

TEST REPORT

Product Trade mark Model/Type reference Serial Number Report Number FCC ID Date of Issue Test Standards Test result : Laifen Wave SE Electric Toothbrush

laifen

- : LFTB01 SE
- : N/A

•

- : EED32Q80875701
- : 2BE2Y-LFTB01SE
- Jul. 16, 2024
- : 47 CFR Part 15 Subpart C
- PASS

Prepared for:

Shenzhen Shuye Technology Co.,Ltd. Room 1301, Building T7, Qianwan 1st Road No.399, Qianhai Kerry Business Center, Nanshan, Shenzhen, Guangdong, China

Page 2 of 68

Version No.	Date	Desc	ription
00	Jul. 16, 2024	Original	
(c	S) (c		(°)

Page 3 of 68

COVER PAGE		
CONTENT		
TEST SUMMARY		
GENERAL INFORMATION		
5.1 CLIENT INFORMATION		
5.2 GENERAL DESCRIPTION OF EUT		
5.3 TEST CONFIGURATION		
5.4 TEST ENVIRONMENT 5.5 DESCRIPTION OF SUPPORT UNITS		
5.6 TEST LOCATION		
5.7 MEASUREMENT UNCERTAINTY (95% CONFIDENCE I		
EQUIPMENT LIST		
TEST RESULTS AND MEASUREMENT DATA		
7.2 CONDUCTED EMISSIONS 7.3 MAXIMUM CONDUCTED OUTPUT POWER		
7.4 DTS BANDWIDTH		
7.5 MAXIMUM POWER SPECTRAL DENSITY		
7.6 BAND EDGE MEASUREMENTS AND CONDUCTED SP		
7.7 RADIATED SPURIOUS EMISSION & RESTRICTED BAI	NDS	
APPENDIX BLUETOOTH LE		
PHOTOGRAPHS OF TEST SETUP		
		U

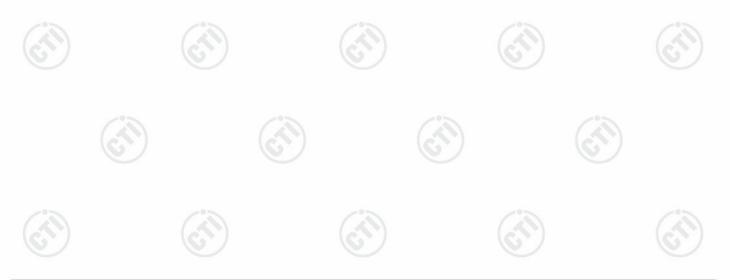
4 Test Summary

Page 4 of 68

+ rest Summary	Test Degularment	Desult	
Test Item	Test Requirement	Result	
Antenna Requirement	47 CFR Part 15 Subpart C Section 15.203/15.247 (c)	PASS	
AC Power Line Conducted Emission	47 CFR Part 15 Subpart C Section 15.207	PASS	
DTS Bandwidth	47 CFR Part 15 Subpart C Section 15.247 (a)(2)	PASS	
Maximum Conducted Output Power	47 CFR Part 15 Subpart C Section 15.247 (b)(3)	PASS	
Maximum Power Spectral Density	47 CFR Part 15 Subpart C Section 15.247 (e)	PASS	
Band Edge Measurements	47 CFR Part 15 Subpart C Section 15.247(d)	PASS	
Conducted Spurious Emissions	47 CFR Part 15 Subpart C Section 15.247(d)	PASS	
Radiated Spurious Emission & Restricted bands	47 CFR Part 15 Subpart C Section 15.205/15.209	PASS	
		(63)	

Remark:

Company Name and Address shown on Report, the sample(s) and sample Information were provided by the applicant who should be responsible for the authenticity which CTI hasn't verified.


5 General Information

5.1 Client Information

Applicant:	Shenzhen Shuye Technology Co.,Ltd.	
Address of Applicant:	Room 1301, Building T7, Qianwan 1st Road No.399, Qianhai Kerry Business Center, Nanshan, Shenzhen, Guangdong, China	~
Manufacturer:	Shenzhen Shuye Technology Co.,Ltd.	5
Address of Manufacturer:	Room 1301, Building T7, Qianwan 1st Road No.399, Qianhai Kerry Business Center, Nanshan, Shenzhen, Guangdong, China	
Factory:	Shenzhen Laifen Intelligent Manufacturing Technology Co., Ltd.	
Address of Factory:	Building E1, 2nd Floor, Jiehe Industrial City, Shuitian Community, Shiyar Street, Baoan District, Shenzhen, Guangdong, China	n

5.2 General Description of EUT

Product Name:	Laifen Wave S	E Electric To	oothbrush		
Model No.:	LFTB01 SE	(3)			1
Trade mark:	laifen	6	C)		6
Product Type:		Portable	Fix Location		
Operation Frequency:	2402MHz~248	0MHz			
Modulation Type:	GFSK				
Transfer Rate:	⊠1Mbps ⊠2	2Mbps	(C)	(\mathbf{c})	
Number of Channel:	40				
Antenna Type:	Ceramic Anten	na			
Antenna Gain:	-1.16 dBi				13
Power Supply:	Adapter:	DC 5V	(S)		(\mathcal{C})
	USB port:	tepy c	\bigcirc		
Test Voltage:	DC 3.3V				
Sample Received Date:	Jun. 27, 2024		(°>)	13	
Sample tested Date:	Jun. 27, 2024 1	o Jul. 04, 20	24	(\sim)	

Page 5 of 68

Page 6 of 68

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel (CH0)	2402MHz
The middle channel (CH19)	2440MHz
The highest channel (CH39)	2480MHz

5.3 Test Configuration

EUT Test Software	e Settings:			
Software:	Serial I	Port Utility	<u>(</u> ?)	(25)
EUT Power Grade:		Class2 (Power level is built-in set parameters and cannot selected)		annot be changed and
Use test software to transmitting of the E	•	ency, the middle frequ	uency and the highest f	requency keep
Test Mode	Modulation	Rate	Channel	Frequency(MHz)
Mode a	GFSK	1Mbps	СНО	2402
Mode b	GFSK	1Mbps	CH19	2440
Mode c	GFSK	1Mbps	СН39	2480
Mode d	GFSK	2Mbps	СНО	2402
Mode e	GFSK	2Mbps	CH19	2440
Mode f	GFSK	2Mbps	CH39	2480

Page 7 of 68

5.4 Test Environment

	Operating Environment	t:				
260	Radiated Spurious Emi	ssions:				
192	Temperature:	22~25.0 °C		(2)		(2)
2	Humidity:	50~55 % RH		C		C
	Atmospheric Pressure:	1010mbar				
	Conducted Emissions:					
	Temperature:	22~25.0 °C				
	Humidity:	50~55 % RH	(\mathcal{O})		6	
	Atmospheric Pressure:	1010mbar				
	RF Conducted:	·				
~	Temperature:	22~25.0 °C		(:D)		13
	Humidity:	50~55 % RH		(c^{γ})		(\mathcal{S})
9	Atmospheric Pressure:	1010mbar		U		U

5.5 Description of Support Units

The EUT has been tested with associated equipment below.

1) support ed	quipment
---------------	----------

Description	Manufacturer	Model No.	Certification	Supplied by
Netbook	HP	14-ce0061TX	FCC&CE	СТІ
Netbook	Think Book	ThinkBook 14	FCC&CE	СТІ
Netbook		C21A3000ICD	TOOGOL	

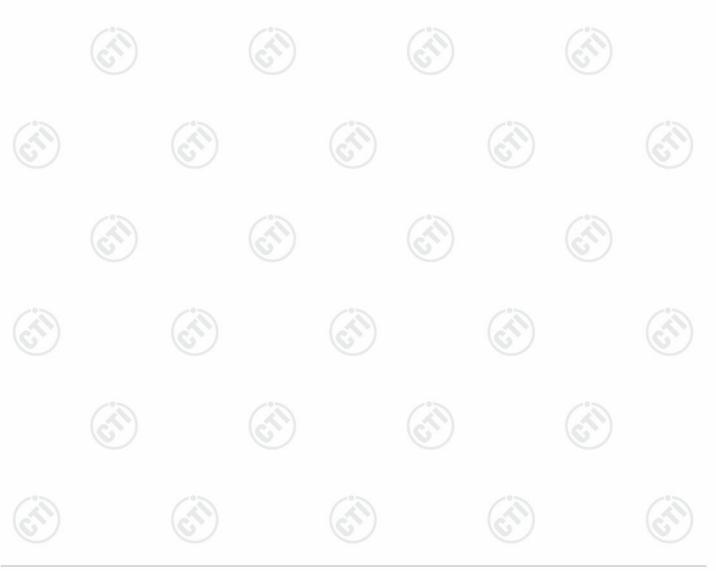
5.6 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385 No tests were sub-contracted.

FCC Designation No.: CN1164



Page 8 of 68

5.7 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2	DE nower, conducted	0.46dB (30MHz-1GHz)
2	RF power, conducted	0.55dB (1GHz-40GHz)
		3.3dB (9kHz-30MHz)
3	Padiated Spurious option test	4.3dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.5dB (1GHz-18GHz)
10	(A)	3.4dB (18GHz-40GHz)
	Conduction emission	3.5dB (9kHz to 150kHz)
4	Conduction emission	3.1dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	3.8%
7	DC power voltages	0.026%

6 Equipment List

RF test system										
Equipment	Manufacturer	anufacturer Model No.		Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)					
Spectrum Analyzer	Keysight	N9010A	MY54510339	12-14-2023	12-13-2024					
Signal Generator	Keysight	N5182B	MY53051549	12-11-2023	12-10-2024					
DC Power	Keysight	E3642A	MY56376072	12-11-2023	12-10-2024					
Communication test set	R&S	CMW500	169004	03-08-2024	03-07-2025					
RF control unit(power unit)	JS Tonscend	JS0806-2		(i)	- 61					
Wi-Fi 7GHz Band Extendder	JS Tonscend	TS-WF7U2		_						
High-low temperature test chamber	Dong Guang Qin Zhuo	LK-80GA	QZ20150611879	12-11-2023	12-10-2024					
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	05-29-2024	05-28-2025					
BT&WI-FI Automatic test software	JS Tonscend	JS1120-3	V3.3.20		_					
Spectrum Analyzer	R&S	FSV3044	101509	01-17-2024	01-16-2025					

Conducted disturbance Test										
Equipment	Manufacturer	Model No.	Serial Number	Cal. date (mm-dd-yyyy)	Cal. Due date					
Receiver	R&S	ESCI	100435	04-18-2024	04-17-2025					
Temperature/ Humidity Indicator	Defu	TH128		04-25-2024	04-24-2025					
LISN	R&S	ENV216	100098	09-22-2023	09-21-2024					
Barometer	changchun	DYM3	1188	1	/					
Test software	Fara	EZ-EMC	EMC-CON 3A1.1	(\bigcirc)	(


Page 9 of 68

Page 10 of 68

Equipment	Manufacturer	Model	Serial No.	Cal. Date	Due Date
BM Chamber & Accessory Equipment	ток	SAC-3		05/22/2022	05/21/2025
Receiver	R&S	ESCI7	100938-003	09/22/2023	09/21/2024
TRILOG Broadband Antenna	schwarzbeck	VULB 9163	9163-618	05/22/2022	05/21/2025
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-076	04/16/2024	04/15/2025
Multi device Controller	maturo	NCD/070/10711112		<u>I</u>	(
Horn Antenna	ETS-LINGREN	BBHA 9120D	9120D-1869	04/16/2024	04/15/2025
Microwave Preamplifier	Agilent	8449B	3008A02425	06/13/2024	06/12/2025
Test software	Fara	EZ-EMC	EMEC-3A1-Pre		U

Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

Page 11 of 68

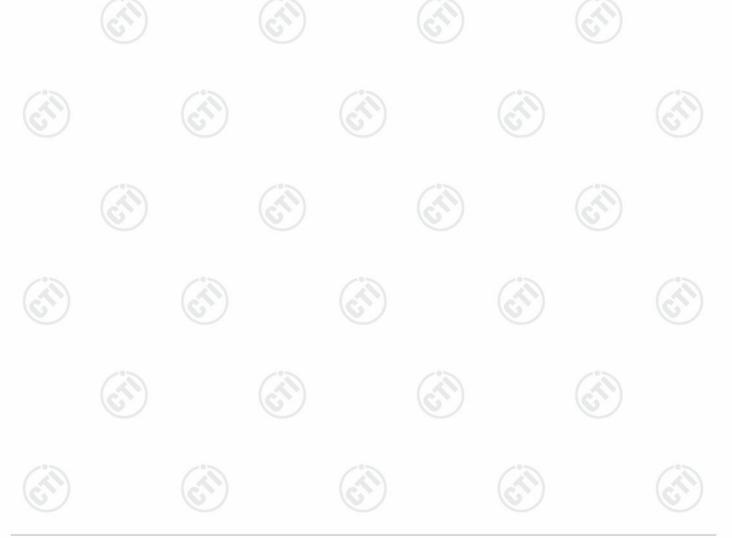
		3M full-anechoi	c Chamber			
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy	
RSE Automatic test software	JS Tonscend	JS36-RSE	10166	\bigcirc	6	
Receiver	Keysight	N9038A	MY57290136	01-09-2024	01-08-2025	
Spectrum Analyzer	Keysight	N9020B	MY57111112	01-19-2024	01-18-2025	
Spectrum Analyzer	Keysight	N9030B	MY57140871	01-13-2024	01-12-2025	
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-28-2024	04-27-2025	
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-16-2024	04-15-2025	
Horn Antenna	ETS-LINDGREN	3117	57407	07-04-2021 07-03-2024	07-03-2024 07-02-2025	
Preamplifier	EMCI	EMC184055SE	980597	04-12-2024	04-11-2025	
Preamplifier	EMCI	EMC001330	980563	03-08-2024	03-07-2025	
Preamplifier	JS Tonscend	TAP-011858	AP21B806112	07-25-2023	07-24-2024	
Communication test set	R&S	CMW500	102898	12-14-2023	12-13-2024	
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	04-07-2024	04-06-2025	
Fully Anechoic Chamber	TDK	FAC-3		01-09-2024	01-08-2027	
Cable line	Times	SFT205-NMSM-2.50M	394812-0001			
Cable line	Times	SFT205-NMSM-2.50M	394812-0002			
Cable line	Times	SFT205-NMSM-2.50M	394812-0003		(c	
Cable line	Times	SFT205-NMSM-2.50M	393495-0001			
Cable line	Times	EMC104-NMNM-1000	SN160710			
Cable line	Times	SFT205-NMSM-3.00M	394813-0001	(S)	
Cable line	Times	SFT205-NMNM-1.50M	381964-0001			
Cable line	Times	SFT205-NMSM-7.00M	394815-0001	<u></u>	/	
Cable line	Times	HF160-KMKM-3.00M	393493-0001	$(\overset{\frown}{\sim})$		

7 Test results and Measurement Data

7.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)

15.203 requirement:


An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

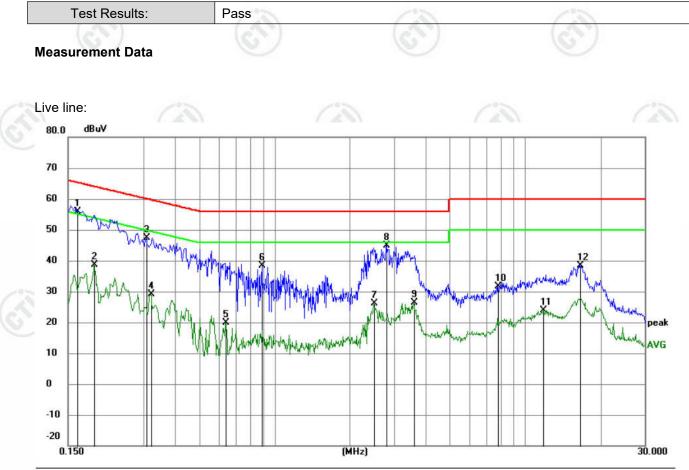
The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

EUT Antenna:	Please see Internal photos
The enterne is Coronic ent	anna. Tha haat assa wain af tha antanna is 110 dDi

The antenna is Ceramic antenna. The best case gain of the antenna is -1.16 dBi.

Page 13 of 68

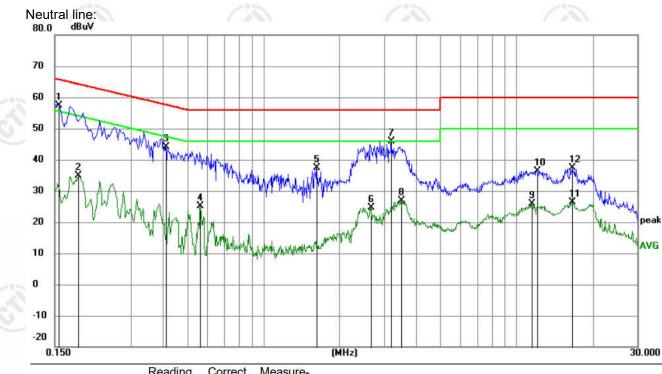
Test Requirement:	47 CFR Part 15C Section 15.	207		
Test Method:	ANSI C63.10: 2013			
Test Frequency Range:	150kHz to 30MHz			
Receiver setup:	RBW=9 kHz, VBW=30 kHz, S	Sweep time=auto	1	162
Limit:	(3)	Limit (dBuV)	
	Frequency range (MHz)	Quasi-peak	Average	Y
	0.15-0.5	66 to 56*	56 to 46*	
	0.5-5	56	46	
	5-30	60	50	_
	* Decreases with the logarithr			
Test Setup:				
	AC Mains	AE E B Cround Reference Plane		
Test Procedure:	 The mains terminal disturt room. The EUT was connected Impedance Stabilization N impedance. The power connected to a second LIS plane in the same way a 	I to AC power source Network) which provide cables of all other SN 2, which was bonde	e through a LISN 1 s a 50Ω/50μH + 5Ω units of the EUT ed to the ground ref	I (Lin Ω linea · wer erenc
	 multiple socket outlet strip single LISN provided the r 3) The tabletop EUT was pla ground reference plane. A placed on the horizontal g 4) The test was performed with the EUT shall be 0.4 m vertical ground reference reference plane. The LISI unit under test and bor mounted on top of the gro the closest points of the l and associated equipment 5) In order to find the maxim 	rating of the LISN was aced upon a non-meta and for floor-standing a pround reference plane ith a vertical ground re from the vertical grou e plane was bonded N 1 was placed 0.8 m nded to a ground re pund reference plane. T LISN 1 and the EUT. t was at least 0.8 m fro pum emission, the relat	not exceeded. allic table 0.8m about irrangement, the EL ference plane. The und reference plane to the horizontal of from the boundary ference plane for this distance was be All other units of the im the LISN 2. ive positions of equ	rear of rear of e. Th groun of th LISN etwee e EU
	and all of the interface on	bles must be changed	according to	



Page 14 of 68

Report No. : EED32Q80875701

(3	No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
6			MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
	1	*	0.1641	46.05	9.88	55.93	65.25	-9.32	QP	
-	2		0.1905	28.64	9.91	38.55	54.01	-15.46	AVG	
	3		0.3075	37.82	9.56	47.38	60.04	-12.66	QP	
	4		0.3209	19.62	9.59	29.21	49.68	-20.47	AVG	
-	5		0.6405	10.18	9.76	19.94	46.00	-26.06	AVG	
Ĩ	6		0.8925	28.57	9.81	38.38	56.00	-17.62	QP	
	7		2.4990	16.42	9.76	26.18	46.00	-19.82	AVG	
13	8		2.8050	35.11	9.77	44.88	56.00	-11.12	QP	
6	9		3.5880	16.63	9.80	26.43	46.00	-19.57	AVG	
<u> </u>	10		7.8090	21.81	9.84	31.65	60.00	-28.35	QP	
-	11		11.8095	14.03	9.84	23.87	50.00	-26.13	AVG	
0	12		16.5210	28.35	9.91	38.26	60.00	-21.74	QP	
-	12210250		141121020-012-0200	C WALNESS COLS	1000 C	A STATE OF A		Contractor Page 5	and a second second	

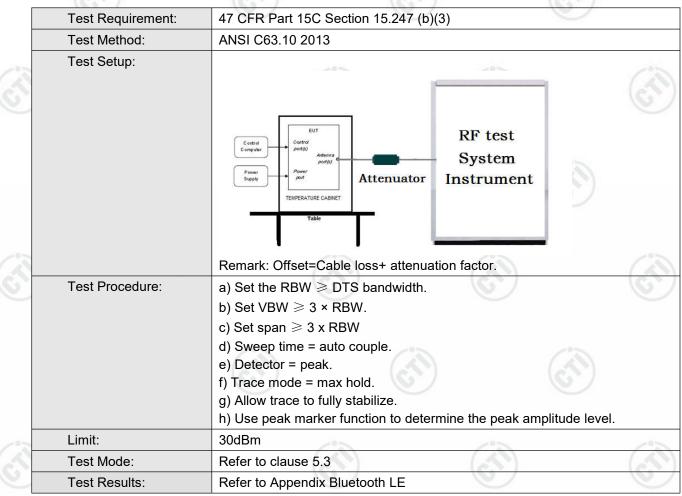

Remark:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

Page 15 of 68

Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
*	0.1556	47.47	9.88	57.35	65.70	-8.35	QP	
	0.1860	25.00	9.91	34.91	54.21	-19.30	AVG	
	0.4110	34.44	9.79	44.23	57.63	-13.40	QP	
	0.5639	15.46	9.66	25.12	46.00	-20.88	AVG	
	1.6260	27.71	9.75	37.46	56.00	-18.54	QP	
	2.6520	14.96	9.77	24.73	46.00	-21.27	AVG	
	3.2010	36.02	9.79	45.81	56.00	-10.19	QP	
	3.4935	17.21	9.79	27.00	46.00	-19.00	AVG	
	11.4495	16.10	9.84	25.94	50.00	-24.06	AVG	
	12.0434	26.65	9.84	36.49	60.00	-23.51	QP	
	16.4940	16.35	9.91	26.26	50.00	-23.74	AVG	
	16.5885	27.47	9.91	37.38	60.00	-22.62	QP	
		MHz * 0.1556 0.1860 0.4110 0.5639 1.6260 2.6520 3.2010 3.4935 11.4495 12.0434 16.4940	Mk. Freq. Level MHz dBuV * 0.1556 47.47 0.1556 47.47 0.1860 25.00 0.4110 34.44 0.5639 15.46 1.6260 27.71 2.6520 14.96 3.2010 36.02 3.4935 17.21 11.4495 16.10 12.0434 26.65 16.4940 16.35	Mk. Freq. Level Factor MHz dBuV dB * 0.1556 47.47 9.88 * 0.1556 47.47 9.88 0.1860 25.00 9.91 0.4110 34.44 9.79 0.5639 15.46 9.66 1.6260 27.71 9.75 2.6520 14.96 9.77 3.2010 36.02 9.79 3.4935 17.21 9.79 11.4495 16.10 9.84 12.0434 26.65 9.84 16.4940 16.35 9.91	Mk. Freq. Level Factor ment MHz dBuV dB dBuV * 0.1556 47.47 9.88 57.35 0.1860 25.00 9.91 34.91 0.4110 34.44 9.79 44.23 0.5639 15.46 9.66 25.12 1.6260 27.71 9.75 37.46 2.6520 14.96 9.77 24.73 3.2010 36.02 9.79 45.81 3.4935 17.21 9.79 27.00 11.4495 16.10 9.84 25.94 12.0434 26.65 9.84 36.49 16.4940 16.35 9.91 26.26	Mk. Freq. Level Factor ment Limit MHz dBuV dB dBuV dBuV dBuV * 0.1556 47.47 9.88 57.35 65.70 0.1860 25.00 9.91 34.91 54.21 0.4110 34.44 9.79 44.23 57.63 0.5639 15.46 9.66 25.12 46.00 1.6260 27.71 9.75 37.46 56.00 2.6520 14.96 9.77 24.73 46.00 3.2010 36.02 9.79 45.81 56.00 3.4935 17.21 9.79 27.00 46.00 11.4495 16.10 9.84 25.94 50.00 12.0434 26.65 9.84 36.49 60.00 16.4940 16.35 9.91 26.26 50.00	Mk. Freq. Level Factor ment Limit Margin MHz dBuV dB dBuV dBuV dBuV dB * 0.1556 47.47 9.88 57.35 65.70 -8.35 0.1860 25.00 9.91 34.91 54.21 -19.30 0.4110 34.44 9.79 44.23 57.63 -13.40 0.5639 15.46 9.66 25.12 46.00 -20.88 1.6260 27.71 9.75 37.46 56.00 -18.54 2.6520 14.96 9.77 24.73 46.00 -21.27 3.2010 36.02 9.79 45.81 56.00 -10.19 3.4935 17.21 9.79 27.00 46.00 -19.00 11.4495 16.10 9.84 25.94 50.00 -24.06 12.0434 26.65 9.84 36.49 60.00 -23.74 16.4940 16.35 9.91 26.26<	Mk. Freq. Level Factor ment Limit Margin MHz dBuV dB dBuV dBuV dB Detector * 0.1556 47.47 9.88 57.35 65.70 -8.35 QP 0.1860 25.00 9.91 34.91 54.21 -19.30 AVG 0.4110 34.44 9.79 44.23 57.63 -13.40 QP 0.5639 15.46 9.66 25.12 46.00 -20.88 AVG 1.6260 27.71 9.75 37.46 56.00 -18.54 QP 2.6520 14.96 9.77 24.73 46.00 -21.27 AVG 3.2010 36.02 9.79 45.81 56.00 -10.19 QP 3.4935 17.21 9.79 27.00 46.00 -19.00 AVG 11.4495 16.10 9.84 25.94 50.00 -24.06 AVG 12.0434 26.65 <t< td=""></t<>

Remark:


- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

Page 16 of 68

7.3 Maximum Conducted Output Power

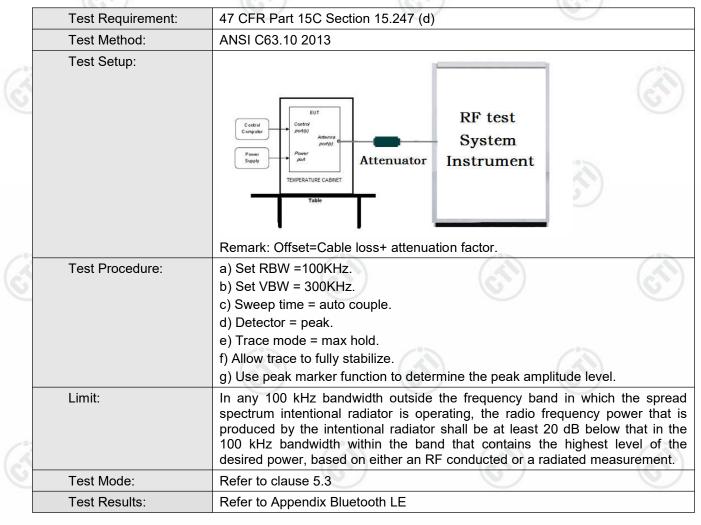
7.4 DTS Bandwidth

Test Requirement:	47 CFR Part 15C Section 15.247 (a)(2)						
Test Method:	ANSI C63.10 2013						
Test Setup:							
	Control Computer Power Swepty Tel/PERATURE CABNET Table						
Test Procedure:	Remark: Offset=Cable loss+ attenuation factor. a) Set RBW = 100 kHz. b) Set the VBW ≥[3 × RBW]. c) Detector = peak. d) Trace mode = max hold.						
	 e) Sweep = auto couple. f) Allow the trace to stabilize. g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission. 						
Limit:	≥ 500 kHz						
Test Mode:	Refer to clause 5.3						
Test Results:	Refer to Appendix Bluetooth LE						

Page 18 of 68

7.5 Maximum Power Spectral Density

Test Requirement:	47 CFR Part 15C Section 15.247 (e)
Test Method:	ANSI C63.10 2013
Test Setup:	
	Congular Congul
 Test Procedure:	Remark: Offset=Cable loss+ attenuation factor. a) Set analyzer center frequency to DTS channel center frequency. b) Set the span to 1.5 times the DTS bandwidth. c) Set the RBW to 3 kHz < RBW < 100 kHz.
	 d) Set the VBW > [3 × RBW]. e) Detector = peak. f) Sweep time = auto couple. g) Trace mode = max hold. h) Allow trace to fully stabilize. i) Use the peak marker function to determine the maximum amplitude level within the RBW. j) If measured value exceeds requirement, then reduce RBW (but no less
 	than 3 kHz) and repeat.
 Limit:	≤8.00dBm/3kHz
Test Mode:	Refer to clause 5.3
Test Results:	Refer to Appendix Bluetooth LE

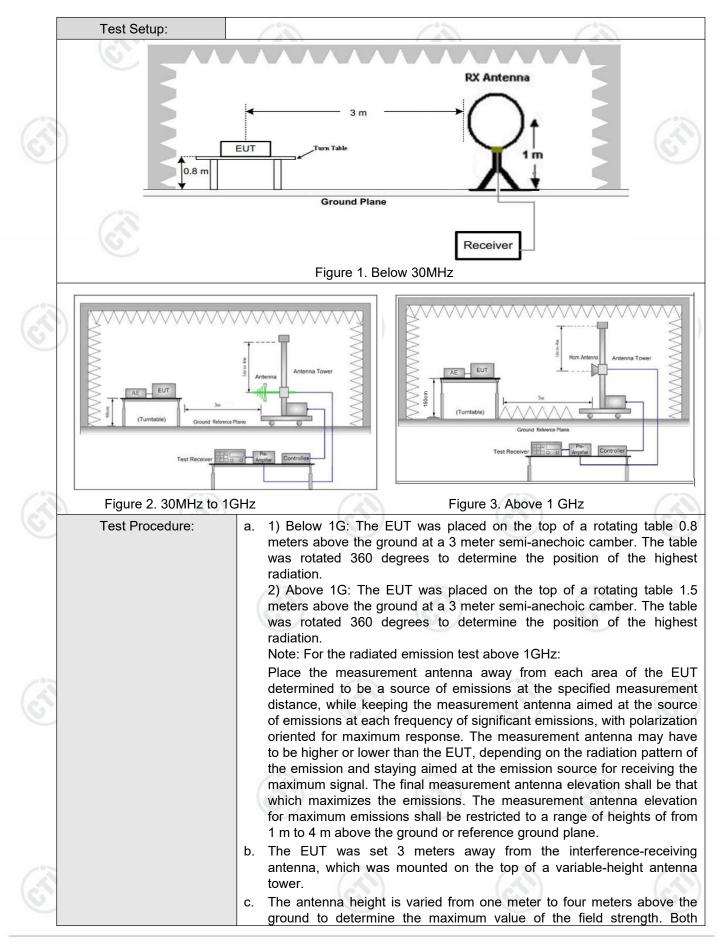


Page 19 of 68

7.6 Band Edge measurements and Conducted Spurious Emission

Page 20 of 68

7.7 Radiated Spurious Emission & Restricted bands

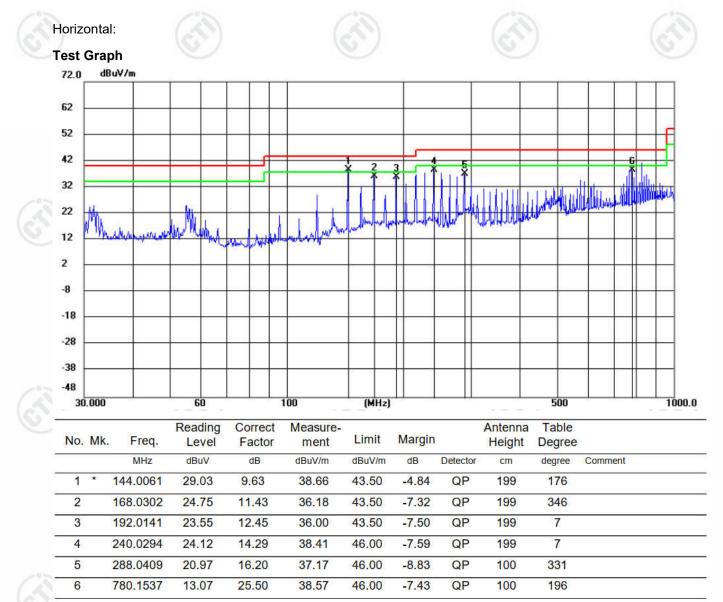

	Test Requirement:	47 CFR Part 15C Secti	on 1	15.209 and 15	.205		C	/			
	Test Method:	ANSI C63.10 2013									
-	Test Site:	Measurement Distance	Measurement Distance: 3m (Semi-Anechoic Chamber)								
	Receiver Setup:	Frequency	1	Detector	RBW	1	VBW	Remark			
9		0.009MHz-0.090MH	z	Peak	10kHz	z	30kHz	Peak			
		0.009MHz-0.090MH	z	Average	10kHz	z	30kHz	Average			
		0.090MHz-0.110MH	z	Quasi-peak	10kHz	z	30kHz	Quasi-peak			
		0.110MHz-0.490MH	z	Peak	10kHz	z	30kHz	Peak			
		0.110MHz-0.490MH	z	Average	10kHz	z	30kHz	Average			
		0.490MHz -30MHz		Quasi-peak	10kHz	z	30kHz	Quasi-peak			
		30MHz-1GHz		Quasi-peak	100 kH	lz	300kHz	Quasi-peak			
23			2	Peak	1MHz		3MHz	Peak			
S I		Above 1GHz		Peak	1MHz)	10kHz	Average			
	Limit:	Frequency		eld strength crovolt/meter)	Limit (dBuV/m)		Remark	Measureme distance (m			
		0.009MHz-0.490MHz	2	400/F(kHz)	-		- / 2	300			
		0.490MHz-1.705MHz	24	4000/F(kHz)	-		- (2)	30			
		1.705MHz-30MHz		30	-		<u>e</u>	30			
		30MHz-88MHz		100	40.0	Q	uasi-peak	3			
		88MHz-216MHz		150	43.5	Q	uasi-peak	3			
		216MHz-960MHz	6	200	46.0	Q	uasi-peak	3			
U.		960MHz-1GHz	1	500	54.0	Q	uasi-peak	3			
		Above 1GHz		500	54.0		Average	3			
		Note: 15.35(b), frequency emissions is limit applicable to the e peak emission level rac	20c qui	dB above the pment under t	maximum est. This p	pe	rmitted ave	rage emissior			

Page 21 of 68

CTI华测检测

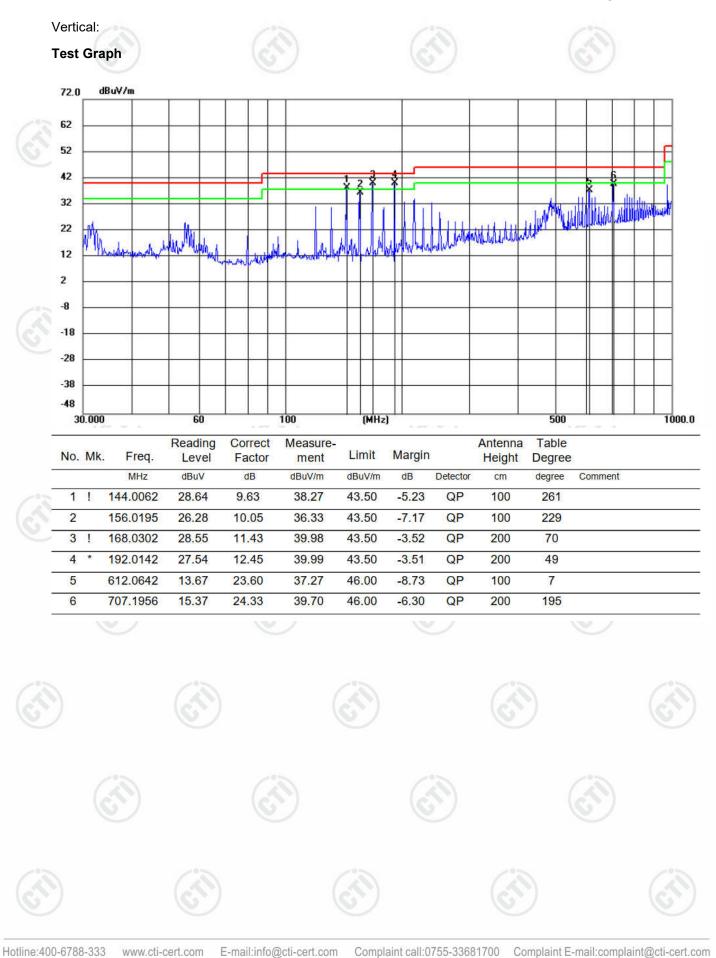
Report No. : EED32Q80875701

horizontal and vertical polarizations of the antenna are set to make the measurement. d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the f. limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. g. Test the EUT in the lowest channel (2402MHz), the middle channel (2440MHz), the Highest channel (2480MHz) h. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case. Repeat above procedures until all frequencies measured was complete. i. Refer to clause 5.3 Test Mode: Pass Test Results:


Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

Radiated Spurious Emission below 1GHz:

During the test, the Radiates Emission from 30MHz to 1GHz was performed in all modes, only the worst case highest channel of GFSK 1M was recorded in the report.



S

Page 24 of 68

Radiated Spurious Emission above 1GHz:

During the test, the Radiated Spurious Emission from above 1GHz was performed in all modes, only the worst case BLE 1M was recorded in the report.

3	Mode	:	BLE GFSK Transmitting						2402 MHz	2
2	NO	NO Freq. [MHz]		r Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	1358.6359	8.02	37.53	45.55	74.00	28.45	Pass	Н	PK
	2	1789.679	8.46	37.24	45.70	74.00	28.30	Pass	Н	PK
	3	3956.0637	-16.66	5 51.16	34.50	74.00	39.50	Pass	Н	PK
	4	5428.1619	-11.67	49.85	38.18	74.00	35.82	Pass	Н	PK
	5	8155.3437	-3.37	46.12	42.75	74.00	31.25	Pass	Н	PK
	6	12803.6536	1.90	42.64	44.54	74.00	29.46	Pass	Н	PK
3	7	1445.2445	8.05	37.51	45.56	74.00	28.44	Pass	V	PK
	8	2113.7114	9.57	37.16	46.73	74.00	27.27	Pass	V	PK
1	9	4804.1203	-13.44	4 53.32	39.88	74.00	34.12	Pass	V	PK
	10	6142.2095	-10.14	47.84	37.70	74.00	36.30	Pass	V	PK
	11	8172.3448	-3.56	46.24	42.68	74.00	31.32	Pass	V	PK
	12	14413.7609	5.97	47.36	53.33	74.00	20.67	Pass	V	PK

	Mode	:	BL	E GFSK Tra	nsmitting		Channel:		2440 MHz	2
10	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1	1476.4476	7.94	37.36	45.30	74.00	28.70	Pass	н	PK
	2	2044.5044	9.23	37.10	46.33	74.00	27.67	Pass	н	PK
	3	3598.0399	-17.67	53.70	36.03	74.00	37.97	Pass	Н	PK
	4	4789.1193	-13.47	52.01	38.54	74.00	35.46	Pass	Н	PK
	5	7320.288	-6.72	47.26	40.54	74.00	33.46	Pass	Н	PK
	6	9494.433	-0.49	43.31	42.82	74.00	31.18	Pass	Н	PK
	7	1424.8425	8.14	37.39	45.53	74.00	28.47	Pass	V	PK
	8	1727.8728	8.50	37.38	45.88	74.00	28.12	Pass	V	PK
3	9	4879.1253	-13.46	55.26	41.80	74.00	32.20	Pass	V	PK
	10	6704.247	-7.73	48.39	40.66	74.00	33.34	Pass	V	PK
	11	11033.5356	0.25	43.81	44.06	74.00	29.94	Pass	V	PK
	12	14641.7761	7.11	44.81	51.92	74.00	22.08	Pass	V	PK

Hotline:400-6788-333

www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com

Page 26 of 68

		10-		10-		105		1	10		
	Mode	:		BLE GFSK Tra	insmitting		Channel:		2480 MHz	z	
	NO	Freq. [MHz]	Facto [dB]	Deediner	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
	1	1280.6281	7.77	38.32	46.09	74.00	27.91	Pass	н	PK	
	2	1847.4847	8.69	36.91	45.60	74.00	28.40	Pass	Н	PK	
	3	4795.1197	-13.4	5 55.68	42.23	74.00	31.77	Pass	Н	PK	
	4	6995.2664	-7.06	6 47.17	40.11	74.00	33.89	Pass	Н	PK	
	5	10555.5037	-0.56	6 43.60	43.04	74.00	30.96	Pass	Н	PK	
	6	14695.7797	7.49	38.93	46.42	74.00	27.58	Pass	Н	PK	
	7	1417.6418	8.16	37.44	45.60	74.00	28.40	Pass	V	PK	
	8	1925.4925	8.96	36.19	45.15	74.00	28.85	Pass	V	PK	
	9	3538.0359	-17.8	9 53.12	35.23	74.00	38.77	Pass	V	PK	
	10	4960.1307	-13.3	5 54.10	40.75	74.00	33.25	Pass	V	PK	
3	11	8119.3413	-2.96	6 45.78	42.82	74.00	31.18	Pass	V	PK	
	12	14881.7921	6.25	46.94	53.19	74.00	20.81	Pass	V	PK	
1.5	1		~								

Remark:

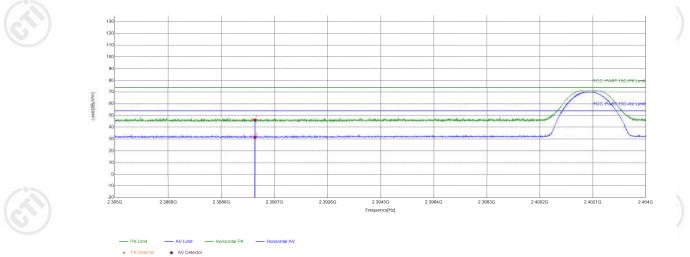
1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor

2) Scan from 9kHz to 25GHz, the disturbance above 10GHz and below 30MHz was very low. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.

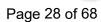
Page 27 of 68

Restricted bands:

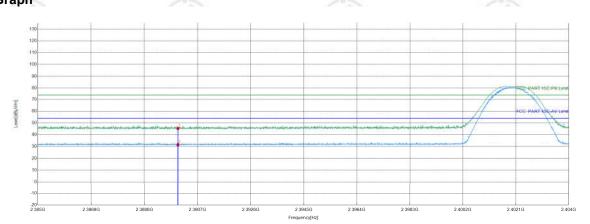


Test plot as follows:

Test_Mode	BLE 1M GFSK Transmitting	Test_Frequency	2402MHz
Tset_Engineer	Aiden.wang	Test_Date	2024/07/02
Remark		(C)	(C)

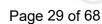

Test Graph

NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2390	9.96	36.24	46.20	74.00	27.80	PASS	Horizontal	PK
2	2390	9.96	21.53	31.49	54.00	22.51	PASS	Horizontal	AV

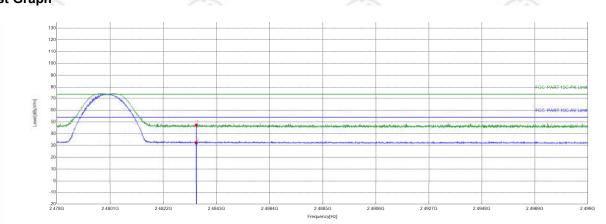


Test_Mode	BLE 1M GFSK Transmitting	Test_Frequency	2402MHz
Tset_Engineer	Aiden.wang	Test_Date	2024/07/02
Remark	١		

Test Graph

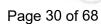


S		1°2		12		1	-		13
Suspecte	d List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2390	9.96	35.42	45.38	74.00	28.62	PASS	Vertical	PK
2	2390	9.96	21.60	31.56	54.00	22.44	PASS	Vertical	AV
G			67		6			S)	



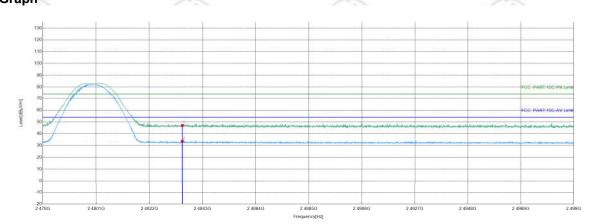
Test_Mode	BLE 1M GFSK Transmitting	Test_Frequency	2480MHz
Tset_Engineer	Aiden.wang	Test_Date	2024/07/02

Test Graph



PK Limit AV Limit Horizontal PK Horizontal AV X Detector

1° 20			1°2		12		1	2		13
\leq	Suspecte	d List								
2	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
ſ	1	2483.5	10.38	37.05	47.43	74.00	26.57	PASS	Horizontal	PK
	2	2483.5	10.38	21.93	32.31	54.00	21.69	PASS	Horizontal	AV
	G			67		6			ST)	

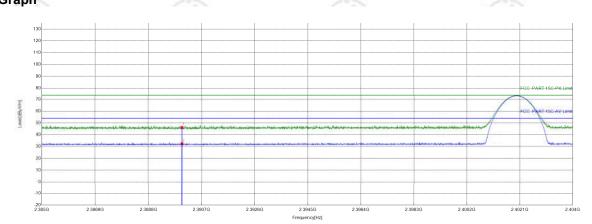


Test_Mode	BLE 1M GFSK Transmitting	Test_Frequency	2480MHz
Tset_Engineer	Aiden.wang	Test_Date	2024/07/02

Test Graph

PK Limit AV Limit Vertical PK Vertical AV AV Detector

<* 22			1°2		12		1	2		2°2
<u> </u>	Suspecte	d List								
٢	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	2483.5	10.38	36.70	47.08	74.00	26.92	PASS	Vertical	PK
Ī	2	2483.5	10.38	23.11	33.49	54.00	20.51	PASS	Vertical	AV
	(C			67		6			ST)	



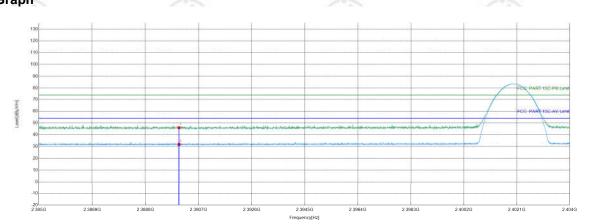
Page 31 of 68

Test_Mode	BLE 2M GFSK Transmitting	Test_Frequency	2402MHz
Tset_Engineer	Aiden.wang	Test_Date	2024/07/02

Test Graph

PK Limit — AV Limit — Horizontal PK — Horizontal AV PK Detector AV Detector

1	Suspecte	d l ist	~~~		2°		~	-		2°2
6	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	2390	9.96	36.13	46.09	74.00	27.91	PASS	Horizontal	PK
	2	2390	9.96	22.33	32.29	54.00	21.71	PASS	Horizontal	AV
	(C			67		6			ST)	



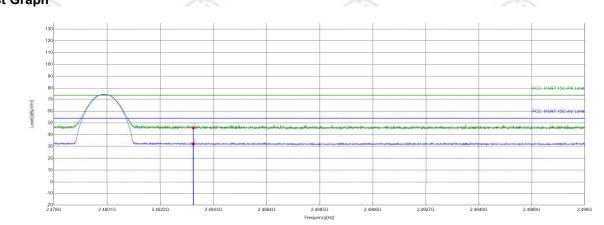
Page 32 of 68

Test_Mode	BLE 2M GFSK Transmitting	Test_Frequency	2402MHz
Tset_Engineer	Aiden.wang	Test_Date	2024/07/02

Test Graph

PK Limit — AV Limit — Vertical PK — Vertical AV * PK Detector * AV Detector

12			1°2		/°>>		1	2		2°2
<u>s</u>	Suspecte	d List								
3	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	2390	9.96	35.98	45.94	74.00	28.06	PASS	Vertical	PK
	2	2390	9.96	21.86	31.82	54.00	22.18	PASS	Vertical	AV
	G		•	67		6			S)	

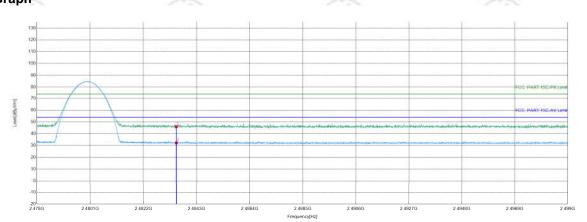


Test_Mode	BLE 2M GFSK Transmitting	Test_Frequency	2480MHz
Tset_Engineer	Aiden.wang	Test_Date	2024/07/02

Test Graph

- PK Limit - AV Limit tal PK - Horizontal AV * AV Detector

°22			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		12		1	2		2°2
\leq	Suspecte	d List								
ف	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
[1	2483.5	10.38	35.51	45.89	74.00	28.11	PASS	Horizontal	PK
Ī	2	2483.5	10.38	21.91	32.29	54.00	21.71	PASS	Horizontal	AV
	(C			(\mathbf{c})		(C)			S)	



Page 34 of 68

Test_Mode	BLE 2M GFSK Transmitting	Test_Frequency	2480MHz
Tset_Engineer	Aiden.wang	Test_Date	2024/07/02

Test Graph

PKLimi * AV Detector

		2°3				1	2		23
Suspecte	ed List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2483.5	10.38	35.52	45.90	74.00	28.10	PASS	Vertical	PK
2	2483.5	10.38	21.86	32.24	54.00	21.76	PASS	Vertical	AV
	57		(\mathbf{G}^{*})	•	(GT)	h.	2	ST/	

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows: Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor-Antenna Factor-Cable Factor

Hotline:400-6788-333 www.cti-cert.com E-mail:info@cti-cert.com Complaint call:0755-33681700 Complaint E-mail:complaint@cti-cert.com