	C /XYJ Chnology				
	TEST REP	ORT			
FCC ID :	2BE9P-ATKX1ULTIMATE				
Test Report No:	TCT241108E040				
Date of issue:	Nov. 12, 2024	Nov. 12, 2024			
Testing laboratory :	SHENZHEN TONGCE TE	ESTING LAB			
Testing location/ address:	2101 & 2201, Zhenchang Subdistrict, Bao'an Distric People's Republic of Chir	t, Shenzhen, Gua			
Applicant's name: :	Shenzhen Yizhita Techno	logy Co., Ltd			
Address:	Room 1901, Qianhai HOP Int'l, No. 19 Xinghua 1st Rd (Extension), Bao'an District, Shenzhen, Guangdong, China.				
Manufacturer's name :	Shenzhen Yizhita Techno	logy Co., Ltd			
Address:	Room 1901, Qianhai HOP Int'l, No. 19 Xinghua 1st Rd (Extension), Bao'an District, Shenzhen, Guangdong, China.				
Standard(s):	FCC CFR Title 47 Part 15 Subpart C Section 15.247 FCC KDB 558074 D01 15.247 Meas Guidance v05r02 ANSI C63.10:2020				
Product Name::	ATK BLAZING SKY X1 ULTIMATE ULTRA LIGHTWEIGHT WIRELESS MOUSE				
Trade Mark :	ATK	ATK C			
Model/Type reference :	ATK X1 Ultimate				
Rating(s):	DC 5V (AC 120V/60Hz fro	om Adapter) & DC	3.7V from Battery		
Date of receipt of test item	Sep. 20, 2024				
Date (s) of performance of test:	Sep. 20, 2024 ~ Oct. 10, 2	2024			
Tested by (+signature) :	Ronaldo LUO	Ronald	2 64035F 7		
Check by (+signature) :	Beryl ZHAO	Boyler	TCT		
	Tomsin				

This report shall not be reproduced except in full, without the written approval of SHENZHEN TONGCE TESTING LAB. This document may be altered or revised by SHENZHEN TONGCE TESTING LAB personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample.

Table of Contents

1. General Product Information	
1.1. EUT description	3
1.2. Model(s) list	3
1.3. Operation Frequency	3
2. Test Result Summary	
3. General Information	
3.1. Test environment and mode	5
3.2. Description of Support Units	5
4. Facilities and Accreditations	6
4.1. Facilities	
4.2. Location	6
4.3. Measurement Uncertainty	
5. Test Results and Measurement Data	
5.1. Antenna requirement	7
5.2. Conducted Emission	
5.3. Conducted Output Power	
5.4. 20dB Occupy Bandwidth	
5.5. Carrier Frequencies Separation	14
5.6. Hopping Channel Number	15
5.7. Dwell Time	16
5.8. Pseudorandom Frequency Hopping Sequence	17
5.9. Conducted Band Edge Measurement	
5.10. Conducted Spurious Emission Measurement	
5.11. Radiated Spurious Emission Measurement	20
Appendix A: Test Result of Conducted Test	
Appendix B: Photographs of Test Setup	
Appendix C: Photographs of EUT	

1. General Product Information

1.1. EUT description

Product Name:	ATK BLAZING SKY X1 ULTIMATE ULTRA LIGHTWEIGHT WIRELESS MOUSE					
Model/Type reference:	ATK X1 U	Iltimate				
Sample Number:	TCT2411	08E040-010	01		(\mathbf{c}^{*})	
Operation Frequency:	2403MHz	~2480MHz				
Transfer Rate:	1Mbits/s					
Number of Channel:	16	KO I		S S		S.
Modulation Type:	GFSK					
Modulation Technology:	FHSS		$\langle \mathcal{C} \rangle$			
Antenna Type:	PCB Ante	enna				
Antenna Gain:	-2.39dBi					
Rating(s):	DC 5V (A	C 120V/60H	Iz from Ada	apter) & Do	C 3.7V fror	m Battery

Note: The antenna gain listed in this report is provided by applicant, and the test laboratory is not responsible for this parameter.

1.2. Model(s) list

None.

1.3. Operation Frequency

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2403MHz	5	2446MHz	9	2462MHz	13	2470MHZ
2	2424MHz	6	2450MHz	10	2464MHz	14	2472MHz
3	2442MHz	7	2452MHz	11	2466MHz	15	2474MHz
4	2444MHz	8	2458MHz	12	2468MHz	16	2480MHz
Remark:	Remark: Channel 1, 3 & 16 have been tested for GFSK modulation mode.						e. 📿

Page 3 of 46

2. Test Result Summary

Requirement	CFR 47 Section Resu	
Antenna Requirement	§15.203/§15.247 (c)	PASS
AC Power Line Conducted Emission	§15.207	PASS
Conducted Peak Output Power	§15.247 (b)(1)	PASS
20dB Occupied Bandwidth	§15.247 (a)(1)	PASS
Carrier Frequencies Separation	§15.247 (a)(1)	PASS
Hopping Channel Number	§15.247 (a)(1)	PASS
Dwell Time	§15.247 (a)(1)	PASS
Radiated Emission	§15.205/§15.209	PASS
Band Edge	§15.247(d)	PASS

Note:

1. PASS: Test item meets the requirement.

2. Fail: Test item does not meet the requirement.

3. N/A: Test case does not apply to the test object.

4. The test result judgment is decided by the limit of test standard.

3. General Information

3.1. Test environment and mode

Operating Environment:					
Condition	Conducted Emission	Radiated Emission			
Temperature:	23.8 °C	25.0 °C			
Humidity:	53 % RH	48 % RH			
Atmospheric Pressure:	1010 mbar	1010 mbar			

Test Software:

Software Information:	Mouse key fixed frequency	
Power Level:	Default	

Test Mode:

The sample was placed 0.8m & 1.5m for the measurement below & above 1GHz above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case (Z axis) are shown in Test Results of the following pages.

3.2. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Equipment	Model No.	Serial No.	FCC ID	Trade Name
			R	/

Note:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.
- 3. For conducted measurements (Output Power, 20dB Occupied Bandwidth, Carrier Frequencies Separation, Hopping Channel Number, Dwell Time, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

4. Facilities and Accreditations

4.1. Facilities

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 645098

SHENZHEN TONGCE TESTING LAB

Designation Number: CN1205

The testing lab has been registered and fully described in a report with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

- IC Registration No.: 10668A
 - SHENZHEN TONGCE TESTING LAB

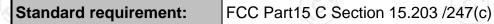
CAB identifier: CN0031

The testing lab has been registered by Innovation, Science and Economic Development Canada for radio equipment testing.

4.2. Location

SHENZHEN TONGCE TESTING LAB

Address: 2101 & 2201, Zhenchang Factory, Renshan Industrial Zone, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, 518103, People's Republic of China TEL: +86-755-27673339


4.3. Measurement Uncertainty

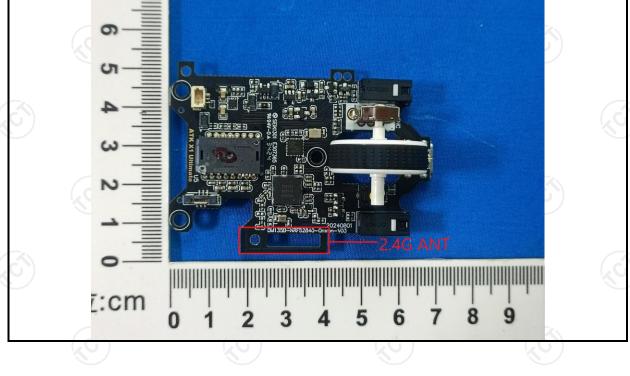
The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	MU
1	Conducted Emission	± 3.10 dB
2	RF power, conducted	± 0.12 dB
3	Spurious emissions, conducted	± 0.11 dB
4	All emissions, radiated(<1 GHz)	± 4.56 dB
5	All emissions, radiated(1 GHz - 18 GHz)	± 4.22 dB
6	All emissions, radiated(18 GHz- 40 GHz)	± 4.36 dB

5. Test Results and Measurement Data

5.1. Antenna requirement

15.203 requirement:


An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

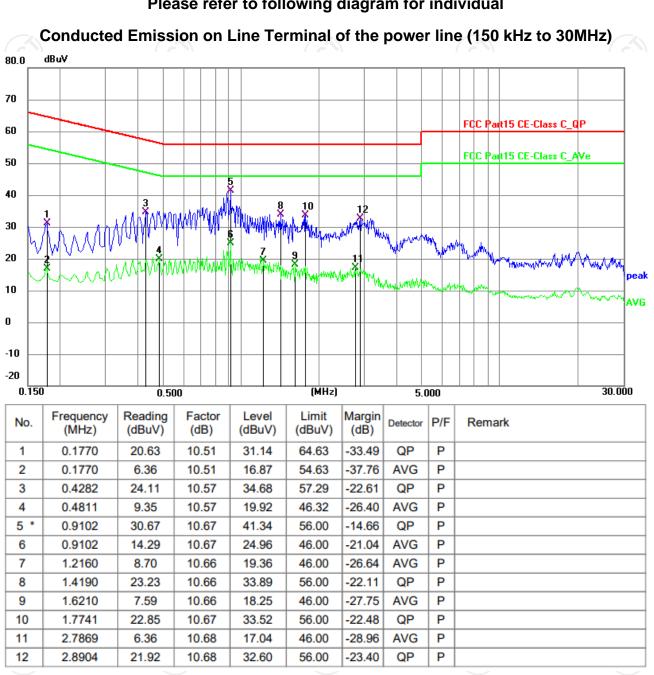
E.U.T Antenna:

The antenna is PCB antenna which permanently attached, and the best case gain of the antenna is -2.39dBi.

5.2. Conducted Emission

5.2.1. Test Specification

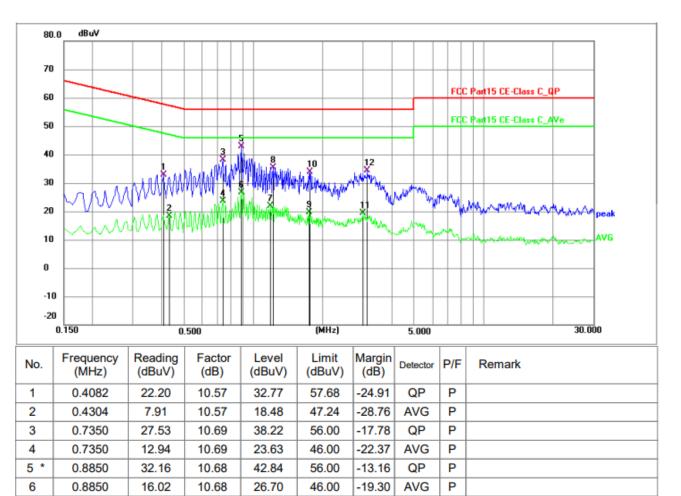
Test Requirement:	FCC Part15 C Section	15.207	No. Contraction of the second se		
Test Method:	ANSI C63.10:2020				
Frequency Range:	150 kHz to 30 MHz	G ⁽)	(\mathbf{c})		
Receiver setup:	RBW=9 kHz, VBW=30 kHz, Sweep time=auto				
Limits:	Frequency range (MHz) 0.15-0.5 0.5-5 5-30	Limit (Quasi-peak 66 to 56* 56 60	dBuV) Average 56 to 46* 46 50		
	Reference	e Plane	1,01		
Test Setup:	Image: stable / lnsulation plane 80cm LISN Filter AC power Filter AC power Filter AC power Filter AC power E.U.T. Equipment Under Test LISN Line Impedence Stabilization Network Test table height=0.8m				
Test Mode:	Charging + Transmitting Mode				
Test Procedure:	 The E.U.T is connected to an adapter through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10:2020 on conducted measurement. 				
		~ ~	-		


5.2.2. Test Instruments

Conducted Emission Shielding Room Test Site (843)					
Equipment	Manufacturer	Model	Serial Number	Calibration Due	
EMI Test Receiver	R&S	ESCI3	100898	Jun. 26, 2025	
LISN	Schwarzbeck	NSLK 8126	8126453	Jan. 31, 2025	
Attenuator	N/A	10dB	164080	Jun. 26, 2025	
Line-5	тст	CE-05	/	Jun. 26, 2025	
EMI Test Software	EZ_EMC	EMEC-3A1	1.1.4.2	1	

Page 9 of 46

5.2.3. Test data



Please refer to following diagram for individual

Note:

Freq. = Emission frequency in MHz Reading level $(dB\mu V) = Receiver reading$ Corr. Factor (dB) = LISN factor + Cable loss Measurement $(dB\mu V) = Reading level (dB\mu V) + Corr. Factor (dB)$ Limit $(dB\mu V) = Limit$ stated in standard Margin (dB) = Measurement (dB μ V) – Limits (dB μ V) Q.P. =Quasi-Peak AVG =average

* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

Conducted Emission on Neutral Terminal of the power line (150 kHz to 30MHz)

Note1:

1.1840

1.2160

1.7436

1.7620

2.9775

3.1230

7

8

9

10

11

12

Freq. = Emission frequency in MHz

11.24

24.74

8.87

23.21

8.72

23.60

Reading level ($dB\mu V$) = Receiver reading

Corr. Factor (dB) = LISN factor + Cable loss

Measurement $(dB\mu V) = Reading \ level \ (dB\mu V) + Corr. \ Factor \ (dB)$

21.90

35.40

19.54

33.88

19.40

34.27

46.00

56.00

46.00

56.00

46.00

56.00

10.66

10.66

10.67

10.67

10.68

10.67

Limit $(dB\mu V) = Limit$ stated in standard

Margin (dB) = Measurement (dB μ V) – Limits (dB μ V)

Q.P. =Quasi-Peak AVG =average

* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

Note2:

Measurements were conducted in all three channels (high, middle, low), and the worst case Mode (Lowest channel) was submitted only.

Ρ

Ρ

Ρ

Ρ

Ρ

Ρ

AVG

QP

AVG

QP

AVG

QP

-24.10

-20.60

-26.46

-22.12

-26.60

-21.73

Page 11 of 46

5.3. Conducted Output Power

5.3.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (b)(1)			
Test Method:	KDB 558074 D01 v05r02			
Limit:	Section 15.247 (b) The maximum peak conducted outp power of the intentional radiator shall not exceed the following: (1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts.			
Test Setup:	Spectrum Analyzer	EUT		
Test Mode:	Transmitting mode with modulation			
Test Procedure:	Use the following spectrum anal Span = approximately 5 times centered on a hopping channel RBW > the 20 dB bandwidth of t measured VBW ≥ RBW Sweep = auto Detector function = peak Trace = max hold Allow the trace to stabilize. Use the marker-to-peak function peak of the emission.	the 20 dB bandwidth,		
Test Result:	PASS	<u>e</u>		

5.3.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY50101018	Jun. 26, 2025
Test Software	TST Pass	/		

5.4. 20dB Occupy Bandwidth

5.4.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)			
Test Method:	KDB 558074 D01 v05r02			
Limit:	N/A			
Test Setup:	Spectrum Analyzer EUT			
Test Mode:	Transmitting mode with modulation			
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Use the following spectrum analyzer settings for 20dB Bandwidth measurement. Span = approximately 2 to 5 times the 20 dB bandwidth, centered on a hopping channel; 1%≤RBW≤5% of the 20 dB bandwidth; VBW≥3RBW; Sweep = auto; Detector function = peak; Trace = max hold. Measure and record the results in the test report. 			
Test Result:	PASS O			

5.4.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY50101018	Jun. 26, 2025
Test Software	TST Pass	\sim		/

5.5. Carrier Frequencies Separation

5.5.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)
Test Method:	KDB 558074 D01 v05r02
Limit:	Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Hopping mode
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = wide enough to capture the peaks of two adjacent channels; RBW is set to approximately 30% of the channel spacing, adjust as necessary to best identify the center of each individual channel; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. Record the value in report.
Test Result:	PASS

5.5.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY50101018	Jun. 26, 2025
Test Software	TST Pass	/		

5.6. Hopping Channel Number

5.6.1. Test Specification

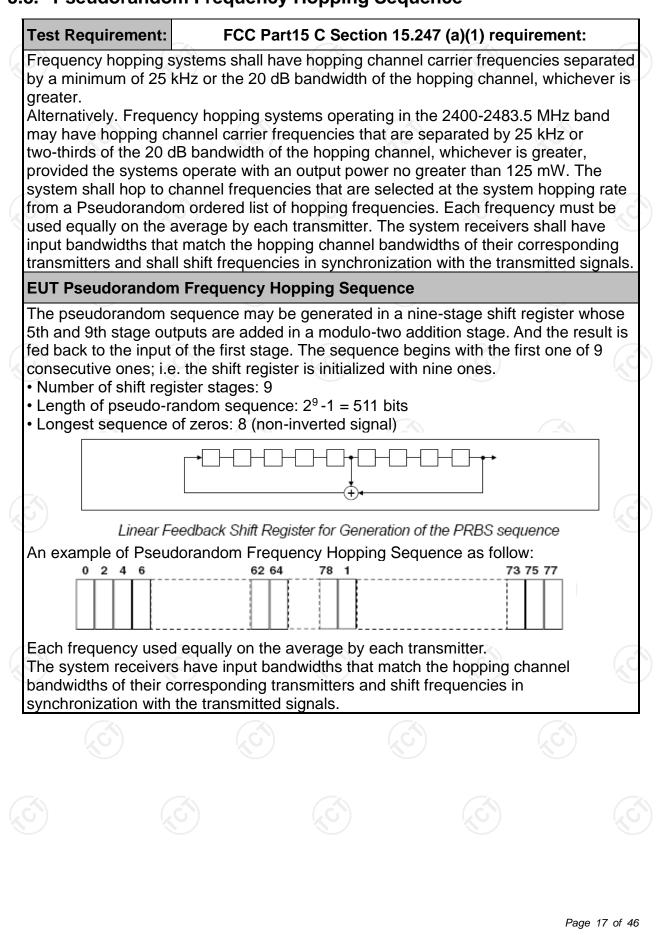
Test Requirement:	FCC Part15 C Section 15.247 (a)(1)			
Test Method:	KDB 558074 D01 v05r02			
Limit:	Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.			
Test Setup:	Spectrum Analyzer EUT			
Test Mode:	Hopping mode			
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = the frequency band of operation; set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold. The number of hopping frequency used is defined as the number of total channel. Record the measurement data in report. 			
Test Result:	PASS			

5.6.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY50101018	Jun. 26, 2025
Test Software	TST Pass	/	/	/

5.7. Dwell Time

5.7.1. Test Specification


Test Requirement:	FCC Part15 C Section 15.247 (a)(1)
Test Method:	KDB 558074 D01 v05r02
Limit:	The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Hopping mode
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel; RBW shall be ≤ channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel; VBW≥RBW; Sweep = as necessary to capture the entire dwell time per hopping channel; Detector function = peak; Trace = max hold. Measure and record the results in the test report.
Test Result:	PASS

5.7.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY50101018	Jun. 26, 2025
Test Software	TST Pass	/		

Page 16 of 46

5.8. Pseudorandom Frequency Hopping Sequence

5.9. Conducted Band Edge Measurement

5.9.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	KDB 558074 D01 v05r02
Limit:	In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.
Test Setup:	Spectrum Analyzer
Test Mode:	Transmitting mode with modulation
Test Procedure:	 Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz (≥1% span=10MHz), VBW = 300 kHz (≥RBW). Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used. Enable hopping function of the EUT and then repeat step 2 and 3. Measure and record the results in the test report.
Test Result:	PASS

5.9.2. Test Instruments

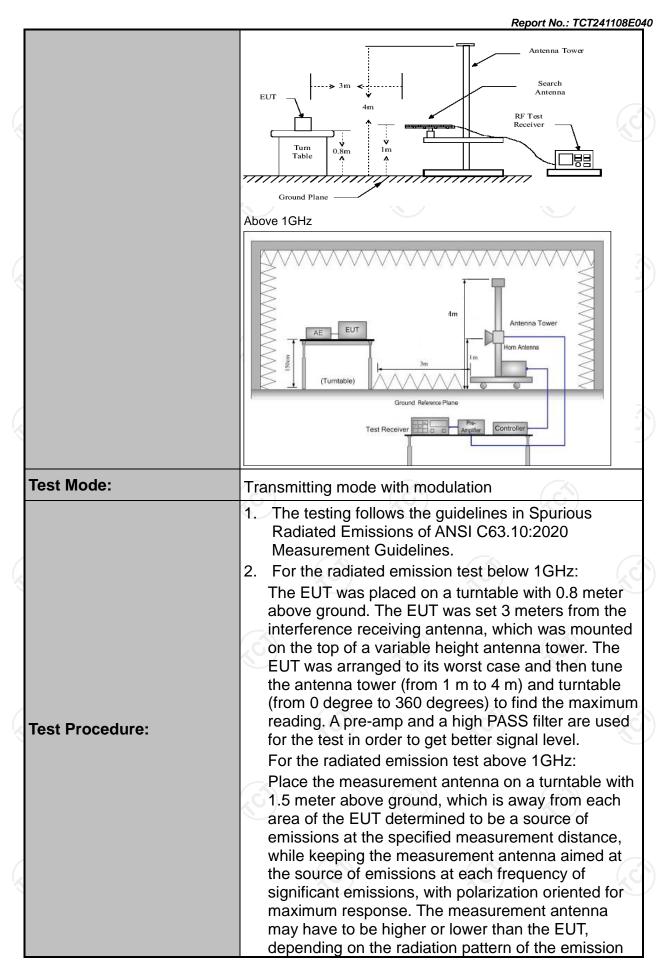
Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY50101018	Jun. 26, 2025
Test Software	TST Pass	1		

5.10. Conducted Spurious Emission Measurement

Test Requirement: FCC Part15 C Section 15.247 (d) Test Method: KDB 558074 D01 v05r02 In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the Limit: radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits. 00 **Test Setup:** EUT Spectrum Analyzer Test Mode: Transmitting mode with modulation 1. The RF output of EUT was connected to the spectrum analyzer by RF cable. The path loss was compensated to the results for each measurement. 2. Set to the maximum power setting and enable the EUT transmit continuously. 3. Set RBW = 100 kHz, VBW = 300kHz, scan up Test Procedure: through 10th harmonic. All harmonics / spurs must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW. 4. Measure and record the results in the test report. 5. The RF fundamental frequency should be excluded against the limit line in the operating frequency band. PASS **Test Result:**

5.10.1. Test Specification

5.10.2. Test Instruments


Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY50101018	Jun. 26, 2025
Test Software	TST Pass	/		

5.11. Radiated Spurious Emission Measurement

5.11.1. Test Specification

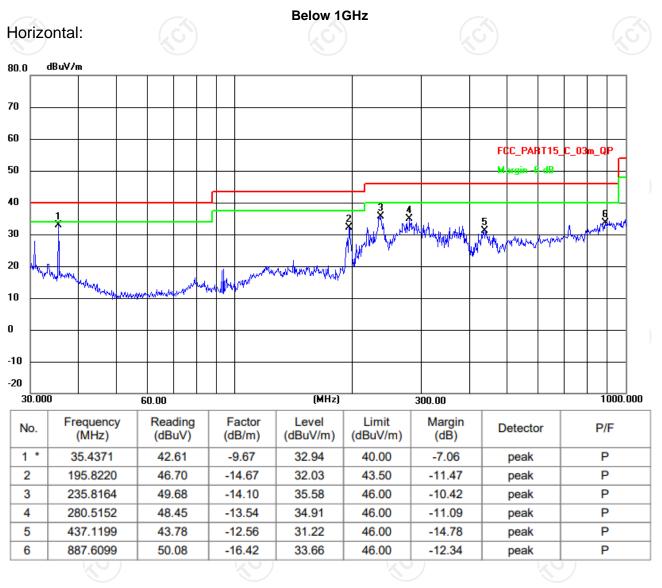
Test Requirement:	FCC Part15	C Sectio	n 15	5.209	9		
Test Method:	ANSI C63.10	:2020					
Frequency Range:	9 kHz to 25 C	GHz	Z	<i>.</i>			
Measurement Distance:	3 m		C			S.	
Antenna Polarization:	Horizontal &	Vertical					
	Frequency	Detecto	or	RBW	VBW	Remark	
	9kHz- 150kHz	Quasi-pe	eak	200Hz	1kHz	Quasi-peak Value	
Receiver Setup:	150kHz- 30MHz	Quasi-pe		9kHz	30kHz	Quasi-peak Value	
	30MHz-1GHz	Quasi-pe	eak	120KHz	300KHz	Quasi-peak Value	
	Above 1GHz	Peak		1MHz	3MHz	Peak Value	
		Peak		1MHz	10Hz	Average Valu	
	Frequency			Field Strer microvolts/r	neter)	Measurement Distance (meter	
	0.009-0.490			2400/F(K		300	
	0.490-1.705			24000/F(K 30	.HZ)	30	
	30-88			100		30	
	88-216			150		3	
Limit:	216-960			200		3	
	Above 960			500		3	
	Frequency			trength ts/meter)	Measuren Distanc (meters	nce Detector	
	Above 1GHz		500		3	Average	
			5000 3			Peak	
	For radiated emis		w 301	VHz			
	Dis	tance = 3m				Computer	
			\square)+ _	Pre -A	mplifier	
Test setup:	EUT	`	\searrow				
	+			1m			
	0.8m	Turn table		_ <u> </u>			
					Re	sceiver	
		Grou	nd Plan	e			

Page 20 of 46

Page 21 of 46

			rece mea max ante resti abov 3. Set EU ⁻ 4. Use (1) (2)	eiving the n surement imizes the enna eleval ricted to a ve the grou to the ma T transmit e the follow Span shal emission I Set RBW= for f>1GH Sweep = = max ho) For avera correction 15.35(c). I On time = Where N length of Average	emissions ion for max range of he ind or refer ximum pov continuous ing spectru I wide enor being meas =120 kHz fo auto; Dete old for peak age measu n factor me Duty cycle N1*L1+N2 1 is numbe type 1 puls	emission s ignal. The evation sha . The meas ximum emi eights of from rence grou wer setting ly. um analyze ugh to fully sured; or f < 1 GH BW; ector function cor f < 1 GH cor f	final all be that v surement issions sha om 1 m to 4 nd plane. g and enab	which II be 1 m ole the e MHz Trace e conds Nn*Ln is
					0		actor + Cab actor = Lev	
Test r	esults:	×.	PASS					- E

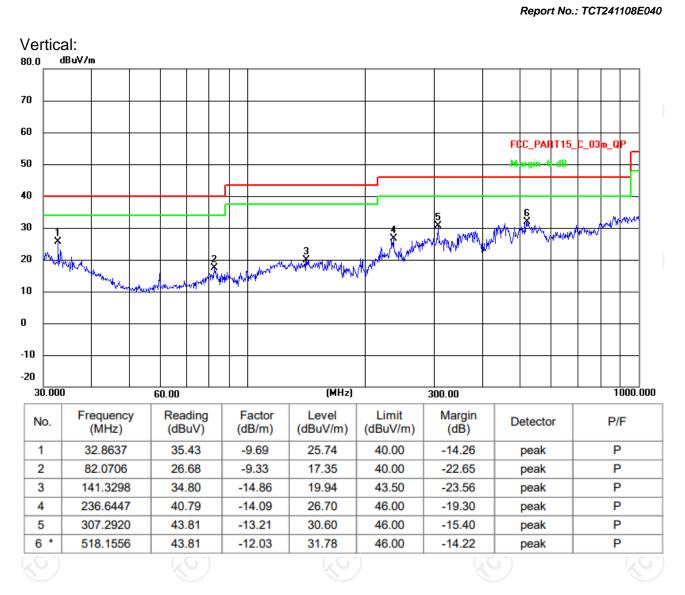
5.11.2. Test Instruments


	Radiated Em	nission Test Site	e (966)	
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
EMI Test Receiver	R&S	ESCI7	100529	Jan. 31, 2025
Spectrum Analyzer	R&S	FSQ40	200061	Jun. 26, 2025
Pre-amplifier	SKET	LNPA_0118G- 45	SK2021012 102	Jan. 31, 2025
Pre-amplifier	SKET	LNPA_1840G- 50	SK2021092 03500	Jan. 31, 2025
Pre-amplifier	HP	8447D	2727A05017	Jun. 26, 2025
Loop antenna	Schwarzbeck	FMZB1519B	00191	Jun. 26, 2025
Broadband Antenna	Schwarzbeck	VULB9163	340	Jun. 28, 2025
Horn Antenna	Schwarzbeck	BBHA 9120D	631	Jun. 28, 2025
Horn Antenna	Schwarzbeck	BBHA 9170	00956	Feb. 02, 2025
Coaxial cable	SKET	RE-03-D	/	Jun. 26, 2025
Coaxial cable	SKET	RE-03-M		Jun. 26, 2025
Coaxial cable	SKET	RE-03-L	/	Jun. 26, 2025
Coaxial cable	SKET	RE-04-D		Jun. 26, 2025
Coaxial cable	SKET	RE-04-M	R	Jun. 26, 2025
Coaxial cable	SKET	RE-04-L	/	Jun. 26, 2025
Antenna Mast	Keleto	RE-AM	1	
EMI Test Software	EZ_EMC	FA-03A2 RE+	1.1.4.2	

Page 23 of 46

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

5.11.3. Test Data


Please refer to following diagram for individual

Report No.: TCT241108E040

Page 24 of 46

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

- **Note:** 1. The low frequency, which started from 9KHz~30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported.
 - 2. Measurements were conducted in all three channels (high, middle, low) and modulation (GFSK) and the worst case Mode (Lowest channel) was submitted only.
 - Freq. = Emission frequency in MHz Measurement (dBμV/m) = Reading level (dBμV) + Corr. Factor (dB)
 - Correction Factor= Antenna Factor + Cable loss Pre-amplifier
 - $Limit (dB\mu V/m) = Limit stated in standard$
 - $Over (dB) = Measurement (dB\mu V/m) Limits (dB\mu V/m)$
 - * is meaning the worst frequency has been tested in the test frequency range.

Page 25 of 46

			Toot Mode				
	Tost	Channel: I	Test Mode owest channe		tion: Vertical		
(c)	Test			•			
Frequency	Reading	Factor	Level	Limit	Marging	Detector	Result
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)		
2310	62.06	-16.45	45.61	74	-28.39	Peak	Pass
2390	60.94	-15.86	45.08	74	-28.92	Peak	Pass
2400	62.07	-15.82	46.25	74	-27.75	Peak	Pass
	Test C	hannel: Lo	west channel,	Test Polarizati	on: Horizont	al	(\mathcal{O})
Frequency	Reading	Factor	Level	Limit	Marging	Detector	Result
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)		
2310	62.38	-16.45	45.93	74	-28.07	Peak	Pass
2390	61.26	-15.86	45.40	74	-28.60	Peak	Pass
2400	62.39	-15.82	46.57	74	-27.43	Peak	Pass
(K ^C)	Test	Channel: H	ighest channe	I, Test Polariza	tion: Vertica	l	
Frequency	Reading	Factor	Level	Limit	Marging	Detector	Result
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)		
2483.5	63.44	-16.60	46.84	74	-27.16	Peak	Pass
2500	61.72	-16.45	45.27	74	-28.73	Peak	Pass
	Test C	hannel: Hig	ghest channel,	Test Polarizati	on: Horizont	al	
Frequency	Reading	Factor	Level	Limit	Marging	Detector	Result
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)		
2483.5	63.26	-16.60	46.66	74 G	-27.34	Peak	Pass
2500	61.33	-16.45	44.88	74	-29.12	Peak	Pass

Test Result of Radiated Spurious at Band edges

Above 1GHz

Modulation	Type: GF	SK							
Low chann	el: 2403 N	1Hz							
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)	Peak	on Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4806	Н	55.78		-9.51	46.27		74	54	-7.73
7209	Н	45.11		-1.41	43.70		74	54	-10.30
	Н					~~~			
(~ G`)		J.J	`)	()	· ()		(G)	
4806	V	55.57		-9.51	46.06	<u> </u>	74	54	-7.94
7209	V	46.21		-1.41	44.80		74	54	-9.20
	V								

Middle cha	nnel: 2442	2 MHz		X)		X 0		K K
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Peak		Peak limit (dBµV/m)		Margin (dB)
4884	Н	54.37		-9.36	45.01	<u> </u>	74	54	-8.99
7326	ζOH)	45.08	1,0	-1.14	43.94	0	74	54	-10.06
	H								
			-			-	-		
4884	V	54.82		-9.36	45.46		74	54	-8.54
7326	V	45.69		-1.14	44.55		74	54	-9.45
· · · · ·	V			X	· /				

High channel: 2480 MHz

ICI. 2400 N								
Ant Pol	Peak	AV	Correction	Emissic	on Level	Poak limit	AV/ limit	Margin
		reading	Factor	Peak	AV	(dBuV/m)	(dBuV/m)	(dB)
11/ 0	(dBµV)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	(abp v/m)	(abp (////))	(GD)
Н	56.44		-9.20	47.24		74	54	-6.76
Н	46.02		-0.96	45.06		74	54	-8.94
Н								
	(G)		(.0			(.c)		(.C
V	55.39		-9.20	46.19		74	54	-7.81
V	44.81		-0.96	43.85		74	54	-10.15
V								
	Ant. Pol. H/V H H H V	Ant. Pol. H/V Peak reading (dBµV) H 56.44 H 46.02 H V 55.39 V 44.81	Ant. Pol. H/V Peak reading (dBµV) AV reading (dBµV) H 56.44 H 46.02 H V 55.39 V 44.81	Ant. Pol. H/V Peak reading (dBµV) AV reading (dBµV) Correction Factor (dB/m) H 56.44 -9.20 H 46.02 -0.96 H -0.96 H V 55.39 -9.20 V 44.81 -0.96	Ant. Pol. H/V Peak reading (dBµV) AV reading (dBµV) Correction Factor (dB/m) Emission Peak (dBµV/m) H 56.44 -9.20 47.24 H 46.02 -0.96 45.06 H V 55.39 -9.20 46.19 V 44.81 -0.96 43.85	Ant. Pol. H/V Peak reading (dBµV) AV reading (dBµV) Correction Factor (dB/m) Emission Level Peak (dBµV/m) H 56.44 -9.20 47.24 H 46.02 -0.96 45.06 H -0.96 45.06 V 55.39 -9.20 46.19 V 44.81 -0.96 43.85	Ant. Pol. H/V Peak reading (dBµV) AV reading (dBµV) Correction Factor (dB/m) Emission Level Peak (dBµV/m) Peak limit (dBµV/m) H 56.44 -9.20 47.24 74 H 46.02 -0.96 45.06 74 H 74 V 55.39 -9.20 46.19 74 V 44.81 -0.96 43.85 74	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Note:

1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss – Pre-amplifier

2. Margin (dB) = Emission Level (Peak) (dB μ V/m)-Average limit (dB μ V/m)

3. The emission levels of other frequencies are very lower than the limit and not show in test report.

4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency.

5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB

below the limits or the field strength is too small to be measured.

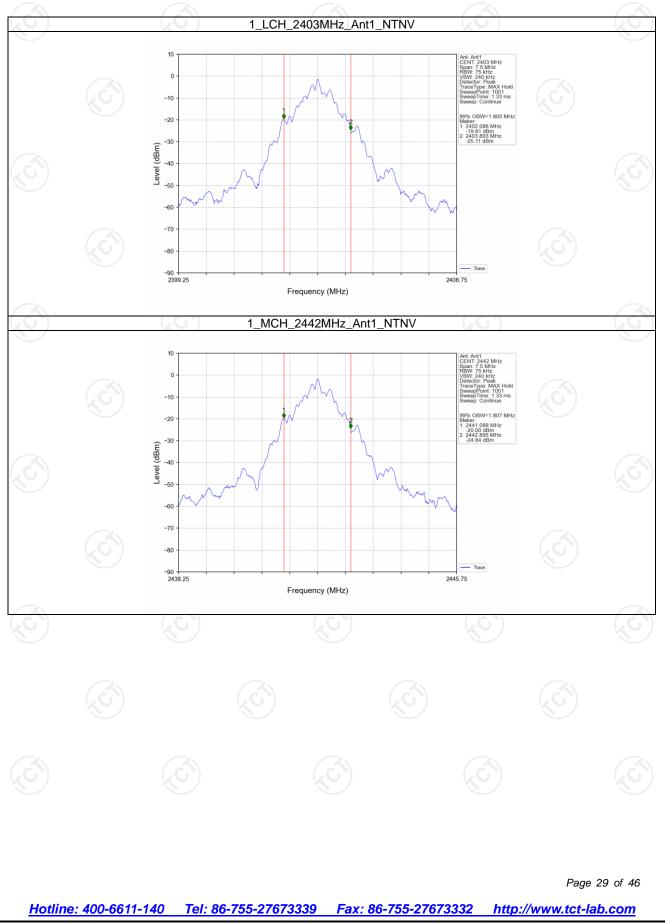
6. All the restriction bands are compliance with the limit of 15.209.

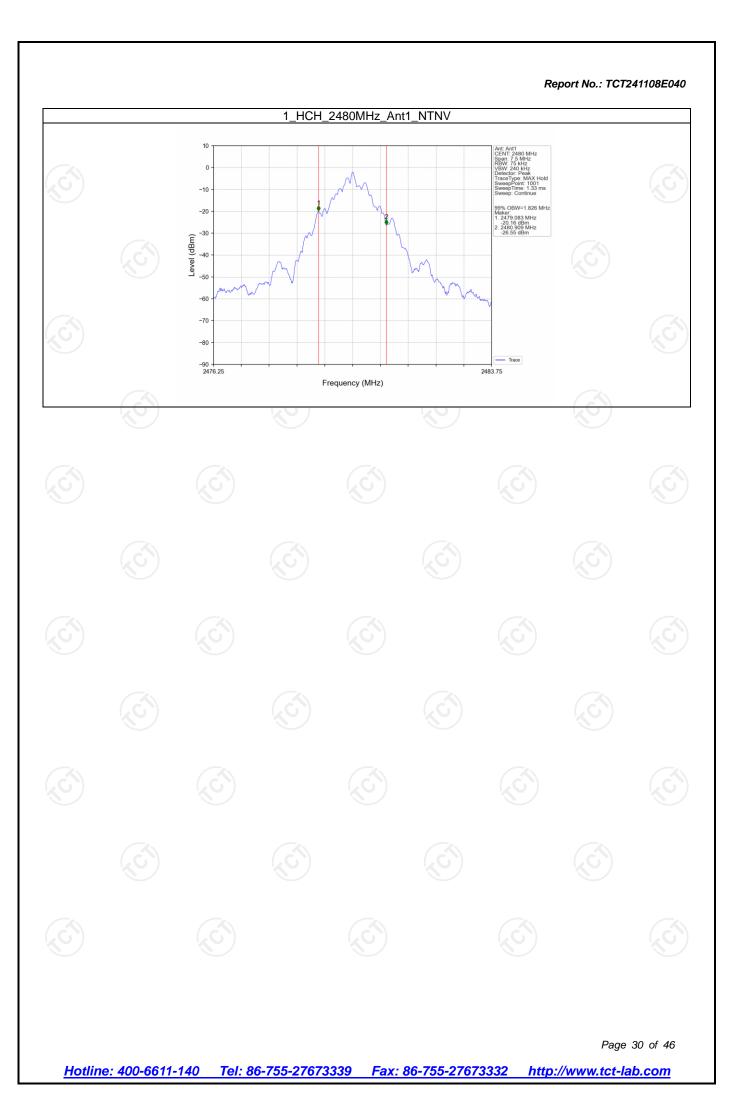
Appendix A: Test Result of Conducted Test

1. Bandwidth

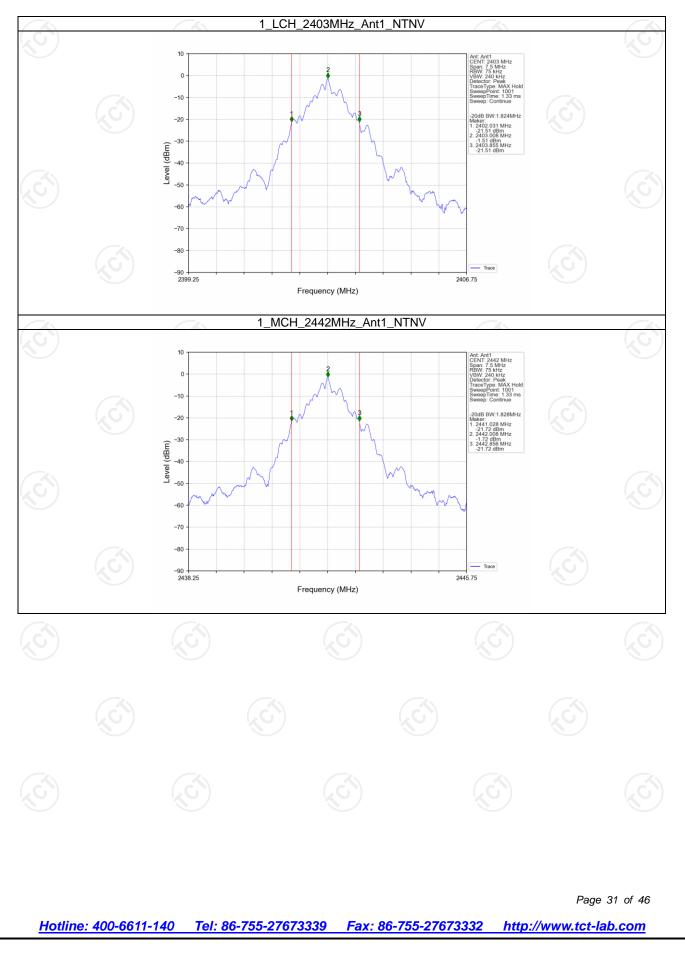
1.1 Test Result

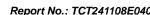
1.1.1 OBW

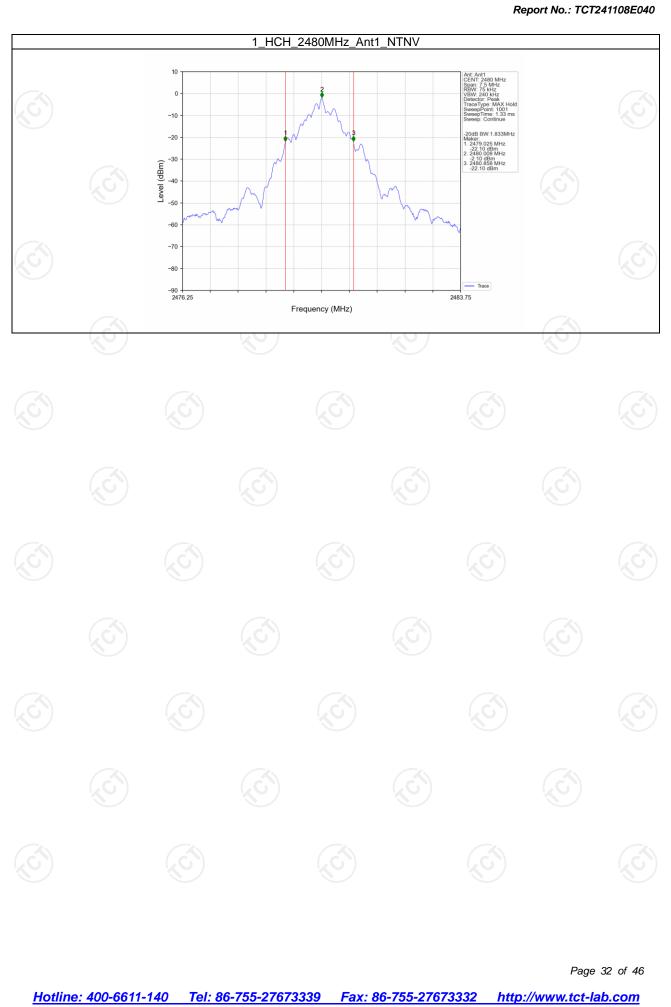

Mada	тх	Frequency		99% Occupie	99% Occupied Bandwidth (MHz)			
Mode	Туре	(MHz)	ANT	Result	Limit	Verdict		
		2403	1	1.805	/	Pass		
1	SISO	2442	1	1.807	/	Pass		
		2480	1	1.826		Pass		
1.1.2 200	B BW							


Mode 1	TX Type SISO	Frequency (MHz) 2403 2442 2480	ANT 1 1 1	20dB Bar Result 1.824 1.828 1.833	ndwidth (MHz) Limit / / /	Verdict Pass Pass Pass
						Dogo 20 of 40
<u>Hotline:</u>	400-6611-14	40 Tel: 86-755-2	27673339 Fa	<u>x: 86-755-2767</u>	<u> 3332 http://w</u>	Page 28 of 46 ww.tct-lab.com

1.2 Test Graph


Report No.: TCT241108E040


1.2.1 OBW



1.2.2 20dB BW

2. Maximum Conducted Output Power

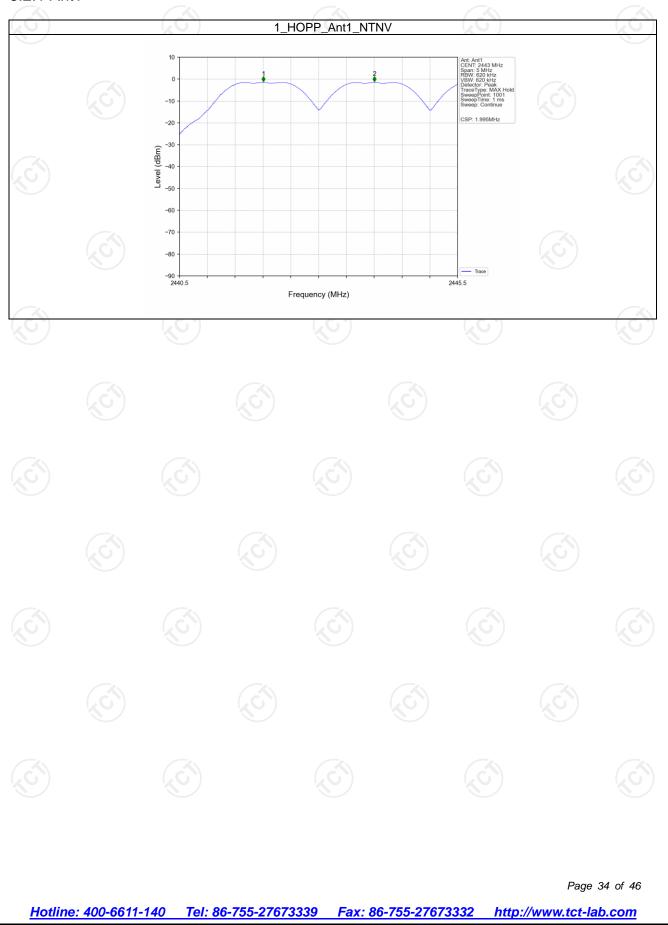
2.1 Test Result

2.1.1 Power

Mode	ТХ	Frequency	Maximum Average Conduc	ted Output Power (dBm)	Verdict
wode	Туре	(MHz)	ANT1	Limit	verdict
		2403	-1.31	<=20.97	Pass
1	SISO	2442	-1.48	<=20.97	Pass
		2480	-1.84	<=20.97	Pass
Note1: Ante	nna Gain: Ant1:	-2.39dBi;			

3. Carrier Frequency Separation

3.1 Test Result


3.1.1 Ant1

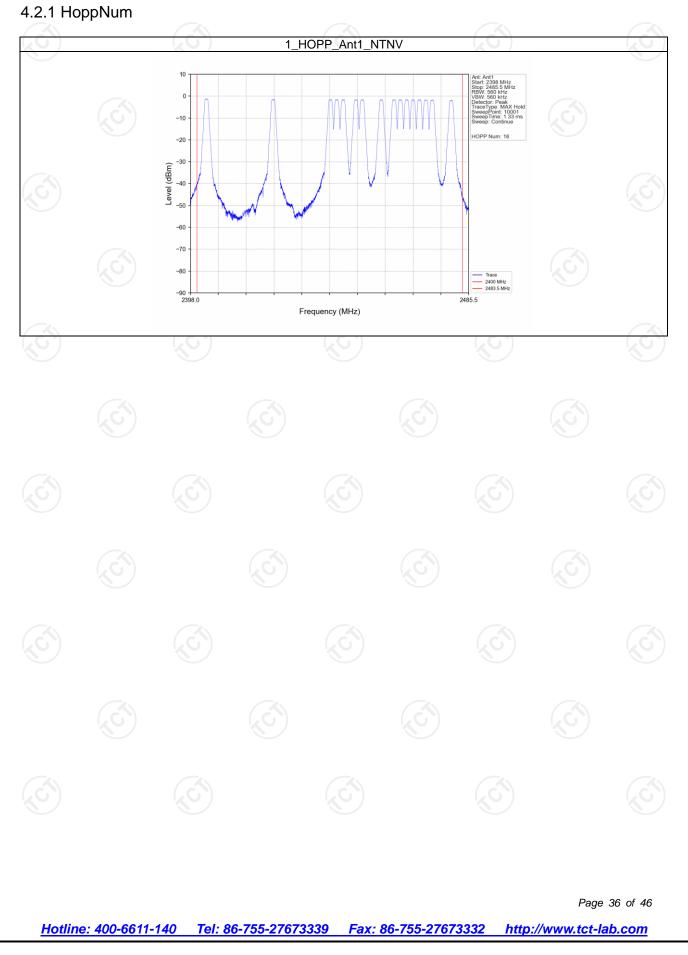
				Ant1	1	•	•	
Mode	TX Type	Frequency (MHz)	Channe	el Separation (MHz)	20dB Bar (MH	z)	Limit (MHz)	Verdict
	Type SISO	HOPP		1.995	1.83	33	>=1.833	Pass
							Pag	ne 33 of 46

3.2 Test Graph

Report No.: TCT241108E040

3.2.1 Ant1

4. Number of Hopping Frequencies


4.1 Test Result

4.1.1 HoppNum

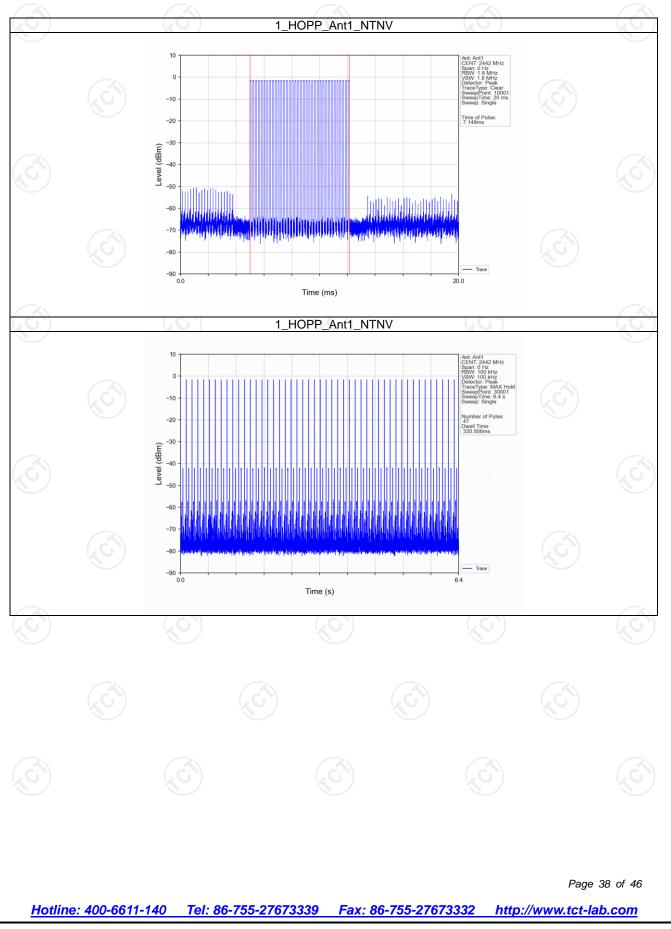
Mode 1	T Ty SIS	X pe SO	Frequency (MHz) HOPP	Nur AN ⁻ 16	n of Hopping F [1]}	Frequencies Limit >=15	/erdict Pass

4.2 Test Graph

.

Report No.: TCT241108E040

5. Time of Occupancy (Dwell Time)


5.1 Test Result

5.1.1 Ant1

		Pag 40 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct+

5.2 Test Graph

5.2.1 Ant1

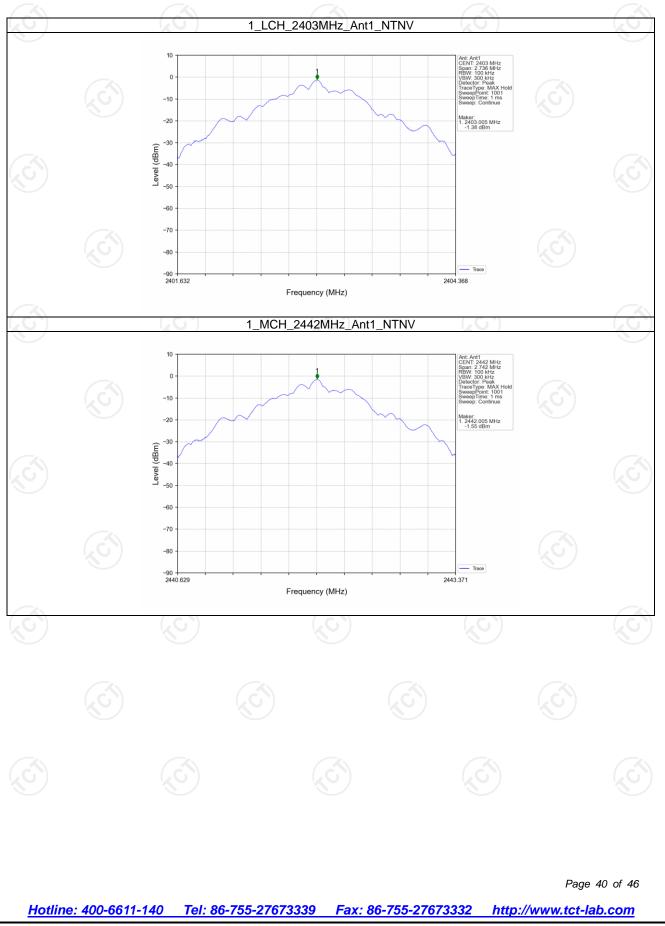
Report No.: TCT241108E040

6. Unwanted Emissions In Non-restricted Frequency Bands

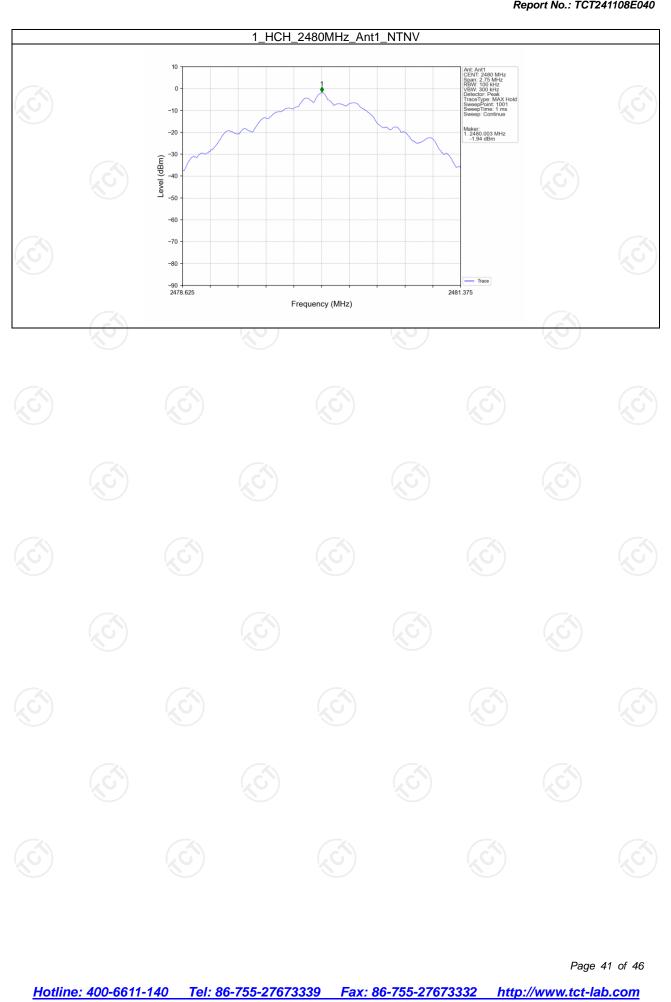
6.1 Test Result

6.1.1 Ref

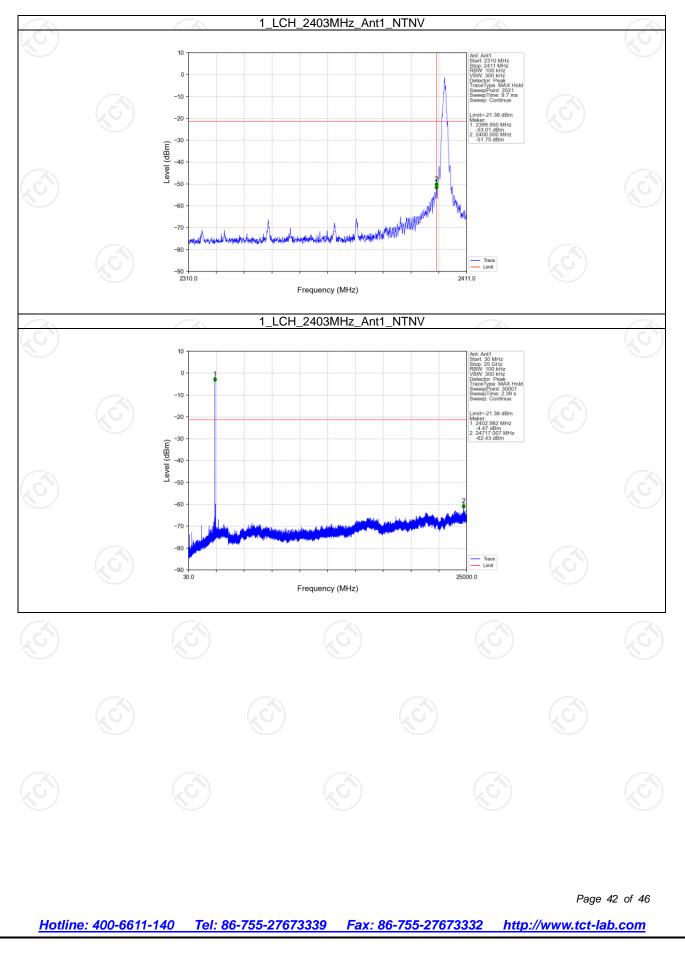
Mode	ТХ Туре	Frequency (MHz)	ANT	Level of Reference (dBm)
		2403		-1.38
1	SISO	2442	1	-1.55
		2480	1	-1.94
Note1: Refer to FCC establish the referen		nd ANSI C63.10-2020, the	channel contains the	e maximum PSD level was used to

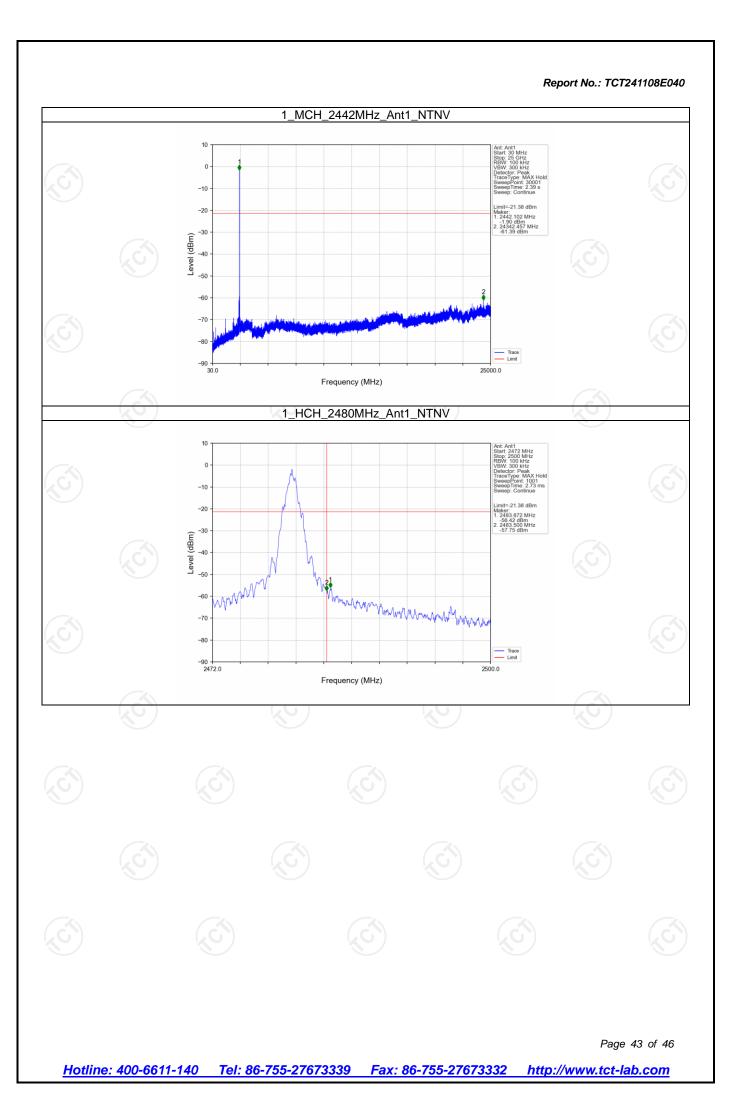

6.1.2 CSE

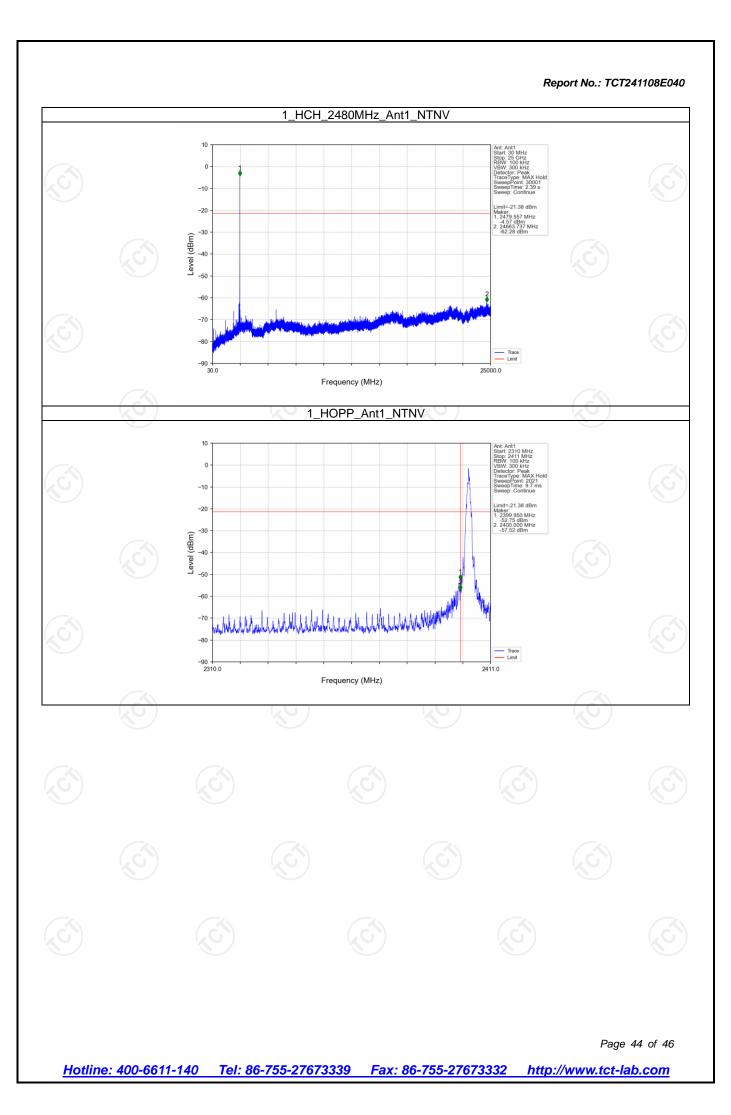
Mode	TX Type	Frequency (MHz)	ANT	Level of Reference (dBm)	Limit (dBm)	Verdict
		2403	1	-1.38	-21.38	Pass
		2442	1	-1.38	-21.38	Pass
1	SISO	2480	1	-1.38	-21.38	Pass
		НОРР	1	-1.38	-21.38	Pass
		TUFF) (.C	-1.38	-21.38	Pass
)		Ś)

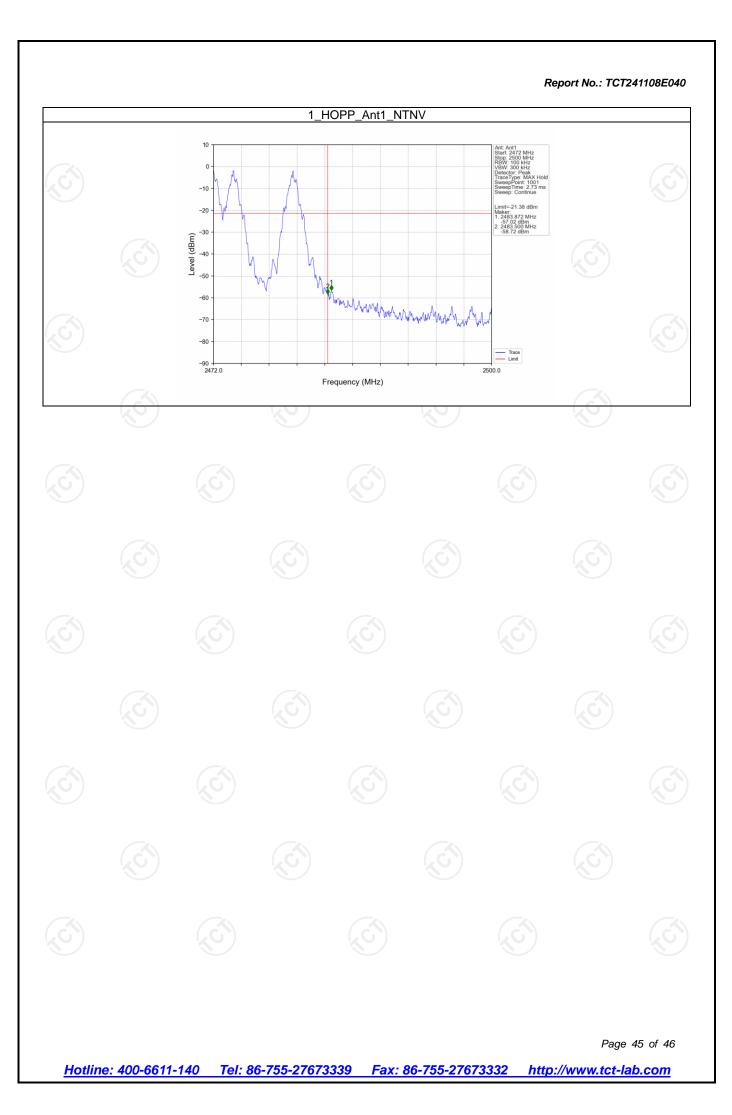

Page 39 of 46

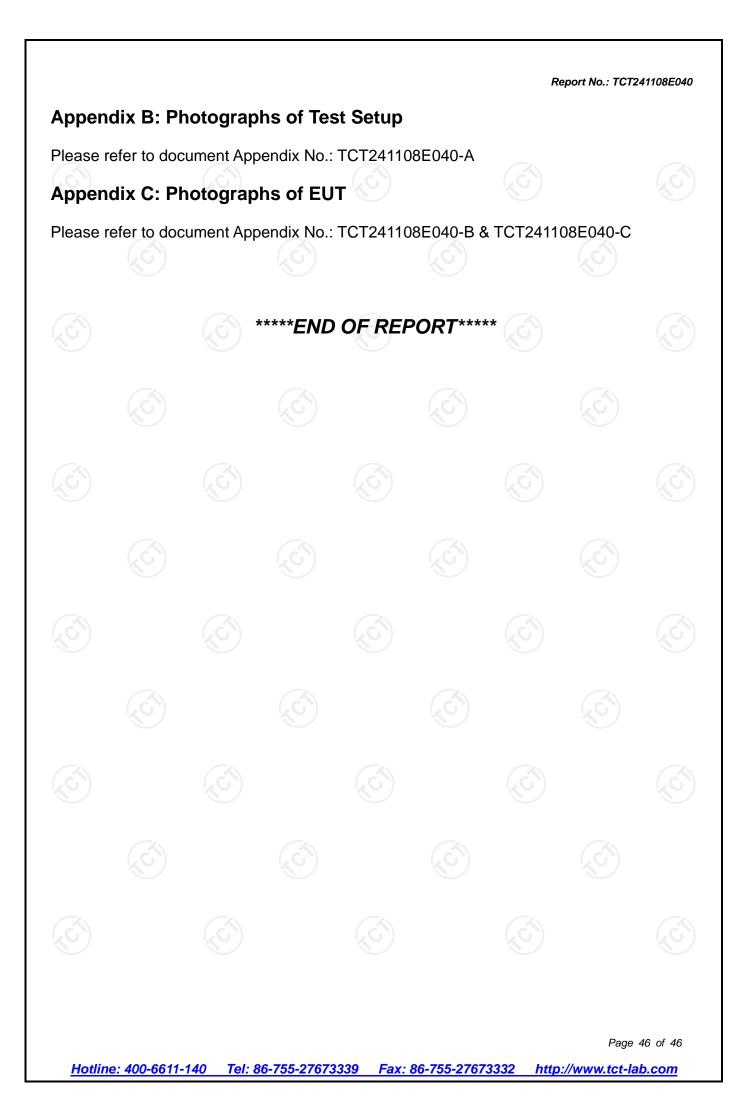
6.2 Test Graph


6.2.1 Ref




Report No.: TCT241108E040




6.2.2 CSE

