
Test Report

- **Report No.:** MTi231117013-03E1
- **Date of issue:** 2024-03-15
- Applicant: CAD Business LLC
- Product: Car Multimedia Player
- Model(s): XA-928WCP
- FCC ID: 2BE7D928WCP

Shenzhen Microtest Co., Ltd. http://www.mtitest.com

The test report is only used for customer scientific research, teaching, internal quality control and other purposes, and is for internal reference only.

Instructions

- 1. This test report shall not be partially reproduced without the written consent of the laboratory.
- 2. The test results in this test report are only responsible for the samples submitted
- 3. This test report is invalid without the seal and signature of the laboratory.
- 4. This test report is invalid if transferred, altered, or tampered with in any form without authorization.
- 5. Any objection to this test report shall be submitted to the laboratory within 15 days from the date of receipt of the report.

Table of contents

1	Gene	ral Description	5
	1.1 1.2 1.3 1.4 1.5	Description of the EUT Description of test modes Environmental Conditions Description of support units Measurement uncertainty	5 7 7
2	Sumr	nary of Test Result	8
3	Test F	Facilities and accreditations	9
	3.1	Test laboratory	9
4	List o	of test equipment	10
5	Evalu	ation Results (Evaluation)	11
	5.1	Antenna requirement	11
6	Radio	o Spectrum Matter Test Results (RF)	
	6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9	Occupied Bandwidth Maximum Conducted Output Power Channel Separation Number of Hopping Frequencies Dwell Time RF conducted spurious emissions and band edge measurement Band edge emissions (Radiated) Radiated emissions (below 1GHz) Radiated emissions (above 1GHz)	
	-	phs of the test setup	
	-	phs of the EUT	
		A: 20dB Emission Bandwidth	
Ар	pendix	c B: Maximum conducted output power	
		c C: Carrier frequency separation	
Ар	oendix	c D: Time of occupancy	44
Ар	oendix	E: Number of hopping channels	51
Ар	pendix	F: Band edge measurements	53
Ар	pendix	G: Conducted Spurious Emission	57

Test Result Certification				
Applicant:	CAD Business LLC			
Address:	11379 Harry Hines Blvd, Dallas, TX 75229 USA			
Manufacturer:	CAD Business LLC			
Address:	11379 Harry Hines Blvd, Dallas, TX 75229 USA			
Product description				
Product name:	Car Multimedia Player			
Trademark:	XELON AUDIO			
Model name:	XA-928WCP			
Series Model(s):	N/A			
Standards:	47 CFR Part 15.247			
Test Method:	KDB 558074 D01 15.247 Meas Guidance v05r02 ANSI C63.10-2013			
Date of Test	Date of Test			
Date of test:	2024-03-08 to 2024-03-14			
Test result:	Pass			

Test Engineer	:	Monleerh Deny
		(Maleah Deng)
Reviewed By	:	leon chen
		(Leon Chen)
Approved By	:	Tom Kue
		(Tom Xue)

1 General Description

1.1 Description of the EUT

-	
Product name:	Car Multimedia Player
Model name:	XA-928WCP
Series Model(s):	N/A
Model difference:	N/A
Electrical rating:	Input: DC 12V
Accessories:	N/A
Hardware version:	SK-848-MAIN-V31.1
Software version:	SK-848V31-LAWTN8035-2311231544
Test sample(s) number:	MTi231117013-03S1001
RF specification	
Bluetooth version:	V5.1
Operating frequency range:	2402-2480
Channel number:	79
Modulation type:	GFSK, π/4-DQPSK, 8DPSK
Antenna(s) type:	PCB Antenna
Antenna(s) gain:	-0.68dBi
10 Description of test	

1.2 Description of test modes

No.	Emission test modes
Mode1	TX-GFSK
Mode2	TX-π/4-DQPSK
Mode3	TX-8DPSK

1.2.1 Operation channel list

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2402	20	2422	40	2442	60	2462
1	2403	21	2423	41	2443	61	2463
2	2404	22	2424	42	2444	62	2464
3	2405	23	2425	43	2445	63	2465
4	2406	24	2426	44	2446	64	2466
5	2407	25	2427	45	2447	65	2467
6	2408	26	2428	46	2448	66	2468
7	2409	27	2429	47	2449	67	2469
8	2410	28	2430	48	2450	68	2470

Page 6 of 65

Report No.: MTi231117013-03E1

9	2411	29	2431	49	2451	69	2471
10	2412	30	2432	50	2452	70	2472
11	2413	31	2433	51	2453	71	2473
12	2414	32	2434	52	2454	72	2474
13	2415	33	2435	53	2455	73	2475
14	2416	34	2436	54	2456	74	2476
15	2417	35	2437	55	2457	75	2477
16	2418	36	2438	56	2458	76	2478
17	2419	37	2439	57	2459	77	2479
18	2420	38	2440	58	2460	78	2480
19	2421	39	2441	59	2461	-	-

Test Channel List

Lowest Channel (LCH)	Middle Channel (MCH)	Highest Channel (HCH)
(MHz)	(MHz)	(MHz)
2402	2441	2480

Note: The test software provided by manufacturer is used to control EUT for working in engineering mode, that enables selectable channel, and capable of continuous transmitting mode.

Test Software:

For power setting, refer to below table.

Software:	BT_TOOL				
Mode	2402MHz	2441MHz	2480MHz		
GFSK	7	7	7		
π/4-DQPSK	7	7	7		
8DPSK	7	7	7		

1.3 Environmental Conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15°C ~ 35°C
Humidity:	20% RH ~ 75% RH
Atmospheric pressure:	98 kPa ~ 101 kPa

1.4 Description of support units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Support equipment list						
Description	Model	Serial No.	Manufacturer			
Accumulator	6-QW-45(370)-L	1	Camel Group Co., Ltd.			
Support cable list						
Description	Length (m)	From	То			
/	1	1	/			

1.5 Measurement uncertainty

Measurement	Uncertainty
Occupied channel bandwidth	±3 %
RF output power, conducted	±1 dB
Time	±1 %
Unwanted Emissions, conducted	±1 dB
Radiated spurious emissions (above 1GHz)	±5.3dB
Radiated spurious emissions (9kHz~30MHz)	±4.3dB
Radiated spurious emissions (30MHz~1GHz)	±4.7dB
Temperature	±1 °C
Humidity	± 5 %

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

2 Summary of Test Result

No.	Item	Requirement	Result
1	Antenna requirement	47 CFR 15.203	Pass
2	Occupied Bandwidth	47 CFR 15.247(a)(1)	Pass
3	Maximum Conducted Output Power	47 CFR 15.247(b)(1)	Pass
4	Channel Separation	47 CFR 15.247(a)(1)	Pass
5	Number of Hopping Frequencies	47 CFR 15.247(a)(1)(iii)	Pass
6	Dwell Time	47 CFR 15.247(a)(1)(iii)	Pass
7	RF conducted spurious emissions and band edge measurement	47 CFR 15.247(d), 15.209, 15.205	Pass
8	Band edge emissions (Radiated)	47 CFR 15.247(d), 15.209, 15.205	Pass
9	Radiated emissions (below 1GHz)	47 CFR 15.247(d), 15.209, 15.205	Pass
10	Radiated emissions (above 1GHz)	47 CFR 15.247(d), 15.209, 15.205	Pass
11	Conducted Emission at AC power line	47 CFR 15.207(a)	N/A

Note:

The device is a DC power supply and does not apply to conducted emissions.

3 Test Facilities and accreditations

3.1 Test laboratory

Test laboratory:	Shenzhen Microtest Co., Ltd.
Test site location:	101, No.7, Zone 2, Xinxing Industrial Park, Fuhai Avenue, Xinhe Community, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China
Telephone:	(86-755)88850135
Fax:	(86-755)88850136
CNAS Registration No.:	CNAS L5868
FCC Registration No.:	448573
IC Registration No.:	21760
CABID:	CN0093

4 List of test equipment

No.	Equipment	Manufacturer	Model	Serial No.	Cal. date	Cal. Due				
	Occupied Bandwidth Maximum Conducted Output Power Channel Separation Number of Hopping Frequencies Dwell Time									
1	RF conducted spurious emissions and band edge measurement 1 Wideband Radio Rohde&schwarz CMW500 149155 2023-04-26 2024-04-25									
	Communication Tester ESG Series Analog									
2	Ssignal Generator	Agilent	E4421B	GB40051240	2023-04-25	2024-04-24				
3	PXA Signal Analyzer	Agilent	N9030A	MY51350296	2023-04-25	2024-04-24				
4	Synthesized Sweeper	Agilent	83752A	3610A01957	2023-04-25	2024-04-24				
5	MXA Signal Analyzer	Agilent	N9020A	MY50143483	2023-04-26	2024-04-25				
6	RF Control Unit	Tonscend	JS0806-1	19D8060152	2023-04-26	2024-04-25				
7	Band Reject Filter Group	Tonscend	JS0806-F	19D8060160	2023-05-05	2024-05-04				
8	ESG Vector Signal Generator	Agilent	N5182A	MY50143762	2023-04-25	2024-04-24				
9	DC Power Supply	Agilent	E3632A	MY40027695	2023-05-05	2024-05-04				
			emissions (Radi iissions (above ´							
1	EMI Test Receiver	Rohde&schwarz	ESCI7	101166	2023-04-26	2024-04-25				
2	Double Ridged Broadband Horn Antenna	schwarabeck	BBHA 9120 D	2278	2023-06-17	2025-06-16				
3	Amplifier	Agilent	8449B	3008A01120	2023-06-26	2024-06-25				
4	Multi-device Controller	TuoPu	TPMDC	/	2023-05-04	2024-05-03				
5	MXA signal analyzer	Agilent	N9020A	MY54440859	2023-06-01	2024-05-31				
		Radiated em	issions (below	1GHz)						
1	EMI Test Receiver	Rohde&schwarz	ESCI7	101166	2023-04-26	2024-04-25				
2	TRILOG Broadband Antenna	schwarabeck	VULB 9163	9163-1338	2023-06-11	2025-06-10				
3	Active Loop Antenna	Schwarzbeck	FMZB 1519 B	00066	2023-06-11	2025-06-10				
4	Amplifier	Hewlett-Packard	8447F	3113A06184	2023-04-25	2024-04-24				
5	Multi-device Controller	TuoPu	TPMDC	/	2023-05-04	2024-05-03				

5 Evaluation Results (Evaluation)

5.1 Antenna requirement

Test Requirement:	Refer to 47 CFR Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be
	considered sufficient to comply with the provisions of this section.

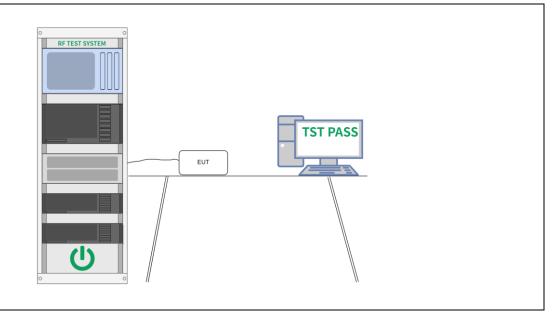
5.1.1 Conclusion:

The antenna of the EUT is permanently attached. The EUT complies with the requirement of FCC PART 15.203.

6 Radio Spectrum Matter Test Results (RF)

6.1 Occupied Bandwidth

Test Requirement:	47 CFR 15.247(a)(1)
Test Limit:	Refer to 47 CFR 15.215(c), intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§ 15.217 through 15.257 and in subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated.
Test Method:	ANSI C63.10-2013, section 7.8.7, For occupied bandwidth measurements, use the procedure in 6.9.2. KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	 a) The spectrum analyzer center frequency is set to the nominal EUT channel center frequency. The span range for the EMI receiver or spectrum analyzer shall be between two times and five times the OBW. b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW and video bandwidth (VBW) shall be approximately three times RBW, unless otherwise specified by the applicable requirement. c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2. d) Steps a) through c) might require iteration to adjust within the specified tolerances. e) The dynamic range of the instrument at the selected RBW shall be more than 10 dB below the target "-xx dB down" requirement; that is, if the requirement calls for measuring the -20 dB OBW, the instrument noise floor at the selected RBW shall be at least 30 dB below the reference value. f) Set detection mode to peak and trace mode to max hold. g) Determine the reference value: Set the EUT to transmit an unmodulated carrier or modulated signal, as applicable. Allow the trace to stabilize. Set the spectrum analyzer marker to the highest level of the displayed trace (this is the reference value). h) Determine the "-xx dB down amplitude" using [(reference value) - xx]. Alternatively, this calculation may be made by using the marker-delta function of the instrument. j) Flace two markers, one at the lowest frequency and the other at the highest frequency of the envelope of the spectral display, such that each marker is at or slightly below the "-xx dB down amplitude" determined in step h). If a marker is below this "-xx dB down amplitude" determined in step h). If a marker is below the "-xx dB down amplitude" determined in step h). If a marker is bel



measuring instrument display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may be reported in addition to the
plot(s).

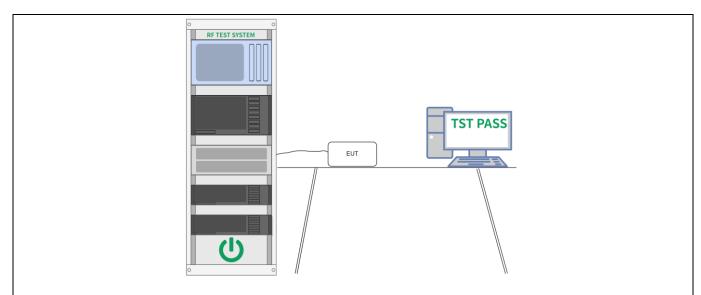
6.1.1 E.U.T. Operation:

Operating Environment:							
Temperature:	26 °C		Humidity:	56 %		Atmospheric Pressure:	100 kPa
Pre test mode:		Mode	e1, Mode2, I	Mode3			
Final test mode:		Mode	e1, Mode2, I	Mode3			

6.1.2 Test Setup Diagram:

6.1.3 Test Data:

6.2 Maximum Conducted Output Power

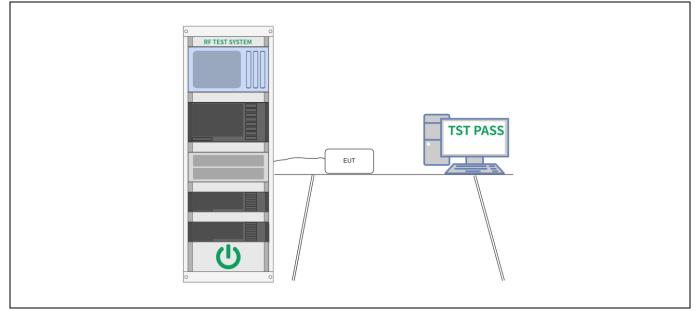

Test Requirement:	47 CFR 15.247(b)(1)
Test Limit:	Refer to 47 CFR 15.247(b)(1), For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.
Test Method:	ANSI C63.10-2013, section 7.8.5 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	 This is an RF-conducted test to evaluate maximum peak output power. Use a direct connection between the antenna port of the unlicensed wireless device and the spectrum analyzer, through suitable attenuation. The hopping shall be disabled for this test: a) Use the following spectrum analyzer settings: 1) Span: Approximately five times the 20 dB bandwidth, centered on a hopping channel. 2) RBW > 20 dB bandwidth of the emission being measured. 3) VBW >= RBW. 4) Sweep: Auto. 5) Detector function: Peak. 6) Trace: Max hold. b) Allow trace to stabilize. c) Use the marker-to-peak function to set the marker to the peak of the emission. d) The indicated level is the peak output power, after any corrections for external attenuators and cables. e) A plot of the test results and setup description shall be included in the test report. NOTE—A peak responding power meter may be used, where the power meter and sensor system video bandwidth is greater than the occupied bandwidth of the unlicensed wireless device, rather than a spectrum analyzer.

6.2.1 E.U.T. Operation:

Operating Environment:							
Temperature:	26 °C		Humidity:	56 %		Atmospheric Pressure:	100 kPa
Pre test mode:		Mode	e1, Mode2,	Mode3			
Final test mode:		Mode	e1, Mode2,	Mode3			
Final test mode	9:	Mode	e1, Mode2,	Mode3			

6.2.2 Test Setup Diagram:

6.2.3 Test Data:


6.3 Channel Separation

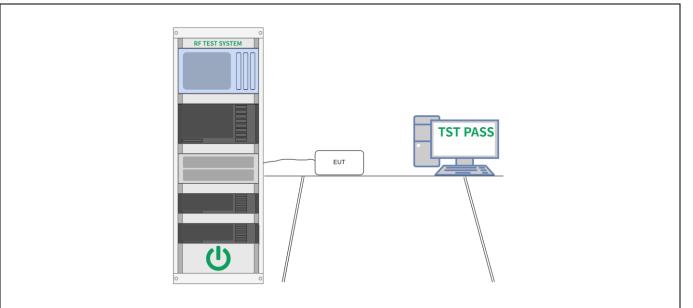
Test Requirement:	47 CFR 15.247(a)(1)
Test Limit:	Refer to 47 CFR 15.247(a)(1), Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.
Test Method:	ANSI C63.10-2013, section 7.8.2 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	 The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings: a) Span: Wide enough to capture the peaks of two adjacent channels. b) RBW: Start with the RBW set to approximately 30% of the channel spacing; adjust as necessary to best identify the center of each individual channel. c) Video (or average) bandwidth (VBW) ≥ RBW. d) Sweep: Auto. e) Detector function: Peak. f) Trace: Max hold. g) Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. Compliance of an EUT with the appropriate regulatory limit shall be determined. A plot of the data shall be included in the test report.

6.3.1 E.U.T. Operation:

Operating Environment:							
Temperature:	26 °C		Humidity:	56 %		Atmospheric Pressure:	100 kPa
Pre test mode:		Mode	e1, Mode2,	Mode3			
Final test mode:		Mode	e1, Mode2,	Mode3			

6.3.2 Test Setup Diagram:

6.3.3 Test Data:


6.4 Number of Hopping Frequencies

Test Requirement:	47 CFR 15.247(a)(1)(iii)
Test Limit:	Refer to 47 CFR 15.247(a)(1)(iii), Fequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.
Test Method:	ANSI C63.10-2013, section 7.8.3 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	 The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings: a) Span: The frequency band of operation. Depending on the number of channels the device supports, it may be necessary to divide the frequency range of operation across multiple spans, to allow the individual channels to be clearly seen. b) RBW: To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller. c) VBW ≥ RBW. d) Sweep: Auto. e) Detector function: Peak. f) Trace: Max hold. g) Allow the trace to stabilize. It might prove necessary to break the span up into subranges to show clearly all of the hopping frequencies. Compliance of an EUT with the appropriate regulatory limit shall be determined for the number of hopping channels. A plot of the data shall be included in the test report.

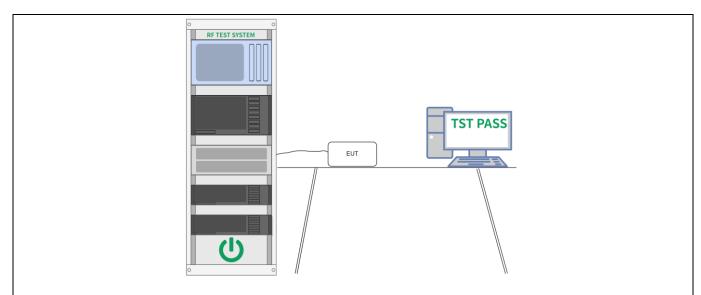
6.4.1 E.U.T. Operation:

Operating Environment:									
Temperature: 26 °C Humidity: 56 % Atmospheric Pressure: 100 kPa									
Pre test mode: Mode1, Mode2, Mode3									
Final test mode:	Mod	e1, Mode2,	Mode3						

6.4.2 Test Setup Diagram:

6.4.3 Test Data:

6.5 Dwell Time

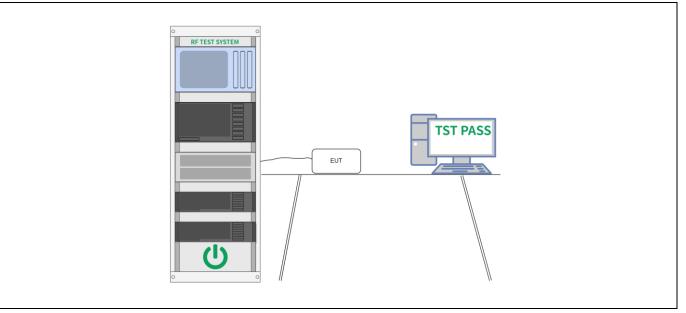

Test Limit: Refer to 47 CFR 15.247(a)(1)(iii), Fequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used. Test Method: ANSI C63.10-2013, section 7.8.4 KDB 558074 D01 15.247 Meas Guidance v05r02 Procedure: The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings: a) Span: Zero span, centered on a hopping channel. b) RBW shall be <= channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per hopping channel; where possible use a video trigger and trigger delay so that the transmitted signal starts a little to the right of the start of the plot. The trigger level might need slight adjustment to prevent triggering when the system hops on an adjacent channel; a second plot might be needed with a longer sweep time to show two successive hops on a channel. d) Detector function: Peak. e) Trace: Max hold. Use the marker-delta function to determine the transmit time per hop. If this value varies with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then requirements, using the following equation: (Number of hops over the period specified in the requirements, using the following equation: (Neae the masurement using a longer sweep time to determine the number of hops over the sweep time and calculate the total number of hops over the sweep	Test Requirement:	47 CFR 15.247(a)(1)(iii)
Test Method: KDB 558074 D01 15.247 Meas Guidance v05r02 Procedure: The EUT shall have its hopping function enabled. Use the following spectrum analyzer settings: a) Span: Zero span, centered on a hopping channel. b) RBW shall be <= channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel. c) Sweep: As necessary to capture the entire dwell time per hopping channel; where possible use a video trigger and trigger delay so that the transmitted signal starts a little to the right of the start of the plot. The trigger level might need slight adjustment to prevent triggering when the system hops on an adjacent channel; a second plot might be needed with a longer sweep time to show two successive hops on a channel. d) Detector function: Peak. e) Trace: Max hold. Use the marker-delta function to determine the transmit time per hop. If this value varies with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this test for each variation in transmit time. Repeat the measurement using a longer sweep time to determine the number of hops over the specified in the requirements. The sweep time shall be equal to, or less than, the period specified in the requirements, using the following equation: (Number of hops in the period specified in the requirements, using the following equation: (Number of hops on spectrum analyzer) × (period specified in the requirements, using the following equation: (Number of hops in the period specified in the requirements. If the number of hops in a specific time varies with different modes of opperati	Test Limit:	2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels
 analyzer settings: a) Span: Zero span, centered on a hopping channel. b) RBW shall be <= channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel. c) Sweep: As necessary to capture the entire dwell time per hopping channel; where possible use a video trigger and trigger delay so that the transmitted signal starts a little to the right of the start of the plot. The trigger level might need slight adjustment to prevent triggering when the system hops on an adjacent channel; a second plot might be needed with a longer sweep time to show two successive hops on a channel. d) Detector function: Peak. e) Trace: Max hold. Use the marker-delta function to determine the transmit time per hop. If this value varies with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this test for each variation in transmit time. Repeat the measurement using a longer sweep time to determine the number of hops over the period specified in the requirements. The sweep time shall be equal to, or less than, the period specified in the requirements, using the following equation: (Number of hops in the period specified in the requirements, using the following equation: (Number of hops on spectrum analyzer) × (period specified in the requirements. If the number of hops in the period specified in the requirements. If the number of hops in a specific time varies with different modes of operation. 	Test Method:	
651 EUT Operation:		 analyzer settings: a) Span: Zero span, centered on a hopping channel. b) RBW shall be <= channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel. c) Sweep: As necessary to capture the entire dwell time per hopping channel; where possible use a video trigger and trigger delay so that the transmitted signal starts a little to the right of the start of the plot. The trigger level might need slight adjustment to prevent triggering when the system hops on an adjacent channel; a second plot might be needed with a longer sweep time to show two successive hops on a channel. d) Detector function: Peak. e) Trace: Max hold. Use the marker-delta function to determine the transmit time per hop. If this value varies with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this test for each variation in transmit time. Repeat the measurement using a longer sweep time to determine the number of hops over the period specified in the requirements. The sweep time shall be equal to, or less than, the period specified in the requirements, using the following equation: (Number of hops on spectrum analyzer) × (period specified in the requirements, using the following equation: (Number of hops in a specific time varies with different modes of operation data rate, modulation format, number of hops in a specified in the requirements. If the number of hops in the period specified in the requirements.

6.5.1 E.U.T. Operation:

Operating Environment:									
Temperature: 26 °C Humidity: 56 % Atmospheric Pressure: 100 kPa									
Pre test mode:	Pre test mode: Mode1, Mode2, Mode3								
Final test mode: Mode1, Mode2, Mode3									
6 5 2 Tost Sotu	6.5.2 Test Setup Diagram:								

6.5.2 Test Setup Diagram:

6.5.3 Test Data:


6.6 RF conducted spurious emissions and band edge measurement

Test Requirement:	47 CFR 15.247(d), 15.209, 15.205
Test Limit:	Refer to 47 CFR 15.247(d), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required.
Test Method:	ANSI C63.10-2013 section 7.8.8 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	Conducted spurious emissions shall be measured for the transmit frequency, per 5.5 and 5.6, and at the maximum transmit powers. Connect the primary antenna port through an attenuator to the spectrum analyzer input; in the results, account for all losses between the unlicensed wireless device output and the spectrum analyzer. The instrument shall span 30 MHz to 10 times the operating frequency in GHz, with a resolution bandwidth of 100 kHz, video bandwidth of 300 kHz, and a coupled sweep time with a peak detector. The band 30 MHz to the highest frequency may be split into smaller spans, as long as the entire spectrum is covered.

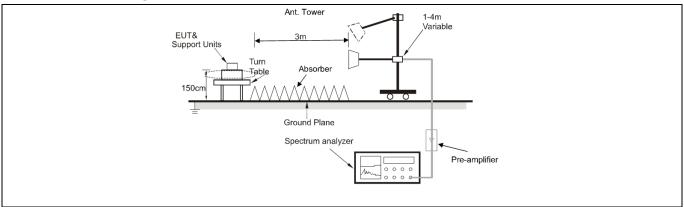
6.6.1 E.U.T. Operation:

Operating Environment:								
Temperature: 26 °C Humidity: 56 % Atmospheric Pressure: 100 kPa								
Pre test mode:	Pre test mode: Mode1, Mode2, Mode3							
Final test mode	Mode	e1, Mode2,	Mode3					

6.6.2 Test Setup Diagram:

6.6.3 Test Data:

6.7 Band edge emissions (Radiated)


Test Requirement:	restricted bands, as de	7(d), In addition, radiated em fined in § 15.205(a), must als s specified in § 15.209(a)(see	so comply with the
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measuremen t distance (meters)
	0.009-0.490	2400/F(kHz)	300
	0.490-1.705	24000/F(kHz)	30
	1.705-30.0	30	30
	30-88	100 **	3
	88-216	150 **	3
	216-960	200 **	3
	Above 960	500	3
	intentional radiators op frequency bands 54-72 However, operation wir sections of this part, e. In the emission table a The emission limits sh employing a CISPR qu kHz, 110–490 kHz and	in paragraph (g), fundamenta perating under this section sh 2 MHz, 76-88 MHz, 174-216 thin these frequency bands is g., §§ 15.231 and 15.241. bove, the tighter limit applies own in the above table are ba asi-peak detector except for above 1000 MHz. Radiated on measurements employin	all not be located in the MHz or 470-806 MHz. s permitted under other at the band edges. ased on measurements the frequency bands 9–90 emission limits in these
Test Method:	ANSI C63.10-2013 sec KDB 558074 D01 15.2	ction 6.10 47 Meas Guidance v05r02	
Procedure:	ANSI C63.10-2013 see	ction 6.10.5.2	

6.7.1 E.U.T. Operation:

Operating Env	Operating Environment:								
Temperature:24 °CHumidity:54 %Atmospheric Pressure:101 kPa									
Pre test mode: Mode1, Mode2, Mode3									
Final test mode:All of the listed pre-test mode were tested, only the data of the worst mode (Mode3) is recorded in the report									
Note:									

The amplitude of spurious emissions which are attenuated more than 20 dB below the limits are not reported.

6.7.2 Test Setup Diagram:

6.7.3 Test Data:

Mode3 / Polarization: Horizontal / Band: 2400-2483.5 MHz / CH: L										
	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector	-
	1		2310.000	53.02	-12.83	40.19	74.00	-33.81	peak	-
	2	*	2310.000	42.65	-12.83	29.82	54.00	-24.18	AVG	-
	3		2390.000	51.75	-12.42	39.33	74.00	-34.67	peak	-
	4		2390.000	41.75	-12.42	29.33	54.00	-24.67	AVG	-

Mode3 /	de3 / Polarization: Vertical / Band: 2400-2483.5 MHz / CH: L								
	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
	1		2310.000	52.14	-12.83	39.31	74.00	-34.69	peak
	2	*	2310.000	42.56	-12.83	29.73	54.00	-24.27	AVG
	3		2390.000	52.99	-12.42	40.57	74.00	-33.43	peak
	4		2390.000	41.73	-12.42	29.31	54.00	-24.69	AVG

Page 23 of 65

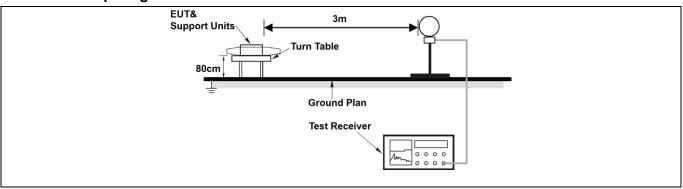
No. M	lk. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1	2483.500	53.84	-12.44	41.40	74.00	-32.60	peak
2	2483.500	41.87	-12.44	29.43	54.00	-24.57	AVG
3	2500.000	52.34	-12.35	39.99	74.00	-34.01	peak
4 *	2500.000	42.09	-12.35	29.74	54.00	-24.26	AVG

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		2483.500	53.38	-12.44	40.94	74.00	-33.06	peak
2		2483.500	41.83	-12.44	29.39	54.00	-24.61	AVG
3		2500.000	52.73	-12.35	40.38	74.00	-33.62	peak
4	*	2500.000	42.19	-12.35	29.84	54.00	-24.16	AVG

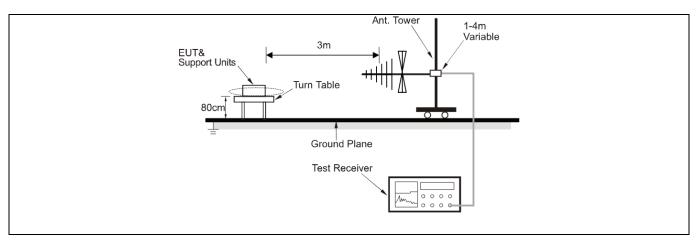
6.8 Radiated emissions (below 1GHz)

Test Requirement:	restricted bands, as de	7(d), In addition, radiated em fined in § 15.205(a), must als s specified in § 15.209(a)(see	so comply with the
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measuremen t distance (meters)
	0.009-0.490	2400/F(kHz)	300
	0.490-1.705	24000/F(kHz)	30
	1.705-30.0	30	30
	30-88	100 **	3
	88-216	150 **	3
	216-960	200 **	3
	Above 960	500	3
	intentional radiators op frequency bands 54-72 However, operation wir sections of this part, e. In the emission table a The emission limits sh employing a CISPR qu kHz, 110–490 kHz and	in paragraph (g), fundamenta berating under this section sh 2 MHz, 76-88 MHz, 174-216 thin these frequency bands is g., §§ 15.231 and 15.241. bove, the tighter limit applies own in the above table are ba lasi-peak detector except for above 1000 MHz. Radiated on measurements employin	all not be located in the MHz or 470-806 MHz. s permitted under other at the band edges. ased on measurements the frequency bands 9–90 emission limits in these
Test Method:	ANSI C63.10-2013 sec KDB 558074 D01 15.2	ction 6.6.4 47 Meas Guidance v05r02	
Procedure:	ANSI C63.10-2013 see	ction 6.6.4	

6.8.1 E.U.T. Operation:

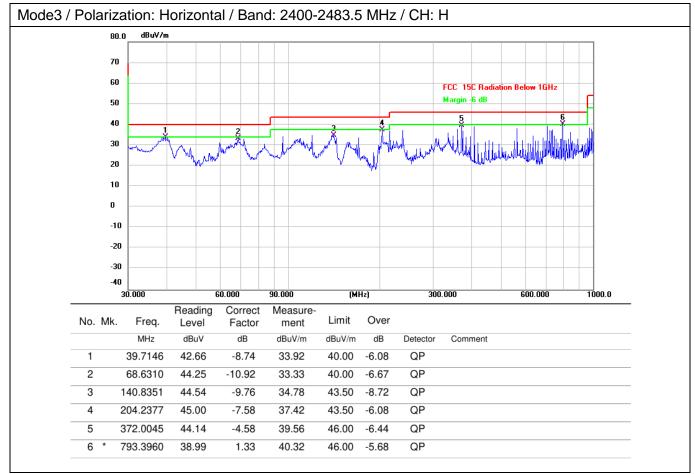

Operating Enviro	Operating Environment:								
Temperature: 2	24 °C	Humidity:	umidity: 54 % Atmospheric Pressure: 101 kPa						
Pre test mode: Mode1, Mode2, Mode3									
Final test mode:		All of the listed pre-test mode were tested, only the data of the worst mode (Mode3) is recorded in the report							
Mater									

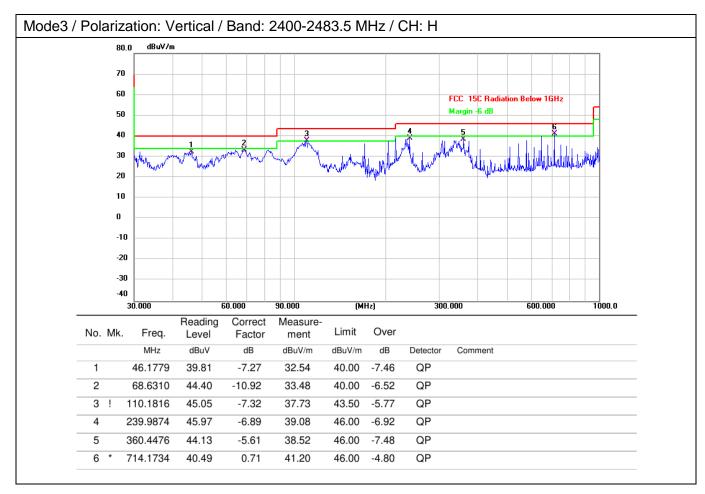
Note:


The amplitude of spurious emissions which are attenuated more than 20 dB below the limits are not reported.

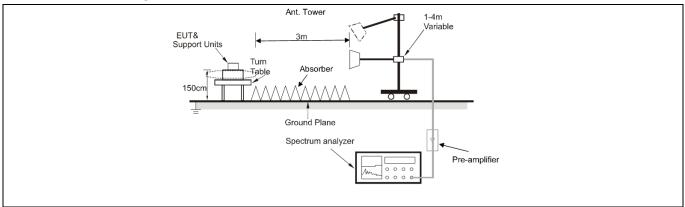
All modes of operation of the EUT were investigated, and only the worst-case results are reported. There were no emissions found below 30MHz within 20dB of the limit.

6.8.2 Test Setup Diagram:





6.8.3 Test Data:


6.9 Radiated emissions (above 1GHz)

Test Requirement:		nissions which fall in the rest comply with the radiated em 5(c)).`	
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measuremen t distance (meters)
	0.009-0.490	2400/F(kHz)	300
	0.490-1.705	24000/F(kHz)	30
	1.705-30.0	30	30
	30-88	100 **	3
	88-216	150 **	3
	216-960	200 **	3
	Above 960	500	3
	intentional radiators op frequency bands 54-72 However, operation wit sections of this part, e. In the emission table a The emission limits sho employing a CISPR qu kHz, 110–490 kHz and	n paragraph (g), fundamenta erating under this section sh 2 MHz, 76-88 MHz, 174-216 hin these frequency bands is g., §§ 15.231 and 15.241. bove, the tighter limit applies own in the above table are ba asi-peak detector except for above 1000 MHz. Radiated on measurements employin	all not be located in the MHz or 470-806 MHz. s permitted under other at the band edges. ased on measurements the frequency bands 9–9 emission limits in these
Test Method:	ANSI C63.10-2013 sec KDB 558074 D01 15.2	tion 6.6.4 47 Meas Guidance v05r02	
Procedure:	ANSI C63.10-2013 sec	ction 6.6.4	

6.9.1 E.U.T. Operation:

Operating Env	ironment						
Temperature:	24 °C		Humidity:	54 %	Atmospheric Pressure:	101 kPa	
Pre test mode: Mode1, Mode2, Mode3							
Final test mode: All of the listed pre-test mode were tested, only the data of the worst mode (Mode3) is recorded in the report							
Note: Test frequency are from 1GHz to 25GHz, the amplitude of spurious emissions which are attenuated more than 20 dB below the limits are not reported. All modes of operation of the EUT were investigated, and only the worst-case results are reported.							

6.9.2 Test Setup Diagram:

6.9.3 Test Data:

Mode3 /	Polarizatio	on: Horizonta	al / Band: 24	400-2483.5	5 MHz / CH: I	L		
	No. Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
	1	4804.000	54.51	-7.40	47.11	74.00	-26.89	peak
	2	4804.000	50.63	-7.40	43.23	54.00	-10.77	AVG
	3	7206.000	46.49	0.96	47.45	74.00	-26.55	peak
	4	7206.000	42.38	0.96	43.34	54.00	-10.66	AVG
	5	9608.000	48.66	2.16	50.82	74.00	-23.18	peak
	6 *	9608.000	44.42	2.16	46.58	54.00	-7.42	AVG

No. I	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		4804.000	56.97	-7.40	49.57	74.00	-24.43	peak
2		4804.000	52.66	-7.40	45.26	54.00	-8.74	AVG
3		7206.000	46.07	0.96	47.03	74.00	-26.97	peak
4		7206.000	42.16	0.96	43.12	54.00	-10.88	AVG
5		9608.000	48.54	2.16	50.70	74.00	-23.30	peak
6	*	9608.000	44.58	2.16	46.74	54.00	-7.26	AVG

Page 30 of 65

Mode3 /	Polari	zatio	n: Horizonta	al / Band: 24	400-2483.5	MHz / CH: N	M		
	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
-			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
	1		4882.000	54.13	-7.44	46.69	74.00	-27.31	peak
	2		4882.000	50.09	-7.44	42.65	54.00	-11.35	AVG
	3		7323.000	46.93	0.79	47.72	74.00	-26.28	peak
	4		7323.000	42.35	0.79	43.14	54.00	-10.86	AVG
	5		9764.000	47.71	3.14	50.85	74.00	-23.15	peak
	6	*	9764.000	43.60	3.14	46.74	54.00	-7.26	AVG

	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
_			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
-	1		4882.000	55.35	-7.44	47.91	74.00	-26.09	peak
-	2		4882.000	51.12	-7.44	43.68	54.00	-10.32	AVG
-	3		7323.000	48.75	0.79	49.54	74.00	-24.46	peak
-	4		7323.000	44.46	0.79	45.25	54.00	-8.75	AVG
-	5		9764.000	49.30	3.14	52.44	74.00	-21.56	peak
	6	*	9764.000	44.70	3.14	47.84	54.00	-6.16	AVG

Page 31 of 65

	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
_			MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
_	1		4960.000	52.22	-7.20	45.02	74.00	-28.98	peak
_	2		4960.000	48.32	-7.20	41.12	54.00	-12.88	AVG
_	3		7440.000	46.52	0.98	47.50	74.00	-26.50	peak
_	4		7440.000	42.67	0.98	43.65	54.00	-10.35	AVG
_	5		9920.000	50.63	3.02	53.65	74.00	-20.35	peak
_	6	*	9920.000	46.65	3.02	49.67	54.00	-4.33	AVG

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV/m	dBuV/m	dB	Detector
1		4960.000	52.01	-7.20	44.81	74.00	-29.19	peak
2		4960.000	47.87	-7.20	40.67	54.00	-13.33	AVG
3		7440.000	46.92	0.98	47.90	74.00	-26.10	peak
4		7440.000	42.28	0.98	43.26	54.00	-10.74	AVG
5		9920.000	50.82	3.02	53.84	74.00	-20.16	peak
6	*	9920.000	46.03	3.02	49.05	54.00	-4.95	AVG

Photographs of the test setup

Refer to Appendix - Test Setup Photos

Photographs of the EUT

Refer to Appendix - EUT Photos

Page 33 of 65

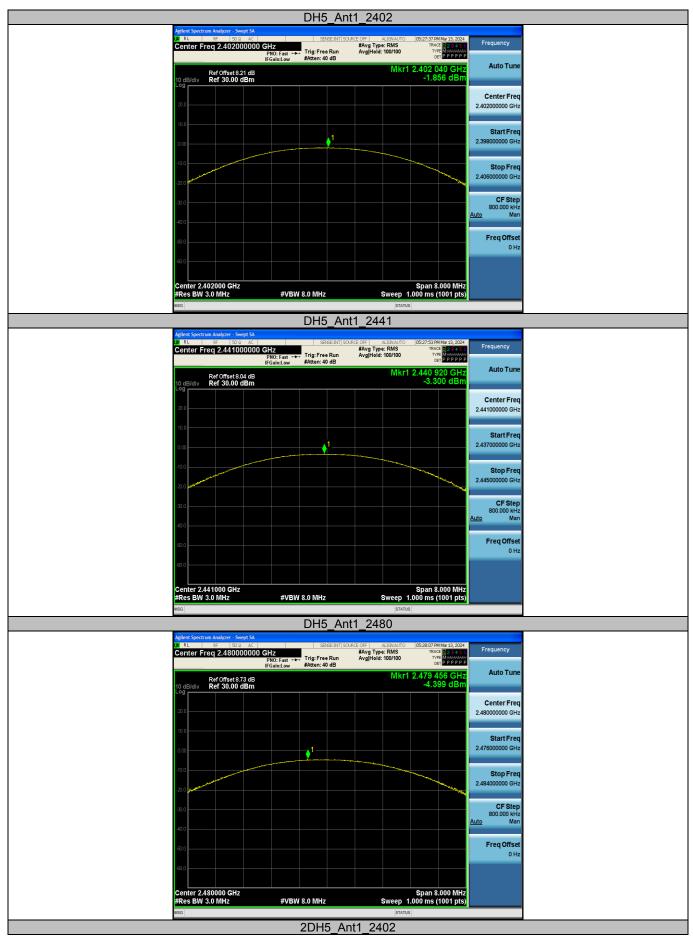
Appendix

Appendix A: 20dB Emission Bandwidth

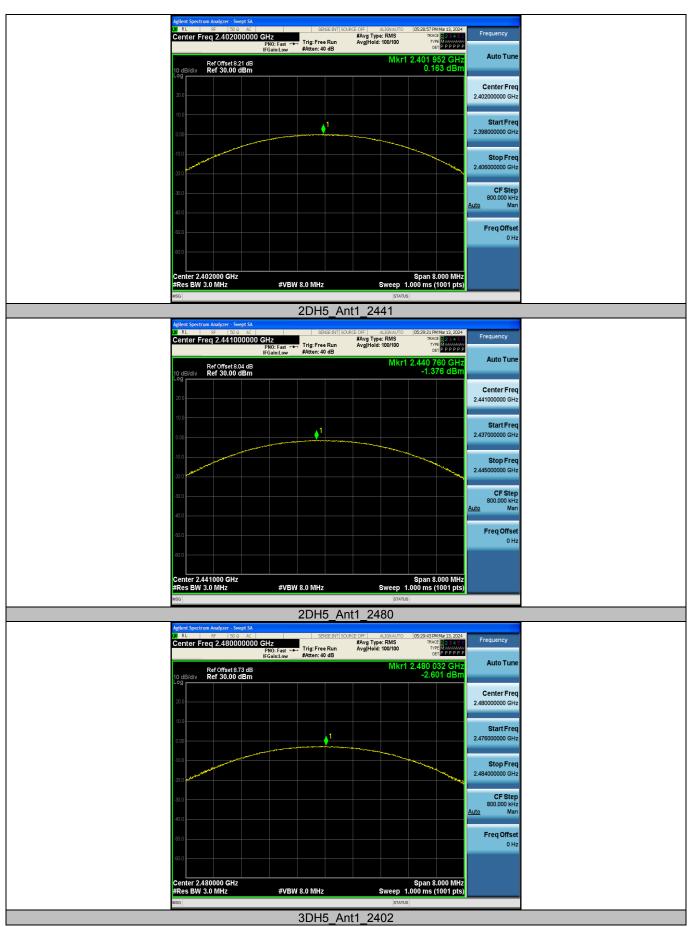
Test Result

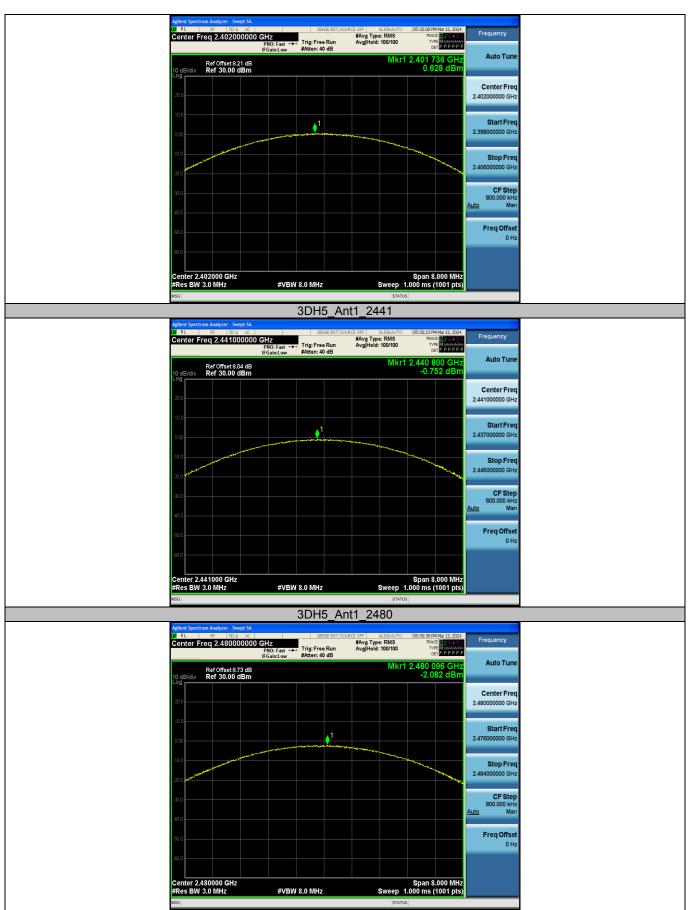
Test Mode	Antenna	Frequency [MHz]	20db EBW [MHz]
		2402	0.954
DH5	Ant1	2441	0.927
		2480	0.930
		2402	1.335
2DH5	Ant1	2441	1.326
		2480	1.317
		2402	1.281
3DH5	Ant1	2441	1.305
		2480	1.281

Test Graphs


Appendix B: Maximum conducted output power

Test Result Peak


Test Mode	Antenna	Frequency [MHz]	Conducted Peak Power [dBm]	Limit [dBm]	Verdict
		2402	-1.86	≤30	PASS
DH5	Ant1	2441	-3.30	≤30	PASS
		2480	-4.40	≤30	PASS
		2402	0.16	≤20.97	PASS
2DH5	Ant1	2441	-1.38	≤20.97	PASS
		2480	-2.60	≤20.97	PASS
		2402	0.63	≤20.97	PASS
3DH5	Ant1	2441	-0.75	≤20.97	PASS
		2480	-2.08	≤20.97	PASS


Test Graphs

Appendix C: Carrier frequency separation

Test Result

Test Mode	Antenna	Frequency [MHz]	Result [MHz]	Limit [MHz]	Verdict
DH5	Ant1	Нор	1	≥0.954	PASS
2DH5	Ant1	Нор	1.004	≥0.890	PASS
3DH5	Ant1	Нор	0.998	≥0.870	PASS

Test Graphs

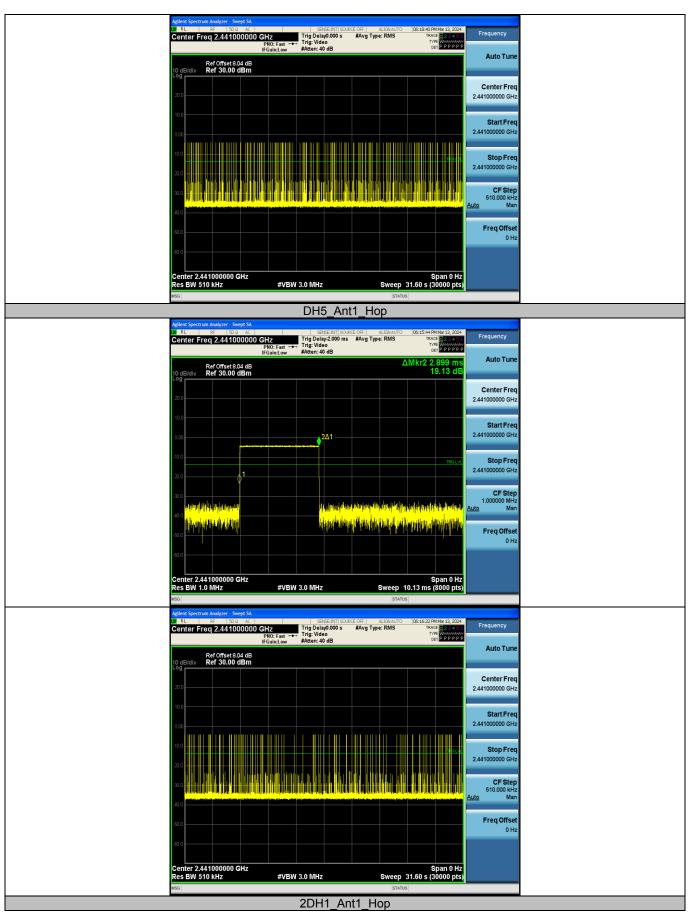
Appendix D: Time of occupancy

Test Result

Test Mode	Antenna	Frequency [MHz]	BurstWidth [ms]	Hops in 31.6s [Num]	Result [s]	Limit [s]	Verdict
DH1	Ant1	Нор	0.395	320	0.126	≤0.4	PASS
DH3	Ant1	Нор	1.652	161	0.266	≤0.4	PASS
DH5	Ant1	Нор	2.899	108	0.313	≤0.4	PASS
2DH1	Ant1	Нор	0.405	319	0.129	≤0.4	PASS
2DH3	Ant1	Нор	1.658	157	0.26	≤0.4	PASS
2DH5	Ant1	Нор	2.906	95	0.276	≤0.4	PASS
3DH1	Ant1	Нор	0.407	319	0.13	≤0.4	PASS
3DH3	Ant1	Нор	1.657	158	0.262	≤0.4	PASS
3DH5	Ant1	Нор	2.908	106	0.308	≤0.4	PASS

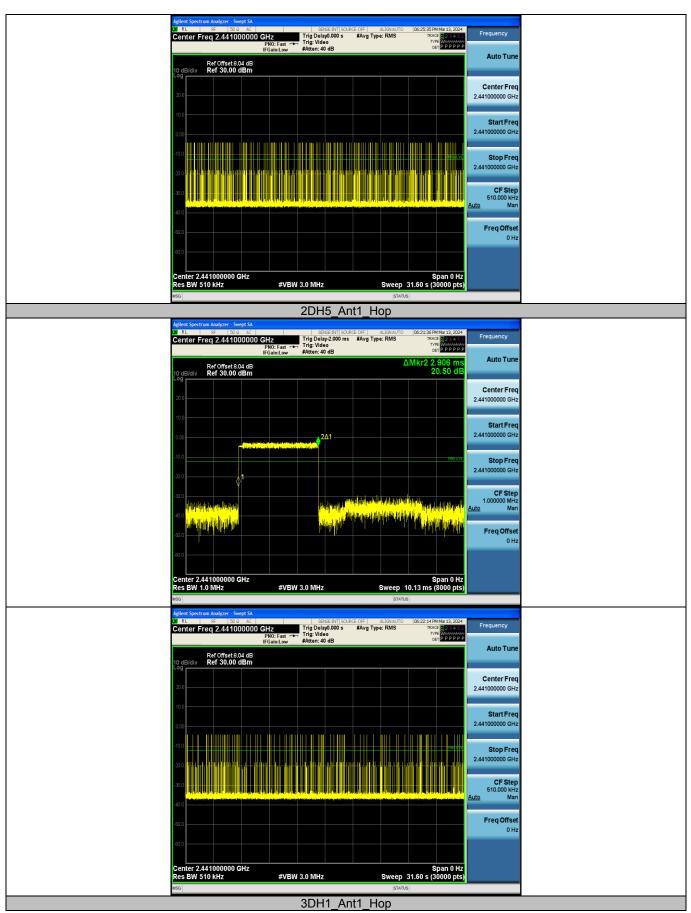
Notes:

1. Period time = 0.4s * 79 = 31.6s

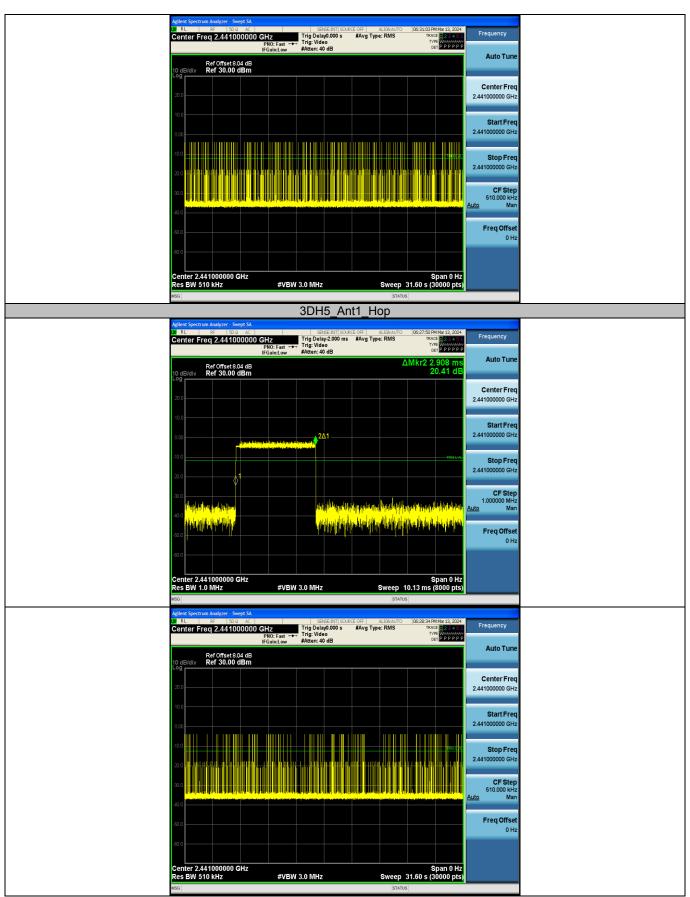

2. Result (Time of occupancy) = BurstWidth[ms] * Hops in 31.6s [Num]

Test Graphs

DH1_Ant1_Hop	
Agitent Spectrum Analyzer - Swept SA 01 RL 8F 50.0. AC SEMEEDINT SOURCE OFF ALIGNAUTO 06:16:55 PM Mar 13, 20	24 Frequency
Center Freq 2.441000000 GHz Trig Delay-2.000 ms #Awg Type: RMS FIGSInit: Sive FIGSInit: 00 dB Trig Video FIGSInit: 00 dB Trig FIGSINIT: 00 dB Trig FIGS	
Ref Offset 8.04 dB △Mkr2 395.0 μ	Auto Tune
10 dB/div Ref 30.00 dBm 18.70 d	
20.0	Center Freq 2.44100000 GHz
10.0	
α σο	Start Freq 2.44100000 GHz
-00 A1	2.44100000 GHz
-30.0 Anti-the particular particular and the statement of the	CF Step 1.000000 MHz Auto Man
	Freq Offset 0 Hz
-60.0	
Center 2.441000000 GHz Span 0 F	
Res BW 1.0 MHz #VBW 3.0 MHz Sweep 10.13 ms (8000 pt	5
MSG STATUS Apilent Spectrum Analyzer - Swept SA	
DI RL RF SD QL AC SERIESENT[SOURCE OFF ALIGNAUTO Desize22PMIMr 13, 20 Center Freq 2.441000000 GHz Trig Delay0.000 s #Avg Type: RMS TRACE 12.841	24 Frequency
PNC: Fast →→ IFGainLow #Atten: 40 dB cel 2 P 2	Auto Tune
Ref Offset 8.04 dB 10 dBildiv Ref 30.00 dBm	Auto rune
	Center Freq
	2.441000000 GHz
10.0	Start Freq
000	2.441000000 GHz
-100	Stop Freq
	2.441000000 GHz
and the second state of t	CF Step
	510.000 kHz Auto Man
	FreqOffset
-50.0	0 Hz
-ao 0	
Center 2.441000000 GHz Span 0 H	IZ
Res BW 510 kHz #VBW 3.0 MHz Sweep 31.60 s (30000 pt usc status	s)
DH3_Ant1_Hop	
Agilent Spectrum Analyzer - Swept SA	24
Center Freq 2.441000000 GHz Trig Delay-2.000 ms #Avg Type: RMS Trig: Video Trig: Video	Frequency
AM4-04.050	S Auto Tune
Ref Offiset 8.04 dB 10 dB/div Ref 30.00 dBm 20.79 d	
20.0	Center Freq 2.44100000 GHz
10.0	
	Start Freq 2.44100000 GHz
-10.0	VI Stop Freq 2.44100000 GHz
an a statistic statis	CF Step 1.000000 MHz
-200 <mark>An and a sector and a se</mark>	Auto Man
200 Martin Barrier Charles Contraction Con	Freq Offset
40.0	UT2
Center 2.441000000 GHz Span 0 H Res BW 1.0 MHz #VBW 3.0 MHz Sweep 10.13 ms (8000 pt	



 Agilent Spectrum Analyzer - Swept SA		
100 RL RF 50.0 AC SENSE:INT SOURCE OFF ALIGN AUTO 06:23:41 PM Mar 13, 2024	Frequency	
Center Freq 2.441000000 GHz Trig Delay-2.000 ms #Avg Type: RMS TReade the action of the trian of th		
ΔMkr2 405.0 us		
Ref 0ffset 8.04 dB ΔMkr2 405.0 μs 10 dB/div Ref 30.00 dBm 20.16 dB		
	Center Freq	
20.0	2.441000000 GHz	
10.0		
	Start Freq	
ο	2.441000000 GHz	
	Stop Freq 2.44100000 GHz	
20.0	2.441000000 GHZ	
	CF Step	
and the second s	1.000000 MHz Auto Man	
in the second of the second	FreqOffset	
	0 Hz	
60.0		
Center 2.441000000 GHz Span 0 Hz		
Res BW 1.0 MHz #VBW 3.0 MHz Sweep 10.13 ms (8000 pts) MSG STATUS		
 Agilent Spectrum Analyzer - Swept SA		
10 RL RE 50.9 AC SENSE: INT SOURCE OFF ALIGNAUTO 06:24:19 PM Mar 13, 2024	Frequency	
Center Freq 2.441000000 GHz Trig Delay.000 s #Avg Type: RMS PRO PN0: Fast → Trig Video Trig Video Trig Video #FGailtow #Atten: 40 dB Cel 20 P P P P Cel 20 P P P P		
	Auto Tune	
Ref Offset 8.04 dB 10 dB/div Ref 30.00 dBm		
Log	Contos Eros	
20.0	Center Freq 2.44100000 GHz	
	Start Freq	
0.00	2.441000000 GHz	
-10.0	Stop Freq	
	2.441000000 GHz	
300	CF Step 510.000 kHz	
	Auto Man	
	Freq Offset	
50.0	0 Hz	
60.0		
Center 2.441000000 GHz Span 0 Hz	z	
Res BW 510 kHz #VBW 3.0 MHz Sweep 31.60 s (30000 pts)	3	
 NSG STATUS		
2DH3_Ant1_Hop		
 Agilent Spectrum Analyzer - Swept SA		
Center Freq 2.441000000 GHz Trig Delay-2.000 ms #Avg Type: RMS TRACE 23456	Frequency	
PN0: Fast Ing: Video Dep PPPpp IFGain:Low #Atten: 40 dB Def PPPpp		
Ref Offset 8:04 dB ΔMkr2 1.658 ms 10 dB/div Ref 30.00 dBm 22.66 dB	Auto Tune	
10 dB/div Ref 30.00 dBm 22.66 dB		
	Center Freq	
	2.441000000 GHz	
10.0		
0.00 A 201	Start Freq 2.44100000 GHz	
-10.0	Stop Freq	
	2.44100000 GHz	
200		
300	CF Step	
soo Athronya baarinte dikarikala baratinte dikarikala baratikara ina karatikara ina dikarikarika baratikara ina di	CF Step 1.000000 MHz <u>Auto</u> Man	
	1.00000 MHz <u>Auto</u> Man	
300 4 A from a base of the second se second second sec	Auto Man Freq Offset	
	1.00000 MHz <u>Auto</u> Man	
	Auto Man Freq Offset	
400 <mark>4 Man di Appelit San Indonesia da in di pitangan di pitangan di pitangan di pitangan di pitangan di pitang 400</mark>	Auto Man FreqOffset 0 Hz	
	Auto Man Freq Offset 0 Hz	



	Selectrum Analyzer - Swept SA SENEE INT SOURCE OFF ALISNAUTO 06/2594 PM Ner 13, 2024 FAL FF 500 ALISNAUTO 06/2594 PM Ner 13, 2024 Fenter Freq 2:4410000000 GHz Trig Delay-2.000 ms #Avg Type: RMS Triver protection	Frequency
	PNO: Fast	
1	Ref 0ffset8.04 dB ΔMkr2 407.0 μs 0 dB/d/w Ref 30.00 dBm 21.89 dB	
	20	Center Freq 2.44100000 GHz
	10.0	Start Freq
	2Δ1	2.44100000 GHz
	100	Stop Freq
		2.441000000 GHz
	00 notiky jednoty popiny i lipitranjiti kutora i denomenty espiteki promot jedni kaje jedno nito koze belogi liteta	CF Step 1.000000 MHz <u>Auto</u> Man
	²⁰ yadatu keleniya a mada ayada ayada yada yada yada ku kata ku kata ku kata ku kata yadatu kata da da ayada kata	Freq Offset
		0 Hz
	0.0	
C F	enter 2.441000000 GHz Span 0 Hz es BW 1.0 MHz #VBW 3.0 MHz Sweep 10.13 ms (8000 pts)	
м	se STATUS	
0	RL PE Stop AC SEMEPHITISOURCE OFF ALIGNAUTO 066294807M NR13 2024 Renter Freq 2.441000000 GHz Trig Delay0.000 s #Avg Type: RMS IRACE 122 457 PN0: Fast Trig: Vide s Irre Irre	Frequency
	Ref Offset 8.04 dB	Auto Tune
1	o dB/div Ref 30.00 dBm	Center Freq
		2.441000000 GHz
		Start Freq
		2.441000000 GHz
		Stop Freq 2.44100000 GHz
		CF Step
		510.000 kHz A <u>uto</u> Man
		Freq Offset
	20	0 Hz
	enter 2.44 1000000 GHz Span 0 Hz	
	enter 2.441000000 GHz Span 0 Hz es BW 510 kHz #VBW 3.0 MHz Sweep 31.60 s (30000 pts) sol Istratus	
	3DH3_Ant1_Hop	
0	Select Spectrum Analyzer - Snept SA Select Spectrum Analyzer - Snept SA FL 600 AC SELECT SOLECT FF ALIGNAUTO 06302.19PM Mar 13.2024 Senter Freq 2.4410000000 GHz Trig Delay 2000 ms #Avg Type: RMS TPACE 192.5 ± 50 Bito Fast → set Trig Vides Trig Vides 192.5 ± 50 192.5 ± 50	Frequency
	IFGainLow #Atten: 40 dB	Auto Tuno
1	Ref 0ffset804 dB Дикг 2 1.937 mS 0 dB/div Ref 30.00 dBm 18.45 dB	
	200	Center Freq 2.441000000 GHz
		Start Freq
		2.441000000 GHz
		Stop Freq 2.441000000 GHz
		CF Step
	no an	1.000000 MHz Auto Man
	an a	Freq Offset
		0 Hz
	enter 2.44100000 GHz Span 0 Hz es BW 1.0 MHz \$weep 10.13 ms (8000 pts)	
M	SG STATUS	

