	と 河川 CHNOL DGY		
	TEST REPOR	Т	
FCC ID :	2BE9P-ATKFIERCEX		
Test Report No:	TCT241108E038		
Date of issue:	Nov. 19, 2024		
Testing laboratory::	SHENZHEN TONGCE TESTING	G LAB	
Testing location/ address:	2101 & 2201, Zhenchang Factor Subdistrict, Bao'an District, Sher People's Republic of China	ry Renshan Industrial Zone, Fuhai nzhen, Guangdong, 518103,	
Applicant's name: :	Shenzhen Yizhita Technology C	co., Ltd	
Address:	Room 1901, Qianhai HOP Int'l, I (Extension), Bao'an District, She	5	
Manufacturer's name :	Shenzhen Yizhita Technology C	co., Ltd	
Address:	Room 1901, Qianhai HOP Int'l, I (Extension), Bao'an District, She	5	
Standard(s):	FCC CFR Title 47 Part 15 Subpart C Section 15.247 FCC KDB 558074 D01 15.247 Meas Guidance v05r02 ANSI C63.10:2020		
Product Name::	ATK FIERCE X Magnesium Allo	y Wireless Mouse	
Trade Mark:	ATK		
Model/Type reference :	ATK FIERCE X		
Rating(s):	DC 5V from USB or DC 3.7V fro	om battery	
Date of receipt of test item	Oct. 08, 2024		
Date (s) of performance of test:	Oct. 08, 2024 ~ Nov. 15, 2024		
Tested by (+signature) :	Yannie ZHONG	Yannie Zookecera	
Check by (+signature) :	Beryl ZHAO		
Approved by (+signature):	: Tomsin		
TONGCE TESTING LAB. TH	his document may be altered or ly, and shall be noted in the revis	e written approval of SHENZHEN revised by SHENZHEN TONGCE sion section of the document. The	

Table of Contents

TCT 通测检测 TESTING CENTRE TECHNOLOGY

1. General Product Information
1.1. EUT description
1.2. Model(s) list3
1.3. Operation Frequency
2. Test Result Summary
3. General Information5
3.1. Test environment and mode5
3.2. Description of Support Units5
4. Facilities and Accreditations
4.1. Facilities
4.2. Location6
4.3. Measurement Uncertainty6
5. Test Results and Measurement Data7
5.1. Antenna requirement7
5.2. Conducted Emission
5.3. Conducted Output Power12
5.4. 20dB Occupy Bandwidth13
5.5. Carrier Frequencies Separation
5.6. Hopping Channel Number15
5.7. Dwell Time16
5.8. Pseudorandom Frequency Hopping Sequence
5.9. Conducted Band Edge Measurement18
5.10.Conducted Spurious Emission Measurement19
5.11.Radiated Spurious Emission Measurement
Appendix A: Test Result of Conducted Test
Appendix B: Photographs of Test Setup 49
Appendix C: Photographs of EUT 49

1. General Product Information

1.1. EUT description

Product Name:	ATK FIERCE X Magnesium Alloy Wireless	Mouse
Model/Type reference:	ATK FIERCE X	
Sample Number:	TCT241108E038-0101	
Operation Frequency:	2403MHz~2480MHz	
Transfer Rate:	1Mbits/s	
Number of Channel:	16	
Modulation Type:	GFSK	
Modulation Technology:	FHSS	
Antenna Type:	PCB Antenna	
Antenna Gain:	2.24dBi	
Rating(s):	DC 5V from USB or DC 3.7V from battery	K)

Note: The antenna gain listed in this report is provided by applicant, and the test laboratory is not responsible for this parameter.

1.2. Model(s) list

None.

1.3. Operation Frequency

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2403MHz	5	2446MHz	9	2462MHz	13	2470MHZ
2	2424MHz	6	2450MHz	10	2464MHz	14	2472MHz
3	2442MHz	7	2452MHz	11	2466MHz	15	2474MHz
4	2444MHz	8	2458MHz	12	2468MHz	16	2480MHz

Remark: Channel 1, 3 & 16 have been tested for GFSK modulation mode.

Page 3 of 49

2. Test Result Summary

Requirement	Requirement CFR 47 Section	
Antenna Requirement	§15.203/§15.247 (c)	PASS
AC Power Line Conducted Emission	§15.207	PASS
Conducted Peak Output Power	§15.247 (b)(1)	PASS
20dB Occupied Bandwidth	§15.247 (a)(1)	PASS
Carrier Frequencies Separation	§15.247 (a)(1)	PASS
Hopping Channel Number	§15.247 (a)(1)	PASS
Dwell Time	§15.247 (a)(1)	PASS
Radiated Emission	§15.205/§15.209	PASS
Band Edge	§15.247(d)	PASS

Note:

1. PASS: Test item meets the requirement.

2. Fail: Test item does not meet the requirement.

3. N/A: Test case does not apply to the test object.

4. The test result judgment is decided by the limit of test standard.

3. General Information

3.1. Test environment and mode

Operating Environment:		
Condition	Conducted Emission	Radiated Emission
Temperature:	23.8 °C	25.0 °C
Humidity:	53 % RH	48 % RH
Atmospheric Pressure:	1010 mbar	1010 mbar

Test Software:

Software Information:	Mouse key fixed frequency	
Power Level:	Default	

Test Mode:

The sample was placed 0.8m & 1.5m for the measurement below & above 1GHz above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case (Z axis) are shown in Test Results of the following pages.

3.2. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Equipment	Model No.	Serial No.	FCC ID	Trade Name
Adapter	EP-TA200	R37M4PR7QD4SE3		SAMSUNG

Note:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.
- 3. For conducted measurements (Output Power, 20dB Occupied Bandwidth, Carrier Frequencies Separation, Hopping Channel Number, Dwell Time, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

4. Facilities and Accreditations

4.1. Facilities

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 645098

SHENZHEN TONGCE TESTING LAB

Designation Number: CN1205

The testing lab has been registered and fully described in a report with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

- IC Registration No.: 10668A
 - SHENZHEN TONGCE TESTING LAB

CAB identifier: CN0031

The testing lab has been registered by Innovation, Science and Economic Development Canada for radio equipment testing.

4.2. Location

SHENZHEN TONGCE TESTING LAB

Address: 2101 & 2201, Zhenchang Factory, Renshan Industrial Zone, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, 518103, People's Republic of China TEL: +86-755-27673339

4.3. Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

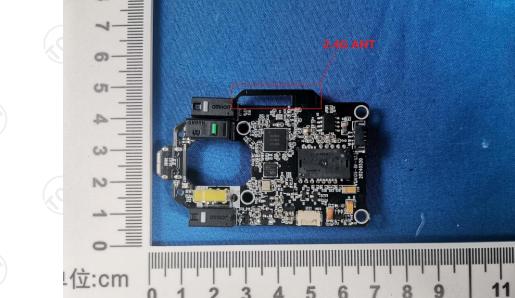
No.	Item	MU
1	Conducted Emission	± 3.10 dB
2	RF power, conducted	± 0.12 dB
3	Spurious emissions, conducted	± 0.11 dB
4	All emissions, radiated(<1 GHz)	± 4.56 dB
5	All emissions, radiated(1 GHz - 18 GHz)	± 4.22 dB
6	All emissions, radiated(18 GHz- 40 GHz)	± 4.36 dB

5. Test Results and Measurement Data

5.1. Antenna requirement

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:


An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

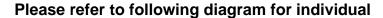
E.U.T Antenna:

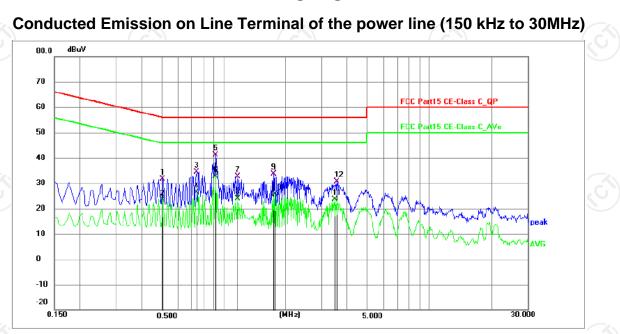
The antenna is PCB antenna which permanently attached, and the best case gain of the antenna is 2.24dBi.

5.2. Conducted Emission

5.2.1. Test Specification

			(
Test Requirement:	FCC Part15 C Section 15.207			
Test Method:	ANSI C63.10:2020			
Frequency Range:	150 kHz to 30 MHz	(C)		
Receiver setup:	RBW=9 kHz, VBW=30	kHz, Sweep time	e=auto	
	Frequency range	Limit (dBuV)	
	(MHz)	Quasi-peak	Average 🔨	
Limits:	0.15-0.5	66 to 56*	56 to 46*	
	0.5-5	56	46	
	5-30	60	50	
	Referenc	e Plane		
Test Setup:	40cm E.U.T AC power Test table/Insulation plane Remarkc E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m			
Test Mode:	Charging + Transmitting Mode			
Test Procedure:	 The E.U.T is connected to an adapter through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10:2020 on conducted measurement. 			
	ANSI C63 10-2020 c	on conducted mer	asurement	
Test Result:	ANSI C63.10:2020 c	on conducted mea	asurement.	


5.2.2. Test Instruments


Conducted Emission Shielding Room Test Site (843)					
Manufacturer	Model	Serial Number	Calibration Due		
R&S	ESCI3	100898	Jun. 26, 2025		
Schwarzbeck	NSLK 8126	8126453	Jan. 31, 2025		
N/A	10dB	164080	Jun. 26, 2025		
тст	CE-05	/	Jun. 26, 2025		
EZ_EMC	EMEC-3A1	1.1.4.2	1		
	Manufacturer R&S Schwarzbeck N/A TCT	ManufacturerModelR&SESCI3SchwarzbeckNSLK 8126N/A10dBTCTCE-05	ManufacturerModelSerial NumberR&SESCI3100898SchwarzbeckNSLK 81268126453N/A10dB164080TCTCE-05/		

5.2.3. Test data

Report No.: TCT241108E038

requency (MHz) 0.5051	Reading (dBuV) 21.00	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin	Detector			
	21.00			((dB)	Delector	P/F	Remark	
	21.00	10.58	31.58	56.00	-24.42	QP	Р		-
0.5051	12.89	10.58	23.47	46.00	-22.53	AVG	Р		1
0.7350	23.80	10.69	34.49	56.00	-21.51	QP	Р		1
0.7350	15.71	10.69	26.40	46.00	-19.60	AVG	Р		1
0.9102	30.47	10.67	41.14	56.00	-14.86	QP	Р		1
0.9102	21.84	10.67	32.51	46.00	-13.49	AVG	Р		7
1.1670	21.92	10.66	32.58	56.00	-23.42	QP	Р		
1.1670	13.21	10.66	23.87	46.00	-22.13	AVG	Р		SC)
1.7475	22.88	10.67	33.55	56.00	-22.45	QP	Р		
1.7741	14.97	10.67	25.64	46.00	-20.36	AVG	Р		
3.4710	12.99	10.63	23.62	46.00	-22.38	AVG	Р]
3.5474	20.08	10.63	30.71	56.00	-25.29	QP	Р		1
	0.7350 0.9102 0.9102 1.1670 1.1670 1.7475 1.7741 3.4710	0.735023.800.735015.710.910230.470.910221.841.167021.921.167013.211.747522.881.774114.973.471012.99	0.7350 23.80 10.69 0.7350 15.71 10.69 0.9102 30.47 10.67 0.9102 21.84 10.67 1.1670 21.92 10.66 1.1670 13.21 10.66 1.7475 22.88 10.67 1.7741 14.97 10.67 3.4710 12.99 10.63	0.735023.8010.6934.490.735015.7110.6926.400.910230.4710.6741.140.910221.8410.6732.511.167021.9210.6632.581.167013.2110.6623.871.747522.8810.6733.551.774114.9710.6725.643.471012.9910.6323.62	0.7350 23.80 10.69 34.49 56.00 0.7350 15.71 10.69 26.40 46.00 0.9102 30.47 10.67 41.14 56.00 0.9102 21.84 10.67 32.51 46.00 0.9102 21.92 10.66 32.58 56.00 1.1670 21.92 10.66 32.58 56.00 1.1670 13.21 10.66 23.87 46.00 1.7475 22.88 10.67 33.55 56.00 1.7741 14.97 10.67 25.64 46.00 3.4710 12.99 10.63 23.62 46.00	0.735023.8010.6934.4956.00-21.510.735015.7110.6926.4046.00-19.600.910230.4710.6741.1456.00-14.860.910221.8410.6732.5146.00-13.491.167021.9210.6632.5856.00-23.421.167013.2110.6623.8746.00-22.131.747522.8810.6733.5556.00-22.451.774114.9710.6725.6446.00-20.363.471012.9910.6323.6246.00-22.38	0.7350 23.80 10.69 34.49 56.00 -21.51 QP 0.7350 15.71 10.69 26.40 46.00 -19.60 AVG 0.9102 30.47 10.67 41.14 56.00 -14.86 QP 0.9102 21.84 10.67 32.51 46.00 -13.49 AVG 1.1670 21.92 10.66 32.58 56.00 -23.42 QP 1.1670 13.21 10.66 23.87 46.00 -22.13 AVG 1.7475 22.88 10.67 33.55 56.00 -22.45 QP 1.7741 14.97 10.67 23.62 46.00 -20.36 AVG 3.4710 12.99 10.63 23.62 46.00 -20.36 AVG	0.7350 23.80 10.69 34.49 56.00 -21.51 QP P 0.7350 15.71 10.69 26.40 46.00 -19.60 AVG P 0.9102 30.47 10.67 41.14 56.00 -14.86 QP P 0.9102 21.84 10.67 32.51 46.00 -13.49 AVG P 1.1670 21.92 10.66 32.58 56.00 -23.42 QP P 1.1670 13.21 10.66 23.87 46.00 -22.13 AVG P 1.1670 13.21 10.66 23.87 46.00 -22.13 AVG P 1.1670 13.21 10.66 23.87 46.00 -22.45 QP P 1.7475 22.88 10.67 33.55 56.00 -22.45 QP P 1.7741 14.97 10.67 25.64 46.00 -20.36 AVG P 3.4710 12.99	0.7350 23.80 10.69 34.49 56.00 -21.51 QP P 0.7350 15.71 10.69 26.40 46.00 -19.60 AVG P 0.9102 30.47 10.67 41.14 56.00 -14.86 QP P 0.9102 21.84 10.67 32.51 46.00 -13.49 AVG P 1.1670 21.92 10.66 32.58 56.00 -23.42 QP P 1.1670 13.21 10.66 23.87 46.00 -22.13 AVG P 1.1670 13.21 10.66 23.87 46.00 -22.13 AVG P 1.1670 13.21 10.66 23.87 46.00 -22.45 QP P 1.7475 22.88 10.67 33.55 56.00 -22.45 QP P 1.7741 14.97 10.67 25.64 46.00 -20.36 AVG P 3.4710 12.99 10.63 23.62 46.00 -22.38 AVG P

Note:

Freq. = Emission frequency in MHz

Reading level $(dB\mu V) = Receiver reading$

Corr. Factor (dB) = LISN factor + Cable loss

Measurement $(dB\mu V)$ = Reading level $(dB\mu V)$ + Corr. Factor (dB)

 $Limit (dB\mu V) = Limit stated in standard$

Margin (dB) = Measurement (dB μ V) – Limits (dB μ V)

Q.P. =Quasi-Peak

AVG =average

* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

Conducted Emission on Neutral Terminal of the power line (150 kHz to 30MHz) dBuV 80.0 70 FCC Part15 CE-Class C_QP 60 FCC Part15 CE-Class C_AVe 50 40 30 20 a di ka ka ka 10 0 -10 -20 30.000 0.150 0.500 (MHz) 5.000

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector	P/F	Remark	
1	0.2535	19.08	10.56	29.64	61.64	-32.00	QP	Р		l c
2	0.2535	9.43	10.56	19.99	51.64	-31.65	AVG	Р		
3	0.4830	22.34	10.57	32.91	56.29	-23.38	QP	Р		
4	0.4830	15.74	10.57	26.31	46.29	-19.98	AVG	Р		1
5	0.7350	24.09	10.69	34.78	56.00	-21.22	QP	Р		1
6	0.7350	17.52	10.69	28.21	46.00	-17.79	AVG	Р		1
7	0.9102	30.26	10.67	40.93	56.00	-15.07	QP	Р		1
8 *	0.9102	23.05	10.67	33.72	46.00	-12.28	AVG	Р		1
9	2.1030	21.73	10.68	32.41	56.00	-23.59	QP	Р		
10	2.1030	13.82	10.68	24.50	46.00	-21.50	AVG	Р		l ć
11	3.4710	10.16	10.63	20.79	46.00	-25.21	AVG	Р		
12	3.6465	16.47	10.64	27.11	56.00	-28.89	QP	Р		

Note1:

Freq. = Emission frequency in MHz Reading level $(dB\mu V)$ = Receiver reading Corr. Factor (dB) = LISN factor + Cable loss Measurement $(dB\mu V)$ = Reading level $(dB\mu V)$ + Corr. Factor (dB)Limit $(dB\mu V)$ = Limit stated in standard Margin (dB) = Measurement $(dB\mu V)$ – Limits $(dB\mu V)$ Q.P. =Quasi-Peak AVG =average

* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

Note2:

Measurements were conducted in all three channels (high, middle, low), and the worst case Mode (Highest channel) was submitted only.

Page 11 of 49

5.3. Conducted Output Power

5.3.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (b)(1)				
Test Method:	KDB 558074 D01 v05r02				
Limit:	Section 15.247 (b) The maximum peak conducted output power of the intentional radiator shall not exceed the following: (1) For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band 0.125 watts.				
Test Setup:	Spectrum Analyzer EUT				
Test Mode:	Transmitting mode with modulation				
Test Procedure:	Use the following spectrum analyzer settings: Span = approximately 5 times the 20 dB bandwidth centered on a hopping channel RBW > the 20 dB bandwidth of the emission being measured VBW ≥ RBW Sweep = auto Detector function = peak Trace = max hold Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the peak of the emission.				
Test Result:	PASS				

5.3.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY50101018	Jun. 26, 2025
Test Software	TST Pass	/		

5.4. 20dB Occupy Bandwidth

5.4.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)							
Test Method:	KDB 558074 D01 v05r02							
Limit:	N/A							
Test Setup:	Spectrum Analyzer EUT							
Test Mode:	Transmitting mode with modulation							
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Use the following spectrum analyzer settings for 20dB Bandwidth measurement. Span = approximately 2 to 5 times the 20 dB bandwidth, centered on a hopping channel; 1%≤RBW≤5% of the 20 dB bandwidth; VBW≥3RBW; Sweep = auto; Detector function = peak; Trace = max hold. Measure and record the results in the test report. 							
Test Result:	PASS O							

5.4.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY50101018	Jun. 26, 2025
Test Software	TST Pass	\sim	, ~	/

5.5. Carrier Frequencies Separation

5.5.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)
Test Method:	KDB 558074 D01 v05r02
Limit:	Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater.
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Hopping mode
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = wide enough to capture the peaks of two adjacent channels; RBW is set to approximately 30% of the channel spacing, adjust as necessary to best identify the center of each individual channel; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. Record the value in report.
Test Result:	PASS

5.5.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY50101018	Jun. 26, 2025
Test Software	TST Pass	/	1	

5.6. Hopping Channel Number

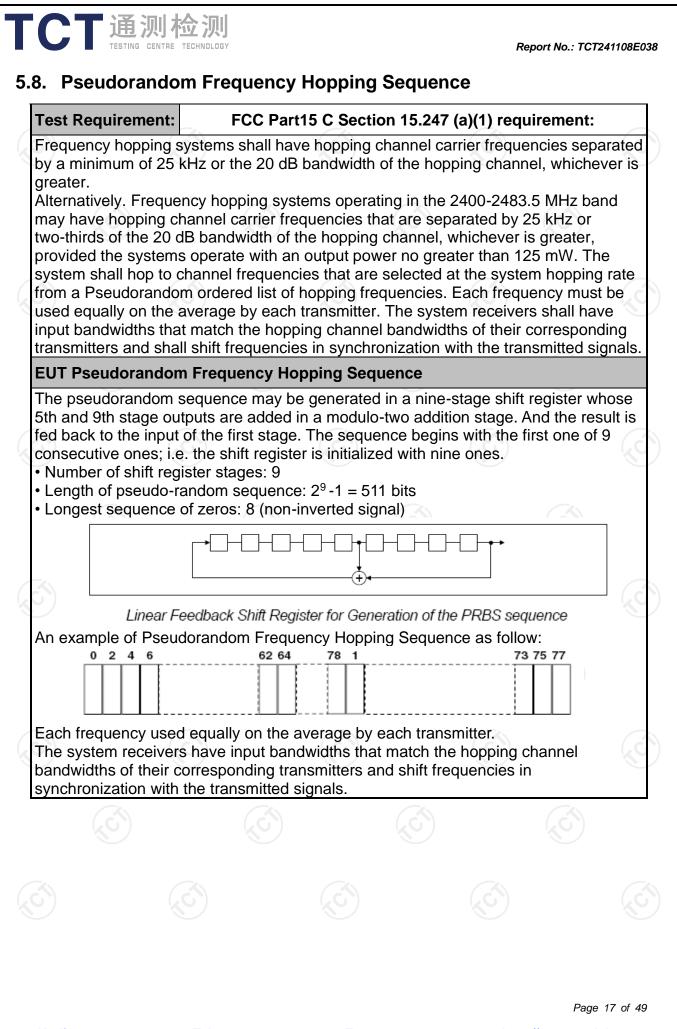
5.6.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)
Test Method:	KDB 558074 D01 v05r02
Limit:	Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Hopping mode
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = the frequency band of operation; set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold. The number of hopping frequency used is defined as the number of total channel. Record the measurement data in report.
Test Result:	PASS

5.6.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY50101018	Jun. 26, 2025
Test Software	TST Pass	1	/	/

5.7. Dwell Time


5.7.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)
Test Method:	KDB 558074 D01 v05r02
Limit:	The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Hopping mode
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel; RBW shall be ≤ channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel; VBW≥RBW; Sweep = as necessary to capture the entire dwell time per hopping channel; Detector function = peak; Trace = max hold. Measure and record the results in the test report.
Test Result:	PASS

5.7.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY50101018	Jun. 26, 2025
Test Software	TST Pass	/		

Page 16 of 49

5.9. Conducted Band Edge Measurement

5.9.1. Test Specification

FCC Part15 C Section 15.247 (d)
KDB 558074 D01 v05r02
In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.
Spectrum Analyzer
Transmitting mode with modulation
 Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz (≥1% span=10MHz), VBW = 300 kHz (≥RBW). Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used. Enable hopping function of the EUT and then repeat step 2 and 3. Measure and record the results in the test report.
PASS

5.9.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY50101018	Jun. 26, 2025
Test Software	TST Pass	/		

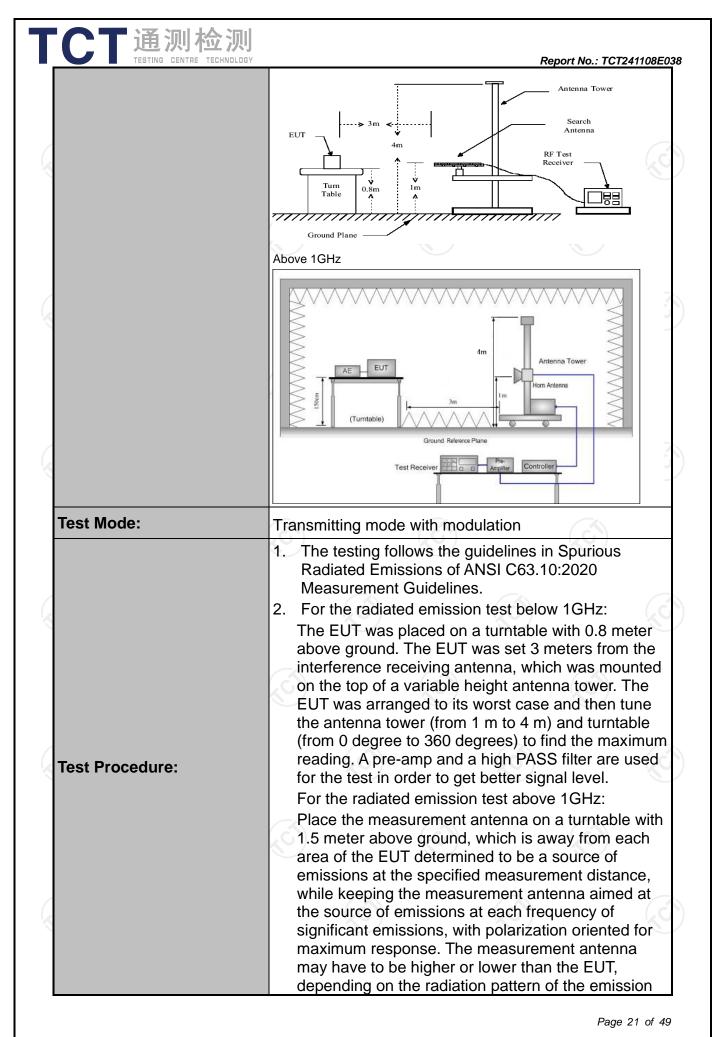
5.10. Conducted Spurious Emission Measurement

5.10.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	KDB 558074 D01 v05r02
Limit:	In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.
Test Setup:	Spectrum Analyzer
Test Mode:	Transmitting mode with modulation
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz, VBW = 300kHz, scan up through 10th harmonic. All harmonics / spurs must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW. Measure and record the results in the test report. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.
Test Result:	PASS

5.10.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY50101018	Jun. 26, 2025
Test Software	TST Pass	/		



5.11. Radiated Spurious Emission Measurement

5.11.1. Test Specification

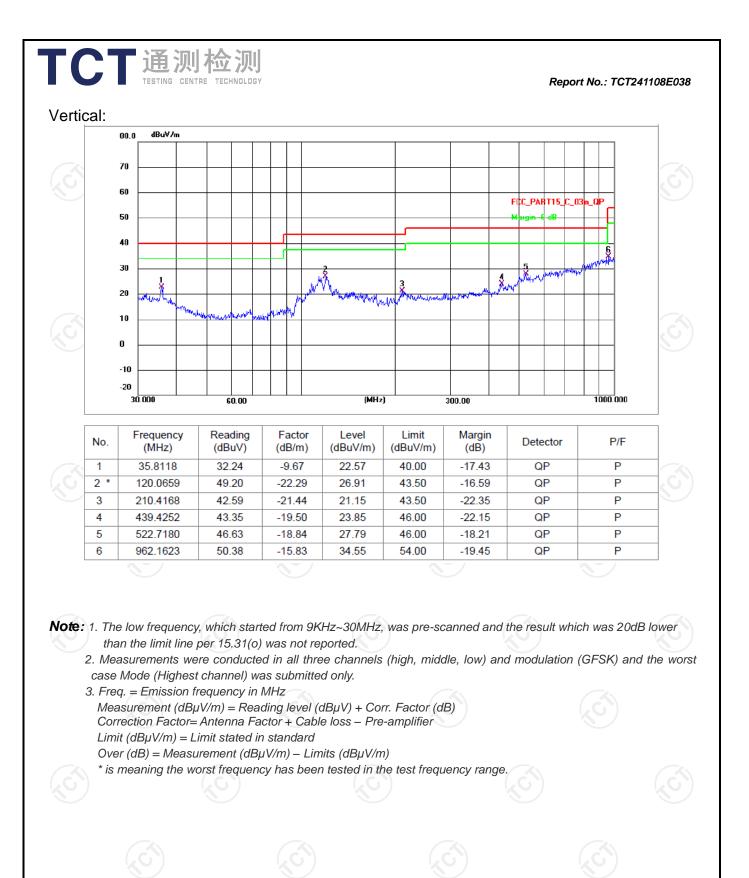
TCT 通测检测 TESTING CENTRE TECHNOLOGY

FCC Part15	C Sectio	n 15	5.209 📉	9		X	
ANSI C63.10:2020							
9 kHz to 25 GHz							
3 m		C			K)	
Horizontal &	Vertical						
Frequency	Detect	or	RBW	VBW		Remark	
9kHz- 150kHz	Quasi-p	eak	200Hz	1kHz	(Quasi-peak Value	
150kHz- 30MHz	Quasi-p	eak	9kHz	30kHz	C	Quasi-peak Value	
30MHz-1GHz	Quasi-p	eak	120KHz	300KHz	Ċ	Quasi-peak Value	
Above 1GHz			1MHz	3MHz		Peak Value	
	Peak		1MHz	10Hz	Av	erage Value	
		(r	microvolts/r	neter)		asurement nce (meters	
				· · · · · ·		300	
				(Hz)		30	
					30		
					3		
					3		
					3		
(ć			(
Frequency		crovolts/meter)		Distanc	ce	Detector	
Above 1GHz				<u>3</u>	5)	Average Peak	
Fan an dia ta da amin		J.			C		
		w 30ľ	VITZ				
Dis	tance = 3m	\bigcap)+ _	Pre -A	Compu		
EUT 0.8m					xeiver		
	Grou	und Plan	e			J	
	9 kHz to 25 0 3 m Horizontal & Frequency 9kHz- 150kHz 150kHz- 30MHz 30MHz-1GHz Above 1GHz Above 1GHz 0.009-0.4 0.490-1.7 1.705-3 30-88 88-216 216-960 Above 90 Frequency Above 1GHz For radiated emiss	9 kHz to 25 GHz 3 m Horizontal & Vertical Frequency Detect 9kHz-150kHz Quasi-pa 150kHz- Quasi-pa 30MHz-1GHz Quasi-pa 30MHz-1GHz Quasi-pa Above 1GHz Peak Peak Peak 0.009-0.490 0.490-1.705 1.705-30 30-88 88-216 216-960 Above 960 Frequency Frequency Fil Above 1GHz Fil For radiated emissions belo Distance = 3m Image: Stance = 3m Image: Stance = 3m	9 kHz to 25 GHz 3 m Horizontal & Vertical Frequency Detector 9kHz-150kHz Quasi-peak 150kHz- Quasi-peak 30MHz-1GHz Quasi-peak Above 1GHz Peak Peak Peak 0.009-0.490 0.490-1.705 1.705-30 30-88 88-216 116-960 Above 1GHz Field State 0.490-1.705 500 760 Above 960 Frequency 0.490-1.705 500 30-88 88-216 216-960 500 Above 1GHz 500 For radiated emissions below 301 500 Distance = 3m 100 0.100 100 0.100 10 0.100 10	9 kHz to 25 GHz 3 m Horizontal & Vertical Frequency Detector RBW 9kHz-150kHz Quasi-peak 200Hz 150kHz- Quasi-peak 9kHz 30MHz Quasi-peak 9kHz 30MHz-1GHz Quasi-peak 120KHz Above 1GHz Peak 1MHz Frequency Field Streat 1MHz Frequency Field Streat 100 0.009-0.490 2400/F(Kt) 0.490-1.705 24000/F(Kt) 0.490-1.705 24000/F(Kt) 1.705-30 30 30-88 100 88-216 150 216-960 200 200 Above 960 500 Frequency Field Strength (microvolts/meter) 500 500 Above 1GHz Above 1GHz Above 1GHz Above 1GHz <	9 kHz to 25 GHz 3 m Horizontal & Vertical Frequency Detector RBW VBW 9kHz-150kHz Quasi-peak 200Hz 1kHz 150kHz- Quasi-peak 9kHz 30kHz 30MHz-1GHz Quasi-peak 120KHz 300KHz 30MHz-1GHz Quasi-peak 120KHz 300KHz Above 1GHz Peak 1MHz 30Hz 0.009-0.490 2400/F(KHz) 1.0Hz Frequency Field Strength (microvolts/meter) 0.009-0.490 0.009-0.490 2400/F(KHz) 1.705-30 30 30-388 100 88-216 150 17:05-30 30 30-30 30-30 30-88 100 88-216 150 216-960 200 Above 1GHz 500 3 Above 1GHz 500 3 3 3 For radiated emissions below 30MHz Distance = 3m Im Pre-A UBAD 500 3 3 3	9 kHz to 25 GHz 3 m Horizontal & Vertical	

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

	GENTHE	rece mea max ante resti abov 3. Set EU 4. Use (1) (2)	= max ho For avera	aximum si antenna ele emissions. on for may ange of he nd or refer ximum pov continuous ng spectru wide enou eing meas 120 kHz fo z ; VBW≥R auto; Dete ld for peak ge measu factor me Outy cycle =	emission s gnal. The evation sha The meas kimum emi eights of fro ence grou wer setting ly. um analyze ugh to fully sured; or f < 1 GF BW; ctor function rement: us thod per = On time/	final all be that surement issions sha om 1 m to nd plane. g and ena er settings capture the lz, RBW=7 on = peak se duty cyce 100 millise	whicl all be 4 m ble th : he 1MHz ; Trac
		J)	length of t Average I Level + 20 Corrected	1 is numbe type 1 puls Emission L 0*log(Duty Reading: <i>A</i>	er of type 1 ses, etc. .evel = Pea cycle) Antenna Fa	pulses, L ak Emissic actor + Ca	1 is on ble
est results:		PASS	Where N ² length of t Average I Level + 20	1 is numbe type 1 puls Emission L 0*log(Duty Reading: <i>A</i>	er of type 1 ses, etc. .evel = Pea cycle) Antenna Fa	pulses, L ak Emissic actor + Ca	1 is on ble
est results:		PASS	Where N ² length of t Average I Level + 20 Corrected	1 is numbe type 1 puls Emission L 0*log(Duty Reading: <i>A</i>	er of type 1 ses, etc. .evel = Pea cycle) Antenna Fa	pulses, L ak Emissic actor + Ca	1 is on ble
est results:		PASS	Where N ² length of t Average I Level + 20 Corrected	1 is numbe type 1 puls Emission L 0*log(Duty Reading: <i>A</i>	er of type 1 ses, etc. .evel = Pea cycle) Antenna Fa	pulses, L ak Emissic actor + Ca	1 is on ble
est results:		PASS	Where N ² length of t Average I Level + 20 Corrected	1 is numbe type 1 puls Emission L 0*log(Duty Reading: <i>A</i>	er of type 1 ses, etc. .evel = Pea cycle) Antenna Fa	pulses, L ak Emissic actor + Ca	1 is on ble

5.11.2. Test Instruments

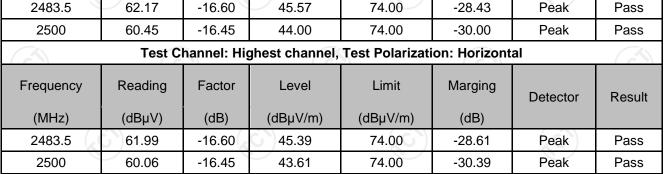

	Radiated En	nission Test Site	e (966)			
Name of Equipment			Manutacturer Model		Serial Number	Calibration Due
EMI Test Receiver	R&S	ESCI7	100529	Jan. 31, 2025		
Spectrum Analyzer	R&S	FSQ40	200061	Jun. 26, 2025		
Pre-amplifier	SKET	LNPA_0118G- 45	SK2021012 102	Jan. 31, 2025		
Pre-amplifier	SKET	LNPA_1840G- 50	SK2021092 03500	Jan. 31, 2025		
Pre-amplifier	HP	8447D	2727A05017	Jun. 26, 2025		
Loop antenna	Schwarzbeck	FMZB1519B	00191	Jun. 26, 2025		
Broadband Antenna	Schwarzbeck	VULB9163	340	Jun. 28, 2025		
Horn Antenna	Schwarzbeck	BBHA 9120D	631	Jun. 28, 2025		
Horn Antenna	Schwarzbeck	BBHA 9170	00956	Feb. 02, 2025		
Coaxial cable	SKET	RE-03-D	/	Jun. 26, 2025		
Coaxial cable	SKET	RE-03-M		Jun. 26, 2025		
Coaxial cable	SKET	RE-03-L	/	Jun. 26, 2025		
Coaxial cable	SKET	RE-04-D		Jun. 26, 2025		
Coaxial cable	SKET	RE-04-M	K)	Jun. 26, 2025		
Coaxial cable	SKET	RE-04-L	/	Jun. 26, 2025		
Antenna Mast	Keleto	RE-AM				
EMI Test Software	EZ_EMC	FA-03A2 RE+	1.1.4.2			

5.11.3. Test Data

TCT通测检测 TESTING CENTRE TECHNOLOGY

Please refer to following diagram for individual

F


Fr

Fr

Report	No	TCT241108E038
Nepul	110	1012411002030

			Test Mode	: GFSK			
- Al	Test	Channel: L	owest channe	l, Test Polariza	tion: Vertical		
requency	Reading	Factor	Level	Limit	Marging	Detector	Result
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)		
2310	60.79	-16.45	44.34	74.00	-29.66	Peak	Pass
2390	59.67	-15.86	43.81	74.00	-30.19	Peak	Pass
2400	60.80	-15.82	44.98	74.00	-29.02	Peak	Pass
c^)	Test C	hannel: Lo	west channel,	Test Polarizati	on: Horizont	al	(\mathcal{O})
requency	Reading	Factor	Level	Limit	Marging	Detector	Result
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)		
2310	61.11	-16.45	44.66	74.00	-29.34	Peak	Pass
2390	59.99	-15.86	44.13	74.00	-29.87	Peak	Pass
2400	61.12	-15.82	45.30	74.00	-28.70	Peak	Pass
6)	Test	Channel: H	lighest channe	l, Test Polariza	tion: Vertica		(S)
requency	Reading	Factor	Level	Limit	Marging	Detector	Result
(MHz)	(dBµV)	(dB)	(dBµV/m)	(dBµV/m)	(dB)		
2483.5	62.17	-16.60	45.57	74.00	-28.43	Peak	Pass
2500	60.45	-16.45	44.00	74.00	-30.00	Poak	Pass

Test Result of Radiated Spurious at Band edges

Page 26 of 49

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

Above 1GHz

	Modulation	Type: GF	SK							
	Low chann	el: 2403 N	1Hz							
	Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)	Peak		Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
	4806	Н	55.99		-9.51	46.48		74	54	-7.52
	7209	Н	45.32		-1.41	43.91		74	54	-10.09
		H				/				
	(2 G`)		02			· ()		(\mathcal{G})	
	4806	V	55.78		-9.51	46.27		74	54	-7.73
	7209	V	46.42		-1.41	45.01		74	54	-8.99
		V								
(X									G

Middle cha	nnel: 2442	2 MHz							X
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Peak		Peak limit (dBµV/m)		Margin (dB)
4884	Н	54.58		-9.36	45.22		74	54	-8.78
7326	KOH)	45.29	1.0	-1.14	44.15		74	54	-9.85
	Ĥ					<u> </u>			
4884	V	55.03		-9.36	45.67		74	54	-8.33
7326	V	45.90		-1.14	44.76		74	54	-9.24
<u> </u>	V			X	/				

High channel: 2480 MHz

	IEI. 2400 IN								
Frequency	Ant Pol	Peak	AV	Correction	Emissic	n Level	Peak limit	AV/ limit	Margin
(MHz)	H/V	reading	reading	Factor	Peak	AV	(dBµV/m)	(dBµV/m)	(dB)
~ /		(dBµV)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)	· · · /	、 1	()
4960	Н	56.65		-9.20	47.45		74	54	-6.55
7440	Н	46.23		-0.96	45.27		74	54	-8.73
	Н								
G)		(G)		(.0			(G)		
4960	V	55.60		-9.20	46.40		74	54	-7.60
7440	V	45.02		-0.96	44.06		74	54	-9.94
	V								

Note:

1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss - Pre-amplifier

2. Margin (dB) = Emission Level (Peak) (dB μ V/m)-Average limit (dB μ V/m)

3. The emission levels of other frequencies are very lower than the limit and not show in test report.

4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency.

5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB

below the limits or the field strength is too small to be measured.

6. All the restriction bands are compliance with the limit of 15.209.

Appendix A: Test Result of Conducted Test

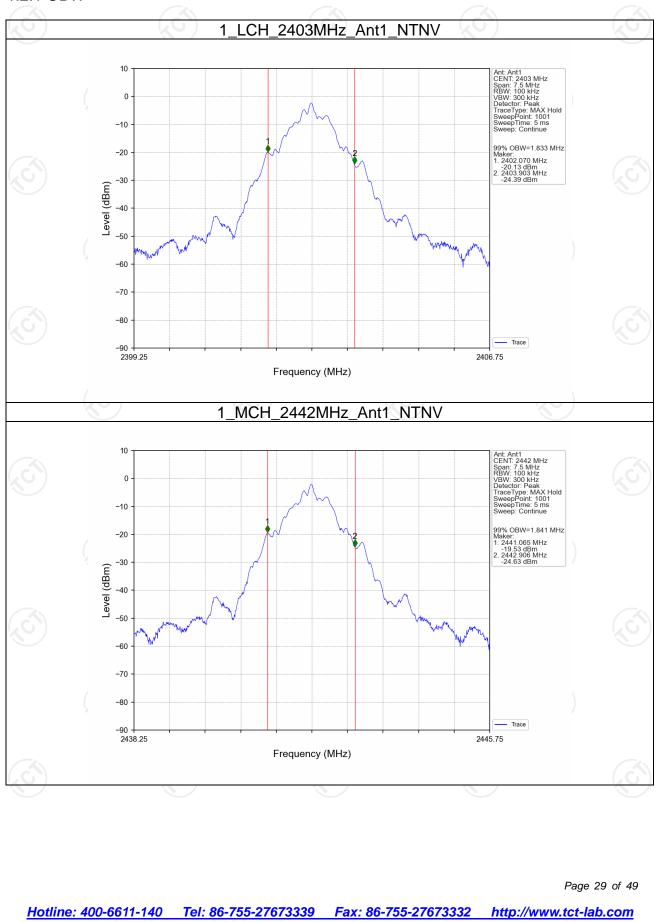
1. Bandwidth

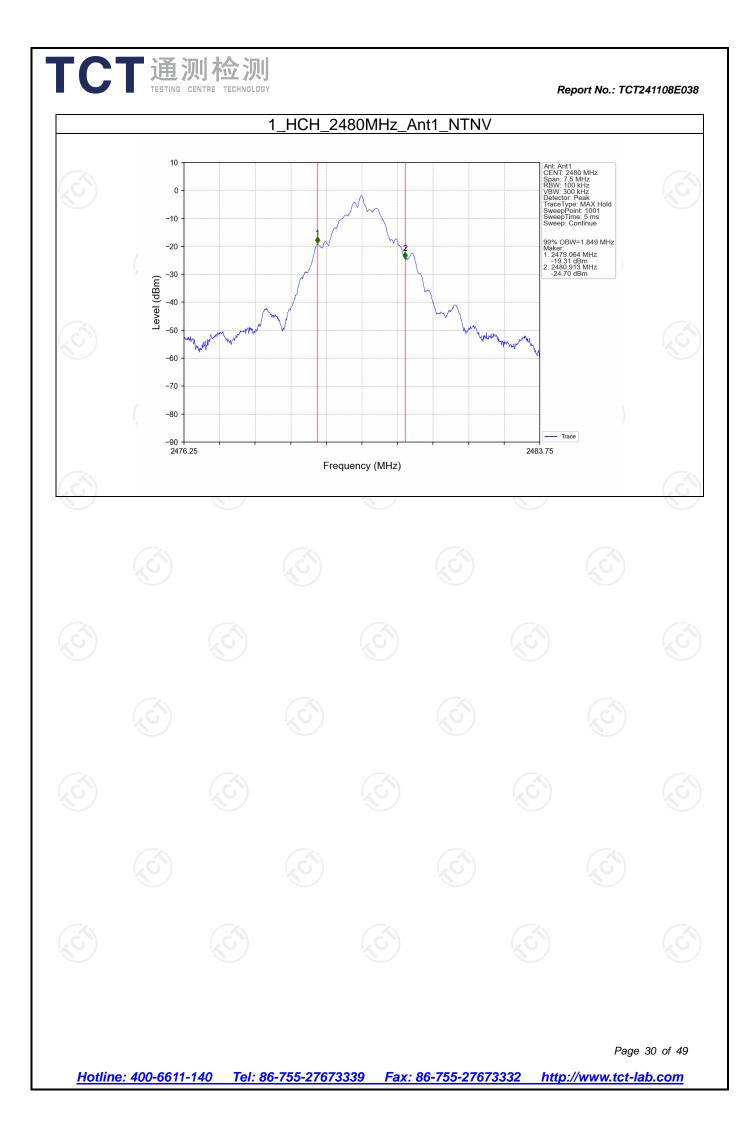
1.1 Test Result

1.1.1 OBW

Mode	TX	Frequency	ANT	99% Occupied I	Bandwidth (MHz)	Verdict
	Туре	(MHz) 🚫	ANT	Result	Limit	verdict
		2403	1	1.833	/	Pass
1	SISO	2442	1	1.841	/	Pass
		2480	1	1.849		Pass
K V			X		KU /	

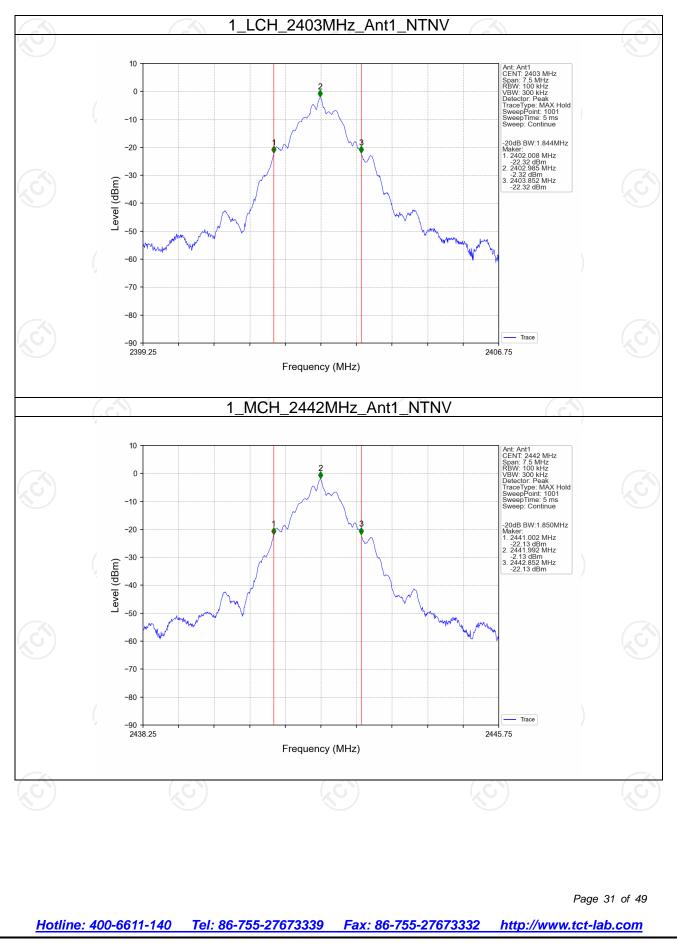
1.1.2 20dB BW

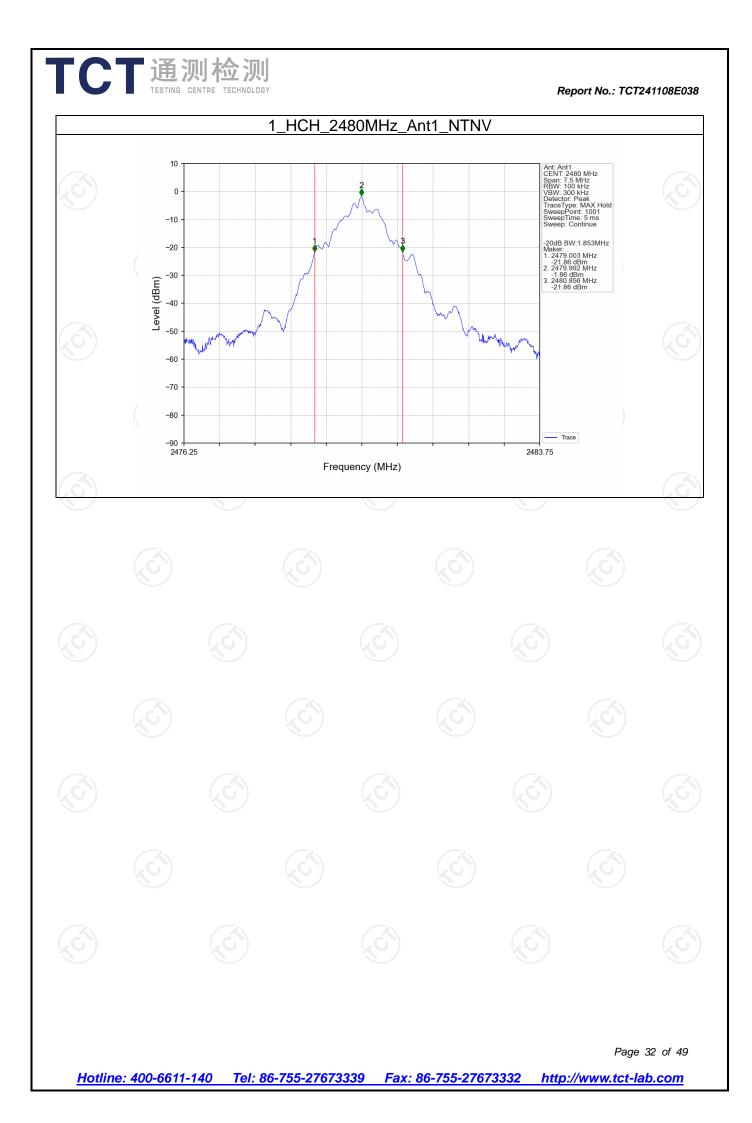

Mode	TX Type	Frequency (MHz)	ANT	20dB Band	Verdict	
			ANT	Result	Limit 🔨	verdict
		2403	1	1.844	/	Pass
1	SISO	2442	1	1.850	/	Pass
		2480	1	1.853		Pass
KV/						



1.2 Test Graph

TCT通测检测 TESTING CENTRE TECHNOLOGY


1.2.1 OBW

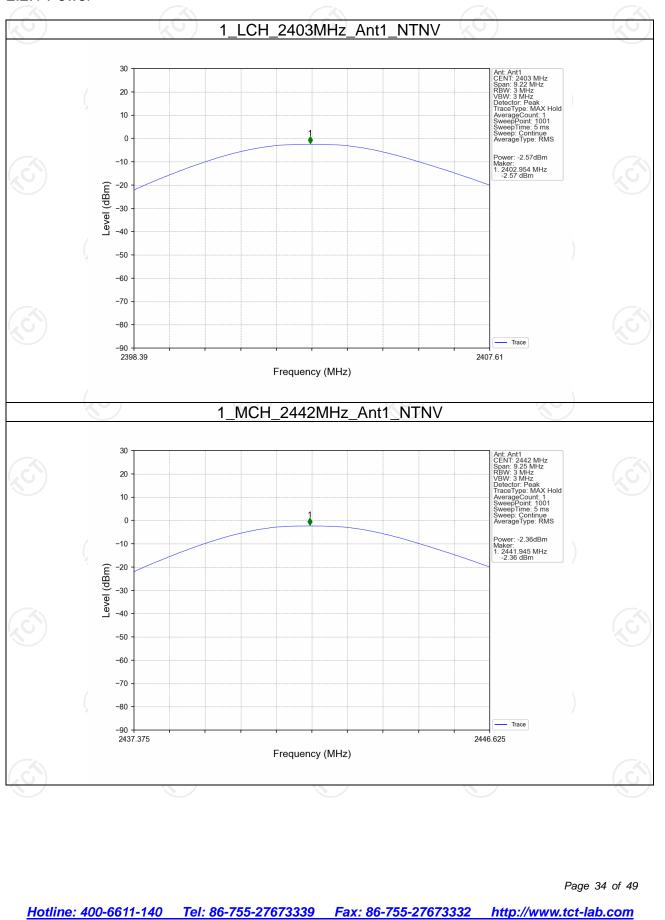


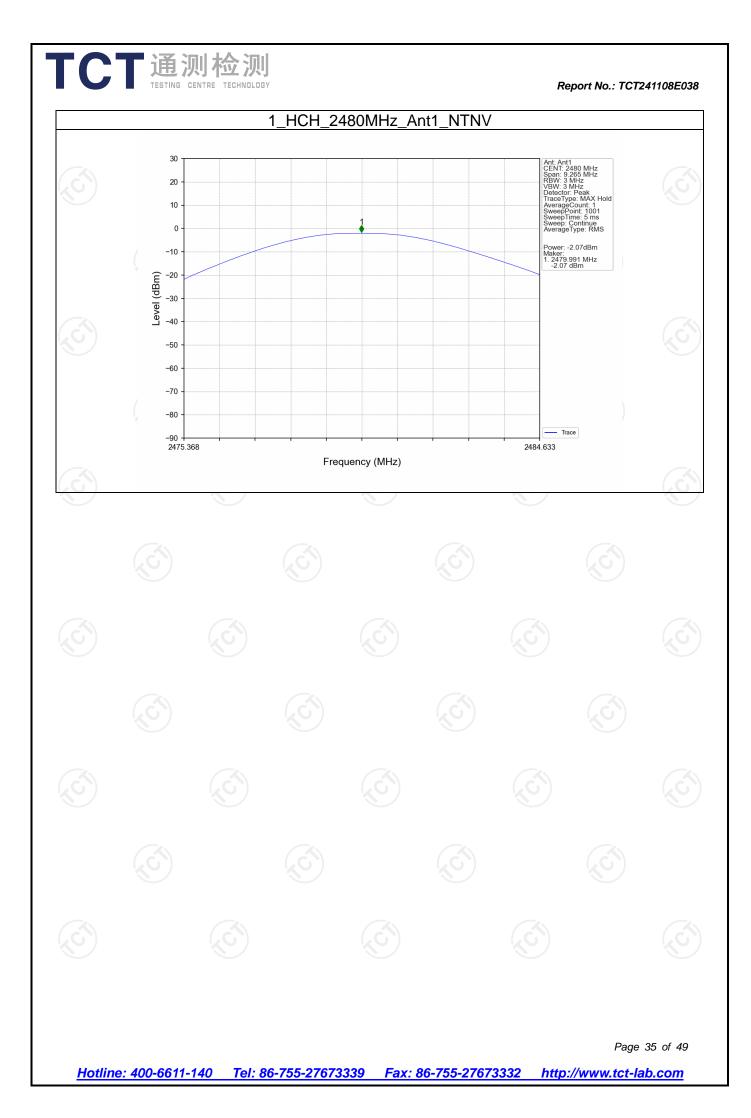
1.2.2 20dB BW

2. Maximum Conducted Output Power

2.1 Test Result

2.1.1 Power


Mode	TX Type	Frequency (MHz)	Maximum Peak Powe	Verdict	
			ANT1	Limit	
		2403	-2.57	<=20.97	Pass
(1	SISO	2442	-2.36	<=20.97	Pass
KC)		2480	-2.07	<=20.97	Pass
Note1: An	itenna Gain:	Ant1: 2.24dBi;			



2.2 Test Graph

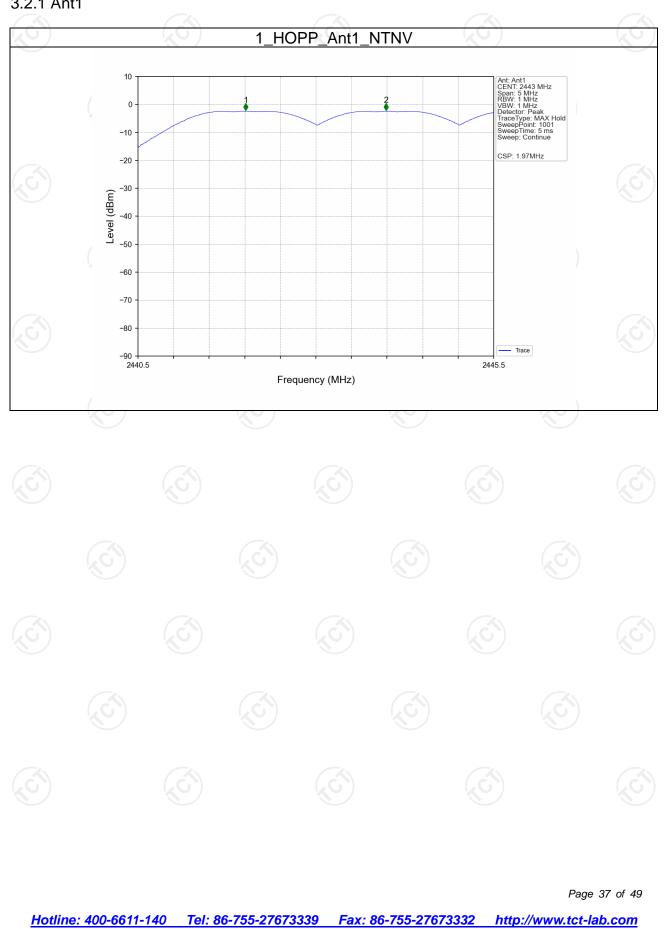
TCT 通测检测 TESTING CENTRE TECHNOLOGY

2.2.1 Power

3. Carrier Frequency Separation

TCT通测检测 TESTING CENTRE TECHNOLOGY

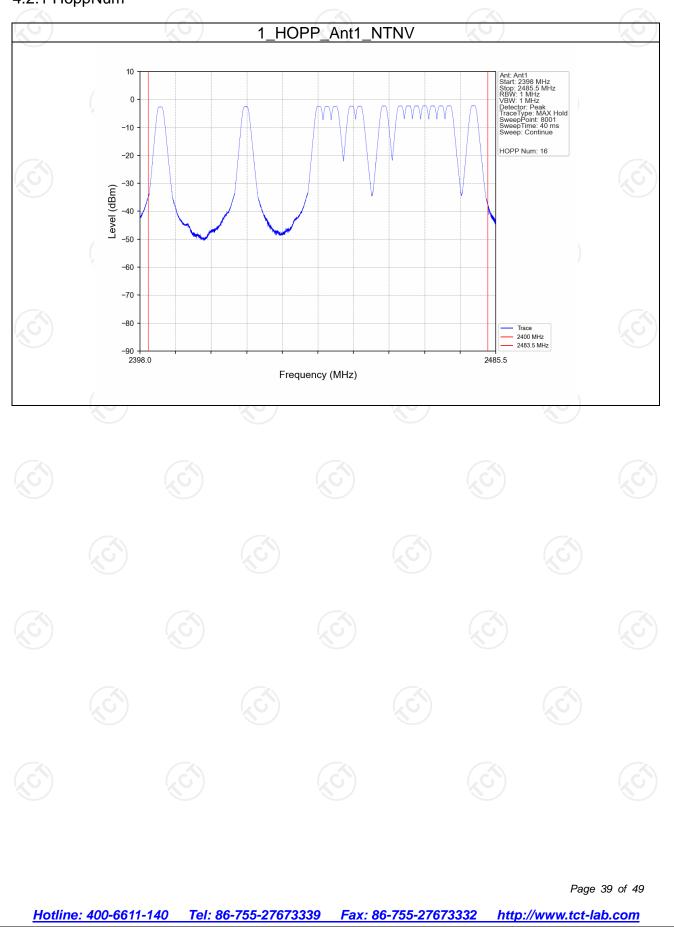
3.1 Test Result


3.1.1 Ant1

		1_		Ant1					
Mode	TX Type	Frequency (MHz)	Channe	l Separatio MHz)	n 20dB Bar (MH	ndwidth z)	Limit (MHz)	Verdict	
1	SISO	HOPP		.970	1.85		>=1.853	Pass	

TCT 通测检测 TESTING CENTRE TECHNOLOGY

3.2.1 Ant1


Report No.: TCT241108E038

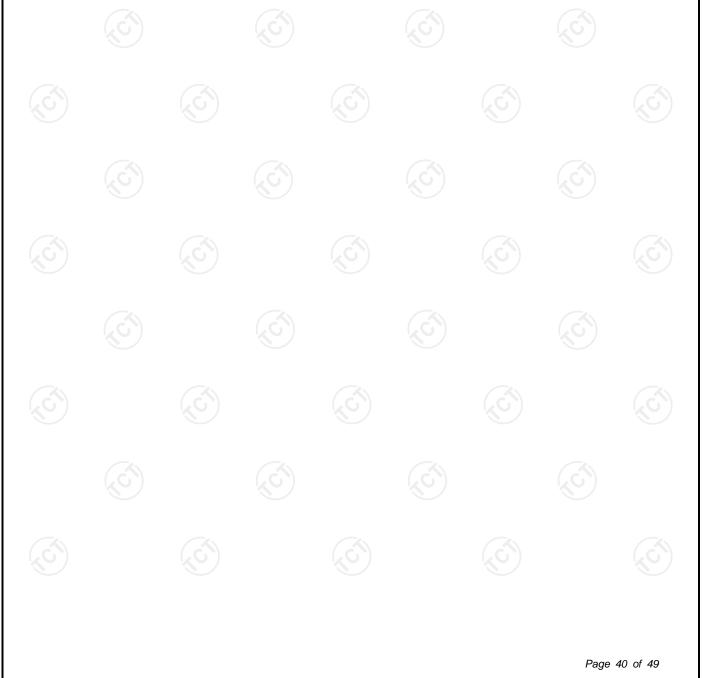
4. Number of Hopping Frequencies

4.1 Test Result

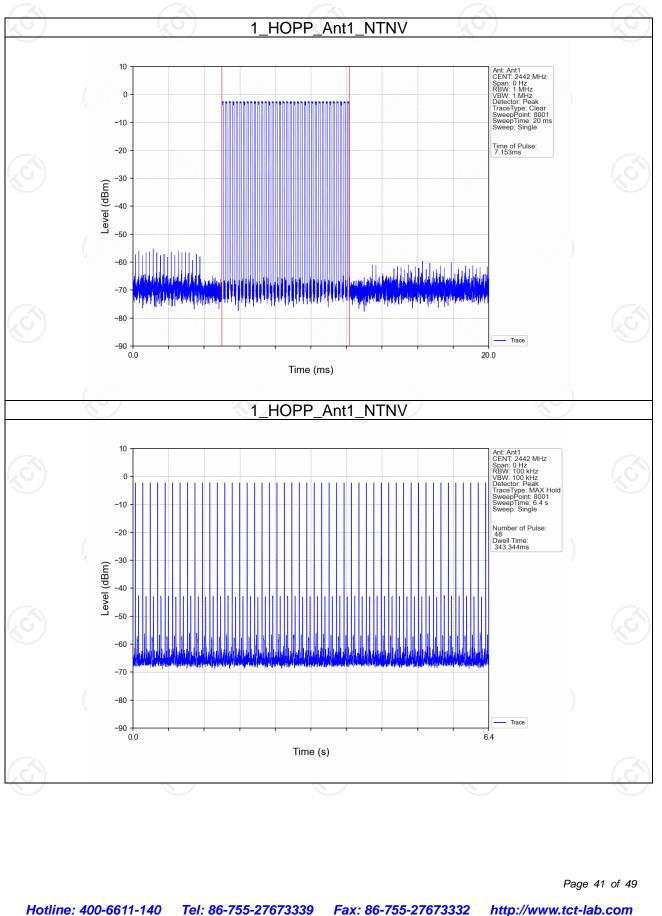
4.1.1 HoppNum

4.2.1 HoppNum

TCT通测检测 TCT通测检测


Report No.: TCT241108E038

5. Time of Occupancy (Dwell Time)


5.1 Test Result

5.1.1 Ant1

	(Ant1		(
Mode	TX Type	Frequency (MHz)	Duration of Single Pulse (ms)	Observation Period (s)	Num of Pulse in Observation Period	Dwell Time (ms)	Limit (ms)	Verdict
1	SISO	HOPP	7.153	6.400	48	343.344	<=400	Pass

5.2.1 Ant1

6. Unwanted Emissions In Non-restricted Frequency Bands

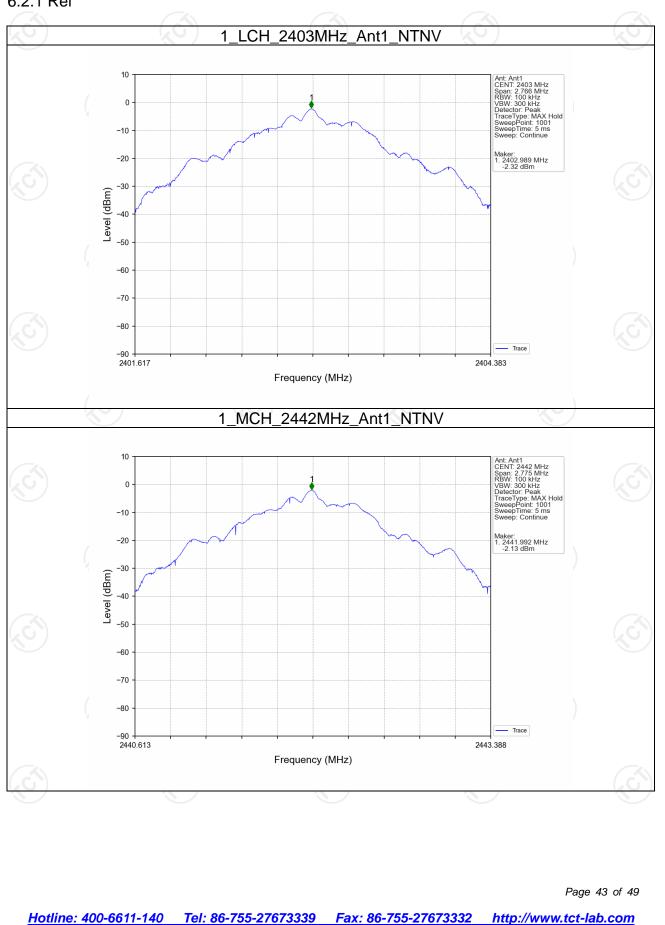
6.1 Test Result

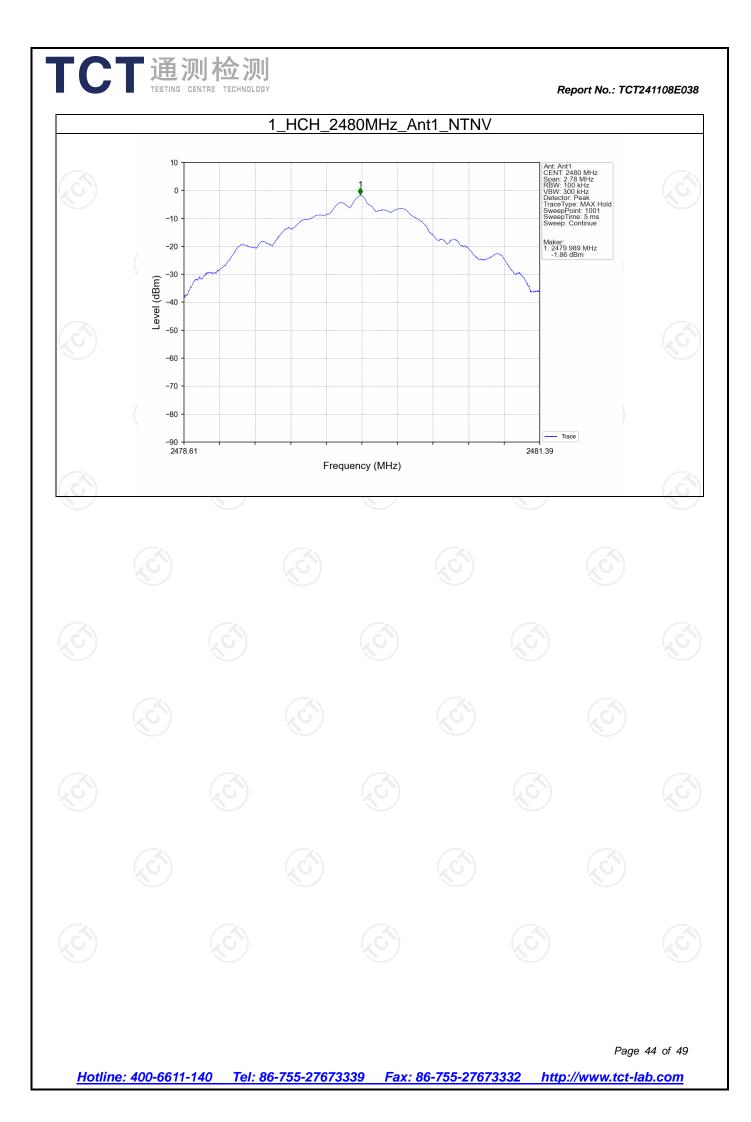
6.1.1 Ref

Mode	TX Type	Frequency (MHz)	ANT	Level of Reference (dBm)			
		2403	1	-2.32			
1	SISO	2442	1	-2.13			
		2480	1	-1.86			
Note1: Refer to	FCC Part 15.	247 (d) and ANSI C	63.10-2020, tł	ne channel contains the			

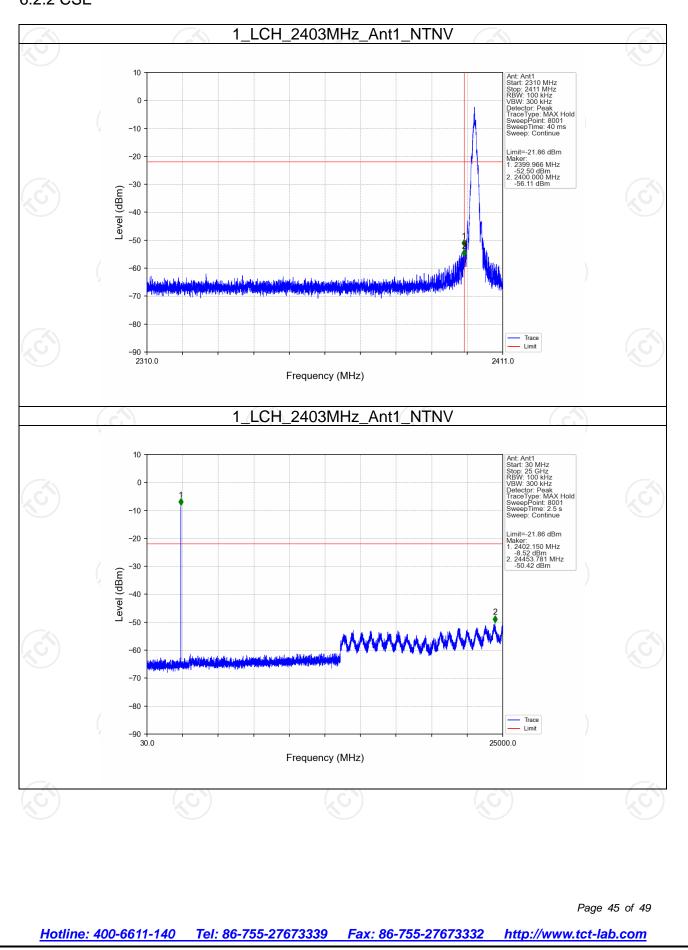
maximum PSD level was used to establish the reference level.

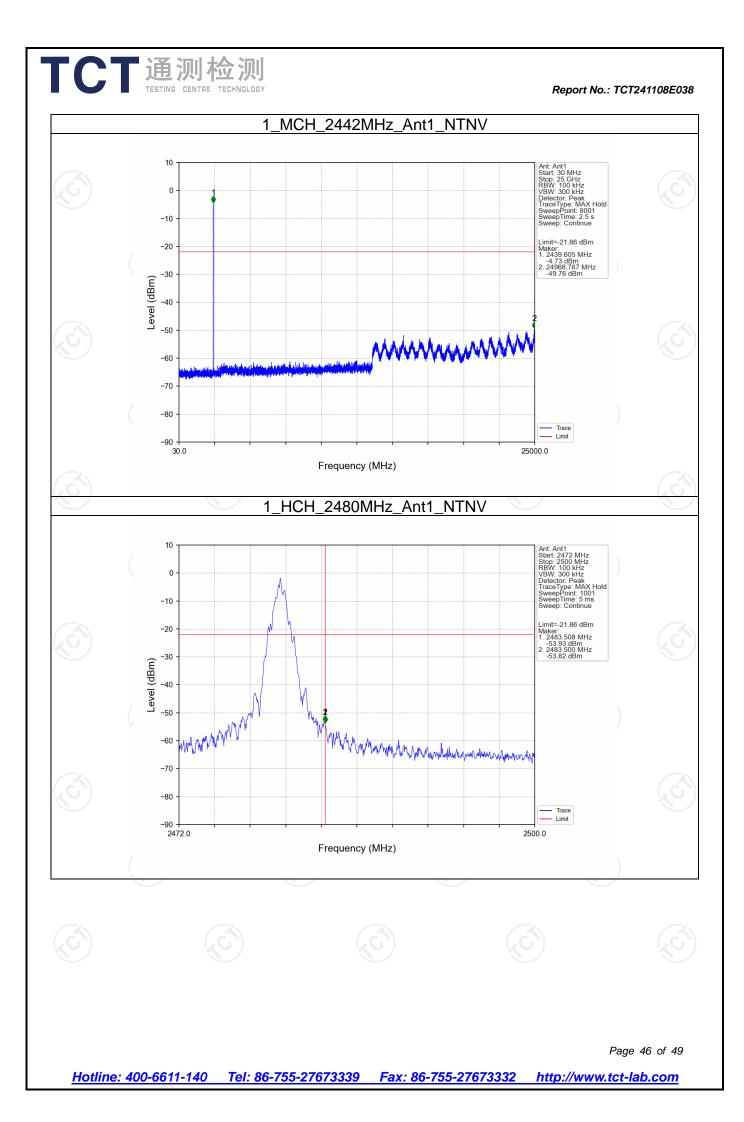
6.1.2 CSE

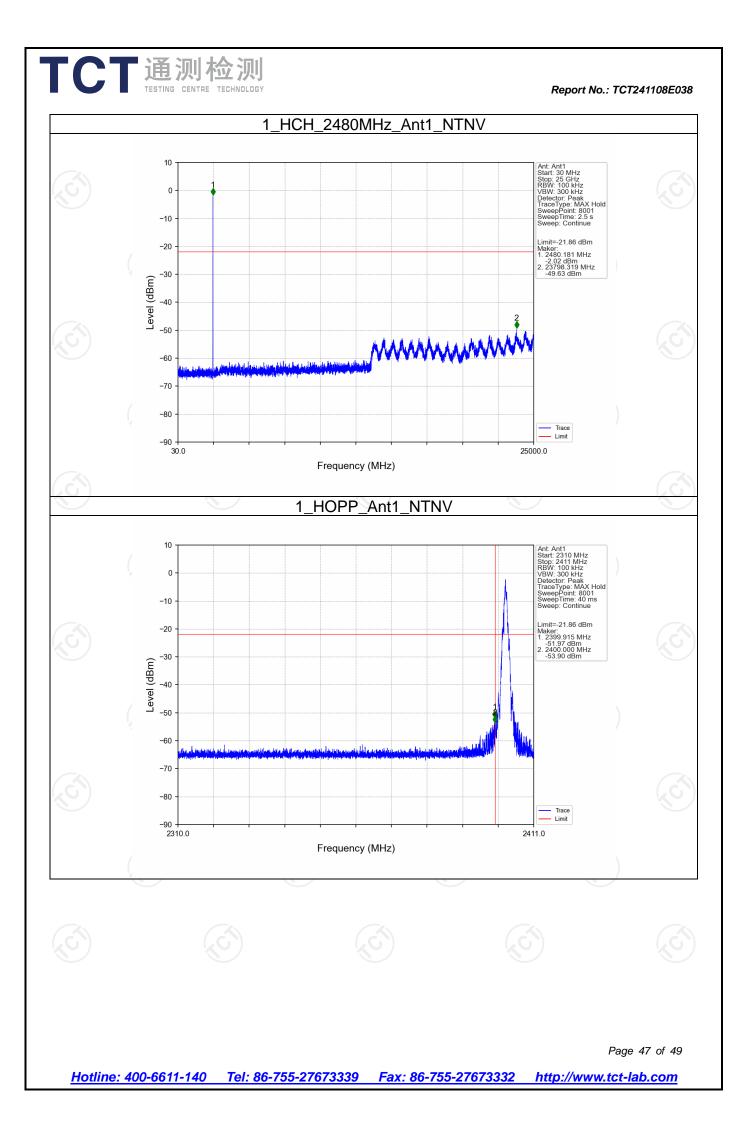

Mode	TX Type	Frequency (MHz)	ANT	Level of Refere (dBm)	ence	Limit (dBm)	Verdict
		2403	1	-1.86		-21.86	Pass
		2442	1 8	-1.86	Ň	-21.86	Pass
1	SISO	2480	1	-1.86		-21.86	Pass
		HOPP 1	4	-1.86		-21.86	Pass
				-1.86		-21.86	Pass
Natad: D					41		aliana Alana

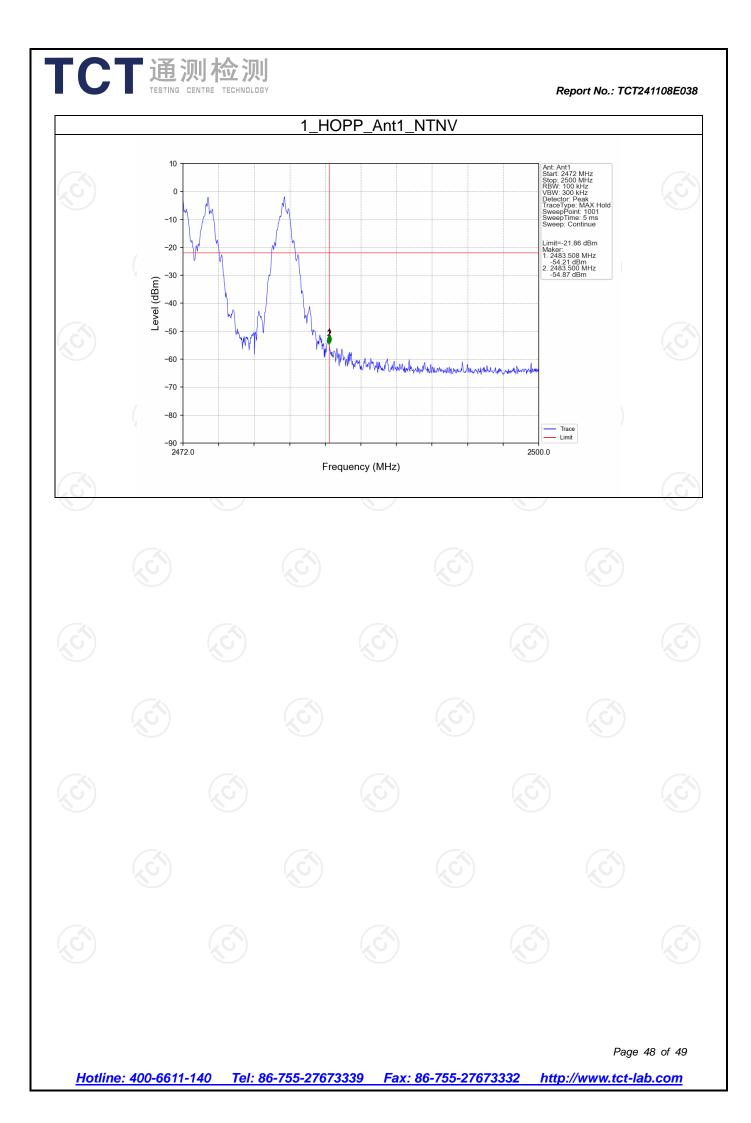

Note1: Refer to FCC Part 15.247 (d) and ANSI C63.10-2020, the channel contains the maximum PSD level was used to establish the reference level.

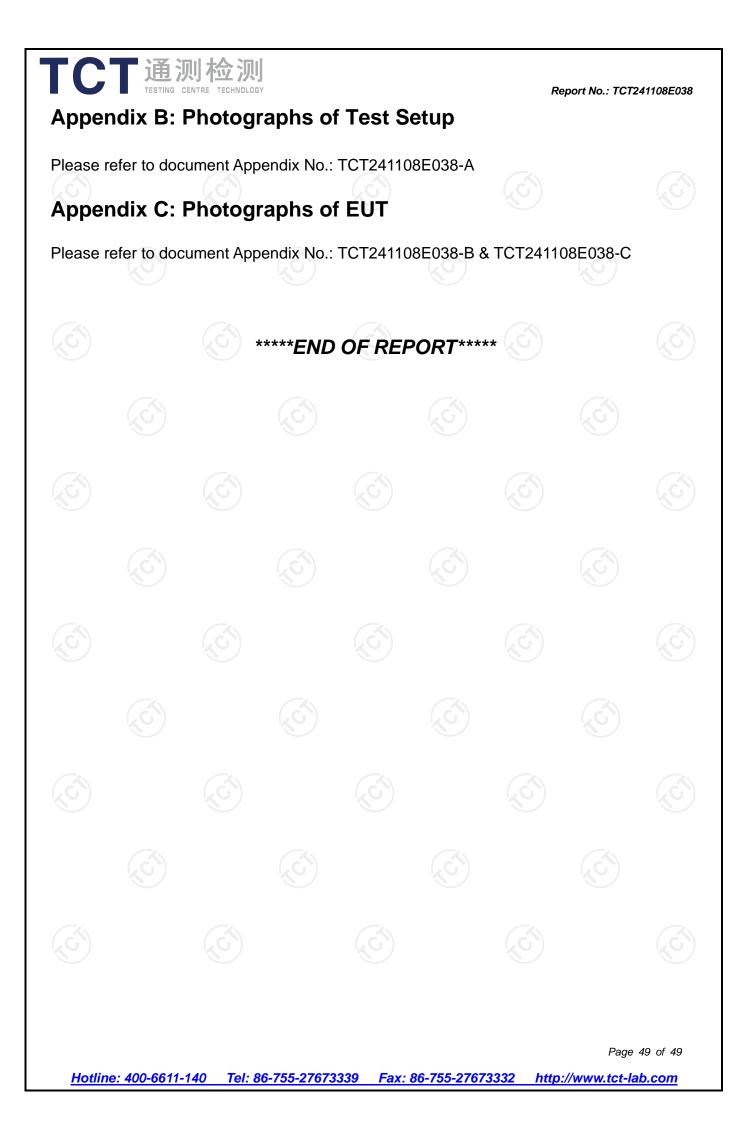
TCT 通测检测 TESTING CENTRE TECHNOLOGY


6.2.1 Ref






6.2.2 CSE


TCT通测检测 TESTING CENTRE TECHNOLOGY

