Page 116 of 160 Report No.: CTA24052101818 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn http://www.caict.ac.cn ## DASY/EASY – Parameters of Probe: EX3DV4 – SN:7380 # Calibration Parameter Determined in Head Tissue Simulating Media | f [MHz] ^C | Relative
Permittivity F | Conductivity
(S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unct.
(k=2) | |---|----------------------------|-------------------------|---------|---------|---------|--------------------|----------------------------|----------------| | 750 | 41.9 | 0.89 | 10.02 | 10.02 | 10.02 | 0.17 | - | | | 835 | 41.5 | 0.90 | 9.62 | 9.62 | | | 1.27 | ±12.7% | | 1750 | 40.1 | 1.37 | 8.35 | | 9.62 | 0.18 | 1.30 | ±12.7% | | 1900 | 40.0 | 1.40 | | 8.35 | 8.35 | 0.28 | 1.02 | ±12.7% | | 2100 | 39.8 | | 8.05 | 8.05 | 8.05 | 0.24 | 1.11 | ±12.7% | | 2300 | | 1.49 | 8.00 | 8.00 | 8.00 | 0.24 | 1.11 | ±12.7% | | | 39.5 | 1.67 | 7.75 | 7.75 | 7.75 | 0.65 | 0.67 | ±12.7% | | 2450 | 39.2 | 1.80 | 7.50 | 7.50 | 7.50 | 0.65 | 0.69 | ±12.7% | | 2600 | 39.0 | 1.96 | 7.35 | 7.35 | 7.35 | 0.47 | 0.85 | ±12.79 | | 3500 | 37.9 | 2.91 | 6.85 | 6.85 | 6.85 | 0.41 | 1.03 | ±13.99 | | 3700 | 37.7 | 3.12 | 6.69 | 6.69 | 6.69 | 0.43 | 1.03 | ±13.99 | | 3900 | 37.5 | 3.32 | 6.58 | 6.58 | 6.58 | 0.30 | 1.50 | ±13.9° | | 4100 | 37.2 | 3.53 | 6.62 | 6.62 | 6.62 | 0.35 | 1.25 | | | 4200 | 37.1 | 3.63 | 6.52 | 6.52 | 6.52 | 0.30 | 15.000.00 | ±13.9° | | 4400 | 36.9 | 3.84 | 6.44 | 6.44 | 6.44 | 0.30 | 1.45 | ±13.9 | | 4600 | 36.7 | 4.04 | 6.41 | 6.41 | 6.41 | | 1.50 | ±13.9 | | 4800 | 36.4 | 4.25 | 6.36 | 6.36 | | 0.35 | 1.48 | ±13.9° | | 4950 | 36.3 | 4.40 | 5.95 | | 6.36 | 0.35 | 1.50 | ±13.9 | | 5250 | 35.9 | 4.71 | | 5.95 | 5.95 | 0.35 | 1.55 | ±13.9 | | 5600 | 35.5 | 5.07 | 5.45 | 5.45 | 5.45 | 0.40 | 1.55 | ±13.9 | | -0.000000000000000000000000000000000000 | | | 4.86 | 4.86 | 4.86 | 0.45 | 1.40 | ±13.9 | | 5750 | 35.4 | 5.22 | 4.96 | 4.96 | 4.96 | 0.45 | 1.40 | ±13.9 | © Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz. 150 and 220 km is 150 cm. FAt frequency up to 6 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ±10% if liquid compensation. formula is applied to measured SAR values. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. tissue parameters. GAlpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. Certificate No:J23Z60276 Control of the second s Page 4 of 9 Report No.: CTA24052101818 Page 117 of 160 CTA TESTING CTATES! ESTING CTATES Report No.: CTA24052101818 Page 118 of 160 GTA TESTING CTA TESTING ATESTING Report No.: CTA24052101818 Page 119 of 160 CTA TESTING CTATES -61 Report No.: CTA24052101818 Page 120 of 160 GTA TESTING Report No.: CTA24052101818 Page 121 of 160 CTA TESTING CTATESTING Report No.: CTA24052101818 Page 122 of 160 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.en http://www.caict.ac.cn CTA Client : Certificate No: J23Z60391 #### **CALIBRATION CERTIFICATE** Object DAE3 - SN: 428 Calibration Procedure(s) FF-Z11-002-01 Calibration Procedure for the Data Acquisition Electronics (DAEx) Calibration date: August 30, 2023 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)℃ and humidity<70%. Calibration Equipment used (M&TE critical for calibration) **Primary Standards** Cal Date(Calibrated by, Certificate No.) Scheduled Calibration Process Calibrator 753 1971018 12-Jun-23 (CTTL, No.J23X05436) Jun-24 Calibrated by: Reviewed by: Name Function Yu Zongying SAR Test Engineer Lin Hao SAR Test Engineer Approved by: Qi Dianyuan SAR Project Leader Issued: September 06, 2023 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: J23Z60391 Page 1 of 3 Page 123 of 160 Report No.: CTA24052101818 Glossary: DAE data acquisition electronics Connector angle information used in DASY system to align probe sensor X to the robot coordinate system. #### Methods Applied and Interpretation of Parameters: - DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range. - Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required. - The report provide only calibration results for DAE, it does not contain other performance test results. Certificate No: J23Z60391 Page 2 of 3 Report No.: CTA24052101818 Page 124 of 160 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn DC Voltage Measurement A/D - Converter Resolution nominal High Range: 1LSB = $6.1 \mu V$, full range = -100...+300 m Low Range: 1LSB = 61nV, full range = -1......+3mV DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec -100...+300 mV | Calibration Factors | Х | Υ | Z
404.579 ± 0.15% (k=2) | | |---------------------|-----------------------|-----------------------|-----------------------------------|--| | High Range | 404.468 ± 0.15% (k=2) | 404.804 ± 0.15% (k=2) | | | | Low Range | 3.95934 ± 0.7% (k=2) | 3.95437 ± 0.7% (k=2) | 3.91875 ± 0.7% (k=2) | | #### **Connector Angle** | Connector Angle to be used in DASY system | 258.5° ± 1 ° | |---|--------------| Certificate No: J23Z60391 Page 3 of 3 Page 125 of 160 Report No.: CTA24052101818 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191 Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn ATC Client Certificate No: Z23-60083 ## **CALIBRATION CERTIFICATE** Object D750V3 - SN: 1194 Calibration Procedure(s) FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: February 17, 2023 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | ID# | Cal Date (Calibrated by, Certificate No.) | Scheduled Calibration | |------------|--|---| | 106276 | 10-May-22 (CTTL, No.J22X03103) | May-23 | | 101369 | 10-May-22 (CTTL, No.J22X03103) | May-23 | | SN 7464 | | Jan-24 | | SN 1556 | 11-Jan-23(CTTL-SPEAG,No.Z23-60034) | Jan-24 | | ID# | Cal Date (Calibrated by, Certificate No.) | Scheduled Calibration | | MY49070393 | 17-May-23 (CTTL, No.J22X03157) | May-24 | | MY46110673 | 10-Jan-23 (CTTL, No. J23X00104) | Jan-24 | | | 106276
101369
SN 7464
SN 1556
ID #
MY49070393 | 106276 10-May-22 (CTTL, No.J22X03103) 101369 10-May-22 (CTTL, No.J22X03103) SN 7464 19-Jan-23 (CTTL-SPEAG,No.Z22-60565) SN 1556 11-Jan-23(CTTL-SPEAG,No.Z23-60034) ID # Cal Date (Calibrated by, Certificate No.) MY49070393 17-May-23 (CTTL, No.J22X03157) | | | Name | Function | Signature | |----------------|-------------|--------------------|-----------| | Calibrated by: | Zhao Jing | SAR Test Engineer | 3 | | Reviewed by: | Lin Hao | SAR Test Engineer | 科物 | | Approved by: | Qi Dianyuan | SAR Project Leader | - | Issued: February 24, 2023 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: Z23-60083 Page 1 of 6 Report No.: CTA24052101818 Page 126 of 160 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn Glossary: TSL ConvF N/A tissue simulating liquid sensitivity in TSL / NORMx,y,z not applicable or not measured Calibration is Performed According to the Following Standards: a) IEC/IEEE 62209-1528, "Measurement Procedure for The Assessment of Specific Absorption Rate of Human Exposure to Radio Frequency Fields from Hand-held and Body-mounted Wireless Communication Devices- Part 1528: Human Models, Instrumentation and Procedures (Frequency range of 4 MHz to 10 GHz)", October 2020 b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation: c) DASY4/5 System Handbook ## Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No: Z23-60083 Page 2 of 6 Report No.: CTA24052101818 Page 127 of 160 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | V52.10.4 | |------------------------------|--------------------------|-------------| | Extrapolation | Advanced Extrapolation | 33.3 | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 15 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 750 MHz ± 1 MHz | | **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 42.0 | 0.90 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 41.2 ± 6 % | 0.89 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | | | SAR result with Head TSL | SAR averaged over 1 cm^3 (1 g) of Head TSL | Condition | | |---------------------------------------------------------|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.14 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 8.57 W/kg ± 18.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | | SAR measured | 250 mW input power | 1.40 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 5.61 W/kg ± 18.7 % (k=2) | Certificate No: Z23-60083 Page 3 of 6 Page 128 of 160 Report No.: CTA24052101818 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn ## Appendix (Additional assessments outside the scope of CNAS L0570) ## Antenna Parameters with Head TSL | Impedance, transformed to feed point | 50.8Ω- 3.54jΩ | | |--------------------------------------|---------------|--| | Return Loss | - 28.9dB | | #### General Antenna Parameters and Design | F | | |----------------------------------|----------| | Electrical Delay (one direction) | 0.979 ns | After long term use with 100W radiated power, only a slight warming of the dipole near the feed-point can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feed-point may be damaged. #### **Additional EUT Data** | Manufactured by | 00540 | |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------| | The state of s | SPEAG | | | | Certificate No: Z23-60083 Page 4 of 6 Report No.: CTA24052101818 Page 129 of 160 Date: 2023-02-17 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn ## DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN: 1194 Communication System: UID 0, CW; Frequency: 750 MHz Medium parameters used: f = 750 MHz; $\sigma = 0.885$ S/m; $\epsilon_r = 41.2$; $\rho = 1000$ kg/m³ Phantom section: Right Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) **DASY5** Configuration: - Probe: EX3DV4 SN7464; ConvF(10.26, 10.26, 10.26) @ 750 MHz; Calibrated: 2023-01-19 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1556; Calibrated: 2023-01-11 - Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062 - DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 50.59 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 3.42 W/kg SAR(1 g) = 2.14 W/kg; SAR(10 g) = 1.4 W/kg Smallest distance from peaks to all points 3 dB below = 20 mm Ratio of SAR at M2 to SAR at M1 = 62.9% Maximum value of SAR (measured) = 2.93 W/kg Certificate No: Z23-60083 Page 5 of 6 Report No.: CTA24052101818 Page 130 of 160 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn ## Impedance Measurement Plot for Head TSL Certificate No: Z23-60083 Page 6 of 6 Report No.: CTA24052101818 Page 131 of 160 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191 Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn CTA Client J23Z60387 Certificate No: #### **CALIBRATION CERTIFICATE** Object D835V2 - SN: 484 Calibration Procedure(s) FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: August 25, 2023 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Calibrated by, Certificate No.) | Scheduled Calibration | |-------------------------|------------|-------------------------------------------|-----------------------| | Power Meter NRP2 | 106277 | 22-Sep-22 (CTTL, No.J22X09561) | Sep-23 | | Power sensor NRP8S | 104291 | 22-Sep-22 (CTTL, No.J22X09561) | Sep-23 | | Reference Probe EX3DV4 | SN 3617 | 31-Mar-23(CTTL-SPEAG,No.Z23-60161) | Mar-24 | | DAE4 | SN 1556 | 11-Jan-23(CTTL-SPEAG,No.Z23-60034) | Jan-24 | | Secondary Standards | ID# | Cal Date (Calibrated by, Certificate No.) | Scheduled Calibration | | Signal Generator E4438C | MY49071430 | 05-Jan-23 (CTTL, No. J23X00107) | Jan-24 | | NetworkAnalyzer E5071C | MY46110673 | 10-Jan-23 (CTTL, No. J23X00104) | Jan-24 | | | | | | | | Name | Function | Signature | |----------------|-------------|--------------------|-----------| | Calibrated by: | Zhao Jing | SAR Test Engineer | 200 | | Reviewed by: | Lin Hao | SAR Test Engineer | 林岩 | | Approved by: | Qi Dianyuan | SAR Project Leader | ANOS. | Issued: September 1, 2023 This calibration certificate shall not be reproduced except in full without written approval of the laboratory Certificate No: J23Z60387 Page 1 of 6 Report No.: CTA24052101818 Page 132 of 160 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORMx,y,z N/A not applicable or not measured ## Calibration is Performed According to the Following Standards: a) IEC/IEEE 62209-1528, "Measurement Procedure for The Assessment of Specific Absorption Rate of Human Exposure to Radio Frequency Fields from Hand-held and Body-mounted Wireless Communication Devices- Part 1528: Human Models, Instrumentation and Procedures (Frequency range of 4 MHz to 10 GHz)", October 2020 b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** c) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No: J23Z60387 Page 2 of 6 Report No.: CTA24052101818 Page 133 of 160 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | V52.10.4 | |------------------------------|--------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 15 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 835 MHz ± 1 MHz | | #### **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 41.5 | 0.90 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 42.1 ± 6 % | 0.90 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | _ | 100 - 0 | #### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | THE REST OF RE | |---------------------------------------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | SAR measured | 250 mW input power | 2.42 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 9.68 W/kg ± 18.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | | SAR measured | 250 mW input power | 1.56 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 6.24 W/kg ± 18.7 % (k=2) | Certificate No: J23Z60387 Page 3 of 6 ESTING LING Report No.: CTA24052101818 Page 134 of 160 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn Appendix (Additional assessments outside the scope of CNAS L0570) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 49.8Ω- 2.74jΩ | | |--------------------------------------|---------------|--| | Return Loss | - 31.2dB | | #### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.299 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feed-point can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feed-point may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | | |-----------------|-------|--| |-----------------|-------|--| Certificate No: J23Z60387 Page 4 of 6 CTATES Report No.: CTA24052101818 Page 135 of 160 Date: 2023-08-25 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 484 Communication System: UID 0, CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; σ = 0.904 S/m; ϵ_r = 42.11; ρ = 1000 kg/m³ Phantom section: Right Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) DASY5 Configuration: - Probe: EX3DV4 SN3617; ConvF(10.1, 10.1, 10.1) @ 835 MHz; Calibrated: 2023-03-31 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1556; Calibrated: 2023-01-11 - Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062 - DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) Dipole Calibration/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 57.93 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 3.92 W/kg SAR(1 g) = 2.42 W/kg; SAR(10 g) = 1.56 W/kg Smallest distance from peaks to all points 3 dB below = 16.3 mm Ratio of SAR at M2 to SAR at M1 = 62.1% Maximum value of SAR (measured) = 3.36 W/kg Certificate No: J23Z60387 Page 5 of 6 Report No.: CTA24052101818 Page 136 of 160 CTA TESTING CTATESTING ESTING CTATES Report No.: CTA24052101818 Page 137 of 160 Client Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, Chi Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn Certificate No: Z21-60475 #### **CALIBRATION CERTIFICATE** Morlab Object D1800V2 - SN: 2d158 Calibration Procedure(s) FF-Z11-003-01 Calibration Procedures for dipole validation kits Calibration date: December 17, 2021 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22±3)°C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | | 報告の記録とは、1911年 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | |------------|--------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | 106277 | 24-Sep-21 (CTTL, No.J21X08326) | Sep-22 | | 104291 | 24-Sep-21 (CTTL, No.J21X08326) | Sep-22 | | SN 7307 | 26-May-21(SPEAG,No.EX3-7307_May21) | May-22 | | SN 1556 | 15-Jan-21(SPEAG,No.DAE4-1556_Jan21) | Jan-22 | | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | MY49071430 | 01-Feb-21 (CTTL, No.J21X00593) | Jan-22 | | MY46110673 | 14-Jan-21 (CTTL, No.J21X00232) | Jan-22 | | | 106277
104291
SN 7307
SN 1556
ID #
MY49071430 | 106277 24-Sep-21 (CTTL, No J21X08326)
104291 24-Sep-21 (CTTL, No J21X08326)
SN 7307 26-May-21(SPEAG,No EX3-7307_May21)
SN 1556 15-Jan-21(SPEAG,No DAE4-1556_Jan21)
ID # Cal Date(Calibrated by, Certificate No.)
MY49071430 01-Feb-21 (CTTL, No J21X00593) | Name Function Signature Calibrated by Zhao Jing SAR Test Engineer Reviewed by: Lin Hao SAR Test Engineer Approved by: Qi Dianyuan SAR Project Leader Issued: December 27, 2021 This calibration certificate shall not be reproduced except in full without written approval of the laboratory Certificate No: Z21-60475 Page 1 of 6 Report No.: CTA24052101818 Page 138 of 160 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn lossary: TSL ConvF N/A tissue simulating liquid sensitivity in TSL / NORMx,y,z not applicable or not measured #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices- Part 1: Device used next to the ear (Frequency range of 300MHz to 6GHz)", July 2016 - c) IEC 62209-2, "Procedure to measure the Specific Absorption Rate (SAR) For wireless communication devices used in close proximity to the human body (frequency range of 30MHz to 6GHz)", March 2010 - d) KDB865664, SAR Measurement Requirements for 100 MHz to 6 GHz #### **Additional Documentation:** e) DASY4/5 System Handbook #### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. Certificate No: Z21-60475 Page 2 of 6 Report No.: CTA24052101818 Page 139 of 160 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | V52.10.4 | |------------------------------|--------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Triple Flat Phantom 5.1C | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 1800 MHz ± 1 MHz | | ## **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.0 | 1.40 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 40.8 ± 6 % | 1.38 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | | | #### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 9.67 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 39.2 W/kg ± 18.8 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | | SAR measured | 250 mW input power | 4.98 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 20.1 W/kg ± 18.7 % (k=2) | Certificate No: Z21-60475 4 2 588 Page 3 of 6 Bla I 10 10 1 10 1 Report No.: CTA24052101818 Page 140 of 160 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 http://www.chinattl.cn ## Appendix (Additional assessments outside the scope of CNAS L0570) #### Antenna Parameters with Head TSL | Impedance, transformed to feed point | 49.7Ω- 3.22jΩ | | |--------------------------------------|---------------|--| | Return Loss | - 29.8dB | | #### General Antenna Parameters and Design | Electrical Delay (one direction) | .121 ns | |----------------------------------|---------| |----------------------------------|---------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | (II. 11) A (III. 11) | SPEAG | |--|--|---| | 100
100
100
100
100
100
100
100
100
100 | The second secon | 44
48
100
1 40
1 40 | | SOF I
301 I
KD I I | 50 d fe 1 3 d 500 d 3 d
20 10
1 come Han 100 d 1 d | 11 (F) | | ertificate No: Z21-60475 | Page 4 of 6 | n il
ciù i
hi: 1 c
n Esses | Report No.: CTA24052101818 Page 141 of 160 DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 1800 MHz; Type: D1800V2; Serial: D1800V2 - SN: 2d158 Communication System: UID 0, CW; Frequency: 1800 MHz; Duty Cycle: 1:1 Medium parameters used: f = 1800 MHz; $\sigma = 1.378 \text{ S/m}$; $\varepsilon_r = 40.8$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) **DASY5** Configuration: Probe: EX3DV4 - SN7307; ConvF(8.34, 8.34, 8.34) @ 1800 MHz; Calibrated: 2021-05-26 Date: 2021-11-17 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn1556; Calibrated: 2021-01-15 - Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062 - DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) System Performance Check/Zoom Scan (7x7x7) (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 102.1 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 18.9 W/kg SAR(1 g) = 9.67 W/kg; SAR(10 g) = 4.98 W/kg Smallest distance from peaks to all points 3 dB below = 10.2 mm Ratio of SAR at M2 to SAR at M1 = 51.3% Maximum value of SAR (measured) = 15.5 W/kg 0 dB = 15.5 W/kg = 11.90 dBW/kg Certificate No: Z21-60475 84 1 Page 5 of 6