Shenzhen CTA Testing Technology Co., Ltd. Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China # **TEST REPORT** Report Reference No..... CTA24030702201 2BE8S-RENO6PRO FCC ID:: Compiled by (position+printed name+signature)... File administrators Zoey Cao Supervised by (position+printed name+signature).. Project Engineer Amy Wen Zoey Cord Anny Wen Approved by (position+printed name+signature)... RF Manager Eric Wang Mar. 12, 2024 Date of issue..... Testing Laboratory Name Shenzhen CTA Testing Technology Co., Ltd. Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Address....: Fuhai Street, Bao'an District, Shenzhen, China Shenzhen kehuitong Technology Co Ltd Applicant's name F3.830306G, 3rd Floor, Tianan Code City Tianjing Building, No.6 Tianan Road, Shatou Street, Futian District, Shenzhen, China Test specification....: IEC 62209-2:2010; IEEE 1528:2013; FCC 47 CFR Part 2.1093; CTAT Standard ANSI/IEEE C95.1:2005; Reference FCC KDB 447498; KDB 248227; KDB 616217; KDB 941225; KDB 865664 ## Shenzhen CTA Testing Technology Co., Ltd. All rights reserved. This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen CTA Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen CTA Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context. CTATES Test item description....:: Mobile phone Trade Mark: aderroo Manufacturer....: Shenzhen kehuitong Technology Co Ltd Reno6 pro Model/Type reference....: Reno4pro, Reno5 pro Listed Models Result..... PASS Report No.: CTA24030702201 Page 2 of 90 # TEST REPORT Equipment under Test : Mobile phone Model /Type : Reno6 pro Listed Models : Reno4pro, Reno5 pro Applicant : Shenzhen kehuitong Technology Co Ltd Address : F3.830306G, 3rd Floor, Tianan Code City Tianjing Building, No.6 Tianan Road, Shatou Street, Futian District, Shenzhen, China Manufacturer : Shenzhen kehuitong Technology Co Ltd Address : F3.830306G, 3rd Floor, Tianan Code City Tianjing Building, No.6 Tianan Road, Shatou Street, Futian District, Shenzhen, China Test Result: PASS The test report merely corresponds to the test sample. It is not permitted to copy extracts of these test result without the written permission of the test laboratory. # **Contents** | Sene | al Information | 7 | |-------|--|------------------------------------| | .1 | | | | | General Remarks | | | .2 | Description of Equipment Under Test (EUT) | 7 | | 3 | Device Category and SAR Limits | 8 | | .4 | Applied Standard | 8 | | 5 | Test Facility | 9 | | .6 | Environment of Test Site | 9 | | 7 | Test Configuration | 9 | | Speci | ic Absorption Rate (SAR) | 10 | | .1 | | | | .2 | SAR Definition | 10 | | SAR I | Measurement System | 11 | | .1 | E-Field Probe | 11 | | .2 | Data Acquisition Electronics (DAE) | 12 | | .3 | Robot | 13 | | .4 | Measurement Server | 13 | | .5 | Phantom | 14 | | .6 | Device Holder | 14 | | .7 | Data Storage and Evaluation | 15 | | est E | quipment List | 18 | | issu | e Simulating Liquids | 19 | | | | | | UT | esting Position | 23 | | 9 | | | | .2 | Positioning for Cheek / Touch | 24 | | .3 | Positioning for Ear / 15° Tilt | 24 | | .4 | Body Worn Accessory Configurations | 25 | | .5 | | | | /leas | urement Procedures | 26 | | .1 | Spatial Peak SAR Evaluation | 26 | | .2 | Power Reference Measurement | 26 | | .3 | Area Scan Procedures | 27 | | .4 | | | | .5 | Volume Scan Procedures | 29 | | .6 | Power Drift Monitoring | 29 | | EST | | | | 0.1 | | | | 0.2 | | | | 0.3 | | | | 0.4 | | 37 | | | | 36 | | | .5.6.7 specifical spec | 4 Applied Standard 5 Test Facility | | Report No.: | CTA24030702201 | Page 4 of 90 | |-------------|-------------------------------------|--------------| | 10.5 S | AR Test Results Summary | 38 | | 10.6 S | AR Measurement Variability | 42 | | 10.7 Si | multaneous Transmission Analysis | 43 | | 11 Measure | ement Uncertainty | 44 | | Appendix A. | EUT Photos and Test Setup Photos | 46 | | Appendix B. | Plots of SAR System Check | 50 | | Appendix C. | Plots of SAR Test Data | 53 | | Appendix D. | DASY System Calibration Certificate | 61 | | CTATESTING | | CIP C. | | CTATE | TESTING | | Report No.: CTA24030702201 Page 5 of 90 ## **Version** | | TESTING | Version | | |----------|-------------|---------------|-------------| | C | Version No. | Date | Description | | | R00 | Mar. 12, 2024 | Original | | | | | CTATES | | | | (5) | | | NG | | | | | ATESTING | | , Co | | | | TES | LWG. | | | | CTA CTA | TESTI | NG | | | | CTATEST! | | | | | | CTATES | Report No.: CTA24030702201 Page 6 of 90 # **Statement of Compliance** ## <Highest SAR Summary> This device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6 W/kg) specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-2005, and had been tested in accordance with the measurement methods and procedures specified in IEEE 1528-2013 The maximum results of Specific Absorption Rate (SAR) found during testing are as follows. | A | | Hig | hest Reported 1g-SAR(W | /Kg) | Simultaneous | |---|-----------------------|-------|------------------------|--------------------|------------------------| | | Frequency Band | Head | Body-Worn
(10mm) | Host pot
(10mm) | Reported SAR
(W/Kg) | | | GSM 850 | 0.331 | 0.130 | 0.130 | | | | PCS1900 | 0.246 | 0.265 | 0.265 | Head: 0.610 | | | WCDMA Band V | 0.275 | 0.192 | 0.192 | Body:0.372 | | | WLAN2.4G | 0.279 | 0.107 | 0.107 | 112 | | | SAR Test Limit (W/Kg) | | 1.60 | | | | | Test Result | | PAS | 5 | | This device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6 W/kg) specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-2005, and had been tested in accordance with the measurement methods and procedures specified in IEEE 1528-2013 Report No.: CTA24030702201 Page 7 of 90 ## **General Information** ## 2.1 General Remarks | 2.1 General Remarks | | | | | |--------------------------------|-------|---------------|------------|-------| | Date of receipt of test sample | | Mar. 07, 2024 | | CTING | | | CAL | | | TES | | Testing commenced on | 9 014 | Mar. 08, 2024 | ST COLLEGE | CAL | | | | | To want | 1 | | Testing concluded on | : | Mar. 11, 2024 | | | | Product Name: | Mobile phone | |-----------------------|---| | Model/Type reference: | Reno6 pro | | Power supply: | DC 3.7V From battery and DC 5V From external circuit | | Testing sample ID: | CTA240307022-1# (Engineer sample) CTA240307022-2# (Normal sample) | | Hardware version: | W229 V1.1 QC | | Software version: | KL_U21_W299H-Reno6_20240223 | | Tx Frequency: | 2.4G: BT:2402~2480MHz 2.4G WIFI: 2412~2462MHz GSM: GSM850 TX: 824.2~848.8MHz PCS1900 TX: 1850.2~1909.8MHz WCDMA: Band 5: TX: 826.40~846.60MHz | | Type of Modulation: | BT: GFSK, П/4DQPSK, 8DPSK 2.4G WIFI: BPSK,QPSK,16QAM,64QAM GSM:GMSK WCDMA:QPSK,16QAM | | Category of device: | Portable device | #### Remark: The above DUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description. Page 8 of 90 Report No.: CTA24030702201 #### **Device Category and SAR Limits** 2.3 This device belongs to portable device category because its radiating structure is allowed to be used within 20 centimeters of the body of the user. Limit for General Population/Uncontrolled exposure should be applied for this device, it is 1.6 W/kg as averaged over any 1 gram of tissue. ## 2.4 Applied Standard The Specific Absorption Rate (SAR) testing specification, method, and
procedure for this device is in accordance with the following standards: - FCC 47 CFR Part 2 (2.1093:2013) - ANSI/IEEE C95.1:2005 - IEEE Std 1528:2013 - KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04 - KDB 865664 D02 RF Exposure Reporting v01r02 - KDB 447498 D01 General RF Exposure Guidance v06 - KDB 248227 D01 802 11 Wi-Fi SAR v02r02 - KDB 941225 D01 3G SAR Procedures v03r01 - KDB 941225 D06 Hotspot SARv02r01 - KDB 648474 D04 Handset SAR v01r03 CTATE CTATESTING Page 9 of 90 Report No.: CTA24030702201 #### **Test Facility** 2.5 FCC-Registration No.: 517856 **Designation Number: CN1318** Shenzhen CTA Testing Technology Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements. A2LA-Lab Cert. No.: 6534.01 Shenzhen CTA Testing Technology Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement. CAB identifier: CN0127 ISED#: 27890 Shenzhen CTA Testing Technology Co., Ltd. has been listed by Innovation, Science and Economic Development Canada to perform electromagnetic emission measurement. The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010. ## 2.6 Environment of Test Site | Items | Required | Actual | | |------------------------|----------|--------|----| | Temperature (℃) | 18-25 | 22~23 | | | Humidity (%RH) | 30-70 | 55~65 | -6 | | | Can | | | | 2.7 Test Configuration | | | | ## 2.7 Test Configuration The device was controlled by using a base station emulator. Communication between the device and the emulator was established by air link. The distance between the EUT and the antenna of the emulator is larger than 50 cm and the output power radiated from the emulator antenna is at least 30 dB smaller than the output power of EUT. The EUT was set from the emulator to radiate maximum output power during all tests. For WLAN SAR testing, WLAN engineering testing software installed on the EUT can CTATES provide continuous transmitting RF signal. Page 10 of 90 Report No.: CTA24030702201 ## Specific Absorption Rate (SAR) ## 3.1 Introduction SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled. #### **SAR Definition** The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density CTA TESTING (ρ). The equation description is as below: $$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$ SAR is expressed in units of Watts per kilogram (W/kg) SAR measurement can be either related to the temperature elevation in tissue by $$SAR = C\left(\frac{\delta T}{\delta t}\right)$$ Where: C is the specific head capacity, δT is the temperature rise and δt is the exposure duration, or related to the electrical field in the tissue by $$SAR = \frac{\sigma |E|^2}{\rho}$$ Where: σ is the conductivity of the tissue, ρ is the mass density of the tissue and E is the RMS electrical field strength. However, for evaluating SAR of low power transmitter, electrical field measurement is typically CTATES applied. Page 11 of 90 Report No.: CTA24030702201 ## **SAR Measurement System** **DASY System Configurations** The DASY system for performance compliance tests is illustrated above graphically. This system consists of the following items: - A standard high precision 6-axis robot with controller, a teach pendant and software - A data acquisition electronic (DAE) attached to the robot arm extension - A dosimetric probe equipped with an optical surface detector system - The electro-optical converter (EOC) performs the conversion between optical and electrical signals - CTATESTING A measurement server performs the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts. - A probe alignment unit which improves the accuracy of the probe positioning - A computer operating Windows XP - DASY software - Remove control with teach pendant and additional circuitry for robot safety such as warming CTATES lamps, etc. - The SAM twin phantom - A device holder - \triangleright Tissue simulating liquid - Dipole for evaluating the proper functioning of the system components are described in details in the following sub-sections. #### 4.1 **E-Field Probe** The SAR measurement is conducted with the dosimetric probe (manufactured by SPEAG). The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency. This probe has a built in optical surface Report No.: CTA24030702201 Page 12 of 90 detection system to prevent from collision with phantom. ## **E-Field Probe Specification** <EX3DV4 Probe> | Construction | Symmetrical design with triangular core | | | |---------------|---|-----|-----| | | Built-in shielding against static charges | | | | | PEEK enclosure material (resistant to | C C | | | | organic solvents, e.g., DGBE) | | | | Frequency | 10 MHz to 6 GHz; Linearity: ± 0.2 dB | | | | Directivity | ± 0.3 dB in HSL (rotation around probe | | | | | axis) | | | | | ± 0.5 dB in tissue material (rotation | | | | | normal to probe axis) | \G | | | Dynamic Range | 10 μW/g to 100 W/kg; Linearity: ± 0.2 | | | | | dB (noise: typically< 1 μW/g) | | | | Dimensions | Overall length: 330 mm (Tip: 20 mm) | | Pho | | | Tip diameter: 2.5 mm (Body: 12 mm) | | | | | Typical distance from probe tip to dipole | | | | | centers: 1 mm | | | ## **E-Field Probe Calibration** Each probe needs to be calibrated according to a dosimetric assessment procedure with accuracy better than ± 10%. The spherical isotropy shall be evaluated and within ± 0.25dB. The sensitivity parameters (NormX, NormY, and NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe are tested. The calibration data can be referred to appendix C of this report. ## **Data Acquisition Electronics (DAE)** The data acquisition electronics (DAE) consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock. The input impedance of the DAE is 200MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80dB. **Photo of DAE** Report No.: CTA24030702201 Page 13 of 90 #### 4.3 Robot The SPEAG DASY system uses the high precision robots (DASY5: TX60XL) type from Stäubli SA (France). For the 6-axis controllersystem, the robot controller version (DASY5: CS8c) from Stäubli is used. The Stäublirobot series have many features that are important for our application: CTATES - ➤ High precision (repeatability ±0.035 mm) - > High reliability (industrial design) - Jerk-free straight movements - > Low ELF interference (the closed metallic construction shields against motor control fields) **Photo of DASY5** ## 4.4 Measurement Server The measurement server is based on a PC/104 CPU board with CPU (DASY5: 400 MHz, Intel Celeron), chipdisk (DASY5: 128 MB), RAM (DASY5: 128 MB). The necessary circuits for communication with the DAE electronic box, as well as the 16 bit AD converter system for optical detection and digital I/O interface are contained on the DASY I/O board, which is directly connected to the PC/104 bus of the CPU board. The measurement server performs all the real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operations. **Photo of Server for DASY5** Report No.: CTA24030702201 Page 14 of 90 #### 4.5 Phantom ## <SAM Twin Phantom> | GM. | Shell Thickness | 2 ± 0.2 mm;
Center ear point: 6 ± 0.2 mm | | |------------|----------------------|--|----------------------| | | Filling Volume | Approx. 25 liters | | | CTATESTING | Dimensions | Length: 1000 mm; Width: 500 mm;
Height: adjustable feet | | | C. | Measurement
Areas | Left Hand, Right Hand, Flat
Phantom | Photo of SAM Phantom | The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot. #### <ELI4 Phantom> | Shell Thickness | 2 ± 0.2 mm (sagging: <1%) | | |-----------------|---|-----------------------| | Filling Volume | Approx. 30 liters | | | Dimensions | Major ellipse axis: 600 mm
Minor axis:400 mm | Photo of ELI4 Phantom | The ELI4 phantom is intended for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI4 is fully compatible with standard and all known tissue simulating liquids. #### 4.6 Device Holder The SAR in the phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface.
For a source at 5 mm distance, a positioning uncertainty of ± 0.5 mm would produce a SAR uncertainty of $\pm 20\%$. Accurate device positioning is therefore crucial for accurate and repeatable measurements. The positions in which the devices must be measured are defined by the standards. The DASY device holder is designed to cope with different positions given in the standard. It has two scales for the device rotation (with respect to the body axis) and the device inclination (with respect to the line between the ear reference points). The rotation center for both scales is the ear reference point Report No.: CTA24030702201 Page 15 of 90 (ERP). Thus the device needs no repositioning when changing the angles. The DASY device holder is constructed of low-loss POM material having the following dielectric parameters: relative permittivity ε = 3 and loss tangent δ = 0.02. The amount of dielectric material has been reduced in the closest vicinity of the device, since measurements have suggested that the influence of the clamp on the test results could thus be lowered. **Device Holder** ## 4.7 Data Storage and Evaluation ## Data Storage The DASY software stores the assessed data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all the necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files. The post-processing software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of erroneous parameter settings. For example, if a measurement has been performed with an incorrect crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be reevaluated. The measured data can be visualized or exported in different units or formats, depending on the selected probe type (e.g., [V/m], [A/m], [W/kg]). Some of these units are not available in certain situations or give meaningless results, e.g., a SAR-output in a non-lose media, will always be zero. Raw data can also be exported to perform the evaluation with other software packages. #### Data Evaluation The DASY post-processing software (SEMCAD) automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software: Report No.: CTA24030702201 Page 16 of 90 **Probe parameters:** - Sensitivity Normi, aio, ai1, ai2 Conversion factor ConvF_i Diode compression point dcp_i **Device parameters:** - Frequency f - Crest factor cf **Media parameters**: - Conductivity σ - Density ρ These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY components. In the direct measuring mode of the multi-meter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used. The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as: $$V_i = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$ with V_i = compensated signal of channel i, (i = x, y, z) U_i = input signal of channel i, (i = x, y, z) cf = crest factor of exciting field (DASY parameter) dcp_i = diode compression point (DASY parameter) From the compensated input signals, the primary field data for each channel can be evaluated: E-field Probes: $$E_i = \sqrt{\frac{V_i}{Norm_i \cdot ConvF}}$$ H-field Probes: $$H_i = \sqrt{V_i} \cdot \frac{a_{i0} + a_{i1}f + a_{i2}f^2}{f}$$ with V_i = compensated signal of channel i,(i= x, y, z) Norm_i= sensor sensitivity of channel i, (i= x, y, z), $\mu V/(V/m)^2$ for E-field Probes ConvF= sensitivity enhancement in solution a_{ii}= sensor sensitivity factors for H-field probes f = carrier frequency [GHz] E_i= electric field strength of channel iin V/m Hi= magnetic field strength of channel iin A/m The RSS value of the field components gives the total field strength (Hermitian magnitude): Report No.: CTA24030702201 Page 17 of 90 $$E_{tot} = \sqrt{E_x^2 + E_y^2 + E_z^2}$$ The primary field data are used to calculate the derived field units. $$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1000}$$ fic absorption rate in W/kg ength in V/m with SAR = local specific absorption rate in W/kg Etot= total field strength in V/m σ = conductivity in [mho/m] or [Siemens/m] ρ = equivalent tissue density in g/cm³ Note that the density is set to 1, to account for actual head tissue density rather than the density CTATESTING of the tissue simulating liquid. Report No.: CTA24030702201 Page 18 of 90 ## 5 Test Equipment List | Manufacturan | Name of Environment | True a/Mandal | Carial Namelan | Calibration | | | |--------------------|------------------------------------|----------------|----------------------------|--------------|--------------|--| | Manufacturer | Name of Equipment | Type/Model | Serial Number | Last Cal. | Due Date | | | SPEAG | 835MHz System Validation Kit | D835V2 | 484 | Aug. 25,2023 | Aug. 24,2026 | | | SPEAG | 1800MHz System Validation Kit | D1800V2 | 2d158 | Dec. 17,2021 | Dec. 16,2024 | | | SPEAG | 2450MHz System Validation Kit | D2450V2 | 745 | Aug. 28,2023 | Aug. 27,2026 | | | Rohde &
Schwarz | | | 1201.0002K50-
104209-JC | Nov.05, 2023 | Nov.04, 2024 | | | SPEAG | SPEAG Data Acquisition Electronics | | 428 | Aug.30,2023 | Aug.29,2024 | | | SPEAG | Dosimetric E-Field Probe | EX3DV4 | 7380 | June 21,2023 | June 20,2024 | | | SPEAG | Dosimetric E-Field Probe | EX3DV3 | 3337 | Oct.14, 2023 | Oct.13, 2024 | | | Agilent | ENA Series Network Analyzer | E5071C | MY46317418 | Oct.25, 2023 | Oct.24, 2024 | | | SPEAG | DAK | DAK-3.5 | 1226 | NCR | NCR | | | SPEAG | SAM Twin Phantom | QD000P40CD | 1802 | NCR | NCR | | | SPEAG | ELI Phantom | QDOVA004AA | 2058 | NCR | NCR | | | AR | Amplifier | ZHL-42W | QA1118004 | NCR | NCR | | | Agilent | Power Meter | N1914A | MY50001102 | Oct.25, 2023 | Oct.24, 2024 | | | Agilent | Power Sensor | N8481H | MY51240001 | Oct.25, 2023 | Oct.24, 2024 | | | R&S | Spectrum Analyzer | N9020A | MY51170037 | Oct.25, 2023 | Oct.24, 2024 | | | Agilent | Signal Generation | N5182A | MY48180656 | Oct.25, 2023 | Oct.24, 2024 | | | Worken | Directional Coupler | 0110A05601O-10 | COM5BNW1A2 | Oct.25, 2023 | Oct.24, 2024 | | ### Note: - 1. The calibration certificate of DASY can be referred to appendix D of this report. - 2. The dipole calibration interval can be extended to 3 years with justification. The dipoles are also not physically damaged, or repaired during the interval. - The Insertion Loss calibration of Dual Directional Coupler and Attenuator were characterized via the network analyzer and compensated during system check. - 4. The dielectric probe kit was calibrated via the network analyzer, with the specified procedure (calibrated in pure water) and calibration kit (standard) short circuit, before the dielectric measurement. The specific procedure and calibration kit are provided by Agilent. - 5. In system check we need to monitor the level on the power meter, and adjust the power amplifier level to have precise power level to the dipole; the measured SAR will be normalized to 1W input power according to the ratio of 1W to the input power to the dipole. For system check, the calibration of the power amplifier is deemed not critically required for correct measurement; the power meter is critical and we do have calibration for it Report No.: CTA24030702201 Page 19 of 90 ## 6 Tissue Simulating Liquids For the measurement of the field distribution inside the SAM phantom with DASY, the phantom must be filled with around 25 liters of homogeneous body tissue simulating liquid. For head SAR testing, the liquid height from the ear reference point (ERP) of the phantom to the liquid top surface is larger than 15 cm, which is shown in Fig. 6.1. For body SAR testing, the liquid height from the center of the flat phantom to the liquid top surface is larger than 15 cm, which is shown as followed: Photo of Liquid Height for Head SAR Photo of Liquid Height for Body SAR The following table gives the recipes for tissue simulating liquid. | Frequency | Water | Sugar | Cellulose | Salt | Preventol | DGBE | Conductivity | Permittivity | |----------------|-------|-------|-----------|---------|-----------|------|--------------|--------------| | (MHz) | (%) | (%) | (%) | (%) | (%) | (%) | (σ) | (ɛr) | | For Head | | | | | | | | | | 835 | 40.3 | 57.9 | 0.2 | 1.4 | 0.2 | 0 | 0.90 | 41.5 | | 1800,1900,2000 | 55.2 | 0 | 0 | 0.3 | 0 | 44.5 | 1.40 | 40.0 | | 2450 | 55.0 | 0 | 3 0 | 0 | 0 | 45.0 | 1.80 | 39.2 | | 2600 | 54.8 | - 0 | 0 | 0.1 | 0 | 45.1 | 1.96 | 39.0 | | | | | | For Boo | ly | | | | | 835 | 50.8 | 48.2 | 0 | 0.9 | 0.1 | 0 | 0.97 | 55.2 | | 1800,1900,2000 | 70.2 | 0 | 0 | 0.4 | 0 | 29.4 | 1.52 | 53.3 | | 2450 | 68.6 | 0 | 0 | 0 | 0 | 31.4 | 1.95 | 52.7 | | 2600 | 65.5 | 0 | 0 | 0 | 0 | 31.5 | 2.16 | 52.5 | | CTATESTIN | | | CTATEST | | | | | | Report No.: CTA24030702201 Page 20 of 90 The following table shows the measuring results for simulating liquid. | | Measured | Target Tissue | | | Measure | • | امنسنا | | | |-------------|--------------------|---------------|------|--------|-------------|-------|-------------|-----------------|------------|
 Tissue Type | Frequency
(MHz) | εr | σ | εr | Dev.
(%) | σ | Dev.
(%) | Liquid
Temp. | Test Data | | 835H | 835 | 41.5 | 0.90 | 40.911 | -1.42% | 0.903 | 0.32% | 22.6 | 2024-03-08 | | 1800H | 1800 | 40.0 | 1.40 | 40.872 | 2.18% | 1.436 | 2.54% | 22.4 | 2024-03-09 | | 2450H | 2450 | 39.2 | 1.80 | 38.714 | -1.24% | 1.750 | -2.79% | 22.7 | 2024-03-11 | Report No.: CTA24030702201 Page 21 of 90 ## 7 System Verification Procedures Each DASY system is equipped with one or more system validation kits. These units, together with the predefined measurement procedures within the DASY software, enable the user to conduct the system performance check and system validation. System validation kit includes a dipole, tripod holder to fix it underneath the flat phantom and a corresponding distance holder. ## Purpose of System Performance check The system performance check verifies that the system operates within its specifications. System and operator errors can be detected and corrected. It is recommended that the system performance check be performed prior to any usage of the system in order to guarantee reproducible results. The system performance check uses normal SAR measurements in a simplified setup with a well characterized source. This setup was selected to give a high sensitivity to all parameters that might fail or vary over time. The system check does not intend to replace the calibration of the components, but indicates situations where the system uncertainty is exceeded due to drift or failure. ## > System Setup In the simplified setup for system evaluation, the EUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave that comes from a signal generator. The calibrated dipole must be placed beneath the flat phantom section of the SAM twin phantom with the correct distance holder. The distance holder should touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The equipment setup is shown below: **System Setup for System Evaluation** Report No.: CTA24030702201 Page 22 of 90 Photo of Dipole Setup ## Validation Results Comparing to the original SAR value provided by SPEAG, the verification data should be within its specification of 10%. The table below shows the target SAR and measured SAR after normalized to 1W input power. It indicates that the system performance check can meet the variation criterion and the plots can be referred to Appendix B of this report. | Date | Frequency
(MHz) | Power fed onto
reference dipole
(mW) | Targeted
SAR
(W/kg) | Measured
SAR
(W/kg) | Normalized
SAR
(W/kg) | Deviation
(%) | |------------|--------------------|--|---------------------------|---------------------------|-----------------------------|------------------| | 2024-03-08 | 835 | 250 | 9.68 | 2.38 | 9.52 | -1.65% | | 2024-03-09 | 1800 | 250 | 39.2 | 10.20 | 40.80 | 4.08% | | 2024-03-11 | 2450 | 250 | 52.7 | 12.65 | 50.58 | -4.02% | Report No.: CTA24030702201 Page 23 of 90 ## 8 EUT Testing Position ## 8.1 Handset Reference Points • The vertical centreline passes through two points on the front side of the handset – the midpoint of the width w_t of the handset at the level of the acoustic output, and the midpoint of the width w_b of the bottom of the handset. - The horizontal line is perpendicular to the vertical centreline and passes the center of the acoustic output. - The horizontal line is also tangential to the handset at point A. - The two lines intersect at point A. Note that for many handsets, point A coincides with the center of the acoustic output; however, the acoustic output may be located elsewhere on the horizontal line. Also note that the vertical centreline is not necessarily parallel to the front face of the handset, especially for clamshell handsets, handsets with flip covers, and other irregularly shaped handsets. Fig.8-1 Illustration for Front, Back and Side of SAM Phantom Fig.8-2 Illustration for Handset Vertical and Horizontal Reference Lines Report No.: CTA24030702201 Page 24 of 90 ## 8.2 Positioning for Cheek / Touch • To position the device with the vertical center line of the body of the device and the horizontal line crossing the center piece in a plane parallel to the sagittal plane of the phantom. While maintaining the device in this plane, align the vertical center line with the reference plane containing the three ear and mouth reference point (M: Mouth, RE: Right Ear and LE: Left Ear) and align the center of the ear piece with the line RE-LE. • To move the device towards the phantom with the ear piece aligned with the line LE-RE until the phone touched the ear. While maintaining the device in the reference plane and maintaining the phone contact with the ear, move the bottom of the phone until any point on the front side is in contact with the cheek of the phantom or until contact with the ear is lost (see below figure) Fig.8-3 Illustration for Cheek Position ## 8.3 Positioning for Ear / 15° Tilt - To position the device in the "cheek" position described above. - While maintaining the device the reference plane described above and pivoting against the ear, moves it outward away from the mouth by an angle of 15 degrees or until contact with the ear is lost (see figure below). Fig.8-4 Illustration for Tilted Position Report No.: CTA24030702201 Page 25 of 90 ## 8.4 Body Worn Accessory Configurations • To position the device parallel to the phantom surface with either keypad up or down. - To adjust the device parallel to the flat phantom - To adjust the distance between the device surface and the flat phantom to 10 mm or holster surface and the flat phantom to 0 mm. Fig.8-5 Illustration for Body Worn Position ## 8.5 Wireless Router (Hotspot) Configurations Wireless Router (Hotspot) Configurations Some battery-operated handsets have the capability to transmit and receive internet connectivity through simultaneous transmission of WIFI in conjunction with a separate licensed transmitter. The FCC has provided guidance in KDB Publication 941225 D06 where SAR test considerations for handsets (L x W \geq 9 cm x 5 cm) are based on a composite test separation distance of 10 mm from the front, back and edges of the device with antennas 2.5 cm or closer to the edge of the device, determined from general mixed use conditions for this type of devices. Since the hotspot SAR results may overlap with the body-worn accessory SAR requirements, the more conservative configurations can be considered, thus excluding some body-worn accessory SAR tests. When the user enables the personal wireless router functions for the handset, actual operations include simultaneous transmission of both the WIFI transmitter and another licensed transmitter. Both transmitters often do not transmit at the same transmitting frequency and thus cannot be evaluated for SAR under actual use conditions. Therefore, SAR must be evaluated for each frequency transmission and mode separately and summed with the WIFI transmitter according to KDB 648474 publication procedures. The "Portable Hotspot" feature on the handset was NOT activated, to ensure the SAR measurements were evaluated for a single transmission frequency RF signal. Fig.8-6 Illustration for Hotspot Position Report No.: CTA24030702201 Page 26 of 90 ## 9 Measurement Procedures The measurement procedures are as follows: - (a) Use base station simulator (if applicable) or engineering software to transmit RF power continuously (continuous Tx) in the middle channel. - (b) Keep EUT to radiate maximum output power or 100% duty factor (if applicable) - (c) Measure output power through RF cable and power meter. - (d) Place the EUT in the positions as setup photos demonstrates. - (e) Set scan area, grid size and other setting on the DASY software. - (f) Measure SAR transmitting at the middle channel for all applicable exposure positions. - (g) Identify the exposure position and device configuration resulting the highest SAR - (h) Measure SAR at the lowest and highest channels at the worst exposure position and device configuration if applicable. According to the test standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps: - (a) Power reference measurement - (b) Area scan - (c) Zoom scan - (d) Power drift measurement ## 9.1 Spatial Peak SAR Evaluation The procedure for spatial peak SAR evaluation has been implemented according to the test standard. It can be conducted for 1g and 10g, as well as for user-specific masses. The DASY software includes all numerical procedures necessary to evaluate the spatial peak SAR value. The base for the evaluation is a "cube" measurement. The measured volume must include the 1g and 10g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan. The entire evaluation of the spatial peak values is performed within the post-processing engine (SEMCAD). The system always gives the maximum values for the 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages: - (a) Extraction of the measured data (grid and values) from the Zoom Scan - (b) Calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters) - (c) Generation of a high-resolution mesh within the measured volume - (d) Interpolation of all measured values form the measurement grid to the high-resolution grid - (e) Extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface - (f) Calculation of the averaged SAR within masses of 1g and 10g ## 9.2 Power Reference Measurement The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the
device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. This distance cannot be smaller Page 27 of 90 Report No.: CTA24030702201 than the distance of sensor calibration points to probe tip as defined in the probe properties. #### **Area Scan Procedures** 9.3 The area scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum found in the scanned area, within a range of the global maximum. The range (in dB0 is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE standard 1528 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan), if only one zoom scan follows the area scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of zoom scans has to be increased accordingly. Area scan parameters extracted from FCC KDB 865664 D01 SAR measurement 100 MHz to 6 GHz. | | ≤ 3 GHz | > 3 GHz | |--|--|---| | Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface | 5 ± 1 mm | $\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$ | | Maximum probe angle from probe axis to phantom surface normal at the measurement location | 30° ± 1° | 20° ± 1° | | | \leq 2 GHz: \leq 15 mm
2 – 3 GHz: \leq 12 mm | 3 – 4 GHz: ≤ 12 mm
4 – 6 GHz: ≤ 10 mm | | Maximum area scan spatial resolution: $\Delta x_{\text{Area}},\Delta y_{\text{Area}}$ | When the x or y dimension of measurement plane orientation the measurement resolution in x or y dimension of the test of measurement point on the test | on, is smaller than the above,
must be ≤ the corresponding
device with at least one | | Zoom Scan Procedures | (CIP) | CONCTP | ## **Zoom Scan Procedures** GHz. Zoom scans are used assess the peak spatial SAR values within a cubic averaging volume containing 1 gram and 10gram of simulated tissue. The zoom scan measures points (refer to table below) within a cube shoes base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the zoom scan evaluates the averaged SAR for 1 gram and 10 gram and displays these values next to the job's label. Zoom scan parameters extracted from FCC KDB 865664 D01 SAR measurement 100 MHz to 6 CTATES. Report No.: CTA24030702201 Page 28 of 90 | | | | | ≤3 GHz | > 3 GHz |] | |------------|--|-------------|--|--|---|------| | | Maximum distance fro
(geometric center of p | | measurement point ors) to phantom surface | 5 mm ± 1 mm | $\frac{1}{2} \cdot \delta \cdot \ln(2) \text{ mm} \pm 0.5 \text{ mm}$ | | | The second | Maximum probe angle surface normal at the r | | | 30° ± 1° | 20° ± 1° | | | | | | | ≤ 2 GHz: ≤ 15 mm
2 – 3 GHz: ≤ 12 mm | 3 – 4 GHz: ≤ 12 mm
4 – 6 GHz: ≤ 10 mm | | | C | Maximum area scan sp | patial reso | lution: Δx_{Area} , Δy_{Area} | When the x or y dimension measurement plane orientat above, the measurement res corresponding x or y dimen at least one measurement po | ion, is smaller than the olution must be ≤ the sion of the test device with | CTA | | | Maximum zoom scan | spatial res | olution: Δx _{Zoom} , Δy _{Zoom} | \leq 2 GHz: \leq 8 mm
2 – 3 GHz: \leq 5 mm* | $3 - 4 \text{ GHz: } \le 5 \text{ mm}^*$
$4 - 6 \text{ GHz: } \le 4 \text{ mm}^*$ | - | | | | uniform | grid: Δz _{Zoom} (n) | ≤ 5 mm | $3 - 4 \text{ GHz}$: $\leq 4 \text{ mm}$
$4 - 5 \text{ GHz}$: $\leq 3 \text{ mm}$
$5 - 6 \text{ GHz}$: $\leq 2 \text{ mm}$ | 3 | | | Maximum zoom
scan spatial
resolution, normal to
phantom surface | graded | $\Delta z_{Zoom}(1)$: between 1 st two points closest to phantom surface | ≤ 4 mm | $3-4 \text{ GHz}: \le 3 \text{ mm}$
$4-5 \text{ GHz}: \le 2.5 \text{ mm}$
$5-6 \text{ GHz}: \le 2 \text{ mm}$ | | | | | grid | Δz _{Zoom} (n>1):
between subsequent
points | $\leq 1.5 \cdot \Delta z_{Zoo}$ | om(n-1) mm | | | | Minimum zoom
scan volume | x, y, z | | ≥ 30 mm | 3 – 4 GHz: ≥ 28 mm
4 – 5 GHz: ≥ 25 mm
5 – 6 GHz: ≥ 22 mm | | | | 1528-2013 for de | etails. | - | al incidence to the tissue medi | | CTAT | When zoom scan is required and the reported SAR from the area scan based 1-g SAR estimation procedures of KDB Publication 447498 is $\leq 1.4 \text{ W/kg}, \leq 8 \text{ mm}, \leq 7 \text{ mm}$ and $\leq 5 \text{ mm}$ zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz. CTATES. Report No.: CTA24030702201 Page 29 of 90 #### 9.5 Volume Scan Procedures The volume scan is used for assess overlapping SAR distributions for antennas transmitting in different frequency bands. It is equivalent to an oversized zoom scan used in standalone measurements. The measurement volume will be used to enclose all the simultaneous transmitting antennas. For antennas transmitting simultaneously in different frequency bands, the volume scan is measured separately in each frequency band. In order to sum correctly to compute the 1g aggregate SAR, the EUT remain in the same test position for all measurements and all volume scan use the same spatial resolution and grid spacing. When all volume scan were completed, the software, SEMCAD postprocessor can combine and subsequently superpose these measurement data to calculating the multiband SAR. # 9.6 Power Drift Monitoring All SAR testing is under the EUT install full charged battery and transmit maximum output power. In DASY measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of EUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. The software will calculate the field difference in dB. If the power drift more than 5%, the SAR will be retested. Report No.: CTA24030702201 Page 30 of 90 ## 10 TEST CONDITIONS AND RESULTS ## 10.1 Conducted Power ## <GSM Conducted power> | GSM Conducted power> | A COLON | TATES | | | _c | TIM | | |-------------------------|-------------|------------|------------|--------|----------|-----------|-----------| | Band GSM850 | Bui | rst Averag | e Power (d | lBm) | Frame-Av | erage Pov | ver (dBm) | | TX Channel | Tune-up | 128 | 190 | 251 | 128 | 190 | 251 | | Frequency (MHz) | (dBm) | 824.2 | 836.6 | 848.8 | 824.2 | 836.6 | 848.6 | | GSM | 34.0 | 33.60 | 33.83 | 33.77 | 24.57 | 24.80 | 24.74 | | GPRS (GMSK, 1 Tx slot) | 34.0 | 33.73 | 33.77 | 33.77 | 24.70 | 24.74 | 24.74 | | GPRS (GMSK, 2 Tx slots) | 33.5 | 33.33 | 33.29 | 33.25 | 27.31 | 27.27 | 27.23 | | GPRS (GMSK, 3 Tx slots) | 32.0 | 31.74 | 31.68 | 31.61 | 27.48 | 27.42 | 27.35 | | GPRS (GMSK, 4 Tx slots) | 31.0 | 30.61 | 30.55 | 30.48 | 27.60 | 27.54 | 27.47 | | Band PCS1900 | Bui | rst Averag | e Power (d | IBm) | Frame-Av | erage Pov | ver (dBm) | | TX Channel | Tune-up | 512 | 661 | 810 | 512 | 661 | 810 | | Frequency (MHz) | limit (dBm) | 1850.2 | 1880.0 | 1909.8 | 1850.2 | 1880.0 | 1909.8 | | GSM | 31.0 | 29.98 | 30.38 | 30.29 | 20.95 | 21.35 | 21.26 | | GPRS (GMSK, 1 Tx slot) | 31.0 | 29.96 | 30.38 | 30.29 | 20.93 | 21.35 | 21.26 | | GPRS (GMSK, 2 Tx slots) | 30.0 | 29.04 | 29.84 | 29.76 | 23.02 | 23.82 | 23.74 | | GPRS (GMSK, 3 Tx slots) | 28.5 | 26.89 | 28.13 | 28.08 | 22.63 | 23.87 | 23.82 | | GPRS (GMSK, 4 Tx slots) | 27.0 | 25.49 | 26.98 | 26.99 | 22.48 | 23.97 | 23.98 | Remark: The frame-averaged power is linearly scaled the maximum burst averaged power over 8 time slots. The calculated method are shown as below: Frame-averaged power = Maximum burst averaged power (1 Tx Slot) - 9.03 dB Frame-averaged power = Maximum burst averaged power (2 Tx Slots) – 6.02 dB Frame-averaged power = Maximum burst averaged power (3 Tx Slots) - 4.26 dB Frame-averaged power = Maximum burst averaged power (4 Tx Slots) – 3.01 dB #### Note: - Per KDB 447498 D01, the maximum output power channel is used for SAR testing and for further SAR test reduction - 2. For Data mode SAR testing, GPRS should be evaluated, therefore the EUT was set in corresponding TX slots due to its highest frame-average power. Report No.: CTA24030702201 Page 31 of 90 #### <WCDMA Conducted Power> The following tests were conducted according to the test requirements outlines in 3GPP TS 34.121 specification. A summary of these settings is illustrated below: #### **HSDPA Setup Configuration:** - The EUT was connected to Base Station Agilent E5515C referred to the Setup Configuration. CTATES - The RF path losses were compensated into the measurements. b. - A call was established between EUT and Base Station with following setting: - Set Gain Factors (β_c and β_d) and parameters were set according to each - Specific sub-test in the following table, C10.1.4, quoted from the TS 34.121 ii. - iii. Set RMC 12.2Kbps + HSDPA mode. - iv. Set Cell Power = -86 dBm - Set HS-DSCH Configuration Type to FRC (H-set 1, QPSK) - vi. Select HSDPA Uplink
Parameters - vii. Set Delta ACK, Delta NACK and Delta CQI = 8 - viii. Set Ack-Nack Repetition Factor to 3 - ix. Set CQI Feedback Cycle (k) to 4 ms - Set CQI Repetition Factor to 2 Χ. - Power Ctrl Mode = All Up bits - The transmitted maximum output power was recorded. Table C.10.1.4: β values for transmitter characteristics tests with HS-DPCCH | Sub-test | βε | βd | βd
(SF) | βс/βа | βнs
(Note1,
Note 2) | CM (dB)
(Note 3) | MPR (dB)
(Note 3) | |----------|----------|----------|------------|----------|---------------------------|---------------------|----------------------| | 1 | 2/15 | 15/15 | 64 | 2/15 | 4/15 | 0.0 | 0.0 | | 2 | 12/15 | 15/15 | 64 | 12/15 | 24/15 | 1.0 | 0.0 | | | (Note 4) | (Note 4) | | (Note 4) | | | | | 3 | 15/15 | 8/15 | 64 | 15/8 | 30/15 | 1.5 | 0.5 | | 4 | 15/15 | 4/15 | 64 | 15/4 | 30/15 | 1.5 | 0.5 | - Note 1: Δ_{ACK} , Δ_{NACK} and $\Delta_{CQI} = 30/15$ with $\beta_{hs} = 30/15 * \beta_c$. - For the HS-DPCCH power mask requirement test in clause 5.2C, 5.7A, and the Error Vector Note 2: Magnitude (EVM) with HS-DPCCH test in clause 5.13.1A, and HSDPA EVM with phase discontinuity in clause 5.13.1AA, Δ_{ACK} and Δ_{NACK} = 30/15 with β_{hs} = 30/15 * β_c , and Δ_{CQI} = 24/15 with $\beta_{hs} = 24/15 * \beta_{c}$. - CM = 1 for β_c/β_d =12/15, β_{hs}/β_c =24/15. For all other combinations of DPDCH, DPCCH and HS-Note 3: DPCCH the MPR is based on the relative CM difference. This is applicable for only UEs that support HSDPA in release 6 and later releases. - CTA ESTING For subtest 2 the β_c/β_d ratio of 12/15 for the TFC during the measurement period (TF1, TF0) is Note 4: achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to $\beta_0 = 11/15$ and β_d Setup Configuration Report No.: CTA24030702201 Page 32 of 90 ### **HSUPA Setup Configuration:** The EUT was connected to Base Station Agilent E5515C referred to the Setup Configuration. - b. The RF path losses were compensated into the measurements. - A call was established between EUT and Base Station with following setting *: - Call Configs = 5.2B, 5.9B, 5.10B, and 5.13.2B with QPSK - Set the Gain Factors (β_c and β_d) and parameters (AG Index) were set according to each specific CTATES sub-test in the following table, C11.1.3, quoted from the TS 34.121 - iii. Set Cell Power = -86 dBm - iv. Set Channel Type = 12.2k + HSPA - v. Set UE Target Power - vi. Power Ctrl Mode= Alternating bits - vii. Set and observe the E-TFCI - viii. Confirm that E-TFCI is equal to the target E-TFCI of 75 for sub-test 1, and other subtest's E-TFCI - d. The transmitted maximum output power was recorded. Table C.11.1.3: β values for transmitter characteristics tests with HS-DPCCH and E-DCH | Sub-
test | βα | βa | β _d
(SF) | βε/βα | βнs
(Note1) | βес | β _{ed}
(Note 5)
(Note 6) | β _{ed}
(SF) | β _{ed}
(Codes) | CM
(dB)
(Note
2) | MPR
(dB)
(Note
2) | AG
Index
(Note
6) | E-
TFCI | |--------------|-------------------|----------------------|------------------------|----------------------|----------------|-------------|--|-------------------------|----------------------------|---------------------------|----------------------------|----------------------------|------------| | 1 | 11/15
(Note 3) | 15/15
(Note
3) | 64 | 11/15
(Note
3) | 22/15 | 209/2
25 | 1309/225 | 4 | 1 | 1.0 | 0.0 | 20 | 75 | | 2 | 6/15 | 15/15 | 64 | 6/15 | 12/15 | 12/15 | 94/75 | 4 | 1 | 3.0 | 2.0 | 12 | 67 | | 3 | 15/15 | 9/15 | 64 | 15/9 | 30/15 | 30/15 | β _{ed} 1: 47/15
β _{ed} 2: 47/15 | 4
4 | 2 | 2.0 | 1.0 | 15 | 92 | | 4 | 2/15 | 15/15 | 64 | 2/15 | 4/15 | 2/15 | 56/75 | 4 | 1 | 3.0 | 2.0 | 17 | 71 | | 5 | 15/15
(Note 4) | 15/15
(Note
4) | 64 | 15/15
(Note
4) | 30/15 | 24/15 | 134/15 | 4 | 1 | 1.0 | 0.0 | 21 | 81 | Note 1: $\Delta_{\rm ACK}$, $\Delta_{\rm NACK}$ and $\Delta_{\rm CQI}$ = 30/15 with β_{hs} = 30/15 * β_c . Note 2: CM = 1 for β_0/β_0 =12/15, $\beta_h s/\beta_c$ =24/15. For all other combinations of DPDCH, DPCCH, HS- DPCCH, E-DPDCH and E-DPCCH the MPR is based on the relative CM difference. Note 3: For subtest 1 the β_c/β_d ratio of 11/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to β_c = 10/15 and β_d = 15/15. Note 4: For subtest 5 the β_c/β_d ratio of 15/15 for the TFC during the measurement period (TF1, TF0) is achieved by setting the signalled gain factors for the reference TFC (TF1, TF1) to β_c = 14/15 and β_d = 15/15. In case of testing by UE using E-DPDCH Physical Layer category 1, Sub-test 3 is omitted according to Note 5: TS25,306 Table 5.1g. Note 6: β_{ed} can not be set directly, it is set by Absolute Grant Value. CTATES Setup Configuration CTATESTING Report No.: CTA24030702201 Page 33 of 90 ### <WCDMA Conducted Power> | | WCDMA | | Band V | / (dBm) | | | |--------|-----------------|---------------|--------|---------|-------|--| | | TX Channel | Tune-up limit | 4132 | 4183 | 4233 | | | | Frequency (MHz) | (dBm) | 826.4 | 836.6 | 846.6 | | | | RMC 12.2Kbps | 24.0 | 23.12 | 23.52 | 21.57 | | | | RMC AMR | 23.5 | 22.85 | 23.19 | 21.32 | | | | HSDPA Subtest-1 | 21.5 | 20.13 | 21.12 | 19.37 | | | | HSDPA Subtest-2 | 21.5 | 19.76 | 21.01 | 19.49 | | | -69 | HSDPA Subtest-3 | 21.5 | 19.83 | 21.03 | 19.41 | | | CTATES | HSDPA Subtest-4 | 21.5 | 19.79 | 21.04 | 19.30 | | | | HSUPA Subtest-1 | 21.0 | 18.48 | 20.78 | 17.43 | | | | HSUPA Subtest-2 | 20.0 | 17.87 | 19.33 | 17.47 | | | | HSUPA Subtest-3 | 20.0 | 17.95 | 19.19 | 17.48 | | | | HSUPA Subtest-4 | 21.0 | 18.84 | 20.5 | 18.47 | | | | HSUPA Subtest-5 | 21.0 | 18.93 | 20.17 | 18.62 | | ## **General Note** - Per KDB 941225 D01 v02, RMC 12.2kbps setting is used to evaluate SAR. If AMR 12.2kbps power is < 0.25dB higher than RMC 12.2kbps, SAR tests with AMR 12.2kbps can be excluded. - By design, AMR and HSDPA/HSUPA RF power will not be larger than RMC 12.2kbps, detailed information 2. is included in Tune-up Procure exhibit. - It is expected by the manufacturer that MPR for some HSDPA/HSUPA subtests may differ from the specification of 3GPP, according to the chipset implementation in this model. The implementation and CTATES" expected deviation are detailed in tune-up procedure exhibit. ## <WLAN 2.4GHz Conducted Power> | CTATES | Mode | Channel | Frequency
(MHz) | Conducted Peak
Output
Power(dBm) | Conducted
Average Output
Power(dBm) | Tune-up limit
(dBm) | |--------|---------------|---------|--------------------|--|---|------------------------| | 0 - | | 1 | 2412 | 15.31 | 14.00 | 15.0 | | | 802.11b | 6 | 2437 | 15.63 | 14.30 | 15.0 | | | | 11 | 2462 | 16.08 | 14.76 | 15.0 | | | | 1 | 2412 | 15.67 | 11.20 | 12.0 | | | 802.11g | 6 | 2437 | 15.63 | 11.03 | 12.0 | | | | 11 | 2462 | 16.14 | 11.64 | 12.0 | | | | 1 | 2412 | 15.73 | 10.81 | 12.0 | | | 802.11n(HT20) | 6 | 2437 | 15.75 | 11.02 | 12.0 | | C. | ` ' | 11 | 2462 | 16.32 | 11.67 | 12.0 | | 3 | | 3 | 2422 | 15.60 | 10.97 | 12.0 | | | 802.11n(HT40) | 6 | 2437 | 15.94 | 10.90 | 12.0 | | | | 9 | 2452 | 16.04 | 11.13 | 12.0 | | | CTATEST | lla | CITA | TESTING | | inG | Report No.: CTA24030702201 Page 34 of 90 #### <Bluetooth Conducted Power> | | Mode | Channel | Frequency
(MHz) | Conducted Average
Output Power(dBm) | Tune-up limit
(dBm) | | |------|-------------|---------|--------------------|--|------------------------|--| | | | 0 | 2402 | 6.37 | 7 | | | | GFSK | 39 | 2441 | 6.09 | 7 | | | | | 78 | 2480 | 6.04 | 7 | | | | | 0 | 2402 | 6.17 | 7 | | | | π/4DQPSK | 39 | 2441 | 5.92 | 7 | | | | | 78 | 2480 | 5.86 | 7 | | | | | 0 | 2402 | 6.22 | 7 | | | | 8DPSK | 39 | 2441 | 5.99 | 7 | | | TES | | 78 | 2480 | 5.93 | 7 | | | ATES | | 00 | 2402 | -1.52 | 0 | | | | BLE1M(GFSK) | 19 | 2440 | -1.70 | 0 | | | | | 39 | 2480 | -1.96 | 0 | | | | | 7\r | | CTATESTING | CTATESTING | | TING CTATESTING CTATESTING CTATESTING CTATESTING CTATESTING CTATESTING CTATESTING CTATESTING CTATESTING Report No.: CTA24030702201 Page 35 of 90 # 10.2 Transmit Antennas and SAR Measurement Position CTATES | | | e | Bottom Sid | | STING | | |------------|-----------|-----------------|----------------|----------------|-------|----------| | | edge | EUT surface and | Antenna to the | tance of The A | Dis | | | Right Side | Left Side | Bottom Side | Top Side | Back | Front | Antennas | | >25mm | <25mm | <25mm | >25mm | <25mm | <25mm | WWAN | | >25mm | <25mm | >25mm | <25mm | <25mm | <25mm | WLAN | | | | | Positions | for SAR tests; I | Hotspot mode | | | |------|----------|-------|-----------|------------------|--------------|-----------|------------| | 7E.S | Antennas | Front | Back | Top Side | Bottom Side | Left Side | Right Side | | CIA | WWAN | Yes | Yes | No | Yes | Yes | No | | | WLAN | Yes | Yes | Yes | No | Yes | No | #### Note: 1). According to the KDB941225 D06 Hot Spot SAR v02, the edges with less than 2.5 cm distance to the CTATESTI antennas need to be tested for SAR. Report No.: CTA24030702201 Page 36 of 90 ## 10.3 Standalone SAR Test Exclusion Considerations #### **General Note:** The below table, when the distance is < 50 mm exclusion threshold is "Ratio", when the distance is > 50 mm exclusion threshold is "mW" - 2 Maximum power is the source-based time-average power and represents the maximum RF output power among production units - 3 Per KDB 447498 D01v06, for larger devices, the test separation distance of adjacent edge configuration is determined by the closest separation between the antenna and the user. - 4 Per KDB 447498 D01v06, standalone SAR test exclusion threshold is applied; If the test separation
distance is < 5mm, 5mm is used to determine SAR exclusion threshold. - Per KDB 447498 D01v06, the 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances ≤ 50 mm are determined by: [(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] · [√f(GHz)] ≤ 3.0 for 1-g SAR and ≤ 7.5 for 10-g extremity SAR - f(GHz) is the RF channel transmit frequency in GHz. - Power and distance are rounded to the nearest mW and mm before calculation. - The result is rounded to one decimal place for comparison. - 6 Per KDB 447498 D01v06, at 100 MHz to 6 GHz and for test separation distances > 50 mm, the SAR test exclusion threshold is determined according to the following: - a) [Threshold at 50 mm in step 1) + (test separation distance 50 mm)·(f(MHz)/150)] mW, at 100 MHz to 1500 MHz - b) [Threshold at 50 mm in step 1) + (test separation distance 50 mm)·10] mW at > 1500 MHz and ≤ 6 GHz - 7 The below table, exemption limits for routine evaluation based on frequency and separation distance was according to SAR-based Exemption §1.1307(b)(3)(i)(B). | | Standalone SAR test exclusion considerations | | | | | | | | |-----|--|--------------------|---------------|-----------------------------|--------------------------|-----------------------|--------------------------------|--------------------------------| | (1) | Modulation | Frequency
(MHz) | Configuration | Maximum Average Power (dBm) | Separation Distance (mm) | Calculation
Result | SAR
Exclusion
Thresholds | Standalone
SAR
Exclusion | | | Bluetooth | 2402 | Head | 7 | 0 | 1.6 | 3.0 | Yes | | | Bluetooth | 2402 | Body& Hotspot | 7 | 10 | 0.8 | 3.0 | Yes | #### Remark: - 1. Maximum average power including tune-up tolerance; - 2. When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion - 3. Body including Hotspot mode as body use distance is 10mm from manufacturer declaration of user manual. Page 37 of 90 Report No.: CTA24030702201 #### 10.4 Estimated SAR Per KDB447498 requires when the standalone SAR test exclusion of section 4.3.1 is applied to an antenna that transmits simultaneously with other antennas, the standalone SAR must be estimated according to the following to determine simultaneous transmission SAR test exclusion; • (max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] • [√ f(GHz)/x] W/kg for test separation distances ≤ 50 mm; where x = 7.5 for 1-g SAR, and x = 18.75 for 10-g SAR. • 0.4 W/kg for 1-g SAR and 1.0 W/kg for 10-g SAR, when the test separation distances is > 50 mm Per FCC KD B447498 D01, simultaneous transmission SAR test exclusion may be applied when the sum of the 1-g SAR for all the transmitting antenna in a specific a physical test configuration is ≤1.6 W/Kg.When the sum is greater than the SAR limit, SAR test exclusion is determined by the SAR to peak location separation ratio. Ratio= $$\frac{(SAR_1 + SAR_2)^{1.5}}{(peak location separation,mm)} < 0.04$$ | | Ratio | $=$ $\frac{(SAR_1+S)}{(SAR_1+S)}$ | $\frac{SAR_2}{}$ < 0.0 | 4 | | | | | | | | |--------------------------|-----------|-----------------------------------|------------------------|------------|--------------------|--|--|--|--|--|--| | | Ratio | (peak location s | separation,mm) | т | | | | | | | | | Estimated standalone SAR | | | | | | | | | | | | | Communication | | | Maximum | Separation | Estimated | | | | | | | | Communication | Frequency | Configuration | Power | Distance | SAR _{1-g} | | | | | | | | system | (MHz) | | (dBm) | (mm) | (W/kg) | | | | | | | | Bluetooth | 2402 | Head | 7 | 0 | 0.207 | | | | | | | | Bluetooth | 2402 | Body& Hotspot | 1 ^G 7 | 10 | 0.104 | | | | | | | | 5417 | 1 | TATES | / | 1 | 1 | | | | | | | #### Remark: - Maximum average power including tune-up tolerance; - 2. When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR - Body including Hotspot mode as body use distance is 10mm from manufacturer declaration of user manual. Report No.: CTA24030702201 Page 38 of 90 # 10.5 SAR Test Results Summary #### **General Note:** 1 Per KDB 447498 D01v06, the reported SAR is the measured SAR value adjusted for maximum tune-up tolerance. - a) Tune-up scaling Factor = tune-up limit power (mW) / EUT RF power (mW), where tune-up limit is the maximum rated power among all production units. - b) For SAR testing of WLAN signal with non-100% duty cycle, the measured SAR is scaled-up by the duty cycle scaling factor which is equal to "1/(duty cycle)" - c) For WLAN/Bluetooth: Reported SAR(W/kg)= Measured SAR(W/kg)* Duty Cycle scaling factor * Tuneup scaling factor - Per KDB 447498 D01v06, for each exposure position, testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is: - ≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz - ≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz - ≤ 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≥ 200 MHz - 3 Per KDB 865664 D01v01r04, for each frequency band, repeated SAR measurement is required only when the measured SAR is ≥0.8W/kg. Report No.: CTA24030702201 Page 39 of 90 **SAR Results** <Head SAR> #### **SAR Values GSM** | | Plot
No. | Mode | Test
Position | Ch. | Freq. | Average
Power
(dBm) | Tune-Up
Limit
(dBm) | Scaling
Factor | Power Drift (dB) | Measured
SAR _{1g}
(W/kg) | Reported
SAR _{1g}
(W/kg) | | |--------|-------------|-----------|------------------|-----|-------|---------------------------|---------------------------|-------------------|------------------|---|---|--------| | | | | | | | GSM 850 | , | | | | | TES | | | | GSM Voice | Left Cheek | 190 | 836.6 | 33.83 | 34.00 | 1.040 | -0.03 | 0.305 | 0.317 | CTATES | | -6 | TIN | GSM Voice | Left Tilt | 190 | 836.6 | 33.83 | 34.00 | 1.040 | 0.05 | 0.255 | 0.265 | | | CTATES | #1 | GSM Voice | Right Cheek | 190 | 836.6 | 33.83 | 34.00 | 1.040 | 0.06 | 0.318 | 0.331 | | | | | GSM Voice | Right Tilt | 190 | 836.6 | 33.83 | 34.00 | 1.040 | 0.07 | 0.276 | 0.287 | | | | | | | | | GSM 190 | 0 | | | | | | | | | GSM Voice | Left Cheek | 661 | 1880 | 30.38 | 31.00 | 1.153 | 0.03 | 0.195 | 0.225 | 3 | | | | GSM Voice | Left Tilt | 661 | 1880 | 30.38 | 31.00 | 1.153 | 0.05 | 0.151 | 0.174 | | | G | #2 | GSM Voice | Right Cheek | 661 | 1880 | 30.38 | 31.00 | 1.153 | -0.01 | 0.213 | 0.246 | | | | | GSM Voice | Right Tilt | 661 | 1880 | 30.38 | 31.00 | 1.153 | -0.03 | 0.172 | 0.198 | | ### **SAR Values for WCDMA** | | | GSM Voice | Right Tilt | 661 | 1880 | 30.38 | 31.00 | 1.153 | -0.03 | 0.172 | 0.198 | | |------|-------------|--------------|------------------|------|-------|---------------------------|---------------------------|-------------------|------------------|---|-----------------------------------|------| | | (A), Ltd | CTATES | | | SAR | Values for | WCDMA | | | | | | | | Plot
No. | Mode | Test
Position | Ch. | Freq. | Average
Power
(dBm) | Tune-Up
Limit
(dBm) | Scaling
Factor | Power Drift (dB) | Measured
SAR _{1g}
(W/kg) | Reported SAR _{1g} (W/kg) | | | | | | | | | WCDMA Ba | nd V | <u> </u> | | | <u> </u> | TATE | | | | RMC 12.2Kbps | Left Cheek | 4183 | 836.6 | 23.52 | 24.00 | 1.117 | 0.05 | 0.233 | 0.260 | CIN. | | | TIN | RMC 12.2Kbps | Left Tilt | 4183 | 836.6 | 23.52 | 24.00 | 1.117 | -0.07 | 0.179 | 0.200 | 1 | | ATES | #3 | RMC 12.2Kbps | Right Cheek | 4183 | 836.6 | 23.52 | 24.00 | 1.117 | 0.06 | 0.246 | 0.275 | | | | | RMC 12.2Kbps | Right Tilt | 4183 | 836.6 | 23.52 | 24.00 | 1.117 | 0.10 | 0.201 | 0.224 | | # **SAR Values for WIFI** | Plot
No. | Mode | Test
Position | Ch. | Freq.
(MHz) | Average
Power
(dBm) | Tune-Up
Limit
(dBm) | Scaling
Factor | Power Drift (dB) | Measured SAR _{1g} (W/kg) | Reported SAR _{1g} (W/kg) | |
--|---------|------------------|-----|----------------|---------------------------|---------------------------|-------------------|------------------|-----------------------------------|-----------------------------------|--------| | | | | | | WIFI 2.4.0 | G | | | | | | | #4 | 802.11b | Left Cheek | 11 | 2462 | 14.76 | 15.00 | 1.057 | 0.03 | 0.253 | 0.267 | | | | 802.11b | Left Tilt | 11 | 2462 | 14.76 | 15.00 | 1.057 | 0.05 | 0.199 | 0.210 | | | STATE OF THE | 802.11b | Right Cheek | 11 | 2462 | 14.76 | 15.00 | 1.057 | -0.07 | 0.264 | 0.279 | | | | 802.11b | Right Tilt | 11 | 2462 | 14.76 | 15.00 | 1.057 | -0.05 | 0.219 | 0.231 | | | LING | G | | | | | | | | | 0.231 | CTATES | Report No.: CTA24030702201 Page 40 of 90 # <Body & Hotspot SAR> ### SAR Values [GSM 850] | | Plot
No. | Mode | Test
Position | Ch. | Freq. | Average
Power
(dBm) | Tune-Up
Limit
(dBm) | Scaling
Factor | Power Drift (dB) | Measured
SAR _{1g}
(W/kg) | Reported SAR _{1g} (W/kg) | | |-------|--|----------------|------------------|---------|--------|---------------------------|---------------------------|-------------------|------------------|---|-----------------------------------|-----| | | | | Measured / R | eported | SAR nu | mbers-Boo | ly& hotspo | t open dis | tance 10 | mm | | | | | | GPRS 4Tx slots | Front Side | 128 | 824.2 | 30.61 | 31.00 | 1.094 | 0.03 | 0.085 | 0.093 | TE | | | #5 | GPRS 4Tx slots | Rear Side | 128 | 824.2 | 30.61 | 31.00 | 1.094 | 0.09 | 0.119 | 0.130 | CIL | | | TIN | GPRS 4Tx slots | Left Edge | 128 | 824.2 | 30.61 | 31.00 | 1.094 | -0.05 | 0.102 | 0.112 | | | TATES | | GPRS 4Tx slots | Bottom Edge | 128 | 824.2 | 30.61 | 31.00 | 1.094 | 0.05 | 0.113 | 0.124 | | | | <u>, </u> | 110 | CTATI | | SAR | Values [P | CS 19001 | TING | | | | - | | | | | | | JAN | _ | Tune-Up | | Power | Measured | Reported | В | | | | K CTATI | | SAR | Values [P | CS 1900] | STING | | | | |-------------|----------------|------------------|---------|----------|--------------------|---------------------|-------------------|-------------------|-------------------------------|----------------------------| | Plot
No. | Mode | Test
Position | Ch. | Freq. | Average
Power | Tune-Up
Limit | Scaling
Factor | Power | Measured
SAR _{1g} | Reported SAR _{1g} | | | | Measured / R | eported | l SAR nu | (dBm)
mbers-Boo | (dBm)
ly& hotspo | t open dis | (dB)
stance 10 | (W/kg)
mm | (W/kg) | | | GPRS 4Tx slots | Front Side | 810 | 1909.8 | 26.99 | 27.00 | 1.002 | 0.03 | 0.228 | 0.229 | | #6 | GPRS 4Tx slots | Rear Side | 810 | 1909.8 | 26.99 | 27.00 | 1.002 | -0.05 | 0.264 | 0.265 | | | GPRS 4Tx slots | Left Edge | 810 | 1909.8 | 26.99 | 27.00 | 1.002 | 0.07 | 0.249 | 0.250 | | 25 months | GPRS 4Tx slots | Bottom Edge | 810 | 1909.8 | 26.99 | 27.00 | 1.002 | -0.03 | 0.254 | 0.255 | | | | | | | | 200 | | 0.00 | 0.20 | 0.200 | |-------------|--------------|------------------|---------------------|--------|---------------------|---------------------|-------------------|------------------|-----------------------------------|---| | | | | 1 1 2 2 2 2 1 1 1 N | CAD | Values [W | CDMA VI | C | A | | | | Plot
No. | Mode | Test
Position | Ch. | Freq. | Average Power (dBm) | Tune-Up Limit (dBm) | Scaling
Factor | Power Drift (dB) | Measured SAR _{1g} (W/kg) | Reported
SAR _{1g}
(W/kg) | | NO. | | Measured / R | Reported | SAR nu | mbers-Boo | dy& hotspo | t open dis | tance 10 | mm | | | | RMC 12.2Kbps | Front Side | 4183 | 836.6 | 23.52 | 24.00 | 1.117 | 0.05 | 0.134 | 0.150 | | #7 | RMC 12.2Kbps | Rear Side | 4183 | 836.6 | 23.52 | 24.00 | 1.117 | 0.02 | 0.172 | 0.192 | | | RMC 12.2Kbps | Left Edge | 4183 | 836.6 | 23.52 | 24.00 | 1.117 | -0.07 | 0.160 | 0.179 | | | RMC 12.2Kbps | Bottom Edge | 4183 | 836.6 | 23.52 | 24.00 | 1.117 | 0.10 | 0.167 | 0.187 | Report No.: CTA24030702201 Page 41 of 90 #### SAR Values [WIFI 2.4G] | | | TES: | TING | | SAR | Values [W | /IFI 2.4G] | | | | | | |------|-------------|---------|------------------|----------|--------|---------------------------|---------------------------|-------------------|------------------|---|-----------------------------------|------| | | Plot
No. | Mode | Test
Position | Ch. | Freq. | Average
Power
(dBm) | Tune-Up
Limit
(dBm) | Scaling
Factor | Power Drift (dB) | Measured
SAR _{1g}
(W/kg) | Reported SAR _{1g} (W/kg) | | | | | | Measured / F | Reported | SAR nu | mbers-Bod | ly& hotspo | t open dis | tance 10 | mm | | | | | | 802.11b | Front Side | 11 | 2462 | 14.76 | 15.00 | 1.057 | 0.05 | 0.064 | 0.068 | CTAT | | | #8 | 802.11b | Rear Side | 11 | 2462 | 14.76 | 15.00 | 1.057 | -0.03 | 0.101 | 0.107 | CIL | | TES | TIN | 802.11b | Left Edge | 11 | 2462 | 14.76 | 15.00 | 1.057 | -0.09 | 0.089 | 0.094 | | | ATES | | 802.11b | Top Edge | 11 | 2462 | 14.76 | 15.00 | 1.057 | 0.11 | 0.096 | 0.101 | | Note: Per KDB 248227 D01v02r02, for 2.4GHz 802.11g/n SAR testing is not required when the highest reported SAR for DSSS is adjusted by the ratio of ...kg. OFDM to DSSS specified maximum output power and the adjusted SAR is $\, \leqslant \,$ 1.2 W/kg. Report No.: CTA24030702201 Page 42 of 90 # 10.6 SAR Measurement Variability SAR measurement variability must be assessed for each frequency band, which is determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media are required for SAR measurements in a frequency band, the variability measurement procedures should be applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium. The following procedures are applied to determine if repeated measurements are required. - 1 Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply. - 2 When the original highest measured SAR is ≥ 0.80 W/kg, repeat that measurement once. - Perform a third repeated measurement only if the original, first or second repeated measurement is ≥ 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20. #### **SAR Measurement Variability** | Band | Mode | Test
Position | Ch. | Spacing (mm) | Original
SAR
(W/kg) | First Repeated
SAR (W/kg) | The
Ratio | Second Repeated SAR (W/kg) | |------|------|------------------|-----|--------------|---------------------------|------------------------------|--------------|----------------------------| | | | | | | | | - 75 | | | | | | | 1 | | | | | Report No.: CTA24030702201 Page 43 of 90 ### 10.7 Simultaneous Transmission Analysis The following procedures adopted from "FCC SAR Considerations for Cell Phones with Multiple Transmitters" are applicable to handsets with built-in unlicensed transmitters such as 802.11 a/b/g/n and Bluetooth devices CTATESTING which may simultaneously transmit with the licensed transmitter. Application Simultaneous Transmission information: | No. | Simultaneous Transmission Configurations | Portable Handset | | | | | |-----|--|------------------|-----------|---------|--|--| | NO. | Simultaneous Transmission Configurations | Head | Body-worn | Hotspot | | | | 1G | WWAN (2/3G) + WLAN 2.4GHz | Yes | Yes | Yes | | | | 2 | WWAN (2/3G) + Bluetooth | Yes | Yes | Yes | | | Note: WLAN and BT share the same antenna and cannot transmitting at the same time. # 10.8.2 Evaluation of Simultaneous SAR #### Head Simultaneous transmission SAR for WLAN/BT and GSM/WCDMA | | | | | | | 2114 | | |---|---------------------------|--------------------|------------------|-----------------|------------------
--|--------| | | 1 | 2 | 3 | 4.0 | 4.0 | | | | | MAX. WWAN | MAX. WLAN2.4G | Divista eth | 1+2 | 1+3 | | | | Exposure Position | Reported SAR | Reported SAR | Bluetooth | Summed | Summed | SPLSR | | | | 1g SAR | | | | | (W/kg) | (W/kg) | (W/kg) | (W/kg) | (W/kg) | | C. | | Left Cheek | 0.317 | 0.267 | 0.207 | 0.584 | 0.524 | N/A | | | Left Tilt | 0.265 | 0.210 | 0.207 | 0.475 | 0.472 | N/A | | | Right Cheek | 0.331 | 0.279 | 0.207 | 0.610 | 0.538 | N/A | | | Right Tilt | 0.287 | 0.231 | 0.207 | 0.518 | 0.494 | N/A | | | MAX. ΣSAR _{1g} = 0.61 0 | 0 W/kg<1.6 W/kg, s | o the Simultaneous | transmission SAR | with volume sca | n are not requir | ed. | CTATES | | | | | | | | | CIL | | Body-v | worn and hotspot | Simultaneous trans | smission SAR for | WLAN/BT and | GSM/WCDMA | The state of s | | | | | 0 | | | | | | #### Body-worn and hotspot Simultaneous transmission SAR for WLAN/BT and GSM/WCDMA | | 1 | 2 | 3 | 1+2 | 1+3 | | |-------------------|--------------|---------------|------------|---------|---------|-------| | | MAX. WWAN | MAX. WLAN2.4G | Bluetooth | Summed | Summed | | | Exposure Position | Reported SAR | Reported SAR | Bluetootii | 1g SAR | 1g SAR | SPLSR | | | 1g SAR | 1g SAR | 1g SAR | (W/kg) | (W/kg) | | | | (W/kg) | (W/kg) | (W/kg) | (VV/Kg) | (VV/Ng) | | | Front Side | 0.229 | 0.068 | 0.104 | 0.297 | 0.333 | N/A | | Rear Side | 0.265 | 0.107 | 0.104 | 0.372 | 0.369 | N/A | | Left Edge | 0.250 | 0.094 | 0.104 | 0.344 | 0.354 | N/A | | Right Edge | N/A | N/A | 0.104 | N/A | 0.104 | N/A | | Top Side | N/A | 0.101 | 0.104 | 0.101 | 0.104 | N/A | | Bottom Edge | 0.255 | N/A | 0.104 | 0.255 | 0.359 | N/A | MAX. ΣSAR_{1g} =0.372 W/kg<1.6 W/kg, so the Simultaneous transmission SAR with volume scan are not required. Report No.: CTA24030702201 Page 44 of 90 # 11 Measurement Uncertainty | N In N R R R R R R R R R R R | estru | $ \begin{array}{c} 1 \\ \hline \text{ment} \\ 2 \\ \hline \sqrt{3} \\ \hline 1 \\ \hline \sqrt{3} \\ \end{array} $ | 1
0.7
0.7
1
1
1 | 1
0.7
0.7
1
1
1
1 | 0. 4 3.5 1.9 3.9 0.6 2.7 0.6 0.3 0.5 | 0. 4 3.5 1.9 3.9 0.6 2.7 0.6 0.3 | 9 | |------------------------------|-------|---|--|---|--|--|---| | N
R
R
R
R
R | | $ \begin{array}{c} 2 \\ \hline \sqrt{3} 1 \end{array} $ | 1
0.7
0.7
1
1
1 | 0.7
0.7
1
1
1 | 1.9
3.9
0.6
2.7
0.6
0.3 | 1.9
3.9
0.6
2.7
0.6
0.3 | ∞
∞
∞
∞ | | R
R
R
R
R | | $ \frac{\sqrt{3}}{\sqrt{3}} $ $ \frac{\sqrt{3}}{\sqrt{3}} $ $ \frac{\sqrt{3}}{\sqrt{3}} $ $ \frac{\sqrt{3}}{\sqrt{3}} $ $ 1$ | 0.7
0.7
1
1
1 | 0.7
0.7
1
1
1 | 1.9
3.9
0.6
2.7
0.6
0.3 | 1.9
3.9
0.6
2.7
0.6
0.3 | ∞
∞
∞
∞ | | R
R
R
R
N | | | 0.7 | 0.7
1
1
1
1 | 3.9
0.6
2.7
0.6
0.3 | 3.9
0.6
2.7
0.6
0.3 | ∞∞∞∞ | | R
R
R
N | | $\sqrt{3}$ $\sqrt{3}$ $\sqrt{3}$ $\sqrt{3}$ 1 | 1
1
1 | 1
5 1
1
1 | 0.6
2.7
0.6
0.3 | 0.6
2.7
0.6
0.3 | &
& | | R
R
N | 6 | $\frac{\sqrt{3}}{\sqrt{3}}$ | 1 1 | 1 1 | 2.7
0.6
0.3 | 2.7
0.6
0.3 | ∞
∞ | | R
N
R | | √3
1 | 1 | 1 | 0.6 | 0.6 | 8 | | N
R | | √3
1 | 1 | 1 | 0.3 | 0.3 | 75 | | R | | | | | | | 8 | | | | _
√3 | 1 | 1 | 0.5 | 0.5 | | | R | | | | | 0.0 | 0.5 | ∞ | | | | $\sqrt{3}$ | 1 | 1 | 1.5 | 1.5 | 8 | | R | -71 | √ <u>3</u> | 1 | 1 | 1.7 | 1.7 | 8 | | R | 5 | √ <u>3</u> | 1 | 1 | 1.7 | 1.7 | 8 | | R | | √3 | 1 | 1 | 0.2 | 0.2 | 8 | | R | | | 1 | 1 | 1.7 | 1.7 | 8 | | R | | √ 3 | 1 | 1 | 0.6 | 0.6 | 8 | | 3 | | | | STING | 3 | | ESTIN | | | R | R
R | $\begin{array}{c c} & \sqrt{3} \\ & R & -\sqrt{3} \\ & R & -\sqrt{3} \end{array}$ | R $\frac{\sqrt{3}}{\sqrt{3}}$ 1 R $\frac{\sqrt{3}}{\sqrt{3}}$ 1 | R $\frac{\sqrt{3}}{\sqrt{3}}$ 1 1 R $\frac{1}{\sqrt{3}}$ 1 1 | R $\frac{\sqrt{3}}{\sqrt{3}}$ 1 1 1.7 R $\frac{-\sqrt{3}}{\sqrt{3}}$ 1 1 0.6 | R $\frac{\sqrt{3}}{\sqrt{3}}$ 1 1 1.7 1.7 | Report No.: CTA24030702201 Page 45 of 90 | 3.8 er 5.1 ower 5.0 ainty 4.0 vity 5.0 | N
N
R
Phantom
R | $ \begin{array}{c c} 1 \\ \hline 1 \\ \hline \sqrt{3} \\ \end{array} $ and so | 1 1 1 et-up | 1 1 1 | 3.8
5.1
2.9 | 3.8
5.1
2.9 | 99
5
∞ | | |--|-----------------------------|---|---|---|---|---|---|---| | ainty 4.0 | R
Phantom
R | $\frac{1}{\sqrt{3}}$ and se | 1
et-up | 1 | 2.9 | 2.9 | | | | ainty 4.0 | Phantom
R | and se | et-up | (1), (1) | TATE | TIN | ∞ | | | ainty 4.0 | R | and se | - | 21 K | 23 | 5 | | 1 | | vity | | √3 | 1 | 2 1 N | 23 | | | | | vity 5.0 | R | + | | 170 | 2.5 | 2.3 | ∞ | - 15 | | | 1 | $\sqrt{3}$ | 0.64 | 0.43 | 1.8 | 1.2 | ∞ | CTATE | | vity 2.5 | N | 1 | 0.64 | 0.43 | 1.6 | 1.2 | ∞ | | | vity 5.0 | R | $\sqrt{3}$ | 0.6 | 0.49 | 1.7 | 1.5 | ∞ | | | vity 2.5 | N | 1 | 0.6 | 0.49 | 1.5 | 1.2 | ∞ | | | rd | RSS | 11 | $-\sqrt{\sum_{i=1}^{n} c_{i}}$ | · ² II ² | 11.4% | 11.3% | 236 | (G | | <i>U</i> : | | c c | √,K= | 2 | 22.8% | 22.6% | TESTI | | | rc | 2.5
I U: | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | 2.5 N 1 0.6 0.49 1.5 1.2 RSS $U_c = \sqrt{\sum_{i,K=2}^{n} C_i^2 U_i^2}$ 11.4% 11.3% $U = k U$ 22.6% | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | Page 46 of 90 Report No.: CTA24030702201 # **Appendix A. EUT Photos and Test Setup Photos** **Left Head Cheek Setup Photo** **Left Head Tilted Setup Photo** Right Head Cheek Setup Photo Page 47 of 90 Report No.: CTA24030702201 CTATESTING **Right Head Tilted Setup Photo** Body-worn Top Side (10mm) Setup Photo Body-worn Bottom Side (10mm) Setup Photo CTATESTII Report No.: CTA24030702201 Page 48 of 90 **Body-worn Front Side (10mm) Setup Photo** Body-worn Rear Side (10mm) Setup Photo Body-worn Left Side (10mm) Setup Photo STING Page 49 of 90 Report No.: CTA24030702201 CTATESTING Body-worn Right Side (10mm) Setup Photo CTATES Page 50 of 90 Report No.: CTA24030702201 Date: 2024-03-08 # Appendix B. Plots of SAR System Check #### 835MHz System Check DUT: Dipole 835 MHz; Type: D835V2; Serial: 484 Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium parameters used (interpolated): f = 835 MHz; σ = 0.903 S/m; ε_r = 40.911; ρ = 1000 kg/m³ Phantom section: Flat Section # **DASY5** Configuration: Probe: EX3DV4 - SN7380; ConvF(9.62, 9.62, 9.62); Calibrated: June 21, 2023 Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE3 Sn428; Calibrated: Aug.30,2023; Phantom: SAM 1; Type: SAM; CTA TESTING Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.10 (7164) Area Scan (71x71x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 1.84 W/kg Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 43.63 V/m; Power Drift = 0.08 dB Peak SAR (extrapolated) =
2.51 W/kg #### SAR(1 g) = 2.38 W/kg; SAR(10 g) = 1.86 W/kg Maximum value of SAR (measured) =1.79 W/kg System Performance Check 835MHz 250mW CTATESTING Report No.: CTA24030702201 Page 51 of 90 Date: 2024-03-09 #### 1800MHz System Check DUT: Dipole 1800 MHz; Type: D1800V2; Serial: 2d158 Communication System: CW; Frequency: 1800 MHz; Duty Cycle: 1:1 Medium parameters used (interpolated): f = 1800 MHz; $\sigma = 1.436 \text{ S/m}$; $\epsilon_r = 40.872$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section #### **DASY5** Configuration: Probe: EX3DV4 - SN7380; ConvF(8.05, 8.05, 8.05); Calibrated: June 21, 2023 Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE3 Sn428; Calibrated: Aug.30,2023; Phantom: SAM 1; Type: SAM; Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.10 (7164) CTA TESTING Area Scan (81x81x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 7.78 W/kg Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 72.68 V/m; Power Drift = -0.11 dB Peak SAR (extrapolated) = 12.5 W/kg #### SAR(1 g) = 10.20 W/kg; SAR(10 g) = 5.04 W/kg Maximum value of SAR (measured) = 7.55 W/kg J dB 0 dB = 7.55 W/kg System Performance Check 1750MHz 250mW CTATESTING Report No.: CTA24030702201 Page 52 of 90 Date: 2024-03-11 #### 2450MHz System Check DUT: Dipole 2450 MHz; D2540V2; Serial: 745 Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium parameters used (interpolated): f = 2450 MHz; $\sigma = 1.750 \text{ S/m}$; $\epsilon r = 38.714$; $\rho = 1000 \text{ kg/m}$ 3 Phantom section: Flat Section #### **DASY5** Configuration: Probe: EX3DV4 - SN7380; ConvF(7.50, 7.50, 7.50); Calibrated: June 21, 2023 Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE3 Sn428; Calibrated: Aug.30,2023; Phantom: SAM 1; Type: SAM; Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.10 (7164) CTA TESTING Area Scan (71x101x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 11.4 W/kg Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 80.92 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 19.8 W/kg #### SAR(1 g) = 12.65 W/kg; SAR(10 g) = 5.82 W/kg Maximum value of SAR (measured) = 10.6 W/kg J dB 0 dB = 10.6 W/kg System Performance Check 2450MHz 250mW CTATESTING Page 53 of 90 Report No.: CTA24030702201 # Appendix C. Plots of SAR Test Data Date: 2024-03-08 # GSM850_GSM Voice_Right Cheek_0mm_Ch190 Communication System: UID 0, GSM (0); Frequency: 836.6 MHz; Duty Cycle: 1:1 Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.943 \text{ S/m}$; $\varepsilon_r = 42.081$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section # **DASY5 Configuration:** Probe: EX3DV4 - SN7380; ConvF(9.62, 9.62, 9.62); Calibrated: June 21, 2023 Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE3 Sn428; Calibrated: Aug.30,2023; Phantom: SAM 1; Type: SAM; CTA TESTING Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.10 (7164) Area Scan (71x101x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.381 W/kg Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 4.671 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 0.395 W/kg #### SAR(1 g) = 0.318 W/kg; SAR(10 g) = 0.241 W/kg Maximum value of SAR (measured) = 0.360 W/Kg Report No.: CTA24030702201 Page 54 of 90 #2. Date: 2024-03-09 # GSM1900_GSM Voice_Right Cheek_0mm_Ch661 Communication System: UID 0, GSM (0); Frequency: 1880 MHz; Duty Cycle: 1:1 Medium parameters used (interpolated): f = 1880 MHz; $\sigma = 1.372 \text{ S/m}$; $\epsilon_r = 38.583$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section #### **DASY5 Configuration:** Probe: EX3DV4 - SN7380; ConvF(8.05, 8.05, 8.05); Calibrated: June 21, 2023 Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE3 Sn428; Calibrated: Aug.30,2023; Phantom: SAM 1; Type: SAM; Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.10 (7164) Area Scan (71x81x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.284 W/kg Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 4.678 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 0.316 W/kg # SAR(1 g) = 0.213 W/kg; SAR(10 g) = 0.140 W/kg Maximum value of SAR (measured) = 0.263 W/Kg 0dB = 0.263 W/kg Report No.: CTA24030702201 Page 55 of 90 #3. Date: 2024-03-08 ### WCDMA V_RMC 12.2Kbps_Right Cheek_0mm_Ch4183 Communication System: UID 0, WCDMA (0); Frequency: 836.6 MHz; Duty Cycle: 1:1 Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.931 \text{ S/m}$; $\epsilon_r = 42.2$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section #### **DASY5 Configuration:** - Probe: EX3DV4 SN7380; ConvF(9.62, 9.62, 9.62); Calibrated: June 21, 2023 - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE3 Sn428; Calibrated: Aug.30,2023; - Phantom: SAM 1; Type: SAM; - Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.10 (7164) Area Scan (71x81x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.287 W/kg Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 4.471 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 0.309 W/kg # SAR(1 g) = 0.246 W/kg; SAR(10 g) = 0.186 W/kg Maximum value of SAR (measured) = 0.277 W/Kg 0dB = 0.277 W/kg Report No.: CTA24030702201 Page 56 of 90 #4. Date: 2024-03-11 ### WLAN2.4GHz_802.11b 1Mbps_Right Cheek_0mm_Ch11 Communication System: UID 0, WIFI (0); Frequency: 2462 MHz; Duty Cycle: 1:1 Medium parameters used (interpolated): f = 2462 MHz; $\sigma = 1.715$ S/m; $\varepsilon_r = 40.207$; $\rho = 1000$ kg/m³ Phantom section: Right Section #### **DASY5 Configuration:** Probe: EX3DV4 - SN7380; ConvF(7.50, 7.50, 7.50); Calibrated: June 21, 2023 Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE3 Sn428; Calibrated: Aug.30,2023; Phantom: SAM 1; Type: SAM; Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.10 (7164) Area Scan (91x101x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 0.397 W/kg Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 4.385 V/m; Power Drift = -0.07 dB Peak SAR (extrapolated) = 0.502 W/kg ## SAR(1 g) = 0.264 W/kg; SAR(10 g) = 0.137 W/kg Maximum value of SAR (measured) = 0.370 W/Kg 0dB = 0.370 W/kg Report No.: CTA24030702201 Page 57 of 90 #5. Date: 2024-03-08 # GPRS850 _ 4Tx slots _ Rear Side _CH128_10mm Communication System: UID 0, GSM (0); Frequency: 824.2 MHz; Duty Cycle: 1:1 Medium parameters used (interpolated): f = 824.2 MHz; $\sigma = 0.977 \text{ S/m}$; $\epsilon_r = 42.081$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section #### **DASY5 Configuration:** Probe: EX3DV4 - SN7380; ConvF(9.62, 9.62, 9.62); Calibrated: June 21, 2023 Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE3 Sn428; Calibrated: Aug.30,2023; Phantom: SAM 1; Type: SAM; • Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.10 (7164) Area Scan (71x81x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.162 W/Kg Zoom Scan (6x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 4.339 V/m; Power Drift = 0.09 dB Peak SAR (extrapolated) = 0.196 W/kg #### SAR(1 g) = 0.119 W/Kg; SAR(10 g) = 0.071 W/Kg Maximum value of SAR (measured) = 0.155 W/Kg 0dB =0.155 W/kg Report No.: CTA24030702201 Page 58 of 90 #6. Date: 2024-03-09 ## GPRS 1900 _4Tx slots _Rear Side_10mm_CH810 Communication System: UID 0, GSM (0); Frequency: 1909.8 MHz;Duty Cycle: 1:1 Medium parameters used: f = 1909.8 MHz; $\sigma = 1.436$ S/m; $\epsilon r = 38.337$; $\rho = 1000$ kg/m3 Phantom section: Flat Section #### **DASY5 Configuration:** - Probe: EX3DV4 SN7380; ConvF(8.05, 8.05, 8.05); Calibrated: June 21, 2023 - Sensor-Surface: 2mm (Mechanical Surface Detection) - Electronics: DAE3 Sn428; Calibrated: Aug.30,2023; - Phantom: SAM 1; Type: SAM; - Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.10 (7164) Area Scan (71x81x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.382 W/Kg Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 7.156 V/m; Power Drift = -0.05 dB Peak SAR (extrapolated) = 0.429 W/kg #### SAR(1 g) = 0.264 W/Kg; SAR(10 g) = 0.157 W/Kg Maximum value of SAR (measured) = 0.348 W/Kg 0 dB = 0.348 W/kg Report No.: CTA24030702201 Page 59 of 90 **#7**. Date: 2024-03-08 ### WCDMA V_RMC 12.2Kbps_ Rear Side_10mm_Ch4183 Communication System: UID 0, Generic WCDMA (0); Frequency: 836.6 MHz; Duty Cycle: 1:1 Medium parameters used (interpolated): f = 836.6 MHz; $\sigma = 0.931 \text{ S/m}$; $\epsilon_r = 42.194$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section #### **DASY5 Configuration:** Probe: EX3DV4 - SN7380; ConvF(9.62, 9.62, 9.62); Calibrated: June 21, 2023 Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE3 Sn428; Calibrated: Aug.30,2023; Phantom: SAM 1; Type: SAM; Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.10 (7164) Area Scan (71x81x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 0.228 W/Kg Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Reference Value = 4.844 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 0.267 W/Kg #### SAR(1 g) = 0.172 W/Kg; SAR(10 g) = 0.103 W/Kg Maximum value of SAR (measured) = 0.224 W/Kg 0 dB = 0.224 W/kg Page 60 of 90 Report No.: CTA24030702201 #8. Date: 2024-03-11 #### WLAN2.4GHz_802.11b 1Mbps_Rear Side_10mm_Ch11 Communication System: UID 0, Generic WIFI(0); Frequency: 2462 MHz; Duty Cycle: 1:1 Medium parameters used (interpolated): f = 2462 MHz; $\sigma = 1.715 \text{ S/m}$; $\epsilon r = 40.207$; $\rho = 1000
\text{ kg/m}$ 3 Phantom section: Flat Section #### **DASY5** Configuration: Probe: EX3DV4 - SN7380; ConvF(7.50, 7.50, 7.50); Calibrated: June 21, 2023 Sensor-Surface: 2mm (Mechanical Surface Detection) Electronics: DAE3 Sn428; Calibrated: Aug.30,2023; Phantom: SAM 1; Type: SAM; CTA TESTING Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.10 (7164) Area Scan (91x101x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm Maximum value of SAR (interpolated) = 0.164 W/Kg Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 3.204 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 0.202 W/kg #### SAR(1 g) = 0.101 W/Kg; SAR(10 g) = 0.053 W/Kg Maximum value of SAR (measured) = 0.145 W/Kg 0 dB = 0.145 W/kgCTA TESTING Report No.: CTA24030702201 Page 61 of 90 # Appendix D. DASY System Calibration Certificate CTA TESTING CTATES I. Report No.: CTA24030702201 Page 62 of 90 In Collaboration with p e a CALIBRATION LABORATORY Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn Glossary: tissue simulating liquid NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point CF crest factor (1/duty_cycle) of the RF signal A,B,C,D modulation dependent linearization parameters Φ rotation around probe axis Polarization Φ Polarization θ θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i 0=0 is normal to probe axis Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system Calibration is Performed According to the Following Standards: a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" Methods Applied and Interpretation of Parameters: NORMx,y,z: Assessed for E-field polarization θ=0 (f≤900MHz in TEM-cell; f>1800MHz: waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF). NORM(f)x,y,z = NORMx,y,z* frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (polymertainty required). DCP does not depend on frequency nor media (no uncertainty required). DCP does not depend on frequency nor media. PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics Ax,y,z; Bx,y,z; Cx,y,z;VRx,y,z:A,B,C are numerical linearization parameters assessed based on the Ax,y,z; Bx,y,z; Cx,y,z;Vxx,y,z:A,B,C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters realized for houndary compensation (alpha, depth) of which typical uncertainty volved and the parameters assessed based on the data of power for the parameters. applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to allows extending the validity from ±50MHz to±100MHz. allows extending the validity from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. phantom exposed by a patent antenne. Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No total and required. Connector Angle: The angle is assessed using the information gained by determining the NORMx Certificate No:J23Z60276 Page 2 of 9 Report No.: CTA24030702201 Page 63 of 90 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: cmf@caict.ac.cn http://www.caict.ac.cn · 有四次以外中學以及所有所有的一個在十二十二 # DASY/EASY – Parameters of Probe: EX3DV4 – SN:7380 # **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |-------------------------|----------|----------|----------|-----------| | $Norm(\mu V/(V/m)^2)^A$ | 0.44 | 0.35 | 0.41 | ±10.0% | | DCP(mV) ^B | 100.5 | 101.6 | 100.6 | 210.070 | # **Modulation Calibration Parameters** | UID | Communication
System Name | | A
dB | B
dBõV | С | D
dB | VR
mV | Unc ^E
(k=2) | |------|------------------------------|-------|---------|-----------|------|---------|----------|---------------------------| | 0 CW | X | 0.0 0 | 0.0 | 1.0 | 0.00 | 161.9 | ±2.2% | | | | Y | 0.0 | 0.0 | 1.0 | | 139.0 | | | | | | Z | 0.0 | 0.0 | 1.0 | | 149.3 | | The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. A The uncertainties of Norm X, Y, Z do not affect the E2-field uncertainty inside TSL (see Page 4). B Numerical linearization parameter: uncertainty not required. E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value. Certificate No:J23Z60276 A STATE OF THE STA Page 3 of 9 Report No.: CTA24030702201 Page 64 of 90 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2117 E-mail: emf@caict.ac.cn http://www.caict.ac.cn http://www.caict.ac.cn # DASY/EASY – Parameters of Probe: EX3DV4 – SN:7380 # Calibration Parameter Determined in Head Tissue Simulating Media | f [MHz] ^C | Relative
Permittivity F | Conductivity
(S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unct.
(k=2) | |----------------------|----------------------------|-------------------------|---------|---------|---------|--------------------|----------------------------|----------------| | 750 | 41.9 | 0.89 | 10.02 | 10.02 | 10.02 | 0.17 | 1.27 | | | 835 | 41.5 | 0.90 | 9.62 | 9.62 | 9.62 | | (5/6/0/6/ | ±12.7% | | 1750 | 40.1 | 1.37 | 8.35 | 8.35 | | 0.18 | 1.30 | ±12.7% | | 1900 | 40.0 | 1.40 | 8.05 | 8.05 | 8.35 | 0.28 | 1.02 | ±12.7% | | 2100 | 39.8 | 1.49 | | | 8.05 | 0.24 | 1.11 | ±12.7% | | 2300 | 39.5 | | 8.00 | 8.00 | 8.00 | 0.24 | 1.11 | ±12.7% | | 2450 | | 1.67 | 7.75 | 7.75 | 7.75 | 0.65 | 0.67 | ±12.7% | | | 39.2 | 1.80 | 7.50 | 7.50 | 7.50 | 0.65 | 0.69 | ±12.7% | | 2600 | 39.0 | 1.96 | 7.35 | 7.35 | 7.35 | 0.47 | 0.85 | ±12.7% | | 3500 | 37.9 | 2.91 | 6.85 | 6.85 | 6.85 | 0.41 | 1.03 | ±13.99 | | 3700 | 37.7 | 3.12 | 6.69 | 6.69 | 6.69 | 0.43 | 1.03 | ±13.99 | | 3900 | 37.5 | 3.32 | 6.58 | 6.58 | 6.58 | 0.30 | 1.50 | ±13.99 | | 4100 | 37.2 | 3.53 | 6.62 | 6.62 | 6.62 | 0.35 | 1.25 | ±13.9 | | 4200 | 37.1 | 3.63 | 6.52 | 6.52 | 6.52 | 0.30 | 1.45 | | | 4400 | 36.9 | 3.84 | 6.44 | 6.44 | 6.44 | 0.30 | 1.50 | ±13.9° | | 4600 | 36.7 | 4.04 | 6.41 | 6.41 | 6.41 | 0.35 | | ±13.9 | | 4800 | 36.4 | 4.25 | 6.36 | 6.36 | 6.36 | | 1.48 | ±13.99 | | 4950 | 36.3 | 4.40 | 5.95 | 5.95 | | 0.35 | 1.50 | ±13.9 | | 5250 | 35.9 | 4.71 | 5.45 | 5.45 | 5.95 | 0.35 | 1.55 | ±13.9 | | 5600 | 35.5 | 5.07 | 4.86 | | 5.45 | 0.40 | 1.55 | ±13.9 | | 5750 | 35.4 | 5.22 | | 4.86 | 4.86 | 0.45 | 1.40 | ±13.9 | | 3730 | 00.4 | 5.22 | 4.96 | 4.96 | 4.96 | 0.45 | 1.40 | ±13.9 | © Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz. 150 and 220 km is the FALL frequency up to 6 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to $\pm 10\%$ if liquid compensation formula is applied to measured SAR values. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. tissue parameters. 6 Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. Certificate No:J23Z60276 The second secon Page 4 of 9 Report No.: CTA24030702201 Page 65 of 90 CTA TESTING CTA TESTING ATESTING STING CTATES Report No.: CTA24030702201 Page 66 of 90 GTA TESTING CTATES ... STING ESTING Report No.: CTA24030702201 Page 67 of 90 CTA TESTING STING CTATES