TEST REPORT

FCC ID	2BE6N-K100		
Test Report No		(\mathbf{c}^{*})	(c ¹)
Date of issue	Apr. 03, 2024		N. N
Testing laboratory	SHENZHEN TONGCE TE		<u></u>
Testing location/ address:	2101 & 2201, Zhenchang Fuhai Subdistrict, Bao'an 518103, People's Republi	Factory, Renshan I District, Shenzhen,	
Applicant's name::		(\mathcal{C})	(c)
Address:	21642 GOLDEN POPPY States	COURT, WALNUT,	CA 91749, United
Manufacturer's name :	GIRAFIT INC		$\langle \mathcal{C} \rangle$
Address:	21642 GOLDEN POPPY States		
Standard(s):	FCC CFR Title 47 Part 15 FCC KDB 558074 D01 15 ANSI C63.10:2013		
Product Name::	K100 Indoor Camera		
Trade Mark :	N/A		$\left(\mathcal{C} \right)$
Model/Type reference :	GRF-K100W, K100, CK00)8	
Rating(s):	Adapter Information: Model: SA0101-0501000U Input: AC 100–240V, 50/6 Output: DC 5.0V, 1.0A, 5.	0Hz, 0.35A	
Date of receipt of test item	Mar. 22, 2024		
Date (s) of performance of test:	Mar. 22, 2024 ~ Apr. 03, 2	2024	
Tested by (+signature) :	Ronaldo LUO	R-nales	GWOISE THE
Check by (+signature) :	Beryl ZHAO	Boyl 2	TCT
Approved by (+signature):	Tomsin	10ms	5 84

This report shall not be reproduced except in full, without the written approval of SHENZHEN TONGCE TESTING LAB. This document may be altered or revised by SHENZHEN TONGCE TESTING LAB personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample.

Table of Contents

1. General Product Information	
1.1. EUT description	
1.2. Model(s) list	
1.3. Operation Frequency	3
2. Test Result Summary	
3. General Information	
3.1. Test environment and mode	5
3.2. Description of Support Units	5
4. Facilities and Accreditations	
4.1. Facilities	
4.2. Location	6
4.3. Measurement Uncertainty	
5. Test Results and Measurement Data	7
5.1. Antenna requirement	7
5.2. Conducted Emission	
5.3. Conducted Output Power	
5.4. Emission Bandwidth	
5.5. Power Spectral Density	14
5.6. Conducted Band Edge and Spurious Emission Measurement	15
5.7. Radiated Spurious Emission Measurement	
Appendix A: Test Result of Conducted Test	
Appendix B: Photographs of Test Setup	
Appendix C: Photographs of EUT	

1. General Product Information

1.1. EUT description

Product Name:	K100 Indoor Camera	
Model/Type reference:	GRF-K100W	
Sample Number	TCT240322E029-0101	
Bluetooth Version:	V5.4	$\langle \mathcal{G} \rangle$
Operation Frequency:	2402MHz~2480MHz	
Channel Separation:	2MHz	
Data Rate:	LE 1M PHY, LE 2M PHY	
Number of Channel:	40	
Modulation Type:	GFSK	
Antenna Type:	Metal Antenna	
Antenna Gain:	4.49dBi	
Rating(s):	Adapter Information: Model: SA0101-0501000UA Input: AC 100–240V, 50/60Hz, 0.35A Output: DC 5.0V, 1.0A, 5.0W	

Note: The antenna gain listed in this report is provided by applicant, and the test laboratory is not responsible for this parameter.

1.2. Model(s) list

No.	Model No.	Tested with				
1	GRF-K100W	\boxtimes				
Other models	K100, CK008					
	Noto: CPE K100W is tested model, other models are derivative models. The models are identical in sircuit and PCP					

Note: GRF-K100W is tested model, other models are derivative models. The models are identical in circuit and PCB layout, only different on the model names. So the test data of GRF-K100W can represent the remaining models.

1.3. Operation Frequency

			C				
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
		<u>(</u> C).	··· ×	5)	<u>(</u> ()		$(\underline{\mathcal{O}})$
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz
Remark: Channel 0, 19 & 39 have been tested.							

Page 3 of 64

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

2. Test Result Summary

Requirement	CFR 47 Section	Result
Antenna requirement	§15.203/§15.247 (c)	PASS
AC Power Line Conducted Emission	§15.207	PASS
Conducted Peak Output Power	§15.247 (b)(3)	PASS
6dB Emission Bandwidth	§15.247 (a)(2)	PASS
Power Spectral Density	§15.247 (e)	PASS
Band Edge	§15.247(d)	PASS
Spurious Emission	§15.205/§15.209	PASS

Note:

- 1. PASS: Test item meets the requirement.
- 2. Fail: Test item does not meet the requirement.
- 3. N/A: Test case does not apply to the test object.
- 4. The test result judgment is decided by the limit of test standard.

Page 4 of 64

3. General Information

3.1. Test environment and mode

Operating Environment:							
Condition	Radiated Emission						
Temperature:	20.3 °C	24.9 °C					
Humidity:	47 % RH	51 % RH					
Atmospheric Pressure:	1010 mbar	1010 mbar					
Test Software:							
Software Information:	putty						
Power Level:	2f						
Test Mode:							

Engineer mode:

Keep the EUT in continuous transmitting by select channel and modulations

The sample was placed 0.8m & 1.5m for the measurement below & above 1GHz above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case(Z axis) are shown in Test Results of the following pages.

3.2. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Equipment	Model No.	Serial No.	FCC ID	Trade Name	
				1	

Note:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.
- 3. For conducted measurements (Output Power, 6dB Emission Bandwidth, Power Spectral Density, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

4. Facilities and Accreditations

4.1. Facilities

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 645098

SHENZHEN TONGCE TESTING LAB

Designation Number: CN1205

The testing lab has been registered and fully described in a report with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

IC - Registration No.: 10668A-1

- SHENZHEN TONGCE TESTING LAB
- CAB identifier: CN0031

The testing lab has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing.

4.2. Location

SHENZHEN TONGCE TESTING LAB

Address: 2101 & 2201, Zhenchang Factory Renshan Industrial Zone, Fuhai Subdistrict, Bao'an District, Shenzhen, Guangdong, 518103, People's Republic of China TEL: +86-755-27673339

4.3. Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

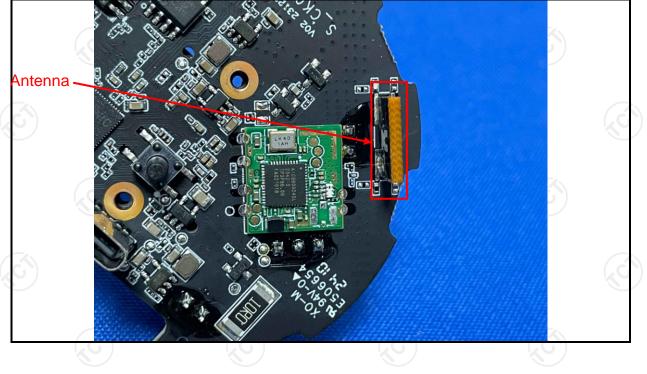
No.	Item	MU
1	Conducted Emission	± 3.10 dB
2	RF power, conducted	± 0.12 dB
3	Spurious emissions, conducted	± 0.11 dB
4	All emissions, radiated(<1 GHz)	± 4.56 dB
5	All emissions, radiated(1 GHz - 18 GHz)	± 4.22 dB
6	All emissions, radiated(18 GHz- 40 GHz)	± 4.36 dB

5. Test Results and Measurement Data

5.1. Antenna requirement

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:


An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

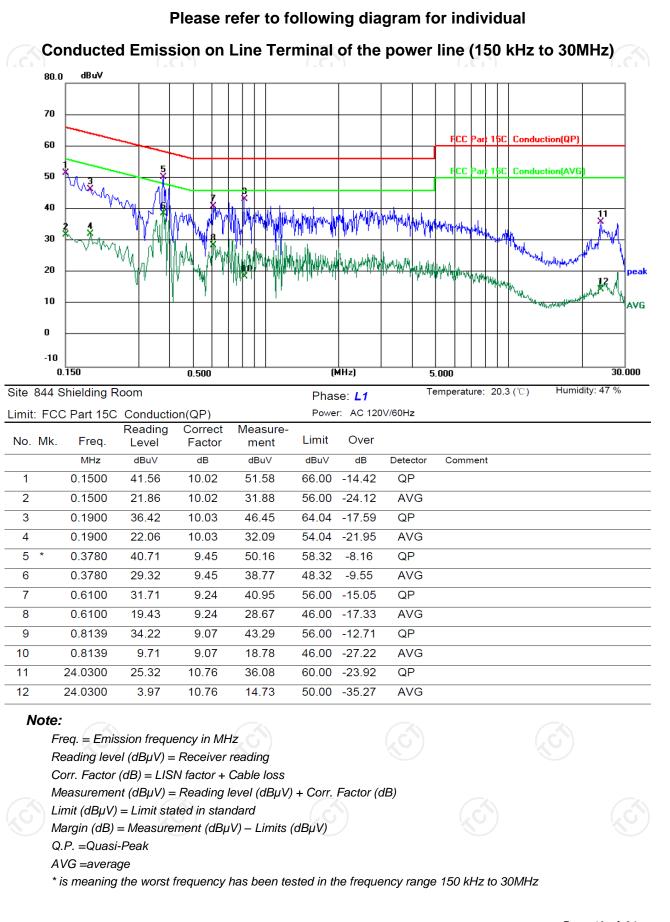
(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

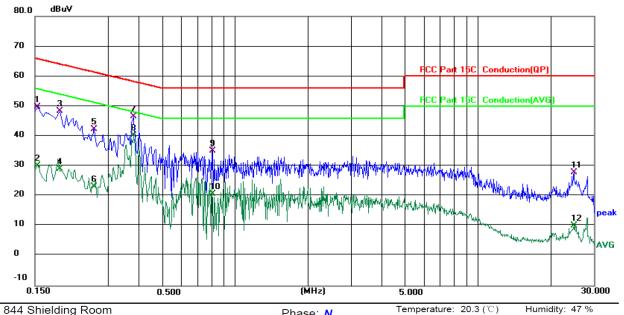
E.U.T Antenna:

The Bluetooth antenna is metal antenna which permanently attached, and the best case gain of the antenna is 4.49dBi.

5.2. Conducted Emission

5.2.1. Test Specification


Test Requirement:	FCC Part15 C Section 15.207						
Test Method:	ANSI C63.10:2013						
Frequency Range:	150 kHz to 30 MHz						
Receiver setup:	RBW=9 kHz, VBW=30	kHz, Sweep time	e=auto				
	Frequency range	Limit ((dBuV)				
	(MHz)	Quasi-peak	Average				
Limits:	0.15-0.5	66 to 56*	56 to 46*				
	0.5-5	56	46				
	5-30	60	50				
	Reference	e Plane					
Test Setup:	E.U.T AC powe Test table/Insulation plane	Remark: E.U T: Equipment Under Test LISN: Line Impedence Stabilization Network					
Test Mode:	Transmitting Mode						
Test Procedure:	 The E.U.T is connected to an adapter through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum emission, the relative positions of equipment and all of the interface cables must be changed according to the line of t						
	ANSI C63.10:2013 on conducted measurement. PASS						



	Conducted Emission Shielding Room Test Site (843)									
(Equipment	Manufacturer	r Model Serial Numbe		Calibration Due					
Ň	EMI Test Receiver R&S Line Impedance Stabilisation Schwarzbeck Newtork(LISN)		ESCI3	100898	Jun. 29, 2024					
			NSLK 8126	8126453	Jan. 31, 2025					
	Line-5 TCT		CE-05	/	Jul. 03, 2024					
	EMI Test Software	Shurple Technology	EZ-EMC	1	1 68					

5.2.3. Test data

TCT通测检测 TESTING CENTRE TECHNOLOGY

Conducted Emission on Neutral Terminal of the power line (150 kHz to 30MHz)

Limit: FCC Part 15C Conduction(QP)					Powe	er: AC 120)V/60Hz	
No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.1539	39.80	10.00	49.80	65.79	-15.99	QP	
2	0.1539	20.17	10.00	30.17	55.79	-25.62	AVG	
3	0.1900	38.49	10.01	48.50	64.04	-15.54	QP	
4	0.1900	18.94	10.01	28.95	54.04	-25.09	AVG	
5	0.2620	32.56	9.83	42.39	61.37	-18.98	QP	
6	0.2620	13.34	9.83	23.17	51.37	-28.20	AVG	
7	0.3820	37.19	9.43	46.62	58.24	-11.62	QP	
8 *	0.3820	30.78	9.43	40.21	48.24	-8.03	AVG	
9	0.8100	26.19	9.03	35.22	56.00	-20.78	QP	
10	0.8100	11.67	9.03	20.70	46.00	-25.30	AVG	
11	24.9140	17.26	10.74	28.00	60.00	-32.00	QP	
12	24.9140	-0.58	10.74	10.16	50.00	-39.84	AVG	

Note1:

Freq. = Emission frequency in MHz Reading level $(dB\mu V) = Receiver reading$ Corr. Factor (dB) = LISN factor + Cable loss Measurement $(dB\mu V) = Reading \, level \, (dB\mu V) + Corr. Factor (dB)$ Limit $(dB\mu V) = Limit$ stated in standard Margin (dB) = Measurement (dB μ V) – Limits (dB μ V) Q.P. =Quasi-Peak AVG =average

* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

Note2: Speed for 1M and 2M modulations of EUT have been tested, but the test data only show the worst case in this report, and we found the worst case is 1M speed modulation. Measurements were conducted in all three channels (high, middle, low), and the worst case Mode (Middle channel) was submitted only.

5.3. Conducted Output Power

5.3.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)
Test Method:	KDB 558074 D01 v05r02
Limit:	30dBm
Test Setup:	
Test Mode:	Refer to item 3.1
Test Procedure:	 Set spectrum analyzer as following: a) Set the RBW ≥ DTS bandwidth. b) Set VBW ≥ 3 × RBW. c) Set span ≥ 3 x RBW d) Sweep time = auto couple. e) Detector = peak. f) Trace mode = max hold. g) Allow trace to fully stabilize. h) Use peak marker function to determine the peak amplitude level.
Test Result:	PASS

5.3.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 28, 2024
Combiner Box	Ascentest	AT890-RFB	/	/
$\langle \mathcal{O} \rangle$	$\langle \mathcal{O} \rangle$	(\mathcal{G})	(\mathcal{S})	

5.4. Emission Bandwidth

5.4.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a)(2)
Test Method:	KDB 558074 D01 v05r02
Limit:	>500kHz
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Refer to item 3.1
Test Procedure:	 Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6dB bandwidth must be greater than 500 kHz. Measure and record the results in the test report.
Test Result:	PASS

5.4.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 28, 2024
Combiner Box	Ascentest	AT890-RFB	9 1	

5.5. Power Spectral Density

5.5.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (e)
Test Method:	KDB 558074 D01 v05r02
Limit:	The peak power spectral density shall not be greater than 8dBm in any 3kHz band at any time interval of continuous transmission.
Test Setup:	
	Spectrum Analyzer EUT
Test Mode:	Refer to item 3.1
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW): 3 kHz ≤ RBW ≤ 100 kHz. Video bandwidth VBW ≥ 3 x RBW. In order to make an accurate measurement, set the span to 1.5 times DTS Channel Bandwidth. (6dB BW) Detector = peak, Sweep time = auto couple, Trace mode = max hold, Allow trace to fully stabilize. Use the peak marker function to determine the maximum power level. Measure and record the results in the test report.
Test Result:	PASS

5.5.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jun. 28, 2024
Combiner Box	Ascentest	AT890-RFB	/	/

5.6. Conducted Band Edge and Spurious Emission Measurement

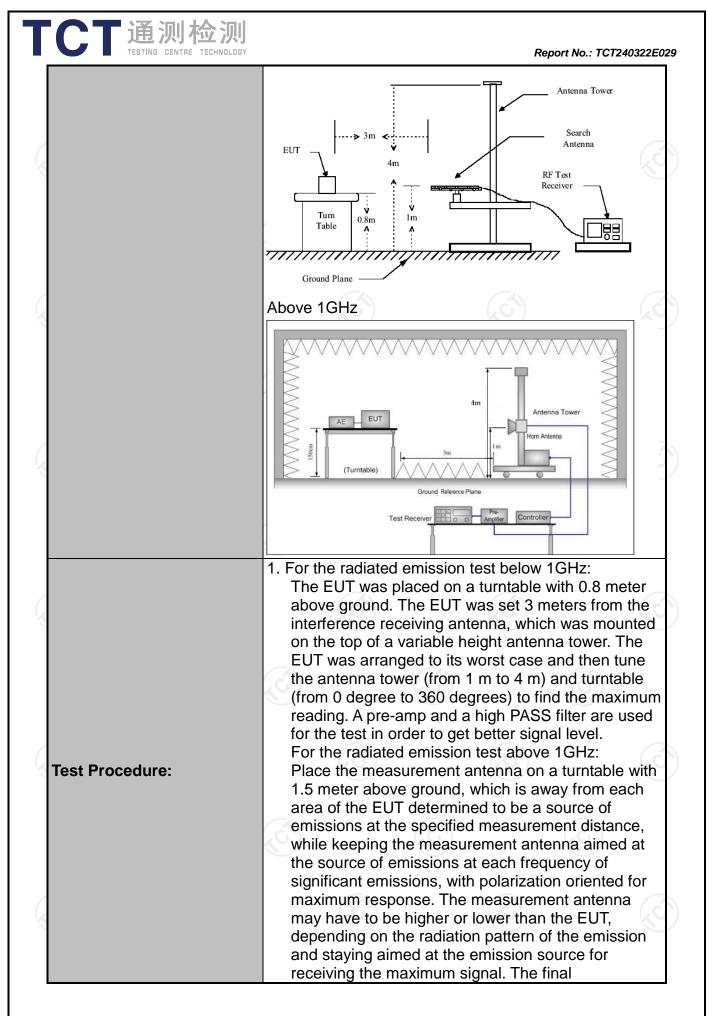
5.6.1. Test Specification

TCT通测检测 TESTING CENTRE TECHNOLOGY

Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	KDB 558074 D01 v05r02
Limit:	In any 100 kHz bandwidth outside of the authorized frequency band, the emissions which fall in the non-restricted bands shall be attenuated at least 20 dB / 30dB relative to the maximum PSD level in 100 kHz by RF conducted measurement and radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).
Test Setup:	
	Spectrum Analyzer EUT
Test Mode:	Refer to item 3.1
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz, VBW=300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB per 15 247(d)
	 15.247(d). 4. Measure and record the results in the test report. 5. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

5.6.2. Test Instruments

	Name	Manufacturer	Model No.	Serial Number	Calibration Due
Sp An	ectrum alyzer	Agilent	N9020A	MY49100619	Jun. 28, 2024
	biner Box	Ascentest	AT890-RFB	1	1


5.7. Radiated Spurious Emission Measurement

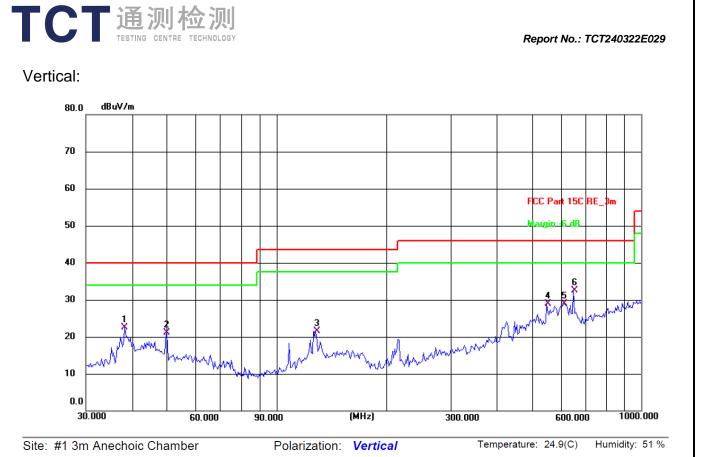
5.7.1. Test Specification

TCT 通测检测 TESTING CENTRE TECHNOLOGY

Test Requirement:	FCC Part15	C Section	15.209			8
Test Method:	ANSI C63.10):2013				
Frequency Range:	9 kHz to 25 (GHz				2
Measurement Distance:	3 m	N.	9		R.)
Antenna Polarization:	Horizontal &	Vertical				
Operation mode:	Refer to item	n 3.1	(
	Frequency 9kHz- 150kHz 150kHz-	Detector Quasi-peak Quasi-peak		VBW 1kHz 30kHz	Quasi	Remark i-peak Value i-peak Value
Receiver Setup:	30MHz 30MHz-1GHz	Quasi-peak	120KHz	300KHz	Quasi	i-peak Value
	Above 1GHz	Peak Peak	1MHz 1MHz	3MHz 10Hz		ak Value rage Value
	Frequen	су	Field Str (microvolts			asurement nce (meters)
_imit:	0.009-0.4		2400/F(300
	0.490-1.7	/	24000/F	(KHZ)		30 30
	30-88		100		120	30
	88-216		100		3	
	216-96		200			3
	Above 9		500			3
		(`ر`	((°)		
	Frequency		Field Strength (microvolts/meter)		Measurement Distance (meters)	
	Above 1GHz	,	500	3	6	Average
			5000	3	S	Peak
	For radiated	emissions	s below 30		Compute	* - («
Test setup:	30MHz to 10	Turn table	Im Im Im		eceiver	

Page 17 of 64


CT通测检测 TESTING CENTRE TECHNOLOGY	Report No.: TCT240322E0
	 measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane. 2. Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level 3. For measurement below 1GHz, If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported. 4. Use the following spectrum analyzer settings: (1) Span shall wide enough to fully capture the emission being measured; (2) Set RBW=120 kHz for f < 1 GHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold; (3) Set RBW = 1 MHz, VBW= 3MHz for f > 1 GHz for peak measurement. For average measurement: VBW = 10 Hz, when duty cycle is no less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.
Test mode:	Refer to section 3.1 for details
Test results:	PASS


5.7.2. Test Instruments

TCT通测检测 TESTING CENTRE TECHNOLOGY

	Radiated En	nission Test Site	e (966)	
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
EMI Test Receiver	R&S	ESIB7	100197	Jun. 29, 2024
Spectrum Analyzer	R&S	FSQ40	200061	Jun. 29, 2024
Pre-amplifier	SKET	LNPA_0118G- 45	SK2021012 102	Jan. 31, 2025
Pre-amplifier	SKET	LNPA_1840G- 50	SK2021092 03500	Jan. 31, 2025
Pre-amplifier	HP	8447D	2727A05017	Jun. 27, 2024
Loop antenna	Schwarzbeck	FMZB1519B	00191	Jul. 02, 2024
Broadband Antenna	Schwarzbeck	VULB9163	340	Jul. 01, 2024
Horn Antenna	Schwarzbeck	BBHA 9120D	631	Jul. 01, 2024
Horn Antenna	Schwarzbeck	BBHA 9170	00956	Feb. 02, 2025
Antenna Mast	Keleto	RE-AM		
Coaxial cable	SKET	RC-18G-N-M	1	Jan. 31, 2025
Coaxial cable	SKET	RC_40G-K-M	1	Jan. 31, 2025
EMI Test Software	Shurple Technology	EZ-EMC	KO KO	1

Page 20 of 64

2 50.0566 40.00 QP 33.82 -12.65 21.17 -18.83 Ρ 128.1129 34.05 -12.49 21.56 43.50 -21.94 QP Ρ 3 4 550.9480 34.65 -5.70 28.95 46.00 -17.05 QP Ρ 616.3716 32.85 -3.85 29.00 5 46.00 -17.00 QP Ρ 6 651.9417 35.73 -3.26 32.47 46.00 -13.53 QP Ρ

Limit

40.00

(dBuV/m) (dBuV/m)

Power: AC 120V/60Hz

Detector

QP

P/F

Ρ

Remark

Margin

(dB)

-17.56

- **Note:** 1. The low frequency, which started from 9KHz~30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported
 - 2. Speed for 1M and 2M modulations of EUT have been tested, but the test data only show the worst case in this report, and we found the worst case is 1M speed modulation. Measurements were conducted in all three channels (high, middle, low), and the worst case Mode (Middle channel) was submitted only.

3. Freq. = Emission frequency in MHz Measurement (dBμV/m) = Reading level (dBμV) + Corr. Factor (dB) Correction Factor= Antenna Factor + Cable loss – Pre-amplifier Limit (dBμV/m) = Limit stated in standard Margin (dB) = Measurement (dBμV/m) – Limits (dBμV/m)
* is meaning the worst frequency has been tested in the test frequency range

Level

22.44

Factor

(dB/m)

-12.56

Limit: FCC Part 15C RE_3m

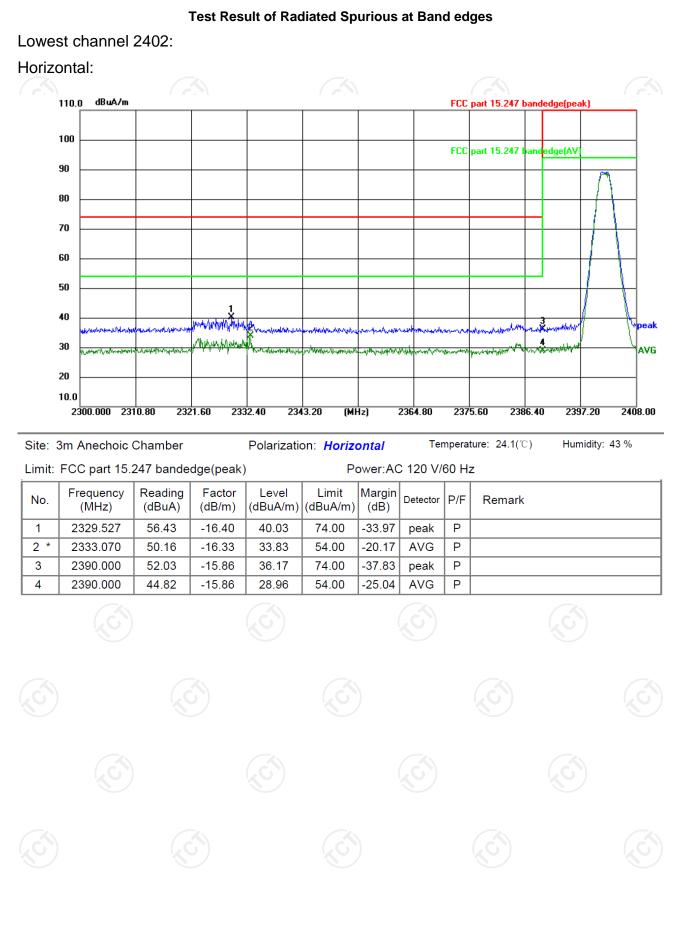
Frequency

(MHz)

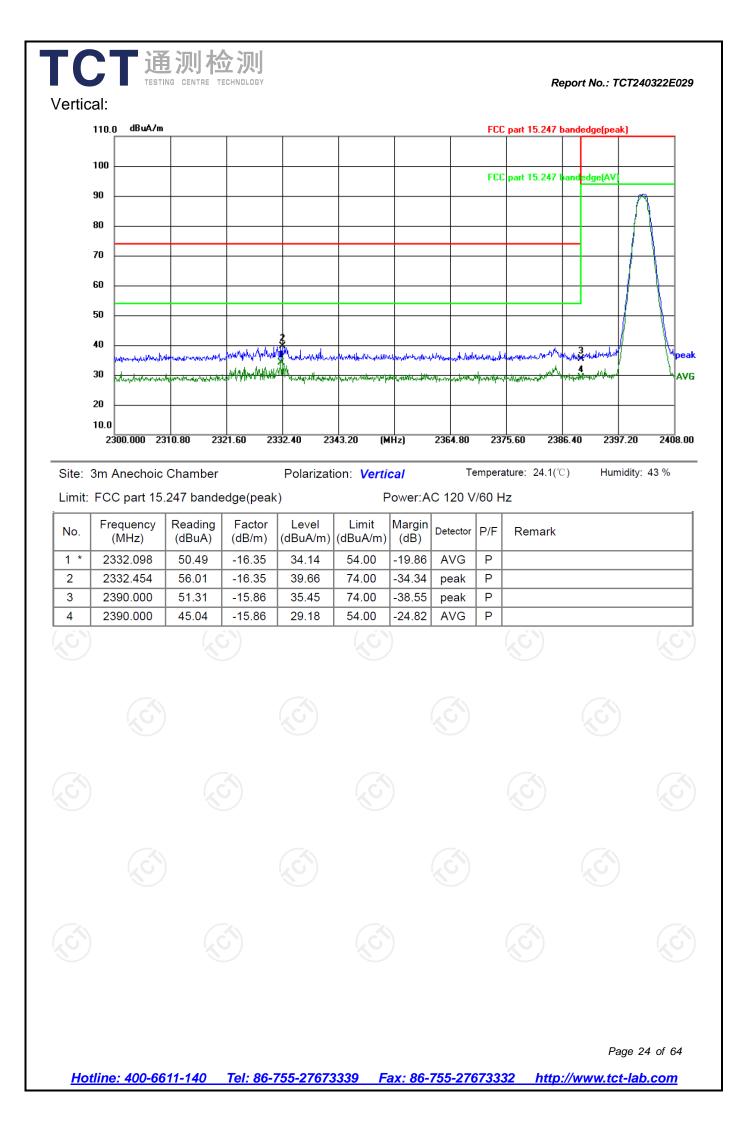
38.3462

No.

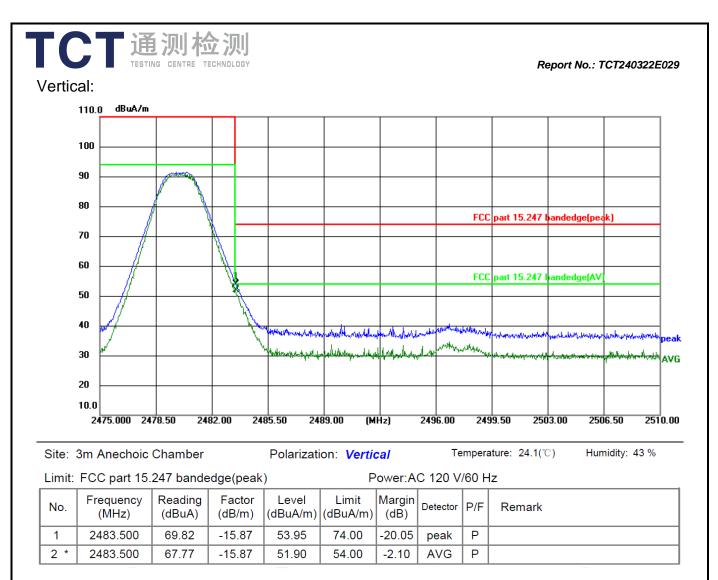
1


Reading

(dBuV)


35.00

Page 22 of 64



Page 23 of 64

	st channel	2480:										
	ontal:	2.001										
	110.0 dBuA/m											
	100											
9	90	Prostor										
1	BO	$ \land$						FCC	part 15.247 I	andedge(pe	ak)	-
-	70											
I	60 <u> </u>							FCC	part 15.247			_
ļ	50							FLL	part 15.247 1	andedge(Av		
	40			N								
	30		٩	a show a hard a show a show	her months		yand and me			and an and an		••••• • •••₽€
					In the second second	ewilling frankering and	No per co		terender og for ander	antikenten pieten antiken eta	h-dr-m-analyse	A
	20											
	2475.000 24	78.50 248	B2.00 24	185.50 24	189.00 (M	Hz)	2496.00	249	9.50 250)3.00 250	06.50	2510.
ite: 3	Bm Anechoic	Chamber		Polarizat	ion: <i>Horiz</i>	ontal	Te	mpera	ture: 24.1(%	C) Hur	midity: 4	3 %
	3m Anechoic FCC part 15.		dge(peak				Te C 120 V			C) Hur	midity: 4	3 %
			dge(peak Factor (dB/m)	() Level		ower:A Margin	C 120 V			C) Hur	nidity: 4	3 %
mit: No. 1	FCC part 15. Frequency (MHz) 2483.500	247 bande Reading (dBuA) 69.56	Factor (dB/m) -15.87	() Level (dBuA/m) 53.69	P Limit (dBuA/m) 74.00	ower:A Margin (dB) -20.31	C 120 V Detector peak	/60 H P/F P	Z	C) Hur	midity: 4	.3 %
mit: Io. 1	FCC part 15. Frequency (MHz)	247 bande Reading (dBuA)	Factor (dB/m)	() Level (dBuA/m)	P Limit (dBuA/m)	ower:A Margin (dB)	C 120 V	/60 H P/F	Z	C) Hur	nidity: 4	.3 %
mit: Io. 1	FCC part 15. Frequency (MHz) 2483.500	247 bande Reading (dBuA) 69.56	Factor (dB/m) -15.87	() Level (dBuA/m) 53.69	P Limit (dBuA/m) 74.00	ower:A Margin (dB) -20.31	C 120 V Detector peak	/60 H P/F P	Z	D) Hur	nidity: 4	13 %
mit:	FCC part 15. Frequency (MHz) 2483.500	247 bande Reading (dBuA) 69.56	Factor (dB/m) -15.87	() Level (dBuA/m) 53.69	P Limit (dBuA/m) 74.00	ower:A Margin (dB) -20.31	C 120 V Detector peak	/60 H P/F P	Z	2) Hur	nidity: 4	.3 %
mit: Io. 1	FCC part 15. Frequency (MHz) 2483.500	247 bande Reading (dBuA) 69.56	Factor (dB/m) -15.87	() Level (dBuA/m) 53.69	P Limit (dBuA/m) 74.00	ower:A Margin (dB) -20.31	C 120 V Detector peak	/60 H P/F P	Z	C) Hur	nidity: 4	.3 %
mit: Io. 1	FCC part 15. Frequency (MHz) 2483.500	247 bande Reading (dBuA) 69.56	Factor (dB/m) -15.87	() Level (dBuA/m) 53.69	P Limit (dBuA/m) 74.00	ower:A Margin (dB) -20.31	C 120 V Detector peak	/60 H P/F P	Z	C) Hur	nidity: 4	3%
mit: Io. 1	FCC part 15. Frequency (MHz) 2483.500	247 bande Reading (dBuA) 69.56	Factor (dB/m) -15.87	() Level (dBuA/m) 53.69	P Limit (dBuA/m) 74.00	ower:A Margin (dB) -20.31	C 120 V Detector peak	/60 H P/F P	Z	C) Hur	nidity: 4	
mit: Io. 1	FCC part 15. Frequency (MHz) 2483.500	247 bande Reading (dBuA) 69.56	Factor (dB/m) -15.87	() Level (dBuA/m) 53.69	P Limit (dBuA/m) 74.00	ower:A Margin (dB) -20.31	C 120 V Detector peak	/60 H P/F P	Z	C) Hur	nidity: 4	
mit: Io. 1	FCC part 15. Frequency (MHz) 2483.500	247 bande Reading (dBuA) 69.56	Factor (dB/m) -15.87	() Level (dBuA/m) 53.69	P Limit (dBuA/m) 74.00	ower:A Margin (dB) -20.31	C 120 V Detector peak	/60 H P/F P	Z	C) Hur	nidity: 4	
mit: Io. 1	FCC part 15. Frequency (MHz) 2483.500	247 bande Reading (dBuA) 69.56	Factor (dB/m) -15.87	() Level (dBuA/m) 53.69	P Limit (dBuA/m) 74.00	ower:A Margin (dB) -20.31	C 120 V Detector peak	/60 H P/F P	Z	C) Hur	nidity: 4	
mit: Io. 1	FCC part 15. Frequency (MHz) 2483.500	247 bande Reading (dBuA) 69.56	Factor (dB/m) -15.87	() Level (dBuA/m) 53.69	P Limit (dBuA/m) 74.00	ower:A Margin (dB) -20.31	C 120 V Detector peak	/60 H P/F P	Z	C) Hur	nidity: 4	
mit: Io. 1	FCC part 15. Frequency (MHz) 2483.500	247 bande Reading (dBuA) 69.56	Factor (dB/m) -15.87	() Level (dBuA/m) 53.69	P Limit (dBuA/m) 74.00	ower:A Margin (dB) -20.31	C 120 V Detector peak	/60 H P/F P	Z	C) Hur	nidity: 4	
mit: Io. 1	FCC part 15. Frequency (MHz) 2483.500	247 bande Reading (dBuA) 69.56	Factor (dB/m) -15.87	() Level (dBuA/m) 53.69	P Limit (dBuA/m) 74.00	ower:A Margin (dB) -20.31	C 120 V Detector peak	/60 H P/F P	Z	C) Hur	nidity: 4	
mit: Io. 1	FCC part 15. Frequency (MHz) 2483.500	247 bande Reading (dBuA) 69.56	Factor (dB/m) -15.87	() Level (dBuA/m) 53.69	P Limit (dBuA/m) 74.00	ower:A Margin (dB) -20.31	C 120 V Detector peak	/60 H P/F P	Z	C) Hur	midity: 4	
mit: Io. 1	FCC part 15. Frequency (MHz) 2483.500	247 bande Reading (dBuA) 69.56	Factor (dB/m) -15.87	() Level (dBuA/m) 53.69	P Limit (dBuA/m) 74.00	ower:A Margin (dB) -20.31	C 120 V Detector peak	/60 H P/F P	Z	C) Hur	midity: 4	

Note: Speed for 1M and 2M modulations of EUT have been tested, but the test data only show the worst case in this report, and we found the worst case is 2M speed modulation.

Frequency (MHz)	Ant. Pol.	Peak	A \ /						
()	H/V	reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)	Peak		Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4804	Н	43.55		0.66	44.21		74	54	-9.79
7206	Н	33.71		9.50	43.21		74	54	-10.79
	Н								
	1		1			1		I	
4804	V	43.48		0.66	44.14	×	74	54	-9.86
7206	S V	33.29	-+ <u>-</u> C	9.50	42.79	<u> </u>	74	54	-11.21
	V				"				

Above 1GHz

Middle channel: 2440 MHz

CT 通测检测 TESTING CENTRE TECHNOLOGY

Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Peak	A \ /	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4880	Н	42.29		0.99	43.28		74	54	-10.72
7320	Н	33.26		9.87	43.13		74	54	-10.87
	Н				(
ļ			Ň)					
4880	V	43.88		0.99	44.87		74	54	-9.13
7320	V	33.37		9.87	43.24		74	54	-10.76
	V								

High chanr	nel: 2480 N	ЛНz						
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Peak	Peak limit (dBµV/m)		Margin (dB)
4960	Н	43.71		1.33	45.04	74	54	-8.96
7440	H	35.10		10.22	45.32	74	54	-8.68
	Н					 		
4960	V	42.85		1.33	44.18	 74	54	-9.82
7440	V	33.47		10.22	43.69	 74	54	-10.31
	V			@				

Note:

1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss - Pre-amplifier

2. Margin (dB) = Emission Level (Peak) (dB μ V/m)-Average limit (dB μ V/m)

3. The emission levels of other frequencies are very lower than the limit and not show in test report.

4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency.

5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

6. Speed for 1M and 2M modulations of EUT have been tested, but the test data only show the worst case in this report, and we found the worst case is 1M speed modulation.

7. All the restriction bands are compliance with the limit of 15.209.

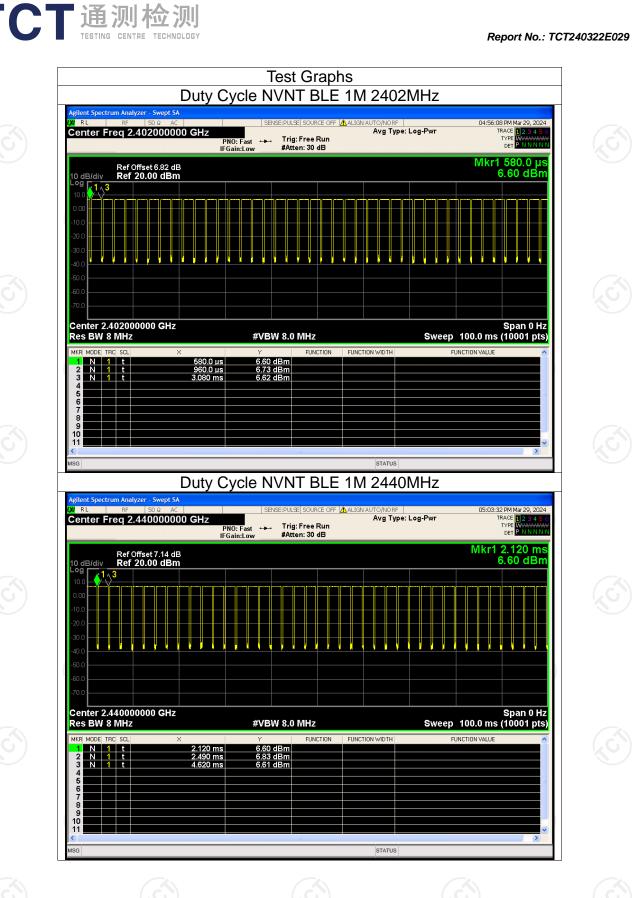
Duty Cycle						
Condition	Mode	Frequency (MHz)	Duty Cycle (%)			
NVNT	BLE 1M	2402	85.20			
NVNT	BLE 1M	2440	85.60			
NVNT	BLE 1M	2480	85.20			
NVNT	BLE 2M	2402	57.69			
NVNT	BLE 2M	2440	57.54			

2480

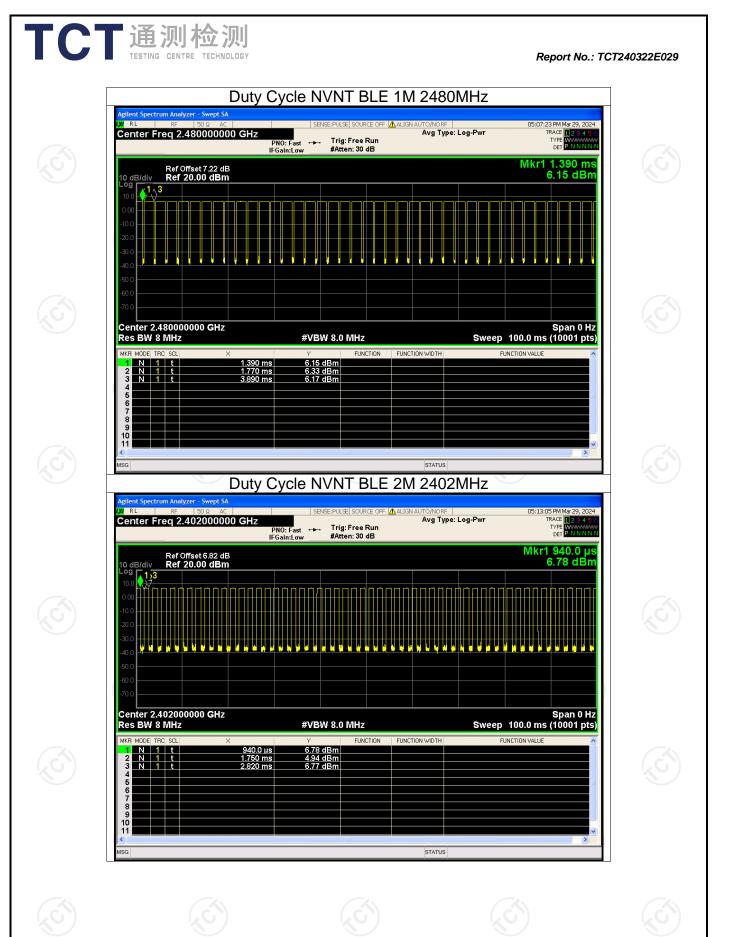
56.96

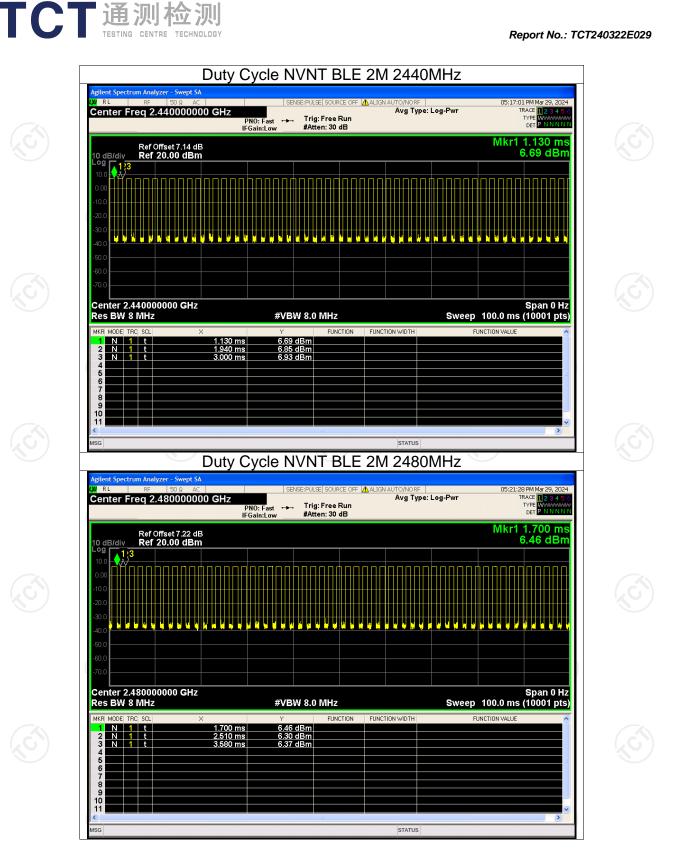
BLE 2M

TCT通测检测 TEGTING CENTRE TECHNOLOGY


С

NVNT




Page 28 of 64

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

Page 29 of 64

Condition	Mode	Frequency (MHz)	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT 🔇	BLE 1M	2402	6.86	30	Pass
NVNT	BLE 1M	2440	6.93	30	Pass
NVNT	BLE 1M	2480	6.35	30	Pass
NVNT	BLE 2M	2402	6.65	30	Pass
NVNT	BLE 2M	2440	6.83	30	Pass
NVNT	BLE 2M	2480	6.29	30	Pass

Maximum Conducted Output Power

Test Graphs Power NVNT BLE 1M 2402MHz gilent Spectrum Analyzer - Swept SA 04:50:59 PM Mar 29, 2024 TRACE 1 2 3 4 5 6 TYPE MWWWWW DET P N N N N N RL SENSE: PULSE SOURCE OFF 🔼 Avg Type: Log-Pwr Avg|Hold: 600/600 Center Freq 2.402000000 GHz PNO: Fast --- Trig: Free Run IFGain:Low #Atten: 30 dB Mkr1 2.402 076 2 GHz 6.855 dBm Ref Offset 6.82 dB Ref 20.00 dBm 10 dB/div Log **≜**¹ Center 2.402000 GHz #Res BW 2.0 MHz Span 6.000 MHz Sweep 1.333 ms (10001 pts) #VBW 6.0 MHz

Power NVNT BLE 1M 2440MHz

PNO: Fast +++ Trig: Free Run IFGain:Low #Atten: 30 dB STATUS

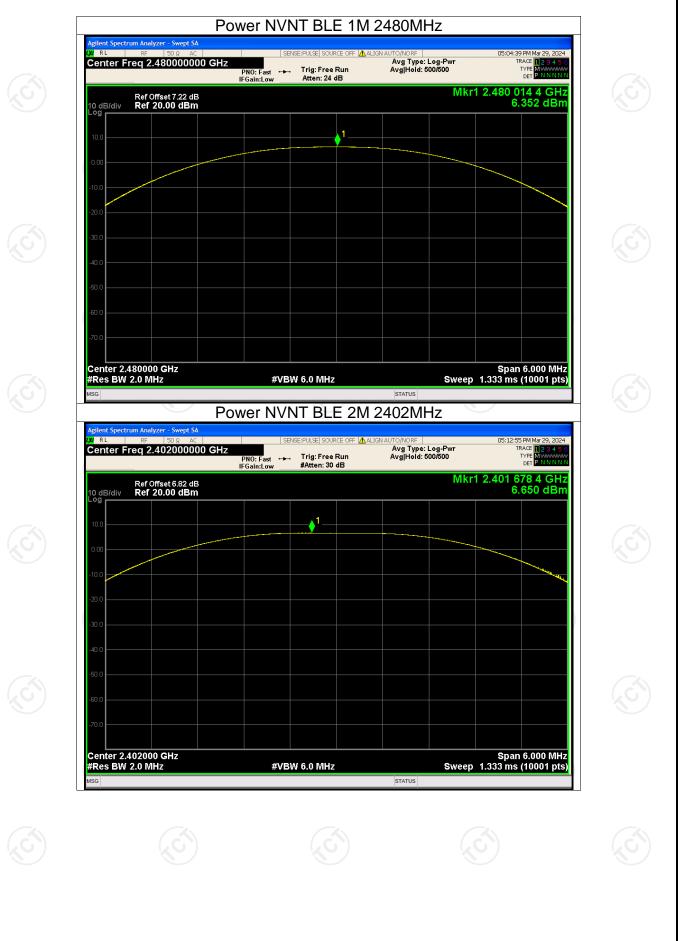
Avg Type: Log-Pwr Avg|Hold: 500/500 05:01:00 PM Mar 29, 2024

Mkr1 2.440 054 0 GHz 6.928 dBm

TRACE 1 2 3 4 TYPE MWWW DET P N N N

Page 33 of 64

Report No.: TCT240322E029



(IRL

10 dB/div Log

Center Freq 2.440000000 GHz

Ref Offset 7.14 dB Ref 20.00 dBm

Report No.: TCT240322E029

Page 34 of 64

10 dB/div Ref 20.00 dBm		
10.0	↓ ¹	
0.00		
-10.0		
-20.0		
-30.0		
-40.0		
-50.0		
-60.0		
-70.0		
Center 2.440000 GHz		Span 6.000 MHz
#Res BW 2.0 MHz ^{MSG}	#VBW 6.0 MHz	Sweep 1.333 ms (10001 pts)
P	ower NVNT BLE 2M 24	480MHz
Agilent Spectrum Analyzer - Swept SA		
X RL RF 50Ω AC Center Freq 2.480000000 GH	Z PNO: Fast	AUTO/NORF 05:18:12 PM Mar 29, 2024 Avg Type: Log-Pwr TRACE 1 2 3 4 5 6 Avg Hold: 600/600 Det P VINNIN
	IFGain:Low #Atten: 30 dB	
Ref Offset 7.22 dB 10 dB/div Ref 20.00 dBm Log		Mkr1 2.479 715 6 GHz 6.292 dBm
10 dB/div Ref 20.00 dBm	1	6.292 dBm
10 dB/div Ref 20.00 dBm		6.292 dBm
10 dB/div Ref 20.00 dBm		6.292 dBm
10 dB/div Ref 20.00 dBm		6.292 dBm
10.0 BXdiv Ref 20.00 dBm	1	6.292 dBm
10 dB/div Ref 20.00 dBm		6.292 dBm
10 dB/div Ref 20.00 dBm		6.292 dBm
10 d B/div Ref 20.00 dBm		6.292 dBm
10 d B/div Ref 20.00 dBm		6.292 dBm
10 dB/div Ref 20.00 dBm		
10.0 EXdiv Ref 20.00 dBm		
10 d EX/div Ref 20.00 dBm 10 0	#VBW 6.0 MHz	Span 6.000 MHz Sweep 1.333 ms (10001 pts)
10 d EX/div Ref 20.00 dBm 10 d		Span 6.000 MHz
10 d EX/div Ref 20.00 dBm 10 0		Span 6.000 MHz Sweep 1.333 ms (10001 pts)
10 d EX/div Ref 20.00 dBm 10 0		Span 6.000 MHz Sweep 1.333 ms (10001 pts)

Power NVNT BLE 2M 2440MHz

SENSE:PULSE| SOURCE OFF |▲ ALIGN AUTO/NORF | Avg Type: Log-Pwr --- Trig: Free Run Avg|Hold: 500/500

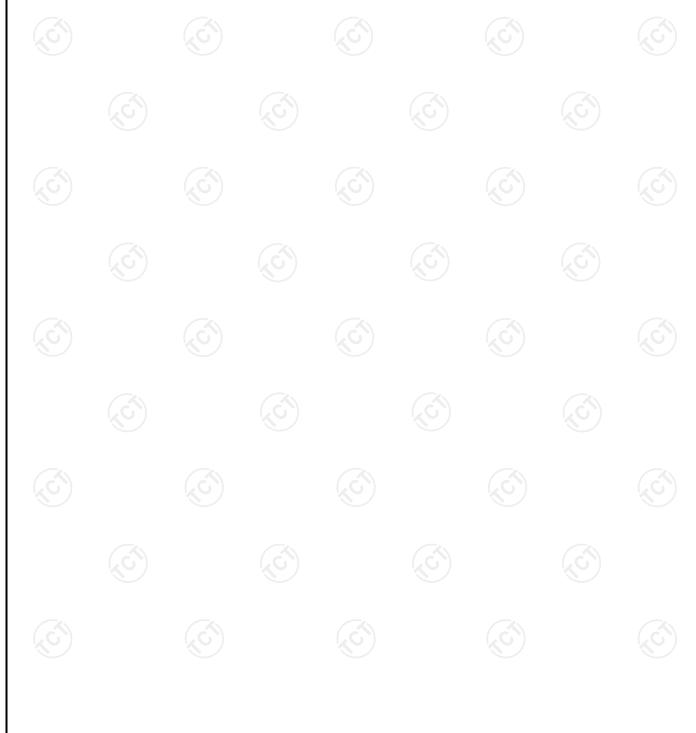
PNO: Fast +++ Trig: Free Run IFGain:Low #Atten: 30 dB

gilent Spectrum Analyzer

 Content Speed on Analyze
 Displays

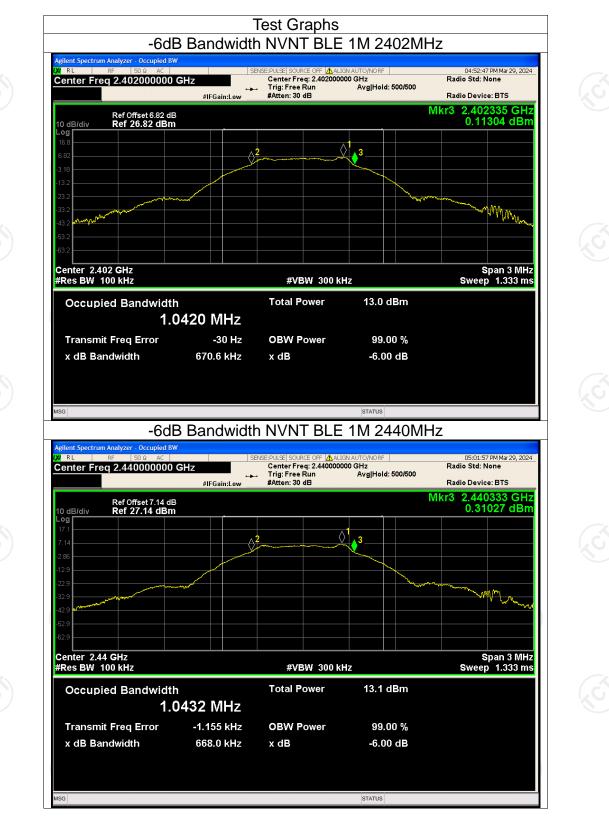
 Carlot Speed on Analyze
 So Ω AC

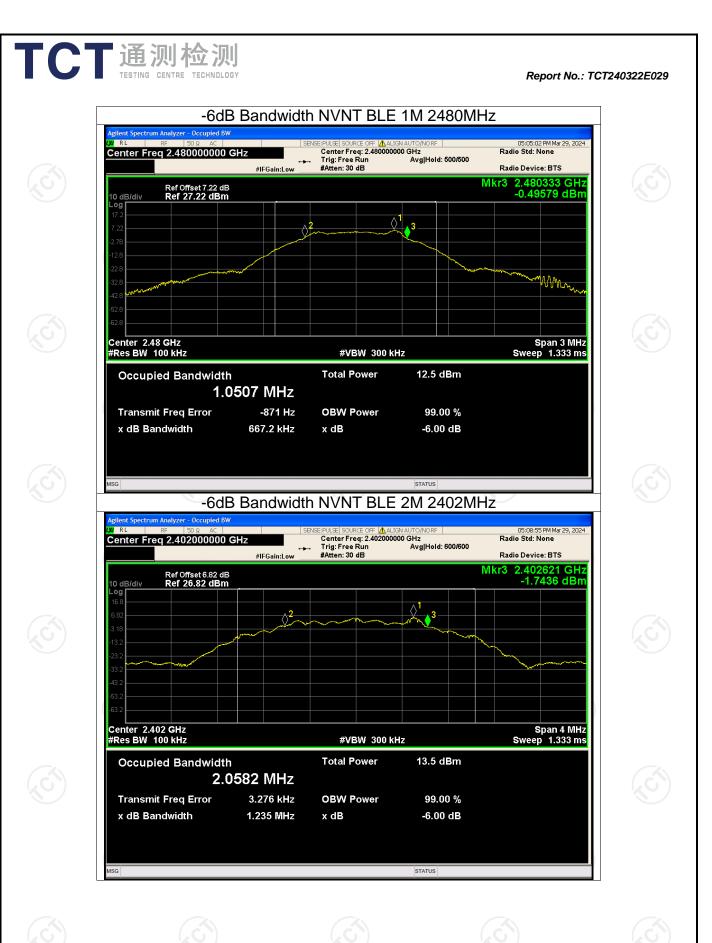
 Center Freq 2.440000000 GHz

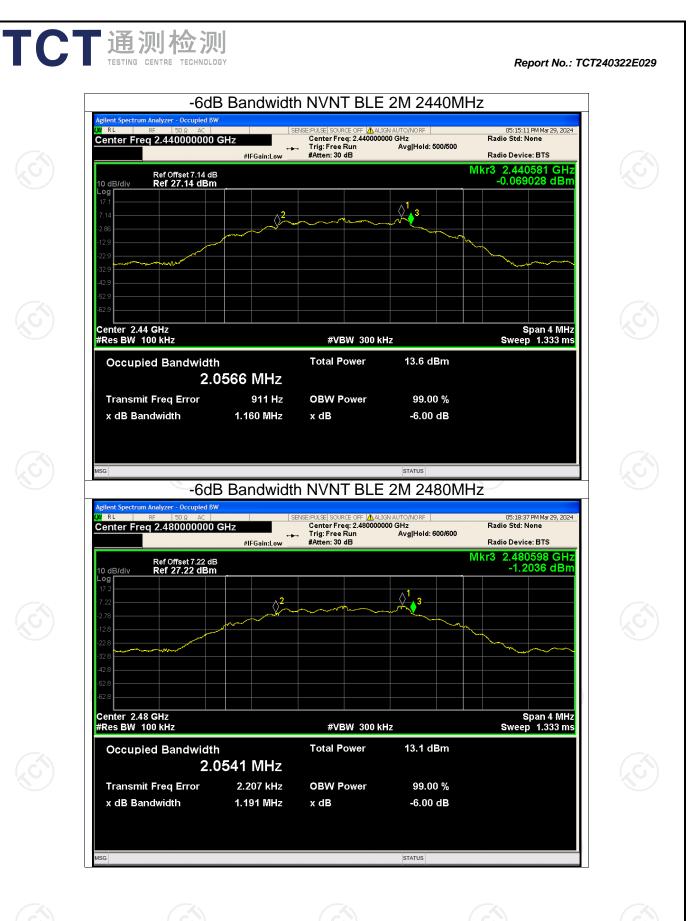

Report No.: TCT240322E029

Page 35 of 64

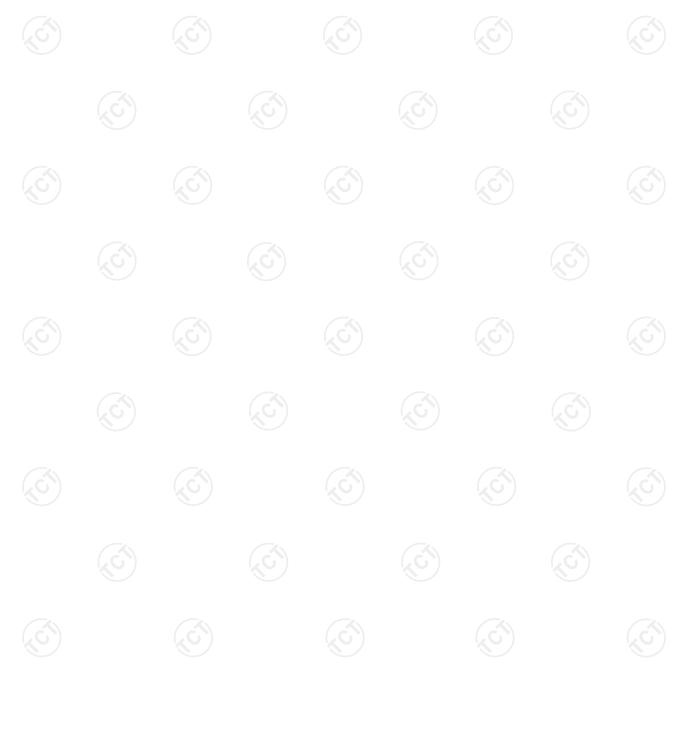
05:14:49 PM Mar TRACE TYPE DET


-oub Bandwidth									
Condition	Mode	Frequency (MHz)	-6 dB Bandwidth (MHz)	Limit -6 dB Bandwidth (MHz)	Verdict				
NVNT	BLE 1M	2402	0.671	0.5	Pass				
NVNT	BLE 1M	2440	0.668	0.5	Pass				
NVNT	BLE 1M	2480	0.667	0.5	Pass				
NVNT	BLE 2M	2402	1.235	0.5	Pass				
NVNT	BLE 2M	2440	1.160	0.5	Pass				
NVNT 🔇	BLE 2M	2480	1.191	0.5	Pass				


-6dB Bandwidth


Page 36 of 64

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com


Page 38 of 64

Page 39 of 64

Maximum Power Spectral Density Level

Page 40 of 64

PSD NVNT BLE 1M 2440MHz

STATUS

#VBW 10 kHz

Center F	RF 50 Ω A req 2.4400000	00 GHz		ENSE:PULSE SOUR		Avg Type: I Avg Type: I Avg Hold: 1		TF	PM Mar 29, 20 RACE 1 2 3 4 1 TYPE M WARA
			PNO: Wide ↔ FGain:Low	#Atten: 30					DET PNNN
0 dB/div	Ref Offset 7.14 d Ref 20.00 dBr						Mł	r1 2.440 -9.	018 GH 255 dB
- ^{og}									
10.0									
0.00					.1				
10.0					l 🔶 '				
	www.mwwww	month	Mmm	Murra marally,	< KAMANA M	Mar Mar	mmm	nonn	
20.0	way and the cost	•						MILL VAY	WW www
									, e
30.0									
40.0									
50.0									
60.0									
70.0									
Center 2	4400000 GHz							Span	1.000 MI
Res BW			#VE	3W 10 kHz			Sweep	5 105.5 ms	
SG						STATUS			

Mkr1 2.402 019 GHz -9.261 dBm Ref Offset 6.82 dB Ref 20.00 dBm 10 dB/div Log **♦**¹ mon manufil manufil and why way was a series of the se WWW www. Marmon

Test Graphs PSD NVNT BLE 1M 2402MHz gilent Spectrum Analyzer - Swept SA | SENSE:PULSE | SOURCE OFF 🛕 Center Freq 2.402000000 GHz Avg Type: Log-Pwr Avg|Hold: 100/100 PNO: Wide ---- Trig: Free Run IFGain:Low #Atten: 30 dB

RL

Center 2.4020000 GHz #Res BW 3.0 kHz

Report No.: TCT240322E029

04:53:03 PM Mar 29, 2024 TRACE 1 2 3 4 5 6 TYPE MWWWW DET P N N N N N

Span 1.000 MHz Sweep 105.5 ms (1001 pts)

Page 41 of 64

PSD NVNT BLE 1M 2480MHz SENSE:PULSE SOURCE OFF ALIGN AUTO/NORF Avg Type: Log-Pwr --- Trig: Free Run Avg|Hold: 100/100 05:05:19 PM Ma TRACE TYPE DET PNO: Wide +++ Trig: Free Run IFGain:Low #Atten: 30 dB

Mkr1 2.480 018 GHz

3/div		Dffset 7.22 dE 20.00 dBm						Mk	r1 2.480 -9.3	018 GHz 841 dBm
						↓ ¹				
		many	mm	$M \sim \infty$	ᡁᠬᢊᢇᠰ᠕ᡗ	Manan	ᡟᠬᡢᡀᡎᡅᡘ᠁	bq-n-q-hay	ᡩᡎᠬᡀ᠆ᠾᠬᡟᡞ᠂ᡁ	
~~~~	w. V.	₩₩. <b>Γ</b>							<b>.</b>	M. Marine Ma Marine Marine Ma Marine Marine
ter 2.4 s BW (		00 GHz Hz		#VB	W 10 kHz			Sweep		1.000 MHz (1001 pts)

### PSD NVNT BLE 2M 2402MHz

STATUS

	um Analyzer - Swept S								
Center F	RF 50Ω A0 req 2.4020000	00 GHz	NO: Wide 🔸 Gain:Low	- Trig: Free I #Atten: 30	Run	Avg Type:   Avg Type:   Avg Hold: 1	00/100	TF	PM Mar 29, 202 RACE 12345 TYPE MUMANN DET PNNNN
10 dB/div	Ref Offset 6.82 di Ref 20.00 dBn						Mkr	1 2.401 9 -12.	63 9 GH 789 dBi
10.0									
0.00									
10.0									
20.0	when when the former	al may and and	l fly and a start	NAAN AN	way footoo ay waya	www.www.dowyh	mmhly	ahar mar	martiller
40.0									
50.0									
60.0									
70.0									
enter 2.4 Res BW	4020000 GHz 3.0 kHz		#VB	W 10 kHz			Swee	Span 200.4 ms	1.900 M s (1001 p
SG						STATUS			



RL

10 c Log

Cen #Re:

gilent Spectrum Analyzer - Sv

Center Freq 2.480000000 GHz



## SENSE:PULSE SOURCE OFF ALIGN AUTO/NORF Avg Type: Log-Pwr Trig: Free Run Avg|Hold: 100/100 05:15:37 PM Mar 29, 2024 TRACE 1 2 3 4 5 TYPE M DET P N N N N PNO: Wide +++ Trig: Free Run IFGain:Low #Atten: 30 dB Mkr1 2.439 964 0 GHz -12.752 dBm Ref Offset 7.14 dB Ref 20.00 dBm 10 dB/div mml Mannon monorithe mon hange have Anton m.MMM www.walu ų Center 2.4400000 GHz #Res BW 3.0 kHz Span 1.800 MHz Sweep 189.8 ms (1001 pts) #VBW 10 kHz STATUS PSD NVNT BLE 2M 2480MHz U RL SENSE: PULSE SOURCE OFF ALIGN A 05:19:03 PM Mar 29, 20 TRACE 1234 TYPE MWWW DET PNNN Center Freq 2.480000000 GHz Avg Type: Log-Pwr Avg|Hold: 100/100 PNO: Wide $\leftrightarrow \rightarrow$ Trig: Free Run IFGain:Low #Atten: 30 dB Mkr1 2.479 964 0 GHz -13.049 dBm Ref Offset 7.22 dB Ref 20.00 dBm 10 dB/div Log mm Mohannah 1 Anton MAM Mr. Wayly Center 2.4800000 GHz #Res BW 3.0 kHz Span 1.800 MHz Sweep 189.8 ms (1001 pts) #VBW 10 kHz STATUS

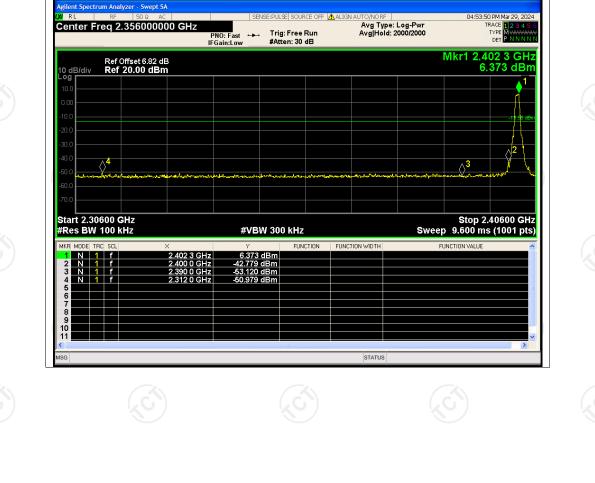
PSD NVNT BLE 2M 2440MHz

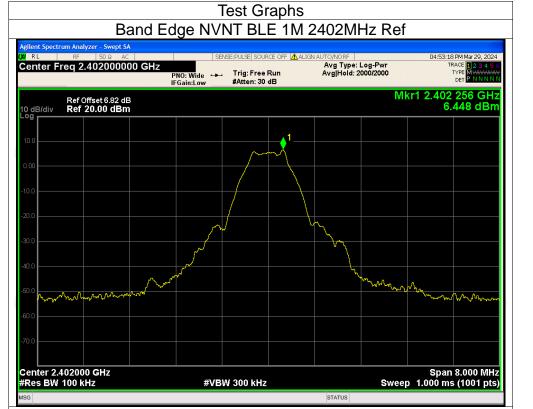
TCT通测检测 TESTING CENTRE TECHNOLOGY

RL

gilent Spectrum Analyzer - Swept SA

Center Freq 2.440000000 GHz

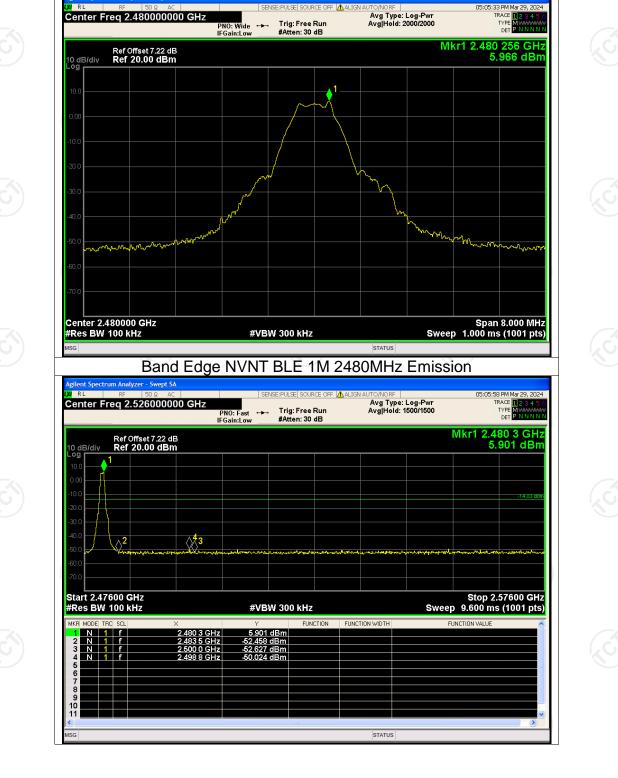

Report No.: TCT240322E029


Page 43 of 64

Condition NVNT NVNT NVNT NVNT	ModeFBLE 1MBLE 2MBLE 2M	requency (N 2402 2480 2402 2480	x Value (dBc -57.42 -55.99 -54.82 -54.31	<ul> <li>Limit (dBo</li> <li>-20</li> <li>-20</li> <li>-20</li> <li>-20</li> <li>-20</li> <li>-20</li> </ul>	c) Verdict Pass Pass Pass Pass
NVNT	BLE 2M	2402	-54.82	-20	Pass
	BLE 2M	2480		-20	
					Page 44 of 6

Report No.: TCT240322E029

TCT通测检测 TESTING CENTRE TECHNOLOGY






Band Edge NVNT BLE 1M 2402MHz Emission

Report No.: TCT240322E029

Page 45 of 64

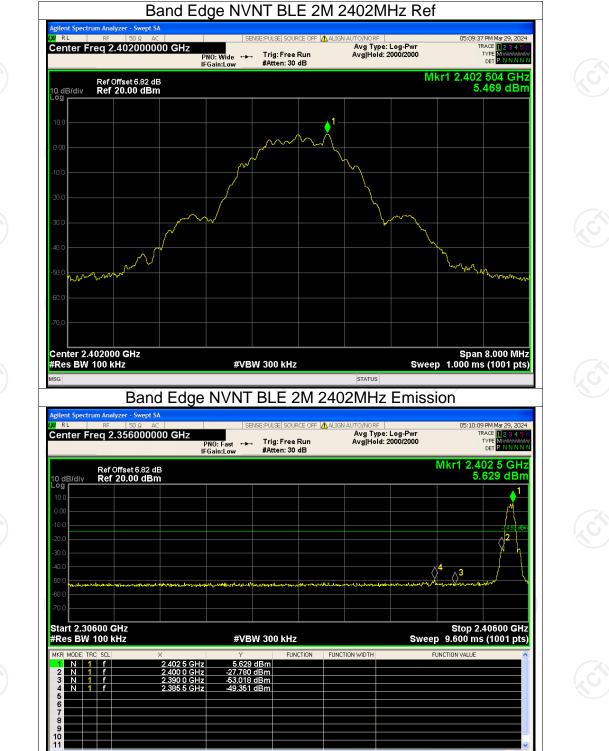


Report No.: TCT240322E029

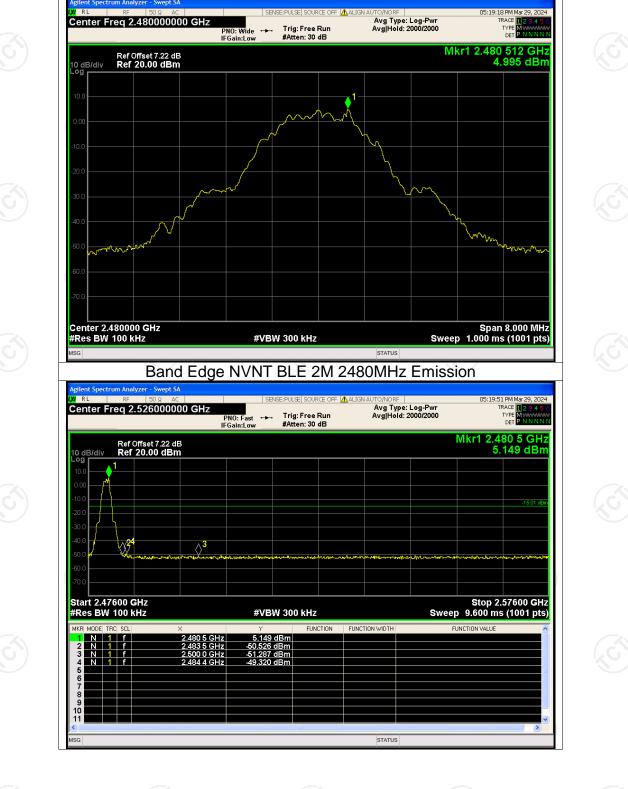
Page 46 of 64

Band Edge NVNT BLE 1M 2480MHz Ref

SENSE:PULSE SOURCE OFF ALIGN AUTO/NORF Avg Type: Log-Pwr Trig: Free Run Avg|Hold: 2000/2000


gilent Spectr

Center Freq 2.480000000 GHz


RL

STATUS

Page 47 of 64



MSG



Band Edge NVNT BLE 2M 2480MHz Ref

gilent Spectr

RL

Report No.: TCT240322E029

Page 48 of 64

Report No.: TCT240322E029
---------------------------



# **Conducted RF Spurious Emission**

Condition	Mode	Frequency (MHz)	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	BLE 1M	2402	-46.43	-20	Pass
NVNT	BLE 1M	2440	-45.73	-20	Pass
NVNT	BLE 1M	2480	-45.62	-20	Pass
NVNT	BLE 2M	2402	-44.92	-20	Pass
NVNT	BLE 2M	2440	-44.75	-20	Pass
NVNT	BLE 2M	2480	-44.31	-20	Pass







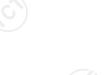








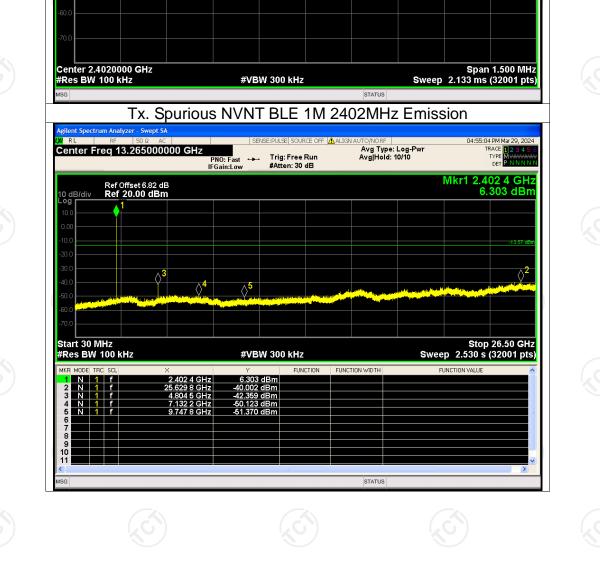

















Page 49 of 64



Test Graphs

TCT通测检测 TESTING CENTRE TECHNOLOGY

Report No.: TCT240322E029

Page 50 of 64

05:02:33 PM Mar 29, 20 TRACE 1234 TYPE MWWW DET PNNN PNO: Wide 🛶 Trig: Free Run IFGain:Low #Atten: 30 dB Mkr1 2.440 247 13 GHz 6.501 dBm Ref Offset 7.14 dB Ref 20.00 dBm 10 dB/div Center 2.4400000 GHz #Res BW 100 kHz Span 1.500 MHz Sweep 2.133 ms (32001 pts) #VBW 300 kHz STATUS

Tx. Spurious NVNT BLE 1M 2440MHz Ref

SENSE:PULSE SOURCE OFF ALIGN AUTO/NORF

TCT通测检测 TESTING CENTRE TECHNOLOGY

gilent Spect

Center Freq 2.440000000 GHz

RL

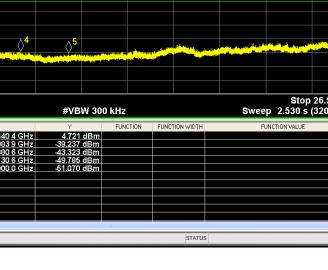
RL

10 dB/di Log

Center Freq 13.265000000 GHz

Ref Offset 7.14 dB Ref 20.00 dBm

# Tx. Spurious NVNT BLE 1M 2440MHz Emission


PNO: Fast ---- Trig: Free Run IFGain:Low #Atten: 30 dB

SENSE: PULSE SOURCE OFF

Avg Type: Log-Pwr Avg|Hold: 10/10

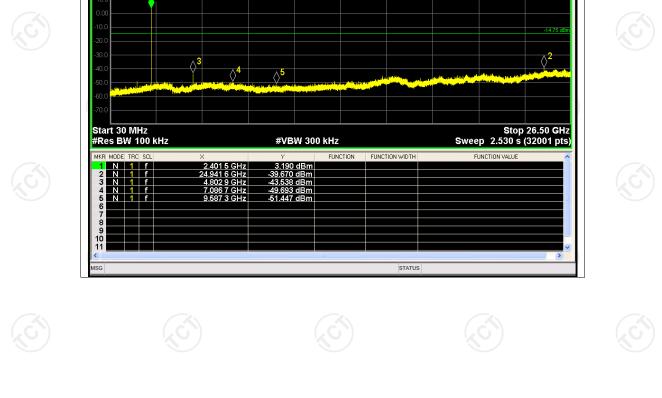
Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

Page 51 of 64



#### Report No.: TCT240322E029

05:03:04 PM Mar 29, 202 TRACE 1 2 3 4 5 TYPE MWWWW DET P N N N N


4.721 dBm

Mkr1 2.440 4 GHz



TCT通测检测 TESTING CENTRE TECHNOLOGY

Page 52 of 64



 Aglent Spectrum Analyzer - Swipt SA
 ISENEE PALSE SOURCE OF I ALLON AUTONORE
 0510-45 PM Me 29, 204

 Center Freq 2.402000000 GHz
 PI00; Wide IFGaint.cw
 Trig: Free Run #Atten: 30 dB
 Avg1/ype: Log-Pwr Avg1/pe: Log-Pwr A

Tx. Spurious NVNT BLE 2M 2402MHz Ref

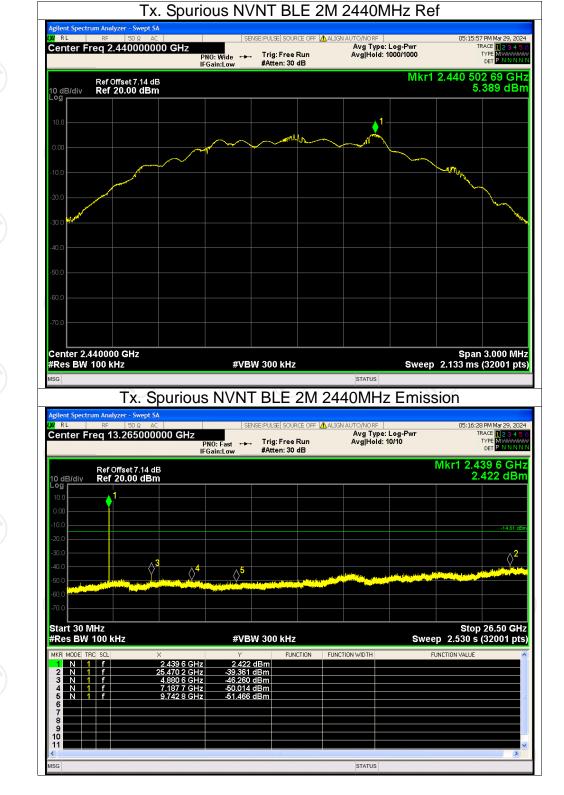
TCT通测检测 TESTING CENTRE TECHNOLOGY

RL

10 dB/di Log

Center Freq 13.265000000 GHz

Ref Offset 6.82 dB Ref 20.00 dBm


#### Tx. Spurious NVNT BLE 2M 2402MHz Emission

SENSE: PULSE SOURCE OFF 🖪 ALIGN

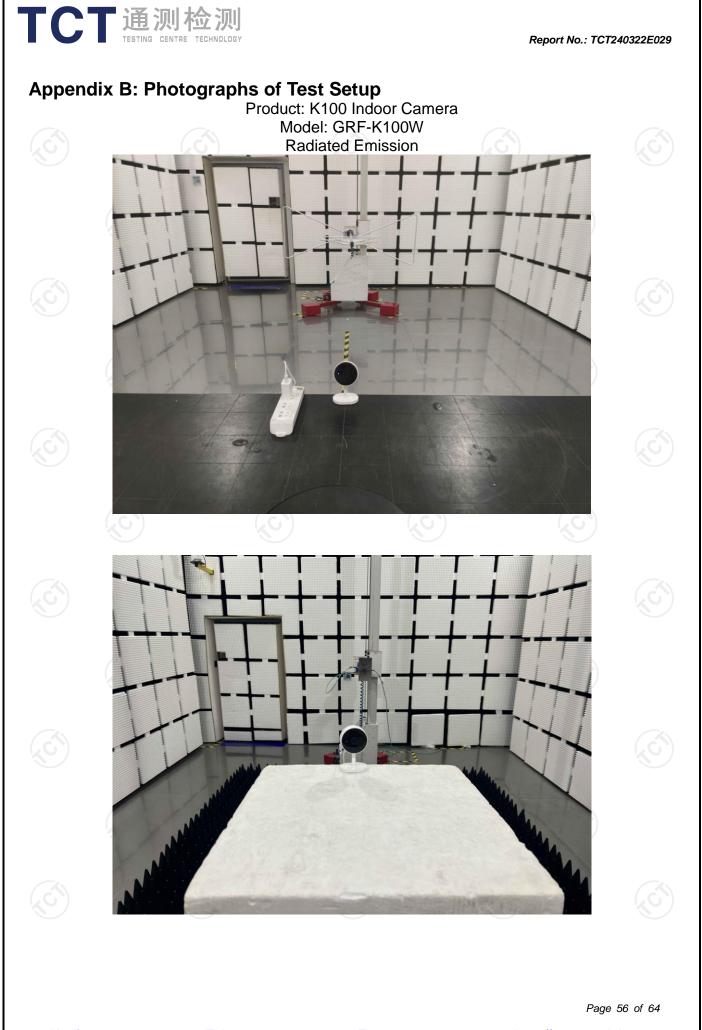
PNO: Fast ---- Trig: Free Run IFGain:Low #Atten: 30 dB Avg Type: Log-Pwr Avg|Hold: 10/10 Report No.: TCT240322E029

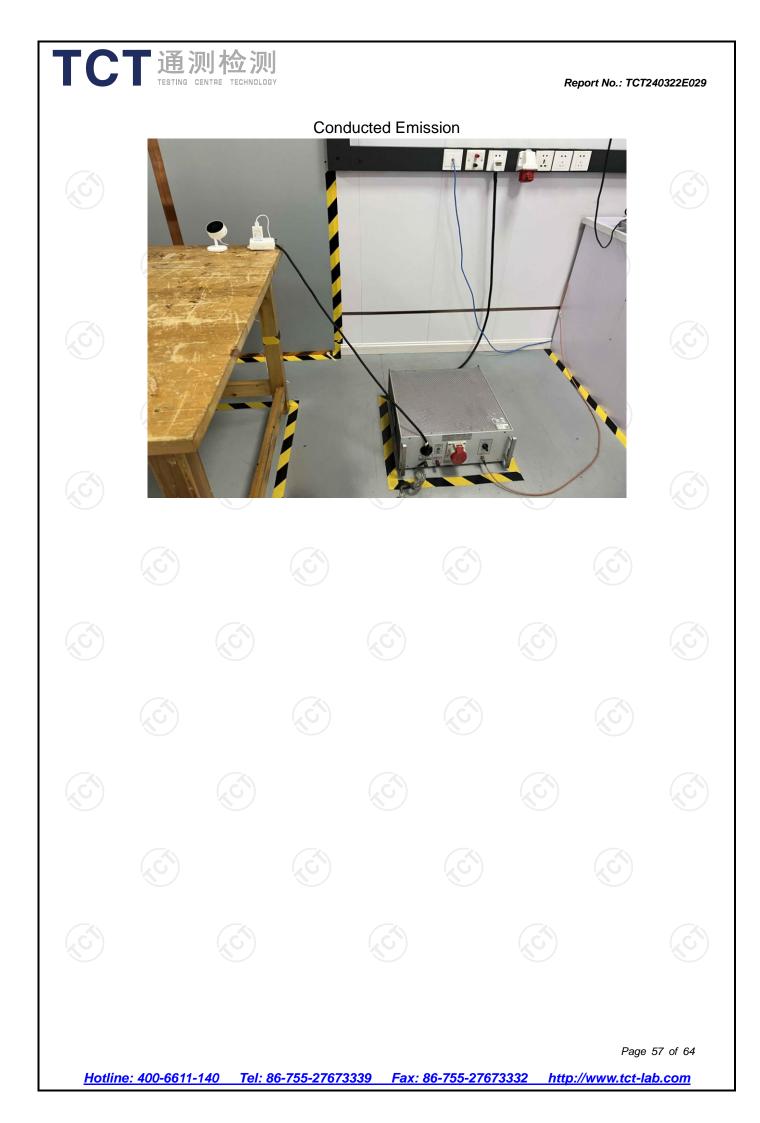
05:11:16 PM Mar 29, 202 TRACE 1 2 3 4 5 TYPE MWAAWA DET P N N N N

Mkr1 2.401 5 GHz 3.190 dBm



TCT通测检测 TESTING CENTRE TECHNOLOGY





Adjent Spectrum Analyzer - Swept SA Statistics Spectrum Analyzer - Swept SA Center Freq 2.480000000 GHz PNO: Wile Trig: Free Run #Atten: 30 dB Mikr1 2.480 501 47 GHz 4.823 dBm 4.823 dBm 10 dB/div Ref 0ffset 7.22 dB 4.823 dBm 10 dB/div Ref 20.00 dBm Center Z.480000 GHz #Res BW 100 kHz #VEW 300 kHz Sweep 2.133 ms (32001 pts) Sweep 2.133 ms (32001 pts) Sweep 2.133 ms (32001 pts)

Tx. Spurious NVNT BLE 2M 2480MHz Ref

### Tx. Spurious NVNT BLE 2M 2480MHz Emission

Page 55 of 64

