

TEST	R	EP	0	R	T
			\smile		

	1201 1(2) 01(•	
FCC ID:	2BE6N-L200S		
Test Report No::	TCT240918E053		
Date of issue::	Oct. 15, 2024		
Testing laboratory:	SHENZHEN TONGCE TESTING	G LAB	
Testing location/ address:	2101 & 2201, Zhenchang Factor Subdistrict, Bao'an District, Sher People's Republic of China	ry Renshan Industrial Zone, Fuhai nzhen, Guangdong, 518103,	
Applicant's name::	GIRAFIT INC		
Address::	21642 GOLDEN POPPY COUR United States	T, WALNUT, California 91749,	
Manufacturer's name:	Dongguan Sharetronic Data Tec	chnology Co., Ltd.	
Address:	Yinhe Industrial Area, Qingxi Town, Dongguan City, Guangdong Province, P.R.China		
Standard(s):	FCC CFR Title 47 Part 15 Subpart E Section 15.407 KDB 662911 D01 Multiple Transmitter Output v02r01 KDB 789033 D02 General U-NII Test Procedures New Rules v02r01		
Product Name::	L200S Light Bulb Cam		
Trade Mark:	N/A (C)		
Model/Type reference:	GRF-L200SW, GRF-L200S, L20	00S, L200SW	
Rating(s)::	AC 120V/60Hz		
Date of receipt of test item	Sep. 18, 2024		
Date (s) of performance of test:	Sep. 18, 2024 ~ Oct. 15, 2024		
Tested by (+signature):	Aaron MO	Amon Amage	
Check by (+signature):	Beryl ZHAO	Bod ZUETCT	
Approved by (+signature):	Tomsin	Joms is si	
General disclaimer:			

This report shall not be reproduced except in full, without the written approval of SHENZHEN TONGCE TESTING LAB. This document may be altered or revised by SHENZHEN TONGCE TESTING LAB personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample.

TABLE OF CONTENTS

	neral Product Informa			
1.1.	EUT description	(0)	<u>(C)</u>	3
1.2.	Model(s) list			3
	Test Frequency			
2. Tes	st Result Summary			5
3. Gei	neral Information			6
3.1.	Test environment and m	ode		6
3.2.	Description of Support U	Jnits		7
	ilities and Accreditat			
4.1.	Facilities	j) <u>(c</u> j) (8
	Location			
	Measurement Uncertain			
5. Tes	t Results and Measu	rement Data	(0)	9
5.1.	Antenna requirement			9
	Conducted Emission			
5.3.	Maximum Conducted Ou	utput Power	<u>/</u>	14
	6dB Emission Bandwidt			
5.5.	26dB Bandwidth and 99	% Occupied Bandwid	th	17
5.6.	Power Spectral Density.			18
	Band edge			
5.8.	Unwanted Emissions	<u></u>		28
5.9.	Frequency Stability Mea	surement		47
Appe	endix A: Test Result o	of Conducted Test		
Appe	endix B: Photographs	of Test Setup		
Appe	endix C: Photographs	of EUT		

1. General Product Information

1.1. EUT description

Product Name:	L200S Light Bulb Cam	
Model/Type reference:	GRF-L200SW	
Sample Number:	TCT240918E008-0101	
Operation Frequency::	Band 1: 5180 MHz ~ 5240 MHz Band 2A: 5260 MHz ~ 5320 MHz Band 3: 5745 MHz ~ 5825 MHz	
Channel Bandwidth::	802.11a: 20MHz 802.11n: 20MHz, 40MHz 802.11ac: 20MHz, 40MHz 802.11ax: 20MHz, 40MHz	
Modulation Technology:	Orthogonal Frequency Division Multiplexing(OFDM	1)
Modulation Type:	256QAM, 64QAM, 16QAM, BPSK, QPSK	
Antenna Type:	FPC Antenna	
Antenna Gain:	Band 1: 0.89dBi Band 2A: 1.44dBi Band 3: 1.15dBi	
Rating(s):	AC 120V/60Hz	

Note: The antenna gain listed in this report is provided by applicant, and the test laboratory is not responsible for this parameter.

1.2. Model(s) list

No.	Model No.	Tested with
1	GRF-L200SW	\boxtimes
Other models	GRF-L200S, L200SW	

Note: GRF-L200SW is tested model, other models are derivative models. The models are identical in circuit and PCB layout, only different on the model names and color. So the test data of GRF-L200SW can represent the remaining models.

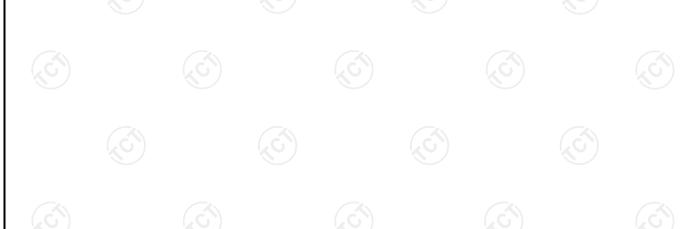
Page 3 of 197

1.3. Test Frequency

Band 1

201	ЛHz	401	ЛHz
Channel	Frequency	Channel	Frequency
36	5180	38	5190
40	5200	46	5230
48	5240		

Band 2A


201	ЛНz	401	ИΗz
Channel	Frequency	Channel	Frequency
52	5260	54	5270
60	5300	62	5310
64	5320		

Band 3

201	ЛНz	401	ИΗz
Channel	Frequency	Channel	Frequency
149	5745	151	5755
157	5785	159	5795
165	5825		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Page 4 of 197

2. Test Result Summary

Requirement	CFR 47 Section	Result
Antenna requirement	§15.203	PASS
AC Power Line Conducted Emission	§15.207	PASS
Maximum Conducted Output Power	§15.407(a)	PASS
6dB Emission Bandwidth	§15.407(a)	PASS
26dB Emission Bandwidth& 99% Occupied Bandwidth	§15.407(a)	PASS
Power Spectral Density	§15.407(a)	PASS
Restricted Bands around fundamental frequency	§15.407(b)	PASS
Radiated Emission	§15.407(b)	PASS
Frequency Stability	§15.407(g)	PASS

Note:

- 1. PASS: Test item meets the requirement.
- 2. Fail: Test item does not meet the requirement.
- 3. N/A: Test case does not apply to the test object.
- 4. The test result judgment is decided by the limit of test standard.
- 5. For the band 5.15-5.25GHz, EUT meet the requirements of 15.407(a)(ii).

Page 5 of 197

TESTING CENTRE TECHNOLOGY Report No.: TCT240918E053

3. General Information

3.1. Test environment and mode

Operating Environment:			
Temperature:	25.0 °C		
Humidity:	56 % RH	Ži)	Ž)
Atmospheric Pressure:	1010 mbar		
Test Software:			
Software Information:	Command	(c')	ζć
Power Level:	14		
Test Mode:			
Engineer mode:	Keep the EUT in conti	inuous transmitting by	select

The sample was placed 0.8m/1.5m for blow/above 1GHz above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Mode	Data rate
802.11a	6 Mbps
802.11n(HT20)	6.5 Mbps
802.11n(HT40)	13.5 Mbps
802.11ac(VHT20)	6.5 Mbps
802.11ac(VHT40)	13.5 Mbps
802.11ax(HE20)	6.5 Mbps
802.11ax(HE40)	13.5 Mbps

3.2. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Equipment	Model No.	Serial No.	FCC ID	Trade Name
/(c)	1 (0)	/	<u>(j)</u> /	(6)/

Note:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.
- 3. For conducted measurements (Output Power, Emission Bandwidth, Power Spectral Density, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

Page 7 of 197

4. Facilities and Accreditations

4.1. Facilities

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 645098

SHENZHEN TONGCE TESTING LAB

Designation Number: CN1205

The testing lab has been registered and fully described in a report with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

IC - Registration No.: 10668A

SHENZHEN TONGCE TESTING LAB

CAB identifier: CN0031

The testing lab has been registered by Innovation, Science and Economic

Development Canada for radio equipment testing.

4.2. Location

SHENZHEN TONGCE TESTING LAB

Address: 2101 & 2201, Zhenchang Factory Renshan Industrial Zone, Fuhai Subdistrict,

Bao'an District, Shenzhen, Guangdong, 518103, People's Republic of China

TEL: +86-755-27673339

4.3. Measurement Uncertainty

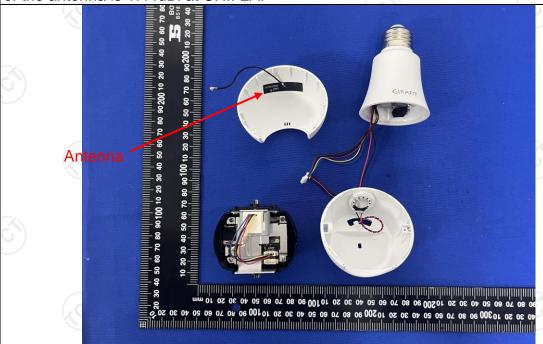
The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	MU
1	Conducted Emission	± 3.10 dB
2	RF power, conducted	± 0.12 dB
3	Spurious emissions, conducted	± 0.11 dB
4	All emissions, radiated(<1 GHz)	± 4.56 dB
5	All emissions, radiated(1 GHz - 18 GHz)	± 4.22 dB
6	All emissions, radiated(18 GHz- 40 GHz)	± 4.36 dB

Report No.: TCT240918E053

5. Test Results and Measurement Data

5.1. Antenna requirement


Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

E.U.T Antenna:

The EUT antenna is FPC antenna which permanently attached, and the maximum gain of the antenna is 1.44dBi at UNII-2A.

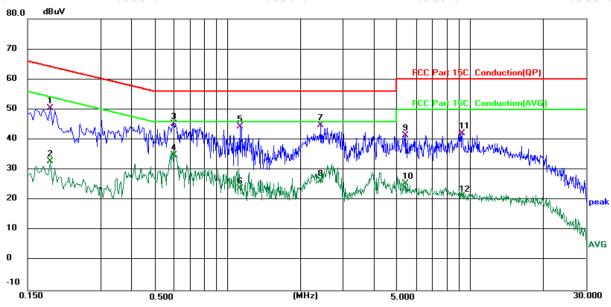
5.2. Conducted Emission


5.2.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.207					
Test Method:	ANSI C63.10:2013					
Frequency Range:	150 kHz to 30 MHz	(4)	$(c^{(i)})$			
Receiver setup:	RBW=9 kHz, VBW=30	kHz, Sweep time	=auto			
Limits:	Limit (compared to the compared to the compare	dBuV) Average 56 to 46* 46 50				
Test Setup:	Reference Plane 40cm 80cm LISN Filter — AC power Test table/Insulation plane Remark E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m					
Test Mode:	Transmitting Mode					
Test Procedure:	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10: 2013 on conducted measurement. 					
Test Result:	PASS					

5.2.2. Test Instruments

Conducted Emission Shielding Room Test Site (843)				
Equipment	Manufacturer	Model	Serial Number	Calibration Due
EMI Test Receiver	R&S	ESCI3	100898	Jun. 26, 2025
LISN	Schwarzbeck	NSLK 8126	8126453	Jan. 31, 2025
Attenuator	N/A	10dB	164080	Jun. 26, 2025
Line-5	тст	CE-05	1 (3)	Jun. 26, 2025
EMI Test Software	EZ_EMC	EMEC-3A1	1.1.4.2	/



5.2.3. Test data

Please refer to following diagram for individual

Conducted Emission on Line Terminal of the power line (150 kHz to 30MHz)

Site 844 Shielding Room

Phase: L1

Temperature: 22.8 (°C)

Humidity: 49 %

Report No.: TCT240918E053

Limit: FCC Part 15C Conduction(QP)

Power: AC 120 V/60 Hz

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBu∨	dB	dBu∀	dBu∀	dB	Detector	Comment
1		0.1859	40.83	9.66	50.49	64.22	-13.73	QP	
2		0.1859	23.24	9.66	32.90	54.22	-21.32	AVG	
3	*	0.6018	34.96	10.28	45.24	56.00	-10.76	QP	
4		0.6018	24.54	10.28	34.82	46.00	-11.18	AVG	
5		1.1257	34.50	9.75	44.25	56.00	-11.75	QP	
6		1.1257	14.13	9.75	23.88	46.00	-22.12	AVG	
7		2.4300	34.78	9.90	44.68	56.00	-11.32	QP	
8		2.4300	16.54	9.90	26.44	46.00	-19.56	AVG	
9		5.4340	31.14	10.21	41.35	60.00	-18.65	QP	
10		5.4340	15.27	10.21	25.48	50.00	-24.52	AVG	
11		9.3018	31.69	10.31	42.00	60.00	-18.00	QP	
12		9.3018	10.96	10.31	21.27	50.00	-28.73	AVG	

Note:

Freq. = Emission frequency in MHz

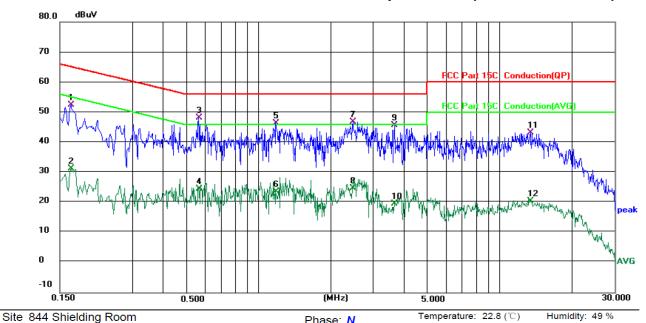
Reading level $(dB\mu V)$ = Receiver reading

Corr. Factor (dB) = LISN factor + Cable loss

Measurement ($dB\mu V$) = Reading level ($dB\mu V$) + Corr. Factor (dB)

 $Limit (dB\mu V) = Limit stated in standard$

 $Margin (dB) = Measurement (dB\mu V) - Limits (dB\mu V)$


Q.P. =Quasi-Peak

AVG =average

^{*} is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

Conducted Emission on Neutral Terminal of the power line (150 kHz to 30MHz)

Site 844 Shielding Room Phase: N

Limit: FCC Part 15C Conduction(QP) Power: AC 120 V/60 Hz

Lin	Limit: FCC Part 15C Conduction(QP)				Powe	31. AC 120	V/60 HZ		
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBu∨	dB	dBu∨	dBu∀	dB	Detector	Comment
1		0.1660	42.79	9.64	52.43	65.16	-12.73	QP	
2		0.1660	21.73	9.64	31.37	55.16	-23.79	AVG	
3	*	0.5656	37.87	10.22	48.09	56.00	-7.91	QP	
4		0.5656	14.24	10.22	24.46	46.00	-21.54	AVG	
5		1.1816	36.64	9.71	46.35	56.00	-9.65	QP	
6		1.1816	13.86	9.71	23.57	46.00	-22.43	AVG	
7		2.4620	37.07	9.84	46.91	56.00	-9.09	QP	
8		2.4620	14.95	9.84	24.79	46.00	-21.21	AVG	
9		3.6700	35.66	9.97	45.63	56.00	-10.37	QP	
10		3.6700	9.70	9.97	19.67	46.00	-26.33	AVG	
11		13.4500	33.04	10.26	43.30	60.00	-16.70	QP	
12		13.4500	10.24	10.26	20.50	50.00	-29.50	AVG	

Note:

1. Freq. = Emission frequency in MHz

Reading level $(dB\mu V)$ = Receiver reading

Corr. Factor (dB) = LISN factor + Cable loss

Measurement $(dB\mu V)$ = Reading level $(dB\mu V)$ + Corr. Factor (dB)

 $Limit (dB\mu V) = Limit stated in standard$

 $Margin (dB) = Measurement (dB\mu V) - Limits (dB\mu V)$

Q.P. =Quasi-Peak

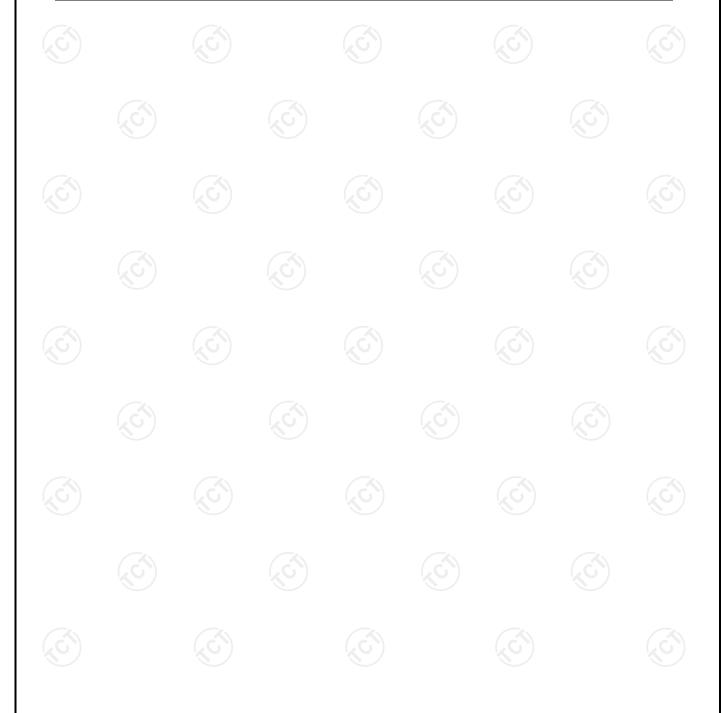
AVG =average

Page 13 of 197

^{*} is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

^{2.} Measurements were conducted in all three channels (high, middle, low) and all modulation (802.11a, 802.11n(HT20), 802.11n(HT40), 802.11ac(VHT20), 802.11ac(VHT40), 802.11ax(HE20), 802.11ax(HE40)) and the worst case Mode (Highest and 802.11a) was submitted only.

5.3. Maximum Conducted Output Power


5.3.1. Test Specification

		1= 10=1 (0 =) 10 10 11 (0			
Test Requirement:	FCC Part15 E Section 15.407(a)& Part 2 J Section 2.1046				
Test Method:	KDB662911 D01 Multiple Transmitter Output v02r01 KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section E				
	Frequency Band (MHz)	Limit			
	5180 - 5240	24dBm(250mW) for client device			
Limit:	5260 - 5320 5470 - 5725	24dBm(250mW) or 11 dBm + 10 log B, B is the 26 dB emission bandwidth in megahertz 24dBm(250mW) or 11 dBm + 10 log B, B is the 26 dB emission bandwidth in megahertz			
	5745 - 5825	30dBm(1W)			
Test Setup:	Power meter EUT				
Test Mode:	Transmitting mode w	vith modulation			
Test Procedure:	 The testing follows the Measurement Procedure of KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section E, 3, a The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Measure the conducted output power and record the results in the test report. 				
Test Result:	PASS				
Remark:	+10log(1/x) X is duty	ower= measurement power cycle=1, so 10log(1/1)=0 ower= measurement power			

5.3.2. Test Instruments

Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 26, 2025
Power Meter	Agilent	E4418B	MY45100357	Jun. 26, 2025
Power Sensor	Agilent	8184A	MY41096530	Jun. 26, 2025
Combiner Box	Ascentest	AT890-RFB		

5.4. 6dB Emission Bandwidth

5.4.1. Test Specification

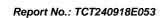
Test Requirement:	FCC CFR47 Part 15 Section 15.407(e)& Part 2 J Section 2.1049					
Test Method:	KDB662911 D01 Multiple Transmitter Output v02r01 KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section C					
Limit:	>500kHz					
Test Setup:	Spectrum Analyzer EUT					
Test Mode:	Transmitting mode with modulation					
Test Procedure:	 KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section C Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6dB bandwidth must be greater than 500 kHz. Measure and record the results in the test report. 					
Test Result:	PASS (3)					

5.4.2. Test Instruments

Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 26, 2025
Combiner Box	Ascentest	AT890-RFB	1 (0)	1 (6

Page 16 of 197

5.5. 26dB Bandwidth and 99% Occupied Bandwidth


5.5.1. Test Specification

Test Requirement:	47 CFR Part 15C Section 15.407 (a)& Part 2 J Section 2.1049			
Test Method:	KDB662911 D01 Multiple Transmitter Output v02r01 KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section D			
Limit:	No restriction limits			
Test Setup:	Spectrum Analyzer EUT			
Test Mode:	Transmitting mode with modulation			
Test Procedure:	 KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section D Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 1% to 5% of the OBW. Set the Video bandwidth (VBW) = 3 *RBW. In order to make an accurate measurement. Measure and record the results in the test report. 			
Test Result:	PASS			

5.5.2. Test Instruments

Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 26, 2025
Combiner Box	Ascentest	AT890-RFB		1

Page 17 of 197

5.6. Power Spectral Density

5.6.1. Test Specification

Test Requirement:	FCC Part15 E Section 15.407 (a)				
Test Method:	KDB662911 D01 Multiple Transmitter Output v02r01 KDB789033 D02 General UNII Test Procedures New Rules v02r01 Section F				
Limit:	≤11.00dBm/MHz for Band 1 5150MHz-5250MHz(client device) ≤11.00dBm/MHz for Band 2A&2C 5250-5350&5470- 5725 ≤30.00dBm/500KHz for Band 3 5725MHz-5850MHz				
Test Setup:	Spectrum Analyzer EUT				
Test Mode:	Transmitting mode with modulation				
Test Procedure:	 Set the spectrum analyzer or EMI receiver span to view the entire emission bandwidth. Set RBW = 510 kHz/1 MHz, VBW ≥ 3*RBW, Sweep time = Auto, Detector = RMS. Allow the sweeps to continue until the trace stabilizes. Use the peak marker function to determine the maximum amplitude level. 				

5.6.2. Test Instruments

Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 26, 2025
Combiner Box	Ascentest	AT890-RFB	/	/

Page 18 of 197

5.7. Band edge

5.7.1. Test Specification

Test Requirement:	FCC CFR47 Part 15E Section 15.407									
Test Method:	ANSI C63.10 20	013								
	In un-restricted ba For Band 1&2A&2 For Band 3:		lz	(cl)						
	Frequency (MHz)	Limit (dBm/MHz)	Frequency (MHz)	Limit (dBm/MHz)						
	< 5650	-27	5850~5855	27~15.6						
Limit:	650~5700	-27~10	5855~5875	15.6~10						
	5700~5720	10~15.6	5875~5925	10~-27						
	5720~5725	15.6~27	> 5925	-27						
	E[dBµV/m] = EIR In restricted band:		/							
	Detec		Limit@							
	Peal		74dBµ							
	AVG 54dBµV/m									
Test Setup:										
Test Mode:	Transmitting mo	de with mod	ulation	Re						
Test Procedure:	1. The EUT was meters above the was rotated 360 highest radiation 2. The EUT was interference-received the top of a vari 3. The antennameters above the value of the field polarizations of measurement. 4. For each sus to its worst case heights from 1 returned from 0 domaximum readi 5. The test-received from and Sp	ne ground at a degrees to degree to degree to degree to degrees to degree to degre	a 3 meter cambed as away from the particular and tower. The particular are set to make antenna was seters and the roll degrees to fin was set to Peak antenna was set to Peak	per. The table position of the mounted on eter to four maximum and vertical ethe was arranged tuned to tatable was at table was at tabl						

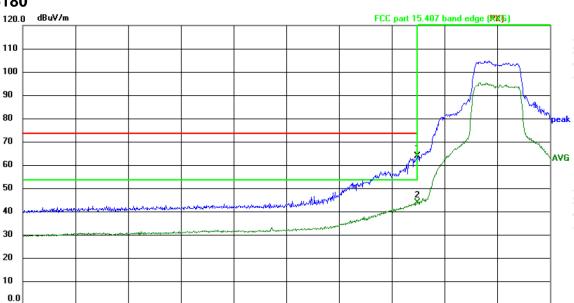
Report No.: TCT240918E053

Mode.

Report No.: TCT240918E053

6. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be

(stopped reported 10dB m quasipe	l and the pod. d. Otherwis argin would	eak values se the emis d be re-tes age metho	of the EU ⁻ sions that ted one by	Γ would be did not hav one using ied and the	e peak,
Test	Result:	PASS					



5.7.2. Test Instruments

Radiated Emission Test Site (966)												
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due								
EMI Test Receiver	R&S	ESCI7	100529	Jan. 31, 2025								
Spectrum Analyzer	R&S	FSQ40	200061	Jun. 26, 2025								
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 26, 2025								
Pre-amplifier	SKET	LNPA_0118G- 45	SK202101210 2	Jan. 31, 2025								
Pre-amplifier	SKET	LNPA_1840G- 50	SK202109203 500	Jan. 31, 2025								
Pre-amplifier	HP	8447D	2727A05017	Jun. 26, 2025								
Loop antenna	Schwarzbeck	FMZB1519B	00191	Jun. 26, 2025								
Broadband Antenna	Schwarzbeck	VULB9163	340	Jun. 28, 2025								
Horn Antenna	Schwarzbeck	BBHA 9120D	631	Jun. 28, 2025								
Horn Antenna	Schwarzbeck	BBHA 9170	00956	Feb. 02, 2025								
Coaxial cable	SKET	RE-03-D	/	Jun. 26, 2025								
Coaxial cable	SKET	RE-03-M	/	Jun. 26, 2025								
Coaxial cable	SKET	RE-03-L	1	Jun. 26, 2025								
Coaxial cable	SKET	RE-04-D	(0)	Jun. 26, 2025								
Coaxial cable	SKET	RE-04-M	/	Jun. 26, 2025								
Coaxial cable	SKET	RE-04-L	/	Jun. 26, 2025								
Antenna Mast	Keleto	RE-AM) 1	1								
EMI Test Software	EZ_EMC	FA-03A2 RE+	1.1.4.2	/								

5.7.3. Test Data AX20-5180

Site: 3m Anechoic Chamber Polarization: Horizontal Temperature: 24.2(°C) Humidity: 52 %

(MHz)

5080.00

Limit: FCC part 15.407 band edge (PK)

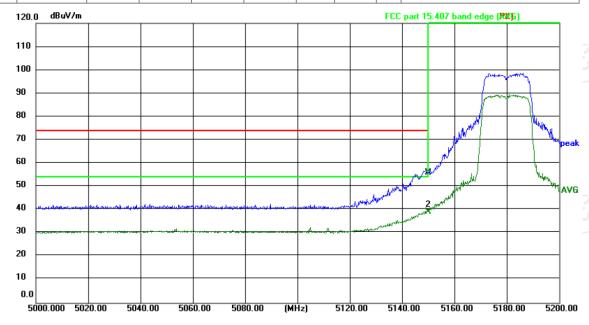
5040.00

5060.00

5000.000 5020.00

Power: AC 120 V/60 Hz

5120.00


5140.00

5160.00

5180.00

5200.00

- 1										
	No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F	Remark
	1	5150.000	73.03	-8.63	64.40	74.00	-9.60	peak	Р	
	2 *	5150.000	53.30	-8.63	44.67	54.00	-9.33	AVG	Р	

Site: 3m Anechoic Chamber Polarization: Vertical Temperature: 24.2(°C) Humidity: 52 %

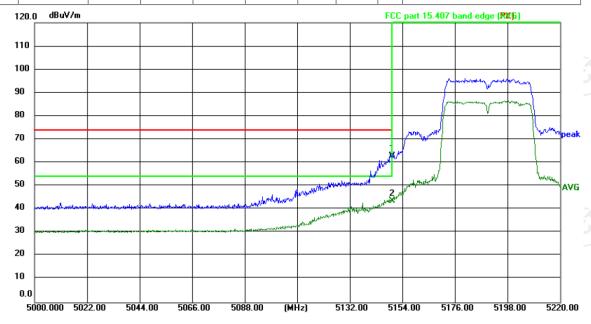
Limit: FCC part 15.407 band edge (PK)

	No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
	1	5150.000	64.67	-8.63	56.04	74.00	-17.96	peak	Р	
Ī	2 *	5150.000	47.88	-8.63	39.25	54.00	-14.75	AVG	Р	

Power: AC 120 V/60 Hz

Report No.: TCT240918E053

AX40-5190


Site: 3m Anechoic Chamber Pola

Limit: FCC part 15.407 band edge (PK)

Power:AC 120 V/60 Hz

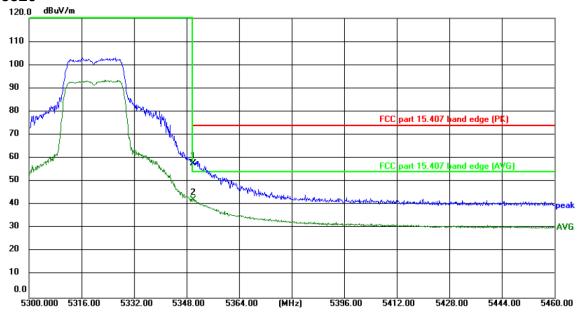
Polarization: *Horizontal* Temperature: 24.2(°C) Humidity: 52 %

V 1										
	No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
	1	5150.000	74.57	-8.63	65.94	74.00	-8.06	peak	Р	
	2 *	5150.000	60.31	-8.63	51.68	54.00	-2.32	AVG	Р	

Site: 3m Anechoic Chamber

Polarization: Vertical

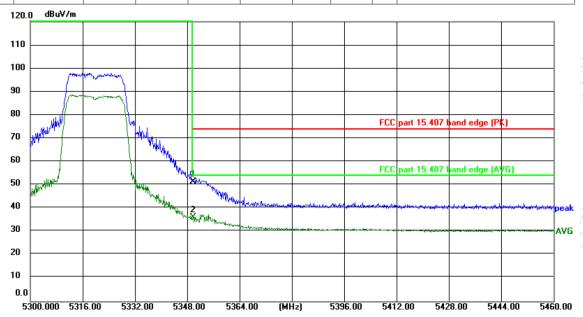
Temperature: 24.2(°C)


Humidity: 52 %

Limit: FCC part 15.407 band edge (PK)

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	P/F	Remark
1	5150.000	71.44	-8.63	62.81	74.00	-11.19	peak	Р	
2 *	5150.000	52.37	-8.63	43.74	54.00	-10.26	AVG	Р	

AX20-5320

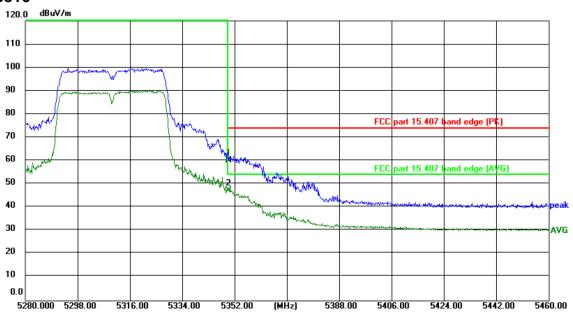


Site: 3m Anechoic Chamber Polarization: Horizontal Temperature: 24.2(°C) Humidity: 52 %

Limit: FCC part 15.407 band edge (PK)

Power: AC 120 V/60 Hz

1	No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
	1	5350.000	65.87	-8.22	57.65	74.00	-16.35	peak	Р	
	2 *	5350.000	50.42	-8.22	42.20	54.00	-11.80	AVG	Р	


Site: 3m Anechoic Chamber Polarization: Vertical Temperature: 24.2(°C) Humidity: 52 %

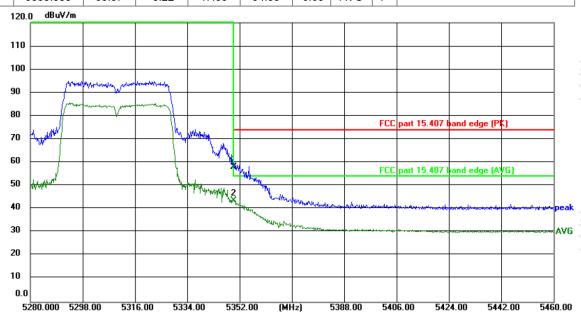
Limit: FCC part 15.407 band edge (PK)

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	5350.000	59.65	-8.22	51.43	74.00	-22.57	peak	Р	
2 *	5350.000	44.43	-8.22	36.21	54.00	-17.79	AVG	Р	

AX40-5310

Site: 3m Anechoic Chamber

Polarization: Horizontal


Temperature: 24.2(°C)

Humidity: 52 %

Limit: FCC part 15.407 band edge (PK)

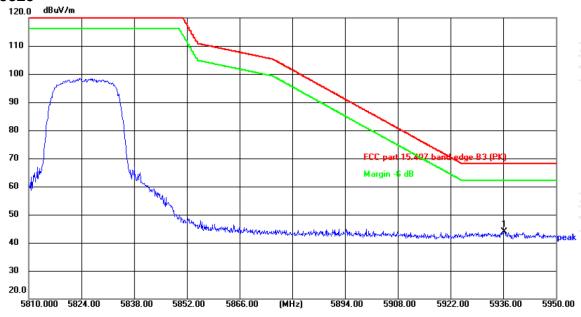
Power: AC 120 V/60 Hz

ч.										
	No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)		Margin (dB)	Detector	P/F	Remark
	1	5350.000	68.31	-8.22	60.09	74.00	-13.91	peak	Р	
	2 *	5350.000	55.57	-8.22	47.35	54.00	-6.65	AVG	Р	

Site: 3m Anechoic Chamber

Polarization: Vertical

Temperature: 24.2(°C)


Humidity: 52 %

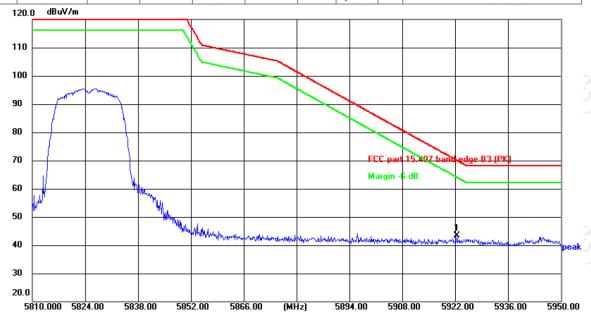
Limit: FCC part 15.407 band edge (PK)

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)		Margin (dB)	Detector	P/F	Remark
1	5350.000	66.28	-8.22	58.06	74.00	-15.94	peak	Р	
2 *	5350.000	51.73	-8.22	43.51	54.00	-10.49	AVG	Р	

AX20-5825

Site: 3m Anechoic Chamber

Polarization: Horizontal


Temperature: 25.3(°C)

Humidity: 50 %

Limit: FCC part 15.407 band edge B3 (PK)

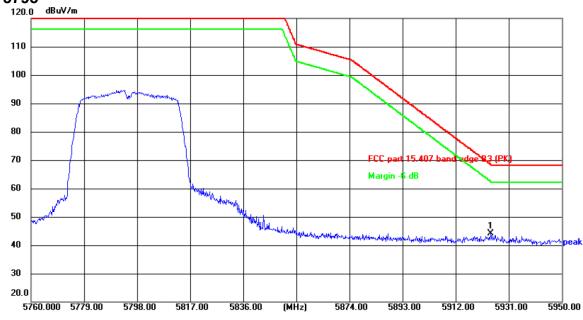
Power: AC 120 V/60 Hz

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1 *	5936.336	51.39	-7.53	43.86	68.20	-24.34	peak	Р	

Site: 3m Anechoic Chamber

Polarization: Vertical

Temperature: 25.3(℃)


Humidity: 50 %

Limit: FCC part 15.407 band edge B3 (PK)

No.	Frequency (MHz)	Reading (dBuV)		Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1 *	5922.546	50.79	-7.53	43.26	70.02	-26.76	peak	Р	

Site: 3m Anechoic Chamber Polarization: Horizontal Temperature: 25.3(°C) Humidity: 50 %

Limit: FCC part 15.407 band edge B3 (PK)

Reading

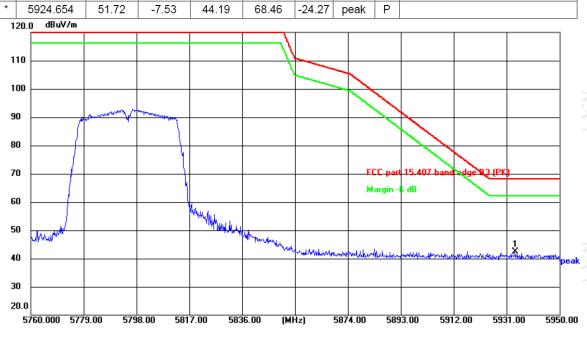
(dBuV)

51.72

Factor

(dB/m)

Frequency


(MHz)

5924.654

No.

Power: AC 120 V/60 Hz

• • • •					· -
Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
44.19	68.46	-24.27	peak	Р	

Site: 3m Anechoic Chamber Temperature: $25.3(^{\circ}C)$ Humidity: 50 % Polarization: Vertical

Limit: FCC part 15.407 band edge B3 (PK)

Power: AC 120 V/60 Hz

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	l .	Margin (dB)	Detector	P/F	Remark
1 *	5933.869	49.85	-7.54	42.31	68.20	-25.89	peak	Р	

Note: All modulation (802.11a, 802.11a, 802.11ac, 802.11ax) have been tested, only the worst case in 802.11ax be reported.

5.8. Unwanted Emissions

Report No.: TCT240918E053

5.8.1. Test Specification

Test Requirement:	FCC CFR47 Part 15 Section 15.407 & 15.209 & 1	5.205
Test Method:	KDB 789033 D02 v02r01	
Frequency Range:	9kHz to 40GHz	

Measurement Distance: 3 m

Antenna Polarization: Horizontal & Vertical

Operation mode: Transmitting mode with modulation

		#.			
	Frequency	Detector	RBW	VBW	Remark
	9kHz- 150kHz	Quasi-peak	200Hz	1kHz	Quasi-peak
					Value
	150kHz-	Quasi-peak	9kHz	30kHz	Quasi-peak
Receiver Setup:	30MHz		<		Value
	30MHz-1GHz	Quasi-peak	120KHz	300KHz	Quasi-peak
					Value
	Above 1CHz	Peak	1MHz	3MHz	Peak Value
	Above 1GHz	Peak	1MHz	10Hz	Average Value

Unwanted spurious emissions fallen in restricted bands per FCC Part15.205 shall comply with the general field strength limits set forth in § 15.209 as below table,

In restricted bands:

Frequency	Detector	Limit@3m
Above 1G	Peak	74dBµV/m
Above 1G	AVG	54dBµV/m
Frequency	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009-0.490	2400/F(KHz)	300
0.490-1.705	24000/F(KHz)	3
1.705-30	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

In un-restricted bands: 68.2dBuV/m

For radiated emissions below 30MHz

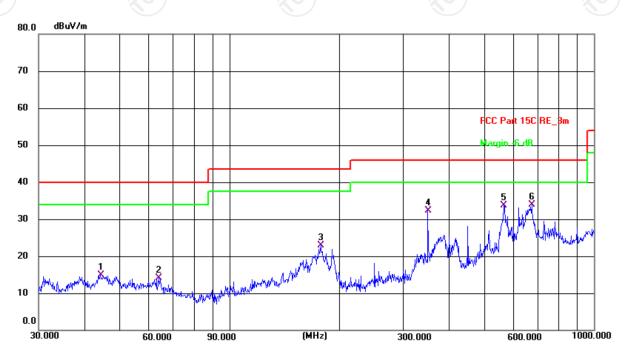
Distance = 3m Computer Pre - Amplifier Im A Receiver Ground Plane

Test setup:

Limit:

Page 28 of 197

TESTING CENTRE TECHNOLOGY	Report No.: TCT240918E05
	30MHz to 1GHz
	Antenna Tower Search Antenna RF Test Receiver Ground Plane
	Above 1GHz
	Artenna Tower Artenna Tower Ground Reference Plane Test Receiver Test Receiver Test Receiver Test Receiver Test Receiver
	 The EUT was placed on the top of a rotating table 0.8 meters above the groundat a 3 meter camber. The table was rotated 360 degrees todetermine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the
Test Procedure:	 4. For each suspected emission, the EUT was arranged to its worst case and thenthe antenna was tuned to heights from 1 meter to 4 meters and the rotatablewas turned from 0 degrees to 360 degrees to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function and SpecifiedBandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10dB lower than the limitspecified, then testing could be stopped and the peak values of the EUT wouldbe reported. Otherwise the emissions that did not have 10dB margin would bere-tested one by one using peak,
	quasi-peak or average method as specified andthen reported in a data sheet.
Test results:	PASS



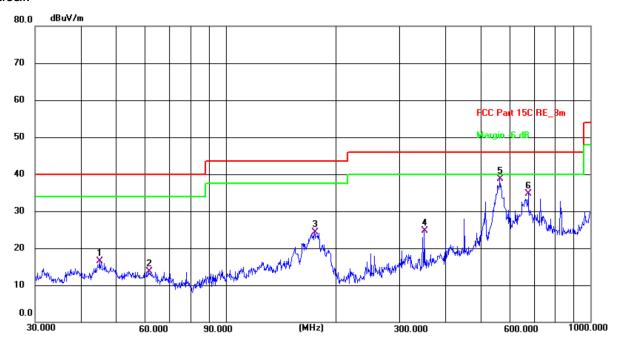
5.8.2. Test Data

Please refer to following diagram for individual

Below 1GHz

Horizontal:

Temperature: 22.2(C) Humidity: 50 % Site 3m Anechoic Chamber2 Polarization: Horizontal


Limit: F	CC Part 15C F	RE_3m			Power:	AC 120 V/ 60 Hz			
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	44.2752	33.43	-18.60	14.83	40.00	-25.17	QP	Р	
2	63.9827	33.45	-19.29	14.16	40.00	-25.84	QP	Р	
3	178.1327	41.99	-19.04	22.95	43.50	-20.55	QP	Р	
4	350.4767	49.05	-16.71	32.34	46.00	-13.66	QP	Р	
5	566.6221	44.51	-10.89	33.62	46.00	-12.38	QP	Р	
6 *	675.2080	42.18	-8.25	33.93	46.00	-12.07	QP	Р	

Page 30 of 197

Vertical:

Site 3m Anechoic Chamber2 Polarization: Vertical Temperature: 22.2(C) Humidity: 50 %

Limit: FCC Part 15C RE_3m

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1	45.0583	35.18	-18.59	16.59	40.00	-23.41	QP	Р	
2	61.5618	32.63	-19.01	13.62	40.00	-26.38	QP	Р	
3	175.0367	42.90	-18.62	24.28	43.50	-19.22	QP	Р	
4	350.4767	41.34	-16.71	24.63	46.00	-21.37	QP	Р	
5 *	564.6388	49.60	-10.90	38.70	46.00	-7.30	QP	Р	
6	675.2080	42.97	-8.25	34.72	46.00	-11.28	QP	Р	

Note: 1.The low frequency, which started from 9KHz~30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported

- 2. Measurements were conducted in all three channels (high, middle, low) and all modulation (802.11a, 802.11n(HT20), 802.11n(HT40), 802.11ac(VHT20), 802.11ac(VHT40), 802.11ax(HE20), 802.11ax(HE40)) and the worst case Mode (Highest and 802.11a) was submitted only.
- 3.Measurement (dBμV) = Reading level + Correction Factor, correction Factor= Antenna Factor + Cable loss Pre-amplifier.

			N	lodulation Ty	pe: Band 1				
				11a CH36: 8	5180MHz				
Frequency	Ant. Pol.	Peak reading	AV reading	Correction Factor	Emissi	on Level	Peak limit		Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
10360	Н	38.46		1.78	40.24		68.2		-27.96
15540	#	39.92	777	5.21	45.13		74	54	-8.87
	(ZCH)		(7. C)		(,, C			×C)	
10360	V	38.55		1.78	40.33		68.2		-27.87
15540	V	40.67		5.21	45.88		7 4	54	-8.12
√C -1)	V	(.)		+.0		(<u>(,)</u>		(<u>-e</u>)
				11a CH40: \$	5200MHz				
Frequency (MHz)	Ant. Pol. H/V	Peak reading	AV reading	Correction Factor	Emissic Peak	n Level AV	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
		(dBµV)	(dBµV)	(dB/m)		(dBµV/m)			
10400	Н	39.84		1.83	41.67		68.2		-26.53
15600	Н	40.15		5.23	45.38		74	54	-8.62
	Н	(()		(.6)	\	((
			1						
10400	V	40.48		1.83	42.31		68.2		-25.89
15600	V	41.06		5.23	46.29		74	54	-7.71
	V		-7-		(<u> </u>		4	
				11a CH48: 9	5240MHz				
Frequency	Ant. Pol.	Peak reading	AV reading	Correction Factor	Emissio	n Level	Peak limit	AV limit	Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
10480	Н	38.18		1.85	40.03		68.2		-28.17
15720	Н	39.71		5.25	44.96		74	54	-9.04
	Н		- 		/				
	(CO)		NO.			57)	-	(C))	
10480	V	38.53		1.85	40.38	/ <u></u>	68.2		-27.82
15720	V	40.69		5.25	45.94		74	54	-8.06
<u></u>	V								 /.
			111	n(HT20) CH3	36: 5180MH	lz			
Frequency	Ant. Pol.	Peak reading	AV reading	Correction Factor	Emissio	on Level	Peak limit		Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
10360	H	41.77		1.78	43.55	J	68.2	<u></u>	-24.65
15540	Н	40.85		5.21	46.06		74	54	-7.94
	Н								
10360	V	42.08		1.78	43.86		68.2		-24.34
15540	V V	41.49		5.21	46.7		74	54	-7.3

			11	n(HT20) CH	40: 5200MH	Нz			
Frequency (MHz)	Ant. Pol. H/V	Peak reading	AV reading	Correction Factor	Emissic Peak	n Level AV	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
, ,		(dBµV)	(dBµV)	(dB/m)	(dBµV/m)	(dBµV/m)			<u> </u>
10400	Н	40.73		1.83	42.56		68.2		-25.64
15600	Н	41.17		5.23	46.4		74	54	-7.6
	Н							<u></u>	
	(¿Ġ`)		(, G)		(,)	37)		(.C)	
10400	٧	40.25		1.83	42.08		68.2		-26.12
15600	V	39.96		5.23	45.19		74	54	-8.81
-	V								
			11	n(HT20) CH	48: 5240MH	Ηz			
Frequency	Ant. Pol.	Peak reading	AV reading	Correction Factor	Emissio	n Level	Peak limit		Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
10480	H	41.63	-44	1.85	43.48	7	68.2	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	-24.72
15720	Н	41.54		5.25	46.79		74	54	-7.21
	Н								
								ļ.	
10480	V	40.22		1.85	42.07		68.2		-26.13
15720	V	40.05		5.25	45.3		74	54	-8.7
	V								
			11	n(HT40) CH	38: 5190MF	17			
		Peak	AV	Correction					
Frequency	Ant. Pol.	reading	reading	Factor	Emissi	on Level	Peak limit		Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
10380	Н	42.77		1.80	44.57		68.2		-23.63
15570	Н	41.63		5.22	46.85		74	54	-7.15
	H				40.03				-7.13
	11								
10380	V	40.92	-46	1.80	42.72		68.2		-25.48
15570	V	39.26		5.22	44.48	<u> </u>	74	54	-9.52
	V								
	V			n(HT40) CH					
		Peak	AV	Correction			Peak limit		
Frequency (MHz)	Ant. Pol. H/V	reading	reading	Factor				AV limit (dBµV/m)	Margin (dB)
		(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)		(-)
10460	H	41.68	(^	1.85	43.53	<i>(</i>)	68.2	(4)	-24.67
15690	H	39.07	-//	5.08	44.15	9)	74	54	-9.85
	Н								
10460	V	41.44		1.85	43.29	/	68.2		-24.91
15690	V	40.39		5.08	45.47	\	74	54	-8.53
	V								

			11a	c(VHT20) Ch	H36: 5180M	lHz			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emission Level		Peak limit (dBµV/m)		Margin (dB)
(1711 12)					Peak (dBµV/m)	AV (dBµV/m)	(αυμ ν/π)	(αυμ ۷/ΙΙΙ)	(GD)
10360	Н	40.34		1.78	42.12		68.2		-26.08
15540	Н	39.82		5.21	45.03		74	54	-8.97
	Н								
	(2G)		(, C)		(20			(,C)	
10360	V	38.55	-	1.78	40.33	/	68.2		-27.87
15540	V	39.02		5.21	44.23		74	54	-9.77
	V								=,
			11a	c(VHT20) CH	140: 5200M	Hz			
Frequency	Ant. Pol.	Peak reading	AV reading	Correction Factor	Emission Level		Peak limit	AV limit	Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
10400	Н	39.63	-4	1.83	41.46	<i>)</i>	68.2		-26.74
15600	Н	40.13		5.23	45.36		74	54	-8.64
	Н								
10400	V	39.79		1.83	41.62	/	68.2		-26.58
15600	V	39.45		5.23	44.68		74	54	-9.32
	V								
			1	1ac(VHT20)	CH48:5240				
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emission Level		Peak limit	AV limit	Margin
					Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
10480	Н	37.72		1.85	39.57	(68.2		-28.63
15720	Н	38.99		5.25	44.24		74	54	-9.76
	Н								
10480	V	38.21	-60	1.85	40.06	3)	68.2	(. c. -)	-28.14
15720	V	39.46		5.25	44.71	J	74	54	-9.29
	V								
			1	1ac(VHT40)	CH38:5190				
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emission Level		Peak limit		Margin
					Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
10380	(H)	40.78	-/- <	1.80	42.58		68.2		-25.62
15570	(H)	39.74	<u> </u>	5.22	44.96	5)	74	54	-9.04
	Н								
<u> </u>		1		ļ		1			
		00.07	1	1.00	40.4-		60.2		20.02
10380	V	38.37		1.80	4() 17		- DO /		-/0 113
10380 15570	V	38.37 39.53		1.80 5.22	40.17 44.75		68.2 74	 54	-28.03 -9.25

			11	1ac(VHT40)	CH46:5230				
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emission Level		Peak limit		Margin
					Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
10460	Н	38.62		1.85	40.47		68.2		-27.73
15690	Н	39.93		5.08	45.01		74	54	-8.99
	Н								
	(2G)		(¿G`)		(20			(C)	
10460	V	39.47		1.85	41.32	/	68.2		-26.88
15690	V	40.34		5.08	45.42		74	54	-8.58
	V			(==,
			11a	x(HE20) CH	36: 5180MH	łz			
Frequency	Ant. Pol.	Peak reading	AV reading	Correction Factor	Emissi	Emission Level		AV limit	Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
10360	H	39.06		1.78	40.84	J	68.2	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	-27.36
15540	Н	40.54		5.21	45.75		74	54	-8.25
	Н								
	•							·	
10360	V	38.16		1.78	39.94	<	68.2		-28.26
15540	V	40.67		5.21	45.88		74	54	-8.12
	V								
			11a	x(HE20) CH	40: 5200MI	- Iz			
Frequency (MHz)	Ant. Pol. H/V	reading re	AV reading	Correction Factor (dB/m)			Peak limit	AV limit	Margin
			(dBµV)		Peak (dBµV/m)	ΑV (dBμV/m)	(dBµV/m)	(dBµV/m)	(dB)
10400	Н	39.77		1.83	41.6	()	68.2		-26.6
15600	Н	40.42		5.23	45.65		74	54	-8.35
	Н								
10400	V	39.75	4.6	1.83	41.58	3)	68.2	(. c. 2)	-26.62
15600	V	39.14		5.23	44.37	J	74	54	-9.63
	V								
			1	1ax(HE20)	CH48:5240				
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)			Peak limit		Margir
					Peak (dBµV/m)	ΑV (dBμV/m)	(dBµV/m)	(dBµV/m)	(dB)
10480	H	38.07	-/- <	1.85	39.92	· · · ·	68.2	(4)	-28.28
15720	(H)	39.66	1/0	5.25	44.91) 	74	54	-9.09
	Н								
-		•					-	<u> </u>	
10480	V	38.48		1.85	40.33	/	68.2		-27.87
15720	V	39.33		5.25	44.58	(74	54	-9.42
	V						<u> </u>		

٧

٧

Report No.: TCT240918E053 11ax(HE40) CH38:5190 A۷ Peak Correction **Emission Level** Ant. Pol. Peak limit **AV** limit Frequency Margin reading Factor reading (MHz) H/V $(dB\mu V/m)$ (dBµV/m) (dB) AV (dBµV) Peak (dBµV) (dB/m) $(dB\mu V/m)$ $(dB\mu V/m)$ Н 10380 40.35 1.80 42.15 68.2 -26.05 15570 Н 5.22 39.51 44.73 -9.27------74 54 Н 10380 V 38.09 1.80 39.89 68.2 -28.31 15570 38.95 5.22 44.17 74 54 -9.83 ٧ -------------------11ax(HE40) CH46:5230 Peak ΑV Correction Ant. Pol. **Emission Level** Frequency Peak limit **AV** limit Margin reading reading **Factor** (MHz) H/V $(dB\mu V/m)$ (dBµV/m) (dB) Peak ΑV (dBµV) (dBµV) (dB/m) (dBµV/m) (dBµV/m) 10460 H 38.77 1.85 68.2 40.62 -27.5815690 Н 39.34 5.08 44.42 74 ---54 -9.58 Н 10460 ٧ 39.07 1.85 68.2 40.92 -27.28

Note:

15690

1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss - Pre-amplifier

45.64

74

54

-8.36

5.08

2. Margin (dB) = Emission Level (Peak) (dB μ V/m)-Average limit (dB μ V/m)

40.56

- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.
- Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency. The highest test frequency is 40GHz.
- 5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

			M	lodulation Ty	ne: Band 2	Δ			
				11a CH52:		•			
Frequency	Ant. Pol.	Peak reading	AV reading	Correction Factor		on Level	Peak limit		Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
10520	Н	38.13		1.87	40		68.2		-28.2
15780	#	39.34	K	5.01	44.35	X\	74	54	-9.65
	(CH)		40,		((`)		(<u>/</u> C)	
10520	V	41.78		1.87	43.65		68.2		-24.55
15780	V	40.59		5.01	45.6		74	54	-8.4
(C)	V	(z-G)		- / ₂ C)	((C) -} -		(, -6`)
				11a CH60:	5300MHz				
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emissi Peak (dBµV/m)	on Level AV (dBμV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
10600	Н	44.92		1.89	46.81		74	54	-7.19
15900	Н	40.53		4.93	45.46		74	54	-8.54
	Н			(&		/			
			•)	1			
10600	V	45.19		1.89	47.08		74	54	-6.92
15900	V	41.75		4.93	46.68		74	54	-7.32
	V		- -						
				11a CH64:	5320MHz				
Frequency	Ant. Pol.	Peak reading	AV reading	Correction Factor	Emissio	on Level	Peak limit		Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	ΑV (dBμV/m)	(dBµV/m)	(dBµV/m)	(dB)
10640	Н	44.55		1.94	46.49		74	54	-7.51
15960	Н	39.83		4.83	44.66		74	54	-9.34
	4				/	Z			
	('C')		1,0		X	()		(ZO')	
10640	V	45.04		1.94	46.98		74	54	-7.02
15960	V	41.27		4.83	46.1		74	54	-7.9
	V	7-7							77
				1n(HT20) C5	2: 5260MH	Z			
Frequency (MHz)	Ant. Pol. H/V	Peak reading	AV reading	Correction Factor	Emissio	on Level	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin
(IVIIIZ)	□/ V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(ασμν/ιιι)	(ασμν/ιιι)	(dB)
10520	Н	41.84		1.87	43.71	<i></i>	68.2		-24.49
15780	Н	40.25		5.01	45.26		74	54	-8.74
	Н								
10520	V	38.56		1.87	40.43		68.2		-27.77
15780	V	39.63		5.01	44.64		74	54	-9.36
	V								

			11	n(HT20) CH	60: 5300MH	lz			
Frequency	Ant. Pol.	Peak reading	AV reading	Correction Factor	Emissio	n Level	Peak limit	AV limit	Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
10600	Η	44.95		1.89	46.84		74	54	-7.16
15900	Η	39.48		4.93	44.41	-	74	54	-9.59
	Ŧ								
	(2G)		(, C)			57		(, G)	
10600	>	45.91		1.89	47.8		74	54	-6.2
15900	V	41.34		4.93	46.27		74	54	-7.73
	V						-		
			11	n(HT20) CH	64: 5320MF	ŀz			
Frequency	Ant. Pol.	Peak reading	AV reading	Correction Factor	Emissio	on Level	Peak limit	AV limit	Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
10640	H	46.15	(1.94	48.09)	74	54	-5.91
15960	Н	42.74		4.83	47.57		74	54	-6.43
	Н								
						/			
10640	V	44.49		1.94	46.43		74	54	-7.57
15960	V	40.94		4.83	45.77		74	54	-8.23
	V								
			11	n(HT40) CH	54: 5270MH	lz			
Frequency	Ant. Pol.	Peak reading	AV reading	Correction Factor	Emissio	on Level	Peak limit	AV limit	Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	ΑV (dBμV/m)	(dBµV/m)	(dBµV/m)	(dB)
10540	Н	41.44		1.87	43.31	(68.2		-24.89
15810	Н	39.56		4.99	44.55		74	54	-9.45
	Н								
							ļ		
10540	V	37.73	-+.G	1.87	39.6		68.2	(-28.6
15810	V	40.97		4.99	45.96	<i></i>	74	54	-8.04
	V								
	-		11	n(HT40) CH	62· 5310MF	17			
Frequency	Ant. Pol.	Peak	AV reading	Correction Factor		on Level Peak limit		AV limit	Margin
(MHz)	H/V	reading (dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	ΑV (dBμV/m)	(dBµV/m)	(dBµV/m)	(dB)
10620	Н	45.66		1.92	47.58	(αΒμ ۷/111)	74	54	-6.42
15930	H	40.85	<u> </u>	4.88	45.73)	74	54	-8.27
	Н	40.65		4.00	45.73				-0.21
	• •				1	I	1		
				1.00	10.10	I	7.4	5 4	7.07
10620	V 1	44.21		1.92	46 13		/4	54	-/ 0/
10620 15930	V	44.21 39.43		1.92 4.88	46.13 44.31		74 74	54 54	-7.87 -9.69

			11a	ac(VHT20) C	52: 5260M	Hz			
Frequency	Ant. Pol. H/V	Peak reading	AV reading	Correction Factor		on Level	Peak limit (dBµV/m)		Margin (dB)
(MHz)	□/ V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(ασμν/ιιι)	(dBµV/m)	(ub)
10520	Н	40.56		1.87	42.43		68.2		-25.77
15780	Н	39.47		5.01	44.48		74	54	-9.52
	H					Z\			
	(C)		(,G)			(`ر		(.G.)	
10520	V	40.82		1.87	42.69	<i></i>	68.2		-25.51
15780	V	40.25		5.01	45.26		74	54	-8.74
	V	 ,.							 ,
			11a	c(VHT20) CI	⊣60: 5300N	1Hz			
Frequency	Ant. Pol.	Peak reading	AV reading	Correction Factor	Emissio	n Level	Peak limit		Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
10600	Ή	43.55	-40	1.89	45.44)	74	54	-8.56
15900	Н	40.25		4.93	45.18		74	54	-8.82
	Н								
10600	V	44.07		1.89	45.96		74	54	-8.04
15900	V	40.89		4.93	45.82		74	54	-8.18
	V								
			11a	c(VHT20) CI	-164: 5320N	ИН <i>7</i>			
		Peak	AV	Correction					
Frequency	Ant. Pol.	reading	reading	Factor	Emissic	n Level	Peak limit	AV limit	Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
10640	Н	43.46		1.94	45.4	(74	54	-8.6
15960	Н	39.63		4.83	44.46		74	54	-9.54
	Н								
						_,			
10640	V	44.94	4.0	1.94	46.88		74	54	-7.12
15960	V	39.27		4.83	44.1	<u> </u>	74	54	-9.9
	V								
				c(VHT40) CI	154: 5270N	1Hz			
		Peak	AV	Correction					
Frequency (MHz)	Ant. Pol. H/V	reading	reading	Factor	Peak	on Level	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
, , ,		(dBµV)	(dBµV)	(dB/m)	(dBµV/m)			,	
10540	H	40.86		1.87	42.73	<u> </u>	68.2		-25.47
15810	H	39.27	-40	4.99	44.26	//	74	54	-9.74
	Н								
			1						
10540	V	39.64		1.87	41.51	/	68.2		-26.69
15810	V	39.87		4.99	44.86		74	54	-9.14
	V								

			11a	c(VHT40) Cl	H62: 5310N	/lHz			
Frequency	Ant. Pol. H/V	Peak reading	AV reading	Correction Factor	Emissio	n Level	Peak limit	AV limit	Margin
(MHz)	⊓/ V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
10620	Н	44.54		1.92	46.46		74	54	-7.54
15930	Н	39.72		4.88	44.6		74	54	-9.4
	Н							<u> </u>	
	(.G)		(, G)			51)		(,G')	
10620	V	43.91		1.92	45.83	/	74	54	-8.17
15930	V	40.05		4.88	44.93		74	54	-9.07
<u></u>	V	 /.							 /.
			11	ax(HE20) C	52: 5260MH	lz			
Frequency	Ant. Pol.	Peak reading	AV reading	Correction Factor	Emissio	on Level	Peak limit	AV limit	Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
10520	H	40.47		1.87	42.34)	68.2	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	-25.86
15780	Н	39.88		5.01	44.89		74	54	-9.11
	Н								
10520	V	40.72		1.87	42.59		68.2		-25.61
15780	V	39.66		5.01	44.67		74	54	-9.33
	V								
			11a	ax(HE20) CH	160: 5300M	Hz			
Frequency	Ant. Pol.	Peak reading	AV reading	Correction Factor	Emissio	on Level	Peak limit	AV limit	Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
10600	Н	44.35		1.89	46.24	(74	54	-7.76
15900	Н	40.78		4.93	45.71		74	54	-8.29
	Н								
10600	(V)	44.57	46	1.89	46.46	5)	74	54	-7.54
15900	V	41.38		4.93	46.31	<i></i>	74	54	-7.69
	V								
			11a	ax(HE20) CH	64: 5320M	Hz			
Frequency	Ant. Pol.	Peak reading	AV reading	Correction	Emissio	on Level	Peak limit	AV limit	Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	ΑV (dBμV/m)	(dBµV/m)	(dBµV/m)	(dB)
10640	Ĥ	45.54		1.94	47.48		74	54	-6.52
15960	H	41.74	- <u> </u>	4.83	46.57	()	74	54	-7.43
	Н								-7.43
	•••		<u>[</u>	!	ļ.	ļ	ļ		
10640	V	46.17		1.94	48.11		74	54	-5.89
10640 15960	V	46.17 41.26		1.94 4.83	48.11 46.09		74 74	54 54	-5.89 -7.91

Report No.: TCT240918E053 11ax(HE40) CH54: 5270MHz ΑV Peak Correction **Emission Level** Ant. Pol. Peak limit AV limit Margin Frequency reading Factor reading (MHz) H/V (dBµV/m) (dBµV/m) (dB) ΑV Peak (dBµV) (dBµV) (dB/m) $(dB\mu V/m)$ $(dB\mu V/m)$ Н 10540 40.96 1.87 42.83 68.2 -25.37Н 4.99 15810 39.12 ---44.11 ---74 54 -9.89Н 10540 V 39.93 1.87 41.8 68.2 -26.4 15810 40.06 4.99 45.05 74 54 -8.95 V ----------11ax(HE40) CH62: 5310MHz Peak AV Correction **Emission Level** Frequency Ant. Pol. Peak limit **AV** limit Margin reading Factor reading (dBµV/m) H/V (MHz) $(dB\mu V/m)$ (dB) Peak ΑV (dBµV) (dBµV) (dB/m) (dBuV/m) (dBµV/m) 10620 Н 44.57 1.92 74 54 46.49 -7.51 15930 Н 39.79 4.88 ---44.67 ---74 54 -9.33 Н 10620 V 45.85 1.92 47.77 74 54 -6.23

Note:

15930

٧

٧

1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss - Pre-amplifier

45.02

74

54

-8.98

4.88

2. Margin (dB) = Emission Level (Peak) (dB μ V/m)-Average limit (dB μ V/m)

40.14

- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.
- Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency. The highest test frequency is 40GHz.
- 5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

			N	Modulation Ty	ype: Band 3	3			
				11a CH149:	5745MHz				
Frequency	Ant. Pol.	Peak reading	AV reading	Correction Factor	Emissio	on Level	Peak limit	AV limit	Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
11490	Н	44.78		2.48	47.26		74	54	-6.74
17235	Н	37.66		6.50	44.16		68.2	-	-24.04
	(, CH)		4. 6		(, (<u> </u>		(G^{-2})	
11490	V	45.14		2.48	47.62		74	54	-6.38
17235	V	38.31		6.50	44.81		68.2		-23.39
(C)	V	(-6)		(.6)		(·C)-		(-c)
				11a CH157:	5785MHz				
Frequency	Ant. Pol.	Peak	AV	Correction	Emissio	on Level	Peak limit	AV limit	Margin
(MHz)	H/V	reading	reading	Factor			(dBµV/m)	(dBµV/m)	(dB)
(,		(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	()	(р т, т,	()
11570	Н	43.45		2.42	45.87		74	54	-8.13
17355	Н	38.79		7.03	45.82		68.2		-22.38
<u> </u>	Н			()		/	<u> </u>		
(0)		(0)		Ϋ́Θ)		(0)	<u> </u>	1/0
11570	V	43.85		2.42	46.27		74	54	-7.73
17355	V	39.25		7.03	46.28		68.2		-21.92
	V		K		(X		-4-	
				11a CH165:	5825MHz				
Frequency	Ant. Pol.	Peak	AV	Correction	Fmissio	on Level	Peak limit	AV limit	Margin
(MHz)	H/V	reading	reading	Factor			(dBµV/m)	(dBµV/m)	(dB)
(1711 12)	11/1	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(αυμ ν/ιιι)	(αΒμ ν/ιιι)	(42)
11650	Н	43.49		2.41	45.9		74	54	-8.1
17475	Н	36.15		7.41	43.56		68.2		-24.64
	Н					-,			
	(.G)		(,G)	*)	(,)			(.c)	
11650	V	43.63		2.41	46.04	/	74	54	-7.96
17475	V	38.27		7.41	45.68		68.2		-22.52
	V								
			11r	n(HT20) CH1	49: 5745M	Hz			
Frequency	Ant. Pol.	Peak reading	AV reading	Correction Factor	Emissio	on Level	Peak limit	AV limit	Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak	AV (dDu)//m)	(dBµV/m)	(dBµV/m)	(dB)
		44.64	-1/2	2.48	(dBµV/m) 47.12	(dBµV/m)	74	54	-6.88
11490	K H /	44 64		2.70	71.14			J4	
11490 17235	H	44.64 38.17		6.50	44 67		I 682 I		-23 23
17235	Н	38.17		6.50	44.67		68.2		-23.53
				6.50	44.67		68.2		-23.53
17235	H	38.17							
17235	Н	38.17							

			11r	n(HT20) CH1	57: 5785M	Hz			
Frequency (MHz)	Ant. Pol. H/V	Peak reading	AV reading	Correction Factor	Emissio	on Level	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
(IVII IZ)	I	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(ασμν/ιιι)	(αΒμν/ιιι)	(ub)
11570	Н	44.67		2.42	47.09		74	54	-6.91
17355	Н	39.14		7.03	46.17		68.2		-22.03
	Н					Z			
	(,G)		(,G)		(,(5)		(, G')	
11570	V	44.95		2.42	47.37	/ <u></u>	74	54	-6.63
17355	V	39.49		7.03	46.52		68.2		-21.68
	V	1							
			11r	n(HT20) CH1	65: 5825M	Hz			
Frequency	Ant. Pol.	Peak reading	AV reading	Correction Factor	Emissio	n Level	Peak limit	AV limit	Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	ΑV (dBμV/m)	(dBµV/m)	(dBµV/m)	(dB)
11650	H	45.23		2.41	47.64	<i>)</i>	74	54	-6.36
17475	H	37.66		7.41	45.07		68.2		-23.13
	Н								
						/			
11650	V	45.18		2.41	47.59		74	54	-6.41
17475	V	40.12		7.41	47.53		68.2		-20.67
	V								
			11r	n(HT40) CH1	51: 5755M	Hz			
Frequency	Ant. Pol.	Peak reading	AV reading	Correction Factor	Emissio	n Level	Peak limit	AV limit	Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	ΑV (dBμV/m)	(dBµV/m)	(dBµV/m)	(dB)
11510	Н	44.73		2.47	47.2	(74	54	-6.8
17265	Н	37.25		6.62	43.87		68.2		-24.33
	Н								
-		<u>-</u>							
11510	V	44.59	-4.6	2.47	47.06	5)	74	54	-6.94
17265	V	38.57		6.62	45.19	J	68.2		-23.01
	V								
			11r	n(HT40) CH1	59: 5795M	Hz			
Frequency	Ant. Pol.	Peak reading	AV reading	Correction Factor	Emissio	n Level	Peak limit	AV limit	Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
11590	Ĥ	44.33		2.40	46.73		74	54	-7.27
17385	H	38.78	-16	7.15	45.93	5)	68.2	(0.)	-22.27
	Н								
11590	V	44.28		2.40	46.68	/	74	54	-7.32
	V	37.89		7.15	45.04	(68.2		-23.16
17385	V	01.00		7.10	45.04	· · ·	00.2		20.10

			11ac	(VHT20) CH	1149: 5745N	ИНz			
Frequency	Ant. Pol.	Peak reading	AV reading	Correction Factor	Emissio	n Level	Peak limit		Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	ΑV (dBμV/m)	(dBµV/m)	(dBµV/m)	(dB)
11490	Н	44.64		2.48	47.12		74	54	-6.88
17235	Н	37.47		6.50	43.97		68.2		-24.23
	Н								
,	(C))		(20)		(20			(¿Ġ`)	
11490	V	44.86		2.48	47.34		74	54	-6.66
17235	V	38.59		6.50	45.09		68.2		-23.11
	V								
			11ac	(VHT20) CH	1157: 5785N	ИHz			
Frequency	Ant. Pol.	Peak reading	AV reading	Correction Factor			Peak limit		Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
11570	H	43.68		2.42	46.1)	74	54	-7.9
17355	Н	36.35		7.03	43.38		68.2		-24.82
	Н								
11570	V	43.72		2.42	46.14		74	54	-7.86
17355	V	38.25		7.03	45.28		68.2		-22.92
	V								
			11ac	(VHT20) CH	1165: 5825	ИНz			
Frequency	Ant. Pol.	Peak	AV	Correction Factor		on Level	Peak limit	AV limit	Margin
(MHz)	H/V	reading (dBµV)	reading (dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
11650	Н	44.23		2.41	46.64	(74	54	-7.36
17475	Н	38.64		7.41	46.05		68.2		-22.15
	Н								
11650	V	44.17	-6.6	2.41	46.58	<u></u>	74	54	-7.42
17475	V	40.09		7.41	47.5	<i></i>	68.2		-20.7
	V								
			11ac	(VHT40) CH		ИНz			
Frequency	Ant. Pol.	Peak reading	AV reading	Correction Factor		on Level	Peak limit	AV limit	Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
11510	Ĥ	44.54		2.47	47.01	(74	54	-6.99
17265	H	37.23	-76	6.62	43.85	5)	68.2	(5-)	-24.35
	Н								
					!				
11510	V	43.68		2.47	46.15	/	74	54	-7.85
	V	36.27		6.62	42.89		68.2		-25.31
17265	v i	30.27		0.02	42.09	Y	00.2		20.01/

			11ac	(VHT40) CH	1159: 5795 N	ИНz			
Frequency	Ant. Pol.	Peak reading	AV reading	Correction Factor	Emissio	on Level	Peak limit		Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	ΑV (dBμV/m)	(dBµV/m)	(dBµV/m)	(dB)
11590	Н	43.38		2.40	45.78		74	54	-8.22
17385	Н	37.16		7.15	44.31		68.2		-23.89
	Н								
	(2G)		(20)			51)		(¿Ġ`)	
11590	V	42.54		2.40	44.94		74	54	-9.06
17385	V	38.44		7.15	45.59		68.2		-22.61
	V								
			11a	x(HE20) CH	149: 5745N	1Hz			
Frequency	Ant. Pol.	Peak reading	AV reading	Correction Factor	Emissio	Emission Level			Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
11490	H	45.27		2.48	47.75	J	74	54	-6.25
17235	Н	37.78		6.50	44.28		68.2		-23.92
	Н								
								-	
11490	V	45.03		2.48	47.51		74	54	-6.49
17235	V	38.06		6.50	44.56		68.2		-23.64
	V								
			11a	x(HE20) CH	157: 5785N	1Hz			
Frequency	Ant. Pol.	Peak reading	AV reading	Correction Factor		on Level	Peak limit	AV limit	Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
11570	Н	43.49		2.42	45.91	(74	54	-8.09
17355	Н	36.68		7.03	43.71		68.2		-24.49
	Н								
11570	V	44.59	-6.6	2.42	47.01	5))	74	54	-6.99
17355	V	38.24		7.03	45.27	<i></i>	68.2		-22.93
	V								
			11a	x(HE20) CH	165: 5825N	lHz			
Frequency	Ant. Pol.	Peak reading	AV reading	Correction Factor		n Level	Peak limit	AV limit	Margin
(MHz)	H/V	(dBµV)	(dBµV)	(dB/m)	Peak (dBµV/m)	AV (dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
11650	Ĥ	43.47		2.41	45.88		74	54	-8.12
17475	H	39.03	-16	7.41	46.44	5)	68.2	(0.)	-21.76
	Н								
11650	V	43.65		2.41	46.06	/	74	54	-7.94
17475	V	39.54		7.41	46.95		68.2		-21.25

Report No.: TCT240918E053

			11a	x(HE40) CH	151: 5755N	1Hz		<u> </u>	
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emission Peak (dBµV/m)	AV (dBµV/m)	Peak limit (dBµV/m)		Margin (dB)
11510	Н	43.72		2.47	46.19	/	74	54	-7.81
17265	Н	37.17		6.62	43.79		68.2		-24.41
	Н								
			(K			X 1			
11510	V	43.58	40	2.47	46.05	(``ر	74	54	-7.95
17265	V	36.64		6.62	43.26	-	68.2		-24.94
	V								
			11a	x(HE40) CH	159: 5795N	1Hz			
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emission Peak (dBµV/m)	AV (dBµV/m)	Peak limit (dBµV/m)		Margin (dB)
11590	(H)	44.56	-4^	2.40	46.96		74	54	-7.04
17385	(H)	37.47		7.15	44.62)	68.2		-23.58
	Н								
11590	V	43.66		2.40	46.06	/	74	54	-7.94
17385	V	38.13		7.15	45.28		68.2		-22.92

Note:

- 1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss Pre-amplifier
- 2. Margin (dB) = Emission Level (Peak) (dB μ V/m)-Average limit (dB μ V/m)
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.
- Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency. The highest test frequency is 40GHz.
- 5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

5.9. Frequency Stability Measurement

5.9.1. Test Specification

FCC Part15 Section 15.407(g) &Part2 J Section 2.1055
ANSI C63.10: 2013
The frequency tolerance shall be maintained within the band of operation frequency over a temperature variation of 0 degrees to 45 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C.
Spectrum Analyzer EUT AC/DC Power supply
The EUT was placed inside the environmental test chamber and powered by nominal AC/DC voltage. be Turn the EUT on and couple its output to a spectrum analyzer. c. Turn the EUT off and set the chamber to the highest temperature specified. d. Allow sufficient time (approximately 30 min) for the temperature of the chamber to stabilize. e. Repeat step 2 and 3 with the temperature chamber set to the lowest temperature. f The test chamber was allowed to stabilize at +20 degree C for a minimum of 30 minutes. The supply voltage was then adjusted on the EUT from 85% to 115% and the frequency record.
PASS
Pre-scan was performed at all models(11a,11n,11ac,11ax), the worst case (11ax) was found and test data was shown in this report.

Report No.: TCT240918E053

Test plots as follows:

Test mode:	802.11ax(HE20)	Freque	ency(MHz):		5180
Temperature (°C)	Voltage(V _{AC})	Measurement		Delta		Result
Temperature (C)	voltage(vac)	Frequenc	y(MHz)	Frequency(I	Hz)	Nesuit
45		518	0	0		PASS
35		5179	.98	-20000		PASS
25	120V	5179	.98	-20000		PASS
15	1200	518	0	0		PASS
5		5179	.98	-20000		PASS
0		5179	.98	-20000		PASS
	102V	5179	.98	-20000		PASS
25	120V	5179	.98	-20000)	PASS
	138V	518	0	0		PASS

Test mode:	802.11ax	(HE20) Freque	ency(MHz):	5200
Temperature (°C)	Voltage(VAC)	Measurement Frequency(MHz)	Delta Frequency(Hz)	Result
45		5199.98	-20000	PASS
35		5200	0	PASS
25	120V	5199.98	-20000	PASS
15	1200	5199.98	-20000	PASS
5		5199.98	-20000	PASS
0	(c)	5199.98	-20000	PASS
	102V	5200	0	PASS
25	120V	5200	0	PASS
	138V	5199.98	-20000	PASS

Test mode:	802.11ax(HE20) Freq	uency(MHz):	5240
Temperature (°C)	Voltage(VAC)	Measurement Frequency(MHz	Delta) Frequency(Hz)	Result
45	(xC)	5239.98	-20000	PASS
35		5240	0	PASS
25	120V	5239.98	-20000	PASS
15	1200	5239.98	-20000	PASS
5		5239.98	-20000	PASS
0		5240	0	PASS
	102V	5240	0	PASS
25	120V	5239.98	-20000	PASS
	138V	5239.98	-20000	PASS

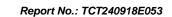
Test mode:	Test mode: 802.11ax(H		Freque	ency(MHz):		5745	
Temperature (°C)	Voltage(V _{AC})	Measu	rement	Delta		Result	
Temperature (C)	voitage(vac)	Frequen	cy(MHz)	Frequency(Hz)	Kesuit	
45	(c)	57	45	0		PASS	
35		574	5.02	20000		PASS	
25	120V	57	45	0		PASS	
15	1200	574	5.02	20000		PASS	
5		57	45	0		PASS	
0		57	45	0		PASS	
	102V	574	4.98	-20000		PASS	
25	120V	574	5.02	20000		PASS	7
(C)	138V	574	5.02	20000	")	PASS	O.)

Test mode:	802.11ax(HE20) Freque	ency(MHz):	5785
Temperature (°C)	Voltage(VAC)	Measurement Frequency(MHz)	Delta Frequency(Hz)	Result
45		5785	0	PASS
35		5784.98	-20000	PASS
25	120V	5784.98	-20000	PASS
15	1200	5785	0	PASS
5		5785	0	PASS
0		5785	0	PASS
(, (, ')	102V	5785	0	PASS
25	120V	5785	0	PASS
	138V	5785	0	PASS

Test mode:	802.11ax(HE20) Freque	ency(MHz):	5825
Temperature (°C)	Voltage(VAC)	Measurement Frequency(MHz)	Delta Frequency(Hz)	Result
45		5825	0	PASS
35		5825	0	PASS
25	120V	5825	0	PASS
15	1200	5825	0	PASS
5		5824.98	-20000	PASS
0		5825.02	20000	PASS
	102V	5825	0	PASS
25	120V	5824.98	-20000	PASS
	138V	5825	0	PASS

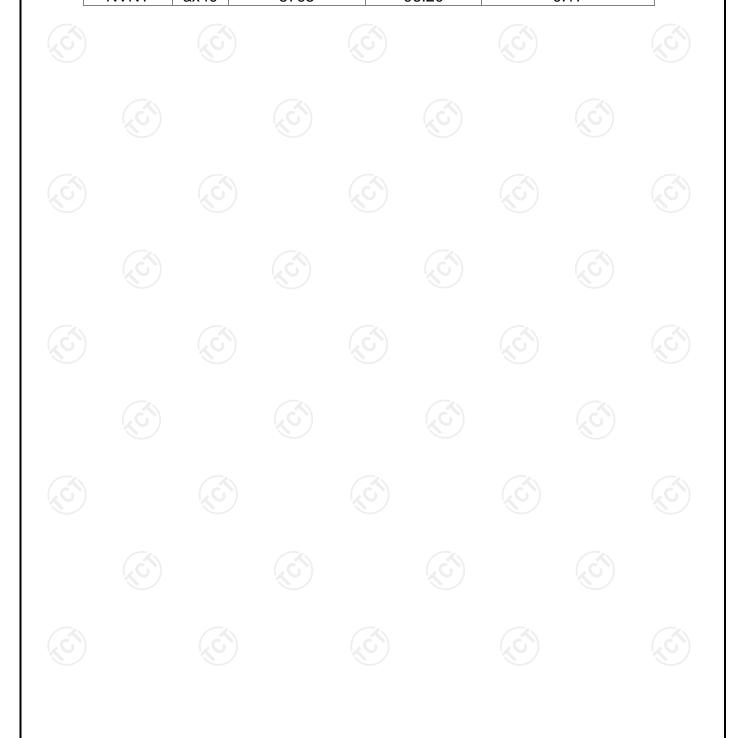
Test mode: 802.11ax(F		HE40)	IE40) Frequency(MHz):			5190	
Temperature (°C)	Voltage(V _{AC})	Measure	Measurement			Result	
Temperature (C)	voltage(vac)	Frequenc	y(MHz)	Frequency(Hz)	Nesuit	
45	(.c)	519	0	0		PASS	
35		519	0	0		PASS	
25	400\/	519	0	0		PASS	
15	120V	519	0	0		PASS	
5		519	0	G 0		PASS	
0		519	0	0		PASS	
	102V	519	0	0		PASS	
25	120V	519	0	0		PASS	
$(C_{\mathcal{O}})$	138V	519	0	0,0	*)	PASS	


Test mode: 802.11ax(H		HE40)	HE40) Frequency(MHz):			5230	
Temperature (°C)	Voltage(VAC)	Measurement Frequency(MHz)				Result	
45		523	30	0	-	PASS	
35		5230		0		PASS	
25	120V	523	30	0		PASS	
15	1200	523	30	0		PASS	
5		523	30	0		PASS	
0		523	30	0		PASS	
(,C)	102V	523	30	0		PASS	
25	120V	523	30	0		PASS	-
	138V	523	30	0		PASS	


Test mode:	802.11ax(HE40) Freque	ency(MHz):	5755
Temperature (°C)	Voltage(VAC)	Measurement Frequency(MHz)	Delta Frequency(Hz)	Result
45		5754.96	5754.96 -40000	
35		5755	0	PASS
25	120V	5754.96	-40000	PASS
15	1200	5755	0	PASS
5		5755	0	PASS
0		5755	0	PASS
	102V	5755	0	PASS
25	120V	5755	0	PASS
	138V	5755	0	PASS

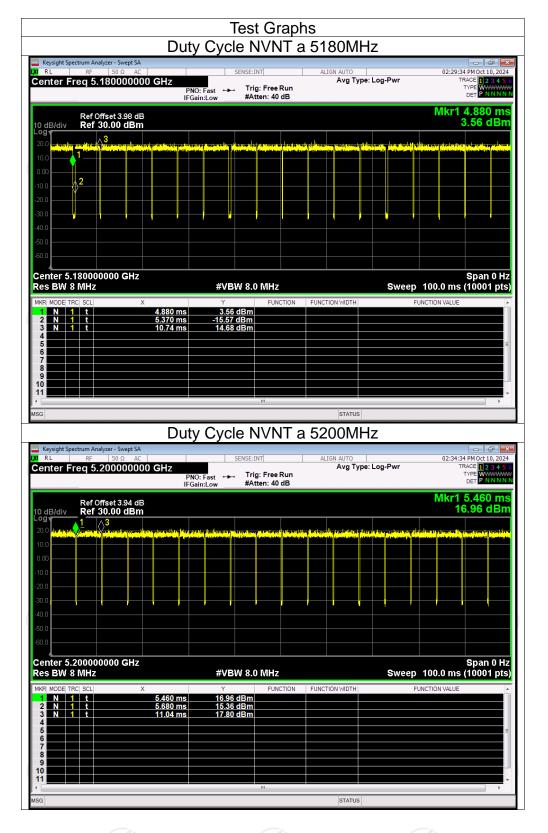
Report No.: TCT240918E053

Test mode: 802.11ax(l		HE40)	HE40) Frequency(MHz):			5795	
Temperature (°C)	Voltage(V _{AC})	Measu	rement	Delta		Result	
remperature (O)	voitage(v _{AC})	Frequen	cy(MHz)	Frequency(I	Hz)	Result	
45		57	95	0		PASS	
35		5794	1.96	-40000		PASS	
25	120V	57	95	0		PASS	
15	1200	57	95	- 0		PASS	
5 (0)		5794	1.96	-40000		PASS	
0		5795	5.04	40000		PASS	
	102V	57	95	0		PASS	
25	120V	57	95	0		PASS	
$(\mathcal{A}_{\mathcal{O}_{\mathcal{O}}})$	138V	57	95	0.0		PASS	(O_{i})

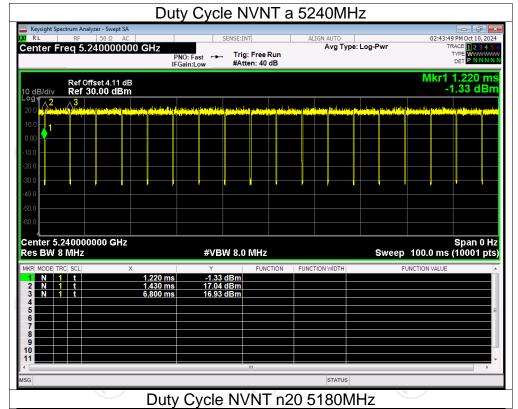

Appendix A: Test Result of Conducted Test

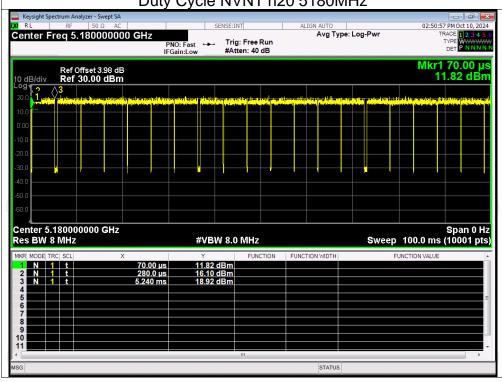
Duty Cycle

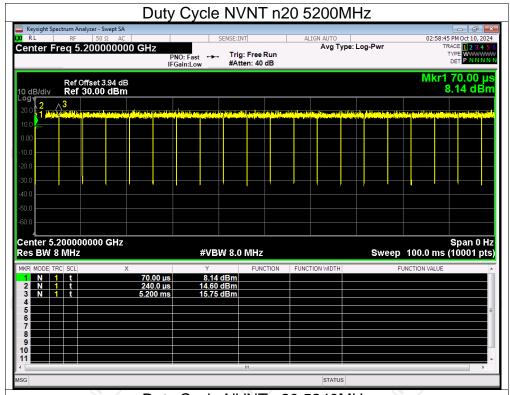
		Duty	Cycle	
Condition	Mode	Frequency (MHz)	Duty Cycle (%)	Correction Factor (dB)
NVNT	а	5180	95.20	0.21
NVNT	а	5200	96.24	0.17
NVNT	а	5240	96.14	0.17
NVNT	n20	5180	96.05	0.18
NVNT	n20	5200	97.54	0.11
NVNT	n20	5240	97.82	0.10
NVNT	n40	5190	93.98	0.27
NVNT	n40	5230	96.40	0.16
NVNT	ac20	5180	83.78	0.77
NVNT	ac20	5200	96.07	0.17
NVNT	ac20	5240	97.49	0.11
NVNT	ac40	5190	95.86	0.18
NVNT	ac40	5230	96.43	0.16
NVNT	ax20	5180	96.45	0.16
NVNT	ax20	5200	96.58	0.15
NVNT	ax20	5240	96.04	0.18
NVNT	ax40	5190	96.14	0.17
NVNT	ax40	5230	97.16	0.13
NVNT	а	5260	96.81	0.14
NVNT	а	5300	97.94	0.09
NVNT	а	5320	97.85	0.09
NVNT	n20	5260	96.69	0.15
NVNT	n20	5300	97.47	0.11
NVNT	n20	5320	97.72	0.10
NVNT	n40	5270	96.89	0.14
NVNT	n40	5310	96.80	0.14
NVNT	ac20	5260	97.52	0.11
NVNT	ac20	5300	97.58	0.11
NVNT	ac20	5320	97.39	0.11
NVNT	ac40	5270	97.49	0.11
NVNT	ac40	5310	97.73	0.10
NVNT	ax20	5260	96.61	0.15
NVNT	ax20	5300	96.84	0.14
NVNT	ax20	5320	96.85	0.14
NVNT	ax40	5270	97.09	0.13
NVNT	ax40	5310	96.71	0.15
NVNT	а	5745	97.80	0.10
NVNT	a	5785	96.97	0.13
NVNT	a	5825	96.58	0.15
NVNT	n20	5745	97.53	0.11
NVNT	n20	5785	96.98	0.13
NVNT	n20	5825	96.97	0.13
NVNT	n40	5755	97.59	0.11

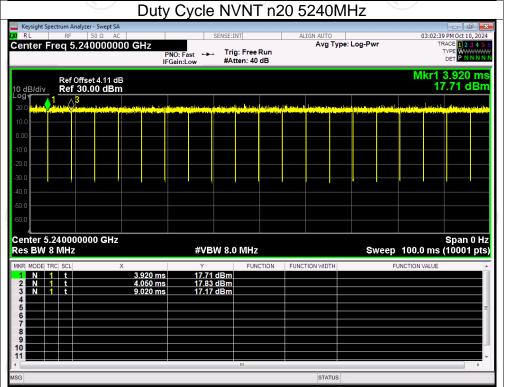

	Т	通	测	检	测
I (TERTING	CENTE	E TECH	MOLOGY

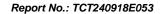
TESTING	CENTRE TEC	HNOLOGY		Report No.: TCT240918E053	3
NVNT	n40	5795	97.66	0.10	
NVNT	ac20	5745	97.91	0.09	
NVNT	ac20	5785	96.57	0.15	
NVNT	ac20	5825	96.97	0.13	
NVNT	ac40	5755	97.54	0.11	
NVNT	ac40	5795	97.47	0.11	
NVNT	ax20	5745	96.05	0.18	
NVNT	ax20	5785	96	0.18	
NVNT	ax20	5825	95.72	0.19	
NVNT	ax40	5755	95.85	0.18	
NVNT	ax40	5795	96.20	0.17	

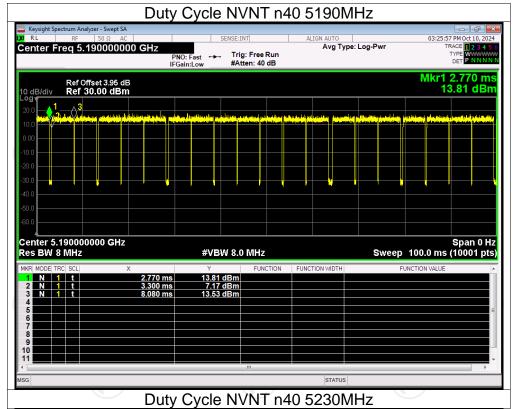


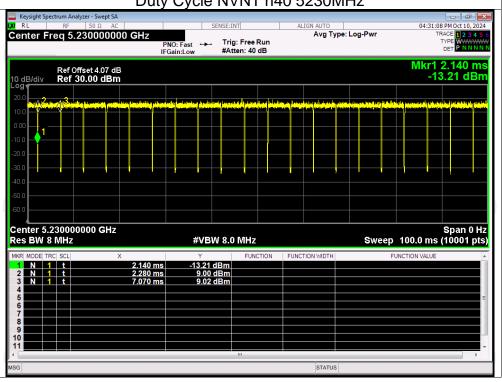


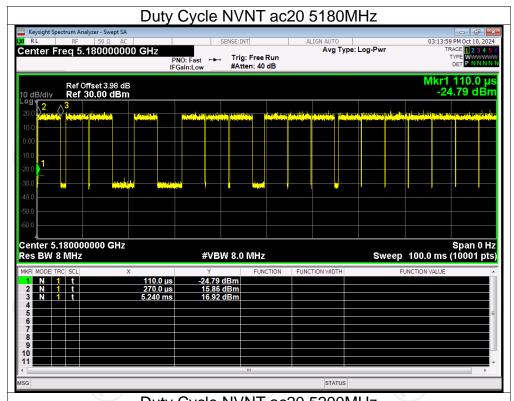


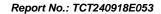


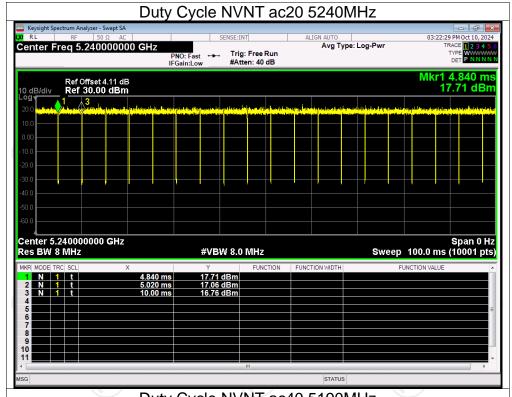


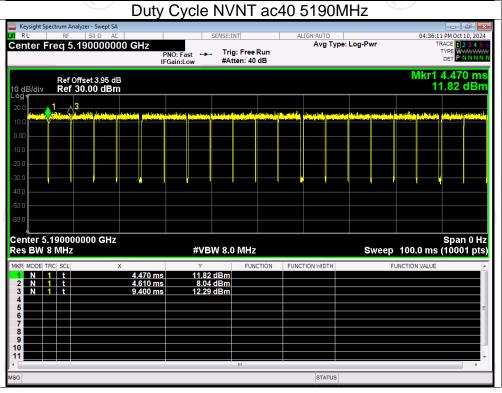


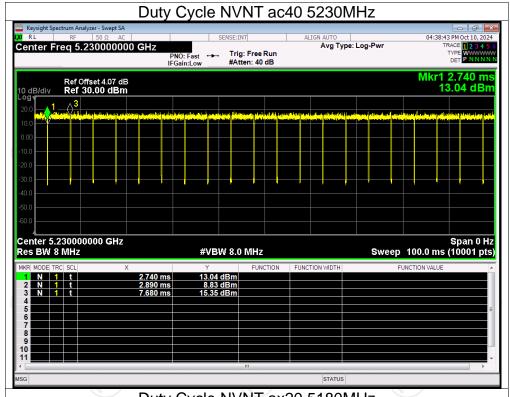


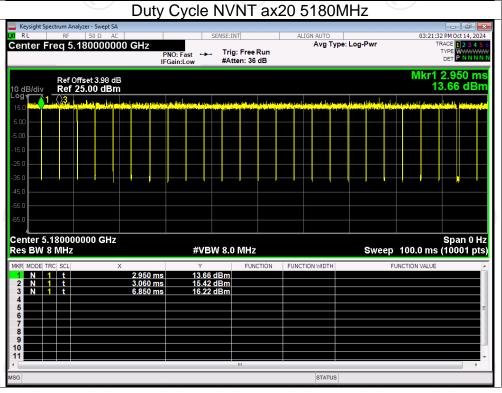


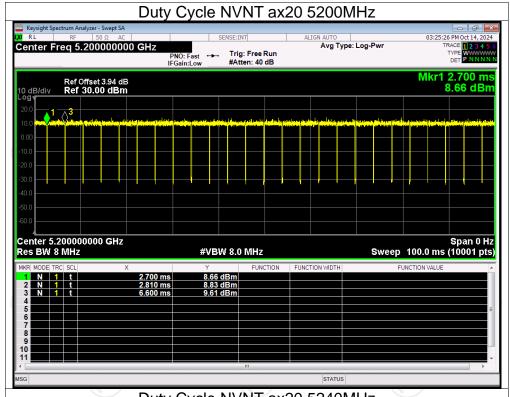


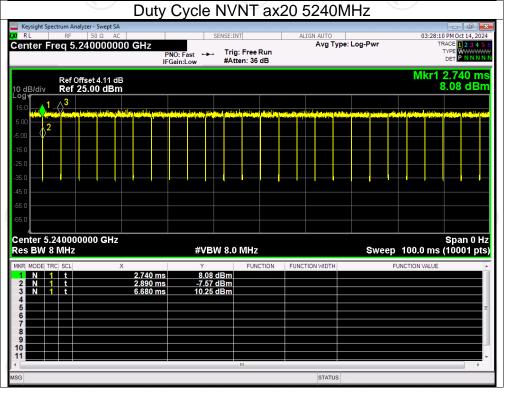


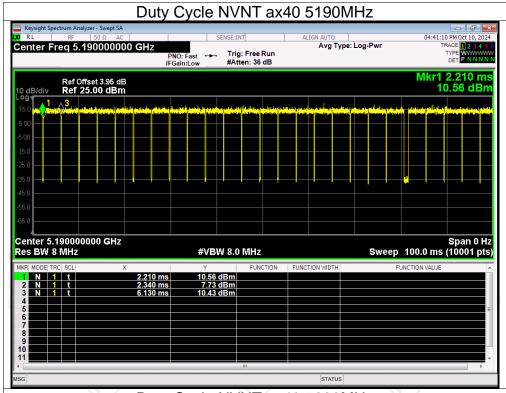


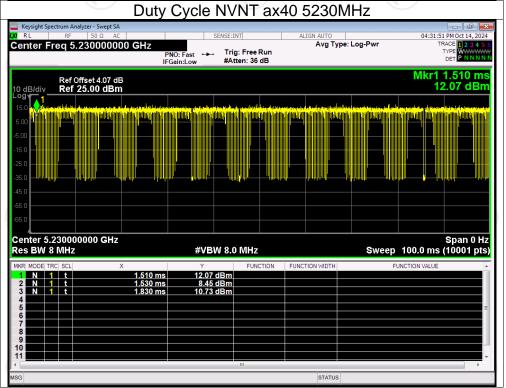


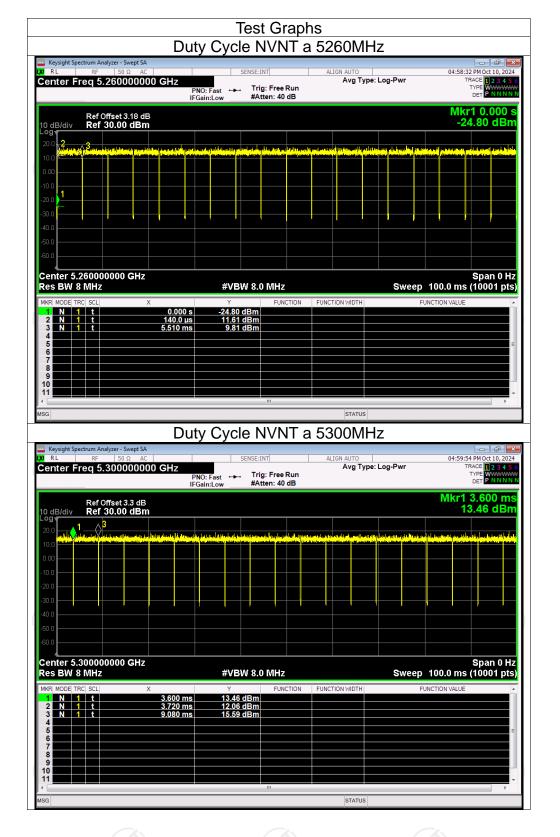


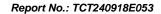


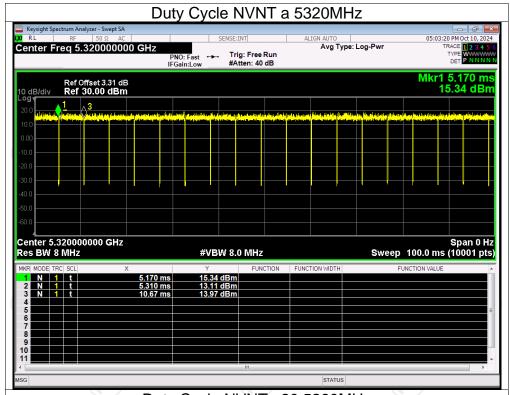


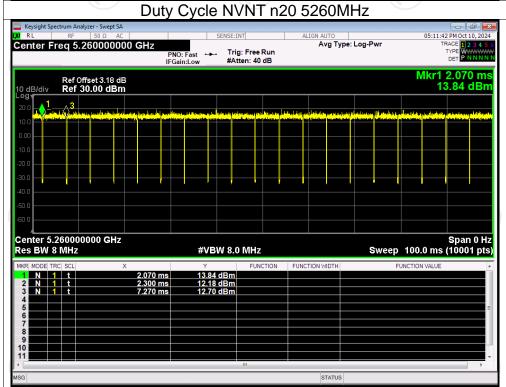


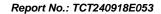


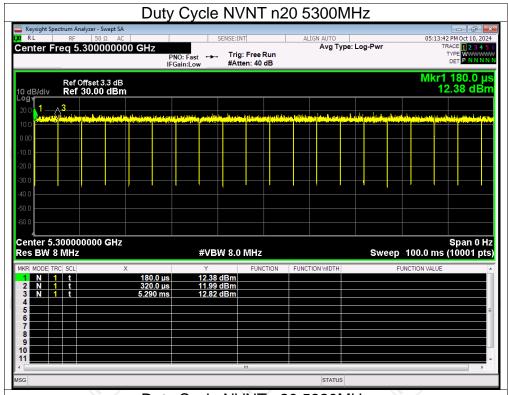


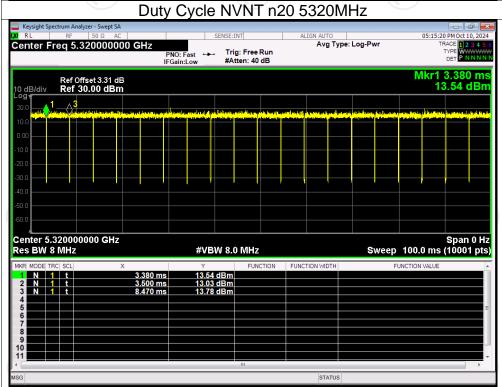


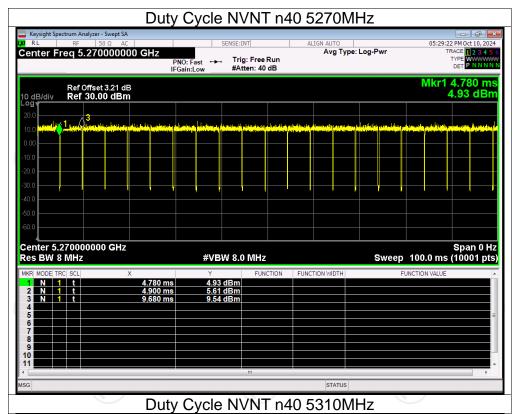


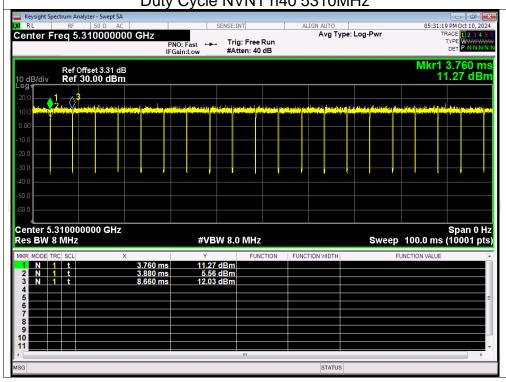


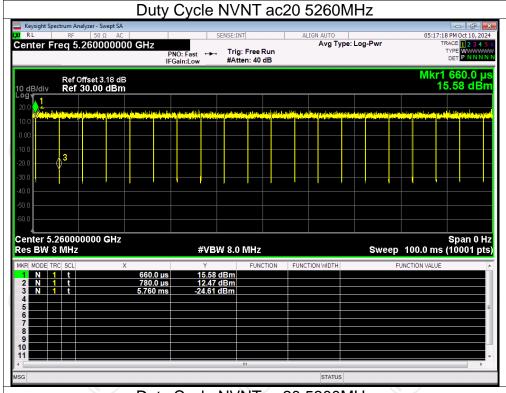


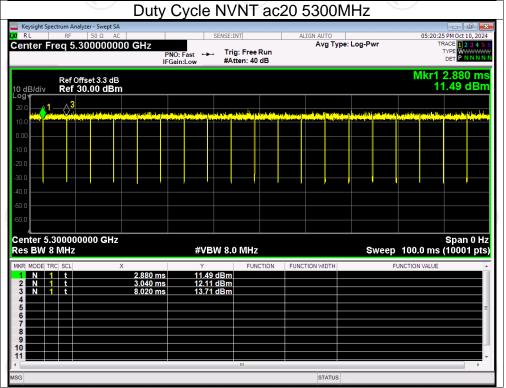


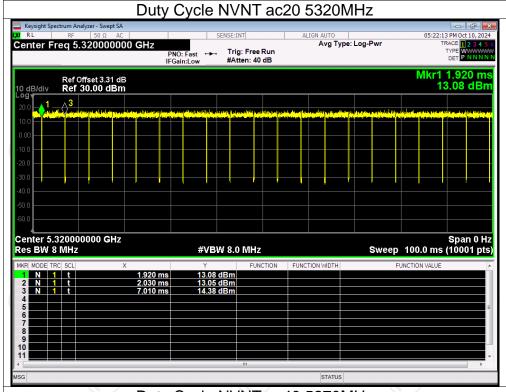


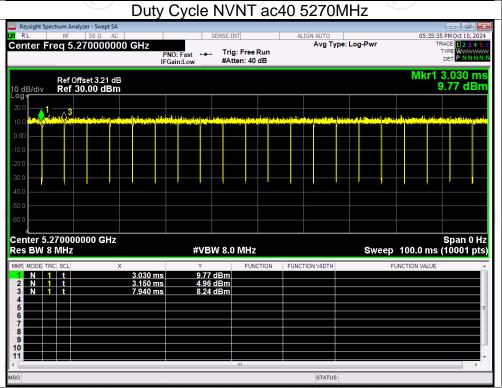


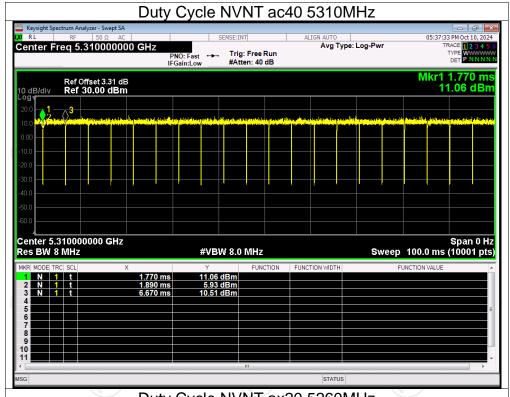


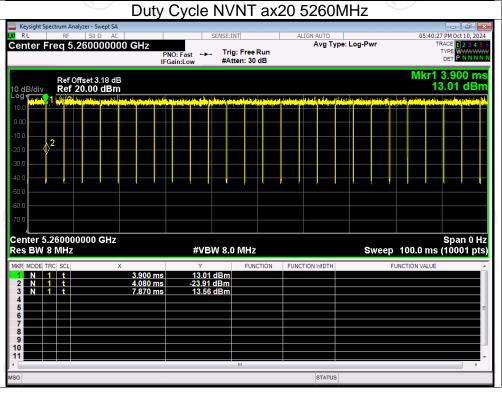


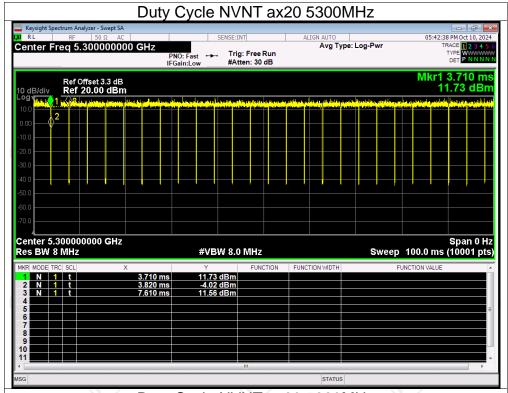


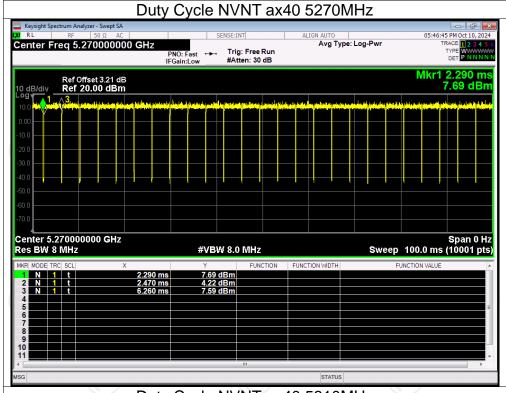


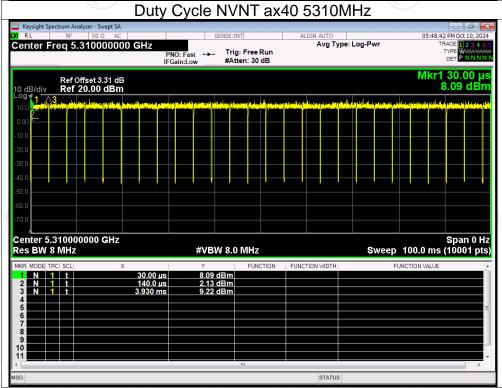


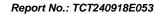


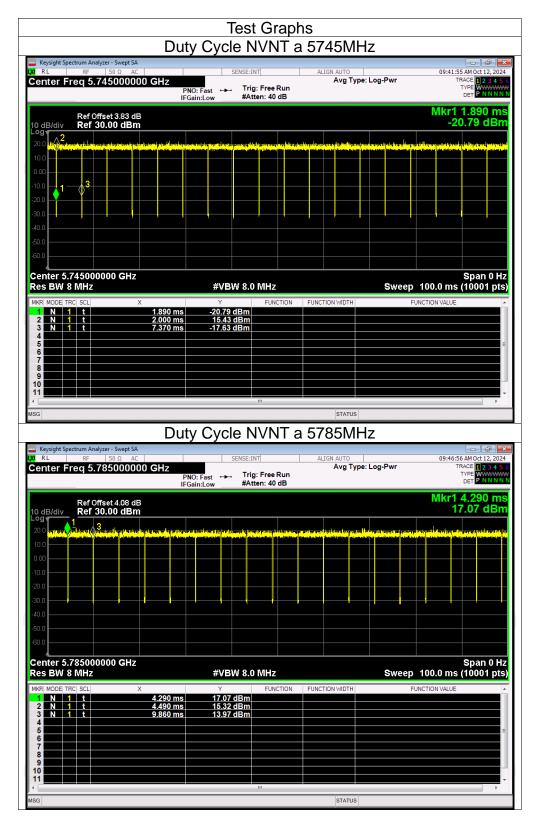


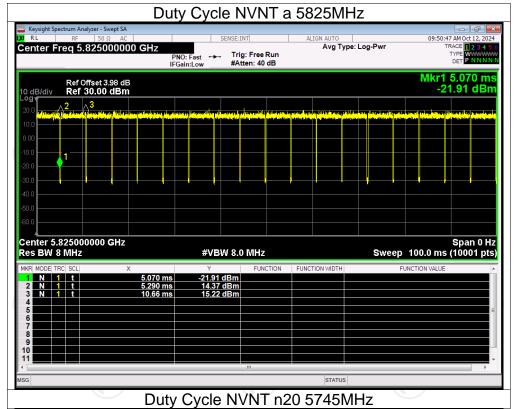


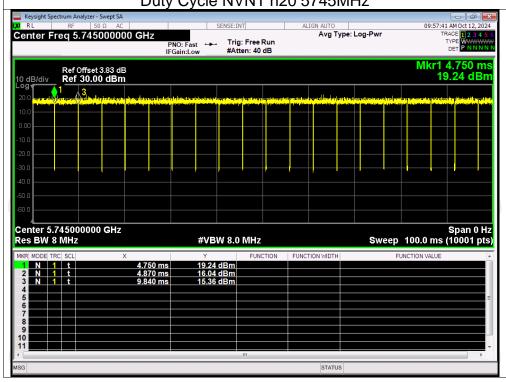


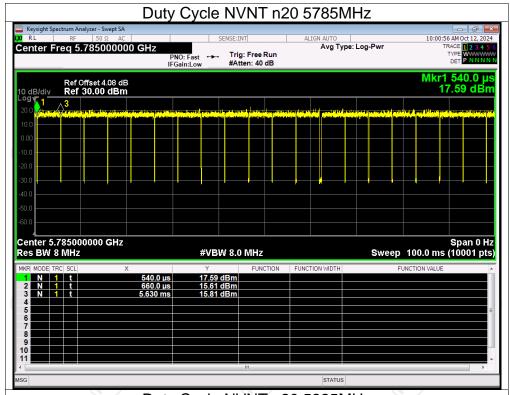


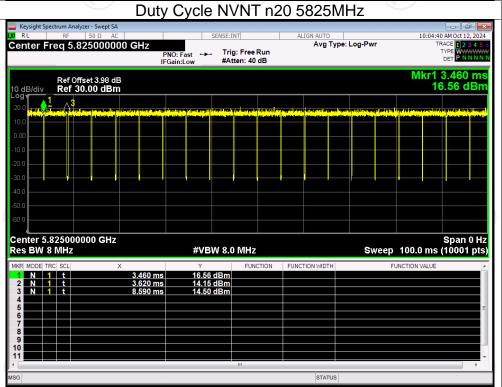


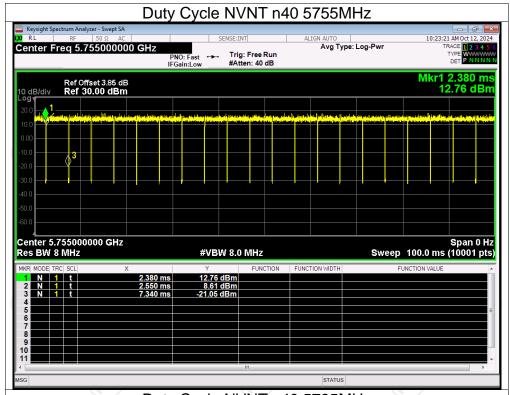


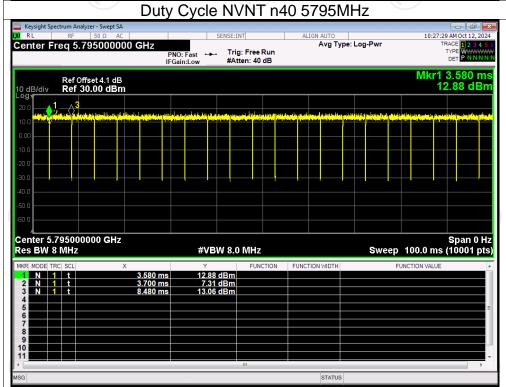


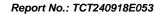


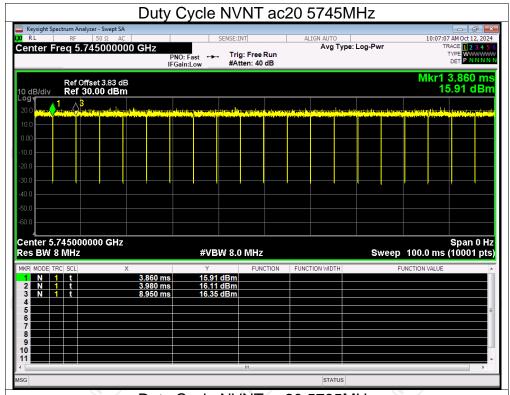


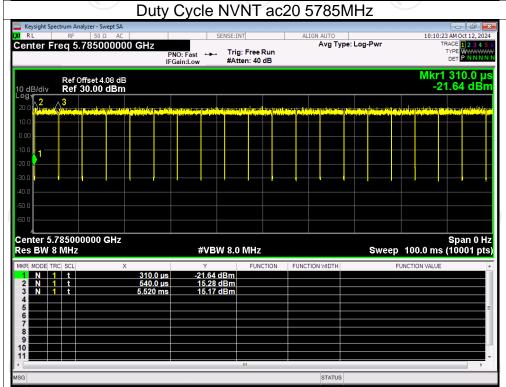


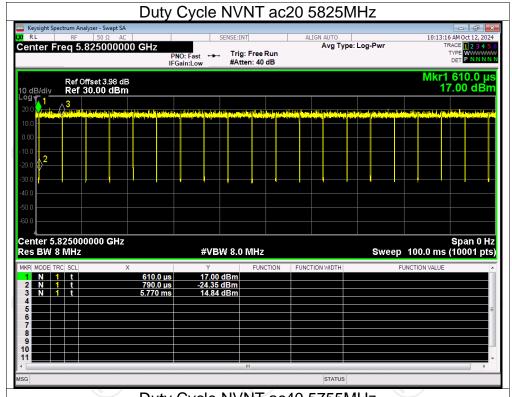


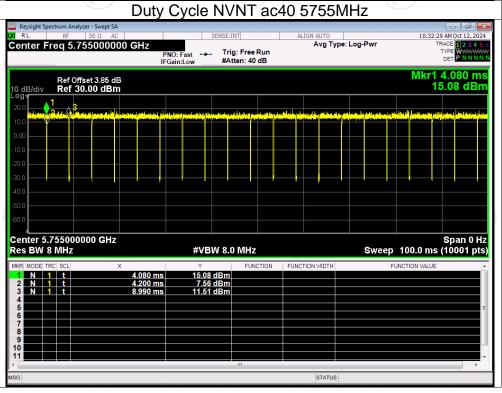


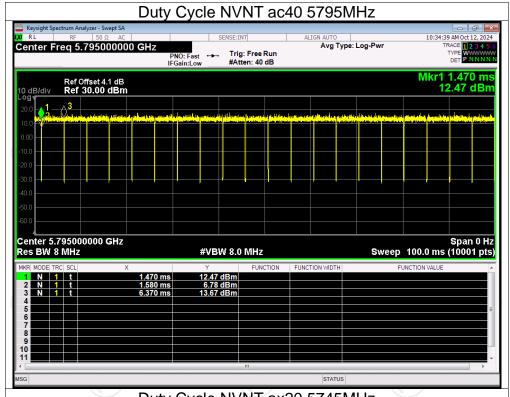


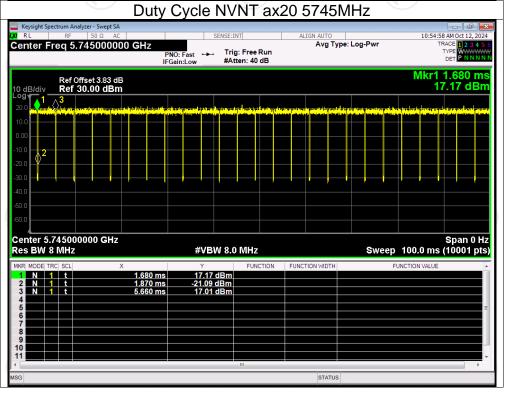


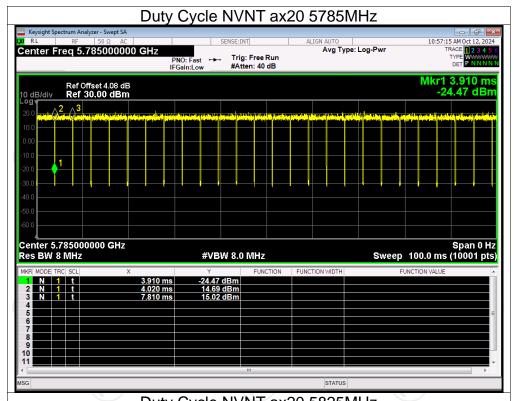


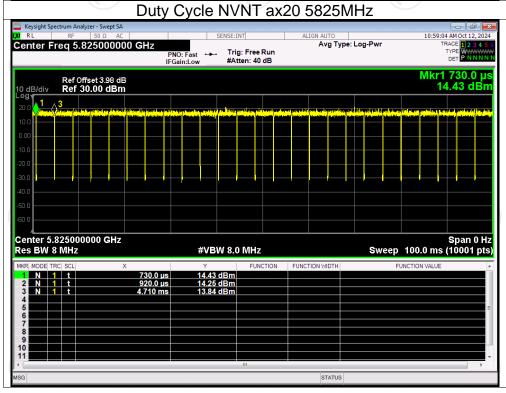


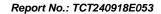


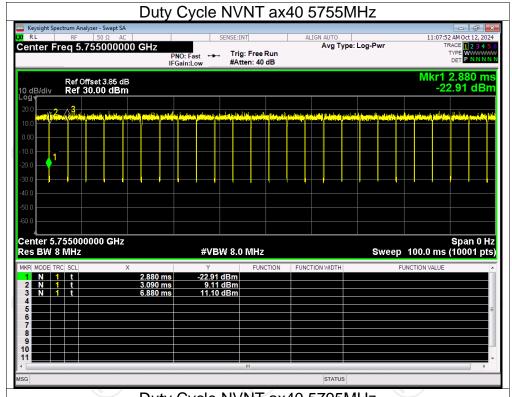


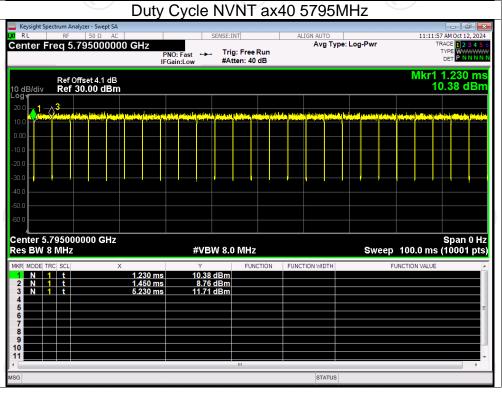


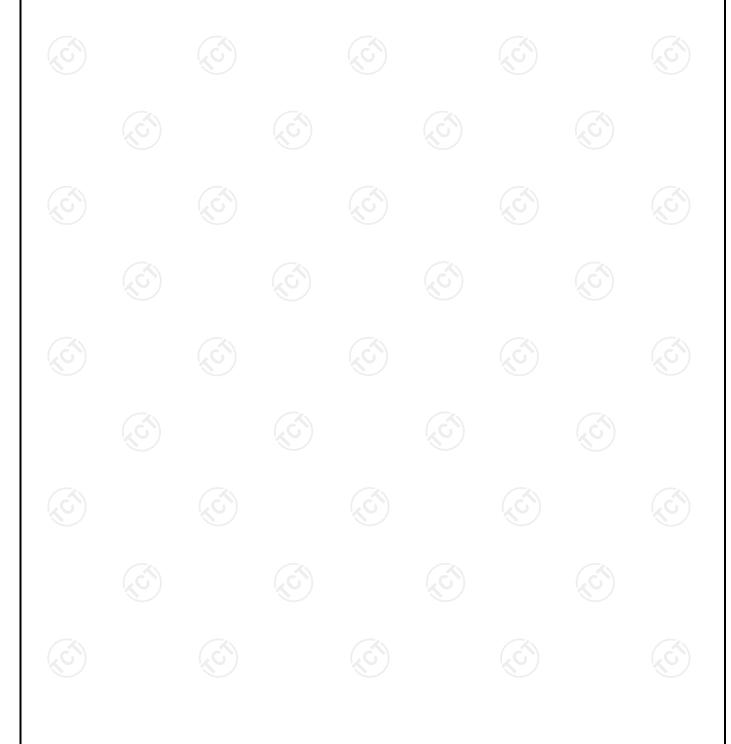


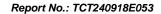




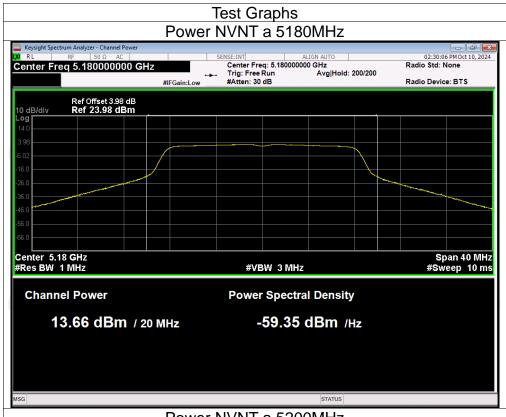








Maximum Conducted Output Power


Maximum Conducted Output Power											
Condition	Mode	Frequency (MHz)	Conducted Power (dBm)	Duty Factor (dB)	Total Power (dBm)	Limit (dBm)	Verdict				
NVNT	а	5180	13.66	0.21	13.87	24	Pass				
NVNT	а	5200	13.41	0.17	13.58	24	Pass				
NVNT	а	5240	15.22	0.17	15.39	24	Pass				
NVNT	n20	5180	13.89	0.18	14.07	24	Pass				
NVNT	n20	5200	13.24	0.11	13.35	24	Pass				
NVNT	n20	5240	15.10	0.10	15.20	24	Pass				
NVNT	n40	5190	13.51	0.27	13.78	24	Pass				
NVNT	n40	5230	14.39	0.16	14.55	24	Pass				
NVNT	ac20	5180	13.61	0.77	14.38	24	Pass				
NVNT	ac20	5200	13.15	0.17	13.32	24	Pass				
NVNT	ac20	5240	15.03	0.11	15.14	24	Pass				
NVNT	ac40	5190	13.52	0.18	13.70	24	Pass				
NVNT	ac40	5230	14.40	0.16	14.56	24	Pass				
NVNT	ax20	5180	13.33	0.16	13.49	24	Pass				
NVNT	ax20	5200	13.65	0.15	13.80	24	Pass				
NVNT	ax20	5240	13.79	0.18	13.97	24	Pass				
NVNT	ax40	5190	13.14	0.17	13.31	24	Pass				
NVNT	ax40	5230	13.61	0.13	13.74	24	Pass				
NVNT	а	5260	10.51	0.14	10.65	24	Pass				
NVNT	a	5300	10.29	0.09	10.38	24	Pass				
NVNT	а	5320	11.08	0.09	11.17	24	Pass				
NVNT	n20	5260	10.67	0.15	10.82	24	Pass				
NVNT	n20	5300	10.29	0.11	10.40	24	Pass				
NVNT	n20	5320	11.23	0.10	11.33	24	Pass				
NVNT	n40	5270	10.51	0.14	10.65	24	Pass				
NVNT	n40	5310	10.83	0.14	10.97	24	Pass				
NVNT	ac20	5260	10.70	0.11	10.81	24	Pass				
NVNT	ac20	5300	10.31	0.11	10.42	24	Pass				
NVNT	ac20	5320	11.24	0.11	11.35	24	Pass				
NVNT	ac40	5270	10.30	0.11	10.41	24	Pass				
NVNT	ac40	5310	10.86	0.10	10.96	24	Pass				
NVNT	ax20	5260	10.62	0.15	10.77	24	Pass				
NVNT	ax20	5300	10.22	0.14	10.36	24	Pass				
NVNT	ax20	5320	11.27	0.14	11.41	24	Pass				
NVNT	ax40	5270	10.41	0.13	10.54	24	Pass				
NVNT	ax40	5310	10.65	0.15	10.80	24	Pass				
NVNT	а	5745	14.30	0.10	14.40	30	Pass				
NVNT	a	5785	13.82	0.13	13.95	30	Pass				
NVNT	а	5825	12.75	0.15	12.90	30	Pass				
NVNT	n20	5745	14.45	0.13	14.56	30	Pass				
NVNT	n20	5785	14.11	0.11	14.24	30	Pass				
NVNT	n20	5825	13.13	0.13	13.26	30	Pass				
NVNT	n40	5755	14.37	0.13	14.48	30	Pass				
NVNT	n40	5795	13.67	0.10	13.77	30	Pass				

TCT	通测	检测						
	TESTING CEN	ITRE TECHNOLOGY	Report No.: TCT240918					
NVNT	ac20	5745	14.44	0.09	14.53	30	Pass	
NVNT	ac20	5785	14.12	0.15	14.27	30	Pass	
NVNT	ac20	5825	13.02	0.13	13.15	30	Pass	
NVNT	ac40	5755	14.23	0.11	14.34	30	Pass	
NVNT	ac40	5795	13.68	0.11	13.79	30	Pass	
NVNT	ax20	5745	14.39	0.18	14.57	30	Pass	
NVNT	ax20	5785	14.19	0.18	14.37	30	Pass	
NVNT	ax20	5825	13.22	0.19	13.41	30	Pass	
NVNT	ax40	5755	14.30	0.18	14.48	30	Pass	
NVNT	ax40	5795	13.62	0.17	13.79	30	Pass	

