pwr	02:33:50 AM May 24, 2024 TRACE 123456 TYPE WWWWW DET PNNNN	Frequency
Ref Offso 10 dB/div Ref 20.					ΔMkr1 393.0 μs 1.98 dB	
10.0 0.00 10.0					TRIG LVL	Center Free 2.441000000 GH
-20.0						Start Free
-30.0						2.441000000 GH
-40.0		rt 1 Nig Dissource verting to state by a Nig of the state	hanna hartisilila kun Hanna paji ^{dan h} andah	n balan (da da baran seconda Altan (da <mark>ba</mark> la)		Stop Fre
-40.0 -50.0 <mark>NI April -60.0 <mark>NI April</mark></mark>	<mark>a shi sheki ka sheki ka kuma ana</mark>	#VBW 3.0 MH	<mark>linennall^{annin}nda</mark> u	den gla anti-tapangalar	Span 0 Hz 0.00 ms (10001 pts)	Stop Fre 2.44100000 GH CF Ste 1.00000 MH
40 0 -0.0 0 (4.1) -0.0 0 (4	00 GHz	#VBW 3.0 MH	EUNCTION 8 dB	Sweep 1	Span 0 Hz 0.00 ms (10001 pts)	Stop Fre 2.44100000 GH CF Ste 1.00000 MH Auto Ma Freq Offse
40.0 40.0	00 GHz × 393.0	#VBW 3.0 MH	EUNCTION 8 dB	Sweep 1	Span 0 Hz 0.00 ms (10001 pts)	Stop Fre 2.44100000 GH CF Ste 1.00000 MH
40.0 40.0 50.0	00 GHz × 393.0	#VBW 3.0 MH	EUNCTION 8 dB	Sweep 1	Span 0 Hz 0.00 ms (10001 pts)	Stop Fre 2.44100000 GH CF Ste 1.000000 MH Auto Ma Freq Offse

Dwell NVNT 2-DH3 2441MHz One Burst L Agil 02:43:00 AM May 24, 2024 ALIGN AUTO Avg Type: Log-Pwr Frequency Trig Delay-500.0 μs Trig: Video #Atten: 30 dB Center Freq 2.441000000 GHz ACE 1 2 3 4 5 PNO: Fast IFGain:Low NNNN DET Auto Tune ΔMkr1 1.645 ms 0.63 dB Ref Offset 0.5 dB Ref 20.00 dBm 0 dB/di .og r **Center Freq** 1<u>Δ</u>2 2.441000000 GHz X2 Start Freq 2.441000000 GHz Stop Freq a a the in provide a set of the set of t 2.441000000 GHz Center 2.441000000 GHz Res BW 1.0 MHz Span 0 Hz Sweep 10.00 ms (10001 pts) CF Step 1.000000 MHz Man #VBW 3.0 MHz <u>Auto</u> 1.645 ms (Δ) 497.0 μs 2 <u>1</u> t (Δ) 0.63 dB -7.43 dBm Freq Offset 0 Hz

C. CO., LTA

STATUS

D	well NVNT 2-DH5	2441MHz One I	Burst	
Agilent Spectrum Analyzer - Swept SA Ν RL RF 50 Ω AC Center Freg 2.441000000 G	SENSE:INT		02:43:51 AM May 24, 2024	Frequency
	PNO: Fast +++ IFGain:Low #Atten: 30 dB			Auto Tune
Ref Offset 0.5 dB 10 dB/div Ref 20.00 dBm		ΔΜ	kr1 2.892 ms -4.97 dB	AutoTune
10.0 -10.0	1Δ2		TRIQ LVL	Center Freq 2.441000000 GHz
-20.0				Start Freq 2.441000000 GHz
-50.0 (10.0) (10	an ann an	ullense stadil a stadil and a net and a stadil and a stadil 19 au top ta part (participant and a stadil and		Stop Freq 2.441000000 GHz
Center 2.441000000 GHz Res BW 1.0 MHz	#VBW 3.0 MHz	Sweep 10.00	Span 0 Hz 0 ms (10001 pts)	CF Step 1.000000 MHz Auto Man
	2.892 ms (Δ) -4.97 dB 497.0 us 0.36 dBm	FUNCTION FUNCTION WIDTH	FUNCTION VALUE	india india
3 4 4 5 4 5 4 5 4 5 4 5 5 5 5 5 5 5 5 5	497.0 µs 0.36 dBm		=	Freq Offset 0 Hz
6 7 8 9 9 10				
MSG		STATUS		

	1
	J
ŀ	
	\geq
L	L
N	1

Dwell NVNT 3-DH1 2441MHz One Burst L Agil 02:39:23 AM May 24, 2024 ALIGN AUTO Avg Type: Log-Pwr Frequency Trig Delay-500.0 µs Trig: Video #Atten: 30 dB Center Freq 2.441000000 GHz RACE 1 2 3 4 5 TYPE DET PNO: Fast • IFGain:Low NNNN Auto Tune ΔMkr1 392.0 μs 0.96 dB Ref Offset 0.5 dB Ref 20.00 dBm **Center Freq** Δ2 2.441000000 GHz Х<mark>г</mark> Start Freq 2.441000000 GHz Stop Freq 2.441000000 GHz Center 2.441000000 GHz Res BW 1.0 MHz Span 0 Hz Sweep 10.00 ms (10001 pts) CF Step 1.000000 MHz Man #VBW 3.0 MHz <u>Auto</u> 392.0 μs (Δ) 497.0 μs 2 1 t (Δ) 1 t 0.96 dB -1.97 dBm Freq Offset 0 Hz **STATUS**

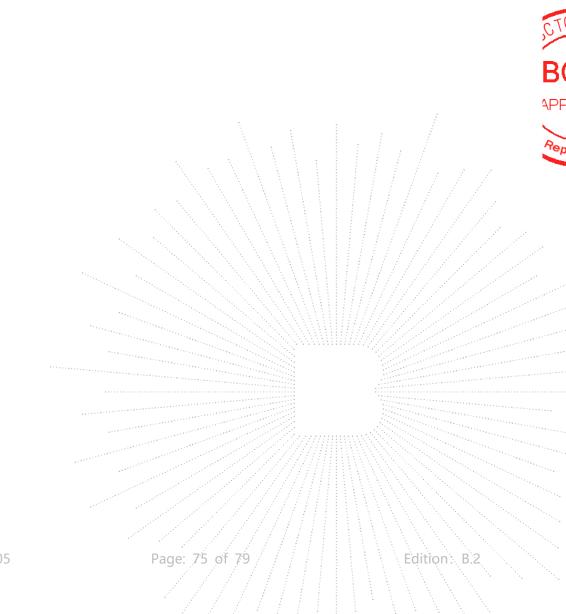
	Dwell N	VNT 3-DH3	2441MHz	z One	e Burst	
Agilent Spectrum Analyzer - RL RF 5 Center Freq 2.441	50 Ω AC	SENSE:INT Trig Delay-500.0		ALIGN AUTO	02:44:45 AM May 24, 2024 TRACE 1 2 3 4 5 (TYPE	Frequency
Ref Offset 10 dB/div Ref 20.0	IFGain:Low	#Atten: 30 dB		Δ	Mkr1 1.643 ms -1.75 dB	Auto Tune
Log 10.0 0.00 -10.0	1Δ2				TRIG LVL	Center Fred 2.441000000 GH;
-20.0 -30.0 -40.0						Start Free 2.441000000 GH
-50.0 <mark>17 - 102</mark> -60.0 01 01 01 01 01 -70.0		lan dini di Aleksi in di Angelan Rina di Angelan Rina di Angelan	izan ya Kalada na Kila Mala na Kilangi Mala na		triperi i fan ferster ferster ferster ferster Gebeure i ferster ferster ferster ferster ferster ferster ferster Gebeure i ferster ferst	Stop Fre 2.441000000 GH
Center 2.44100000 Res BW 1.0 MHz		3W 3.0 MHz	s	weep 10	Span 0 Hz .00 ms (10001 pts)	CF Ste 1.000000 MH Auto Ma
MKR MODE TRC SCL 1 Δ2 1 t (Δ) 2 F 1 t (Δ) 3 - - - - 6 - - - - 7 - - - - 8 - - - - 9 - - - - 10 - - - -	Х 1.643 ms (, 497.0 µs	-0.61 dBm	FUNCTION FUN	ICTION WIDTH	FUNCTION VALUE	Freq Offse 0 H
MSG		III		I o status		

2024 Frequency Auto Tune Center Freq 2.441000000 GHz Start Freq 2.441000000 GHz CF Step 1.000000 MHz

Dwell NVNT 3-DH5 2441MHz One Burst

MR ALIGN ATO D2:45:42 At May 24, 2024 Center Freq 2.441000000 GHz IFGaint.cow Trig: Video #Atten: 30 dB Trace: 2:43 G Trace: 2:43 G Trace: 2:44 dB Frequency 000 Ref Offset0.5 dB Center Freq 2.441000000 GHz Center Freq 2.441000000 GHz Center Freq 2.441000000 GHz Auto Tune 000 D00 D00 D00 D00 D00 D00 Center Freq 2.441000000 GHz Center Freq 2.441000000 GHz Center Freq 2.441000000 GHz 000 D00 D00 D00 D00 D00 D00 D00 D00 D00 Center Freq 2.441000000 GHz Center Freq 2.441000000 GHz 000 D00	Agilent Spectrum Analyzer - Swept SA						
PNO: Fast Trig: Video Trig: Video Auto Tune 100 B AMkr1 2.894 ms Center Freq 100 B 100 Center Freq Center Freq 100 Auto Tune Trig: Video Center Freq Center Freq 100 Auto Tune Trig: Video Center Freq Center Freq 200 Auto Tune Trig: Video Trig: Video Center Freq 200 Auto Tune Trig: Video Trig: Video Center Freq 200 Auto Tune Trig: Video Trig: Video Center Freq 200 Auto Tune Trig: Video Trig: Video Center Freq 200 Auto Tune Auto Tune Start Freq Center Freq 200 Auto Tune Auto Tune Start Freq Center Freq 200 Auto Tune Auto Tune Start Freq Center Freq 200 Auto Tune Auto Tune Start Freq Center Freq 200 Auto Tune Auto Tune Start Freq Center Freq 201 Auto Tune Auto Tune Start Freq <th></th> <th>GHz</th> <th></th> <th></th> <th></th> <th>02:45:42 AM May 24, 2024 TRACE 1 2 3 4 5 6</th> <th>Frequency</th>		GHz				02:45:42 AM May 24, 2024 TRACE 1 2 3 4 5 6	Frequency
Ref Offset 0.5 dB AMkr1 2.894 ms Auto Tune 10 dB/div Ref 20.00 dBm 2.44 dB Center Freq 10 dB/div Image: Start Freq 2.441000000 GHz Start Freq 200 Image: Start Freq 2.441000000 GHz Start Freq 2.411000000 GHz Freq Span 0 Hz Span 0 Hz 2 F 1 t 484.0 µz Y Function Function Vidth 11 Image: Start Freq Start Freq 2.441000000 GHz Start Freq 1000 Image: Start Freq Span 0 Hz Span 0 Hz Start Freq 1000 Image: Start Freq Span 0 Hz Span 0 Hz Start Freq 1000 Image: Start Freq Span 0 Hz Start Freq Start Freq 1000 Image: Start Freq Start Freq Start Freq Start Freq 1000 Image: Start Freq Start Freq Start Freq Start Freq <th></th> <th>PNO: Fast 🔸</th> <th></th> <th></th> <th></th> <th>TYPE WWWWWW</th> <th></th>		PNO: Fast 🔸				TYPE WWWWWW	
Construction Construction Construction Center Free 100		I Guineou			Δ		Auto Tune
100 X2 Y2	Log 10.0	102					
500 Average of a participation of a partic	-20.0	de libre a de la company					
Res BW 1.0 MHz #VBW 3.0 MHz Sweep 10.00 ms (10001 pts) 1.00000 MHz MKR MODE TC X Y FUNCTION FUNCTION WIDTH FUNCTION VALUE Auto Man 1 Δ2 1 t (Δ) 2.894 ms (Δ) 2.44 dB Function Function width Function value Freq Offset 0 D Auto Man Freq Offset 0 Hz Hz F	-50.0 0000000000000000000000000000000000	17		deriveller for helt film en en phi fister og ek gester	and a start of the s and a start of the st		
1 Δ2 1 t (Δ) 2.894 ms (Δ) 2.44 dB 2 F 1 t 484.0 µs -13.83 dBm -13.83 dBm 3 -13.83 dBm -13.83 dBm -13.83 dBm -13.83 dBm -13.83 dBm 5 - - - - - - 0 Hz 6 - - - - - - 0 Hz 0 Hz 7 - - - - - - - 0 Hz 0 Hz - 0 Hz 0 Hz - 0 Hz 0 Hz - 0 Hz 0 Hz 0 Hz - 0 Hz - 0 Hz	Res BW 1.0 MHz	#VBW			•	.00 ms (10001 pts)	1.000000 MH
	1 Δ2 1 t (Δ) 2 F 1 t		2.44 dB	FUNCTION	FUNCTION WIDTH	FUNCTION VALUE	
	7						
MSG Los STATUS			III				
	MSG					3	

79


15. Antenna Requirement

15.1 Limit

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

15.2 Test Result

The EUT antenna is Internal antenna, fulfill the requirement of this section.

No.: BCTC/RF-EMC-005

16. EUT Photographs

EUT Photo 1

EUT Photo 2

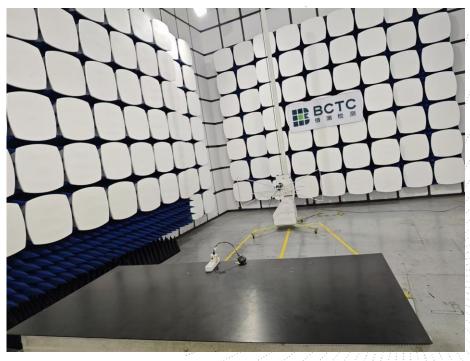
NOTE: Appendix-Photographs Of EUT Constructional Details.

No.: BCTC/RF-EMC-005

Edition: B.2

RC

ort



17. EUT Test Setup Photographs

Conducted Emissions Photo

Radiated Measurement Photos

No.: BCTC/RF-EMC-005

Edition: B.2

TC VE

Sea

Page: 78 of 79

Edition: B.2

D

STATEMENT

1. The equipment lists are traceable to the national reference standards.

2. The test report can not be partially copied unless prior written approval is issued from our lab.

3. The test report is invalid without the "special seal for inspection and testing".

4. The test report is invalid without the signature of the approver.

5. The test process and test result is only related to the Unit Under Test.

6. Sample information is provided by the client and the laboratory is not responsible for its authenticity.

7. The quality system of our laboratory is in accordance with ISO/IEC17025.

8. If there is any objection to this test report, the client should inform issuing laboratory within 15 days from the date of receiving test report.

Address:

1-2/F., Building B, Pengzhou Industrial Park, No.158, Fuyuan 1st Road, Zhancheng, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, China

TEL: 400-788-9558

P.C.: 518103

FAX: 0755-33229357

Website: http://www.chnbctc.com

Consultation E-mail: bctc@bctc-lab.com.cn.

Complaint/Advice E-mail: advice@bctc-lab.com.cn

***** END *****

No.: BCTC/RF-EMC-005

Page: 79 of 79