

CFR 47 FCC PART 15 SUBPART C(DSS)

TEST REPORT

For

Air conduction wireless headphone

MODEL NUMBER: AEROFUN

REPORT NUMBER: E04A24030014F00101

ISSUE DATE: March 27, 2024

FCC ID: 2BE2V-1260

Prepared for

TUNNO OCEAN DIGITAL TECHNOLOGY LIMITED UNIT 83 3/F YAU LEE CENTER, 45 HOI YUEN RD KWUN TONG, KOWLOON, HONG KONG

Prepared by

Guangdong Global Testing Technology Co., Ltd.

Room 101-105, 203-210, Building 1, No.2, Keji 8 Road, Songshan Lake Park, Dongguan city, Guangdong, People's Republic of China, 523808

This report is based on a single evaluation of the submitted sample(s) of the above mentioned Product, it does not imply an assessment of the production of the products. This report shall not be reproduced, except in full, without the written approval of Guangdong Global Testing Technology Co., Ltd.

TRF Originator: GTG E-mail: info@gtggroup.com

Revision History

Rev.	Issue Date	Revisions	Revised By
V0	March 27, 2024	Initial Issue	

Summary of Test Results

Test Item	Clause	Limit/Requirement	Result
Antenna Requirement	N/A	FCC Part 15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	ANSI C63.10-2013 Clause 6.2	FCC Part 15.207	Pass
Conducted Output Power	ANSI C63.10-2013 Clause 7.8.5	FCC Part 15.247 (b)(1)	Pass
20 dB Bandwidth and 99% Occupied Bandwidth	ANSI C63.10-2013 Clause 6.9.2	FCC Part 15.247 (a)(1)	Pass
Carrier Hopping Channel Separation	ANSI C63.10-2013 Clause 7.8.2	FCC Part 15.247 (a)(1)	Pass
	ANSI C63.10-2013 Clause 7.8.3	FCC Part 15.247 (b)(1)	Pass
Time of Occupancy (Dwell Time)	ANSI C63.10-2013 Clause 7.8.4	FCC Part 15.247 (a)(1)	Pass
Conducted Bandedge and Spurious Emission	ANSI C63.10-2013 Clause 6.10.4 & Clause 7.8.8	FCC Part 15.247(d)	Pass
Radiated Band edge and Spurious Emission	ANSI C63.10-2013 Clause 6.3 & 6.5 & 6.6	FCC Part 15.205/15.209	Pass

*This test report is only published to and used by the applicant, and it is not for evidence purpose in China.

*The measurement result for the sample received is <Pass> according to <CFR 47 FCC PART 15 SUBPART C(DSS)> when <Accuracy Method> decision rule is applied.

CONTENTS

1.	ATTESTATION OF TEST RESULTS			
2.	. TEST METHODOLOGY			
3.	FACILI	TIES AND ACCREDITATION	6	
4.	CALIB	RATION AND UNCERTAINTY	7	
4	4.1.	MEASURING INSTRUMENT CALIBRATION	7	
4	4.2.	MEASUREMENT UNCERTAINTY	7	
5.	EQUIP	MENT UNDER TEST	8	
5	5.1.	DESCRIPTION OF EUT	8	
5	5.2.	CHANNEL LIST	8	
5	5.3.	MAXIMUM PEAK OUTPUT POWER	9	
5	5.4.	TEST CHANNEL CONFIGURATION	9	
5	5.5.	THE WORSE CASE POWER SETTING PARAMETER	10	
5	5.6.	DESCRIPTION OF AVAILABLE ANTENNAS	10	
5	5.7.	SUPPORT UNITS FOR SYSTEM TEST	10	
5	5.8.	SETUP DIAGRAM	11	
	.0.			
6.	-	JRING EQUIPMENT AND SOFTWARE USED		
-	MEAS		12	
6. 7.	MEAS	JRING EQUIPMENT AND SOFTWARE USED	12 14	
6. 7. 7	MEASU	JRING EQUIPMENT AND SOFTWARE USED	12 14 14	
6. 7. 7	MEASU ANTEN	JRING EQUIPMENT AND SOFTWARE USED INA PORT TEST RESULTS Conducted Output Power	12 14 14 15	
6. 7. 7 7 7	MEASU ANTEN 7.1. 7.2.	JRING EQUIPMENT AND SOFTWARE USED INA PORT TEST RESULTS Conducted Output Power 20 dB Bandwidth and 99% Occupied Bandwidth	12 14 15 16	
6. 7. 7 7 7 7	MEASU ANTEN 7.1. 7.2. 7.3.	JRING EQUIPMENT AND SOFTWARE USED INA PORT TEST RESULTS Conducted Output Power 20 dB Bandwidth and 99% Occupied Bandwidth Carrier Hopping Channel Separation	12 14 15 16 18	
6. 7. 7 7 7 7 7	MEASU ANTEN 7.1. 7.2. 7.3. 7.4.	JRING EQUIPMENT AND SOFTWARE USED INA PORT TEST RESULTS Conducted Output Power 20 dB Bandwidth and 99% Occupied Bandwidth Carrier Hopping Channel Separation Number of Hopping Frequency	12 14 15 16 18 20	
6. 7. 7 7 7 7 7 7 7	MEASU ANTEN 7.1. 7.2. 7.3. 7.4. 7.5. 7.6.	JRING EQUIPMENT AND SOFTWARE USED INA PORT TEST RESULTS Conducted Output Power 20 dB Bandwidth and 99% Occupied Bandwidth Carrier Hopping Channel Separation Number of Hopping Frequency Time of Occupancy (Dwell Time)	12 14 15 16 18 20 22	
6. 7. 7 7 7 7 7 8.	MEASU ANTEN 7.1. 7.2. 7.3. 7.4. 7.5. 7.6.	JRING EQUIPMENT AND SOFTWARE USED INA PORT TEST RESULTS Conducted Output Power 20 dB Bandwidth and 99% Occupied Bandwidth Carrier Hopping Channel Separation Number of Hopping Frequency Time of Occupancy (Dwell Time) Conducted Bandedge and Spurious Emission	12 14 15 16 18 20 22 24	
6. 7. 7 7 7 7 7 8.	MEASU ANTEN 7.1. 7.2. 7.3. 7.4. 7.5. 7.6. RADIA 8.1.	JRING EQUIPMENT AND SOFTWARE USED INA PORT TEST RESULTS Conducted Output Power 20 dB Bandwidth and 99% Occupied Bandwidth Carrier Hopping Channel Separation Number of Hopping Frequency Time of Occupancy (Dwell Time) Conducted Bandedge and Spurious Emission TED TEST RESULTS	12 14 15 16 20 22 24 30	
6. 7. 7 7 7 7 7 7 8.	MEASU ANTEN 7.1. 7.2. 7.3. 7.4. 7.5. 7.6. RADIA 8.1. ANTEN	JRING EQUIPMENT AND SOFTWARE USED INA PORT TEST RESULTS	 12 14 15 16 18 20 22 24 30 42 	
6. 7. 7 7 7 7 7 7 8. 8. 8. 9.	MEASU ANTEN 7.1. 7.2. 7.3. 7.4. 7.5. 7.6. RADIA 8.1. ANTEN	JRING EQUIPMENT AND SOFTWARE USED. INA PORT TEST RESULTS	 12 14 15 16 20 22 24 30 42 43 	

1. ATTESTATION OF TEST RESULTS

Applicant Information

Company Name:	TUNNO OCEAN DIGITAL TECHNOLOGY LIMITED
Address:	UNIT 83 3/F YAU LEE CENTER, 45 HOI YUEN RD KWUN
	TONG, KOWLOON, HONG KONG

Manufacturer Information

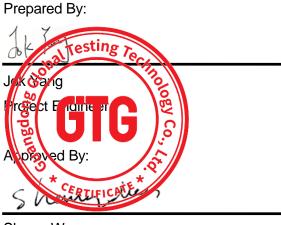
Company Name:	TUNNO OCEAN DIGITAL TECHNOLOGY LIMITED
Address:	UNIT 83 3/F YAU LEE CENTER, 45 HOI YUEN RD KWUN
	TONG, KOWLOON, HONG KONG

Factory Information

Company Name:	Pingxiang Tunnowell Intelligent Technology Co., Ltd.
Address:	Shangli Industrial Park, Jinshan Town, Shangli County, Pingxiang City, Jiangxi Province, P.R. China

EUT Information

Product Description:	Air conduction wireless headphone
Model:	AEROFUN
Brand:	/
Sample Received Date:	March 12, 2024
Sample Status:	Normal
Sample ID:	A24030014 002
Date of Tested:	March 12, 2024 to March 21, 2024


APPLICABLE STANDARDS

STANDARD

TEST RESULTS

CFR 47 FCC PART 15 SUBPART C(DSS)

Pass

Shawn Wen Laboratory Manager Checked By:

San La

Alan He Laboratory Leader

2. TEST METHODOLOGY

All tests were performed in accordance with the standard CFR 47 FCC PART 15 SUBPART C(DSS)

3. FACILITIES AND ACCREDITATION

Guangdong Global Testing Technology Co., Ltd. has been assessed and proved to be in compliance with A2LA. FCC (FCC Designation No.: CN1343) Guangdong Global Testing Technology Co., Ltd. has been recognized to perform compliance testing on equipment
FCC (FCC Designation No.: CN1343) Guangdong Global Testing Technology Co., Ltd. has been recognized to perform compliance testing on equipment
Guangdong Global Testing Technology Co., Ltd. has been recognized to perform compliance testing on equipment
has been recognized to perform compliance testing on equipment
Accreditation Certificate subject to Supplier's Declaration of Conformity (SDoC) and
Certification rules
ISED (Company No.: 30714)
Guangdong Global Testing Technology Co., Ltd.
has been registered and fully described in a report filed with ISED.
The Company Number is 30714 and the test lab Conformity
Assessment Body Identifier (CABID) is CN0148.

Note: All tests measurement facilities use to collect the measurement data are located at Room 101-105, 203-210, Building 1, No.2, Keji 8 Road, Songshan Lake Park, Dongguan city, Guangdong, People's Republic of China, 523808

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations and is traceable to recognized national standards.

4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

Test Items	k	Uncertainty
DTS Bandwidth	1.96	±9.2 PPM
20dB Emission Bandwidth	1.96	±9.2 PPM
Carrier Frequency Separation	1.96	±9.2 PPM
Time of Occupancy	1.96	±0.57%
Conducted Output Power	1.96	±1.5 dB
Power Spectral Density Level	1.96	±1.9 dB
Conducted Spurious Emission	1.96	9 kHz-30 MHz: ± 0.95 dB 30 MHz-1 GHz: ± 1.5 dB 1GHz-12.75GHz: ± 1.8 dB 12.75 GHz-26.5 GHz: ± 2.1dB
Note: This uncertainty represents an expanded un		ressed at approximately the
95% confidence level using a coverage factor of k=1.96.		

Test Item	Measurement Frequency Range	К	U(dB)
Conducted emissions from the AC mains power ports (AMN)	150 kHz ~ 30 MHz	2	3.37
Radiated emissions	9 kHz ~ 30 MHz	2	4.16
Radiated emissions	30 MHz ~ 1 GHz	2	3.79
Radiated emissions	1 GHz ~ 18 GHz	2	5.62
Radiated emissions	18 GHz ~ 40 GHz	2	5.54
Note: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.			

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

EUT Name		Air conduction wireless headphone
Model		AEROFUN
Hardware Version		V1.0
Software Version		V1.0
Ratings		DC 5V / Battery 3.8V
Battery Ratings		YD 601215 3.8V 100mAh 0.38Wh
Power Supply	DC	5V
	Battery	3.8V

Frequency Band:	2400 MHz to 2483.5 MHz
Frequency Range:	2402 MHz to 2480 MHz
Bluetooth Version:	5.3
Modulation Technique:	Frequency Hopping Spread Spectrum(FHSS)
Type of Modulation:	GFSK, π/4-DQPSK, 8DPSK
Number of Channels:	79
Channel Separation:	1 MHz
Maximum Peak Power:	-4.05 dBm
Antenna Type:	Internal antenna
Antenna Gain:	-0.85 dBi
EUT Test software:	FCC_assist_1.0.2.2
Note:	The Antenna Gain was provided by customer, and this information may affect the validity of the results, customer should be responsible for this.

5.2. CHANNEL LIST

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
00	2402	20	2422	40	2442	60	2462
01	2403	21	2423	41	2443	61	2463
02	2404	22	2424	42	2444	62	2464
03	2405	23	2425	43	2445	63	2465
04	2406	24	2426	44	2446	64	2466
05	2407	25	2427	45	2447	65	2467
06	2408	26	2428	46	2448	66	2468
07	2409	27	2429	47	2449	67	2469
08	2410	28	2430	48	2450	68	2470
09	2411	29	2431	49	2451	69	2471
10	2412	30	2432	50	2452	70	2472
11	2413	31	2433	51	2453	71	2473
12	2414	32	2434	52	2454	72	2474
13	2415	33	2435	53	2455	73	2475
14	2416	34	2436	54	2456	74	2476

TRF No.: 04-E001-0B

Global Testing , Great Quality.

15	2417	35	2437	55	2457	75	2477
16	2418	36	2438	56	2458	76	2478
17	2419	37	2439	57	2459	77	2479
18	2420	38	2440	58	2460	78	2480
19	2421	39	2441	59	2461	/	/

5.3. MAXIMUM PEAK OUTPUT POWER

Test Mode	Frequency (MHz)	Channel Number	Maximum Peak Output Power (dBm)	
GFSK	2402 ~ 2480	0-78[79]	-4.81	
π /4-DQPSK	2402 ~ 2480	0-78[79]	-4.28	
8DPSK	2402 ~ 2480	0-78[79]	-4.05	

5.4. TEST CHANNEL CONFIGURATION

Test Mode	Test Channel	Frequency
GFSK	CH 0(Low Channel), CH 39(MID Channel), CH 78(High Channel)	2402 MHz, 2441 MHz, 2480 MHz
π /4-DQPSK	CH 0(Low Channel), CH 39(MID Channel), CH 78(High Channel)	2402 MHz, 2441 MHz, 2480 MHz
8DPSK	CH 0(Low Channel), CH 39(MID Channel), CH 78(High Channel)	2402 MHz, 2441 MHz, 2480 MHz

Note: The hop is hopping mode.

PACKET TYPE CONFIGURATION

Test Mode	Packet Type	Setting (Packet Length)
	DH1	27
GFSK	DH3	183
	DH5	339
	2-DH1	54
π /4-DQPSK	2-DH3	367
	2-DH5	679
	3-DH1	83
8DPSK	3-DH3	552
	3-DH5	1021

5.5. THE WORSE CASE POWER SETTING PARAMETER

Bluetooth Mode	Modulation Technology	Modulation Type	Data Rate (Mbps)
BR	FHSS	GFSK	1Mbit/s
EDR	FHSS	π /4-DQPSK	2Mbit/s
EDR	FHSS	8DPSK	3Mbit/s

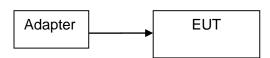
WORST-CASE CONFIGURATIONS

Note: Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates.

The Worse Case Power Setting Parameter under 2400 ~ 2483.5MHz Band						
Test Se	oftware	ŀ	FCC_assist_1.0.2.2			
Modulation Type	Transmit Antenna	a Test Software setting value				
	Number	CH 00	CH 39	CH 78		
GFSK	1	10	10	10		
π /4-DQPSK	1	10	10	10		
8DPSK	1	10	10	10		

5.6. DESCRIPTION OF AVAILABLE ANTENNAS

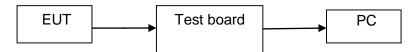
Antenna	Frequency (MHz)	Antenna Type	MAX Antenna Gain (dBi)	
1	2402-2480	Internal antenna	-0.85	


Test Mode	Transmit and Receive Mode	Description
GFSK	⊠1TX, 1RX	Antenna 1 can be used as transmitting/receiving antenna.
π /4-DQPSK	⊠1TX, 1RX	Antenna 1 can be used as transmitting/receiving antenna.
8DPSK	⊠1TX, 1RX	Antenna 1 can be used as transmitting/receiving antenna.

5.7. SUPPORT UNITS FOR SYSTEM TEST

Equipment	Manufacturer	Model No.
Adapter	Lulian	CD170
PC	Lenovo	T14
Test board	/	/

5.8. SETUP DIAGRAM


AC conducted emission :

Radiated Emission:

RF conducted:

	Test Equipment of Conducted RF								
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date				
Spectrum Analyzer	Rohde & Schwarz	FSV40	102257	2023/09/18	2024/09/17				
Spectrum Analyzer	KEYSIGHT	N9020A	MY51285127	2023/09/18	2024/09/17				
EXG Analog Signal Generator	KEYSIGHT	N5173B	MY61253075	2023/09/18	2024/09/17				
Vector Signal Generator	Rohde & Schwarz	SMM100A	101899	2023/09/18	2024/09/17				
RF Control box	MWRF-test	MW100-RFCB	MW220926GTG	2023/09/18	2024/09/17				
Wideband Radio Communication Tester	Rohde & Schwarz	CMW270	102792	2023/09/18	2024/09/17				
Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	103235	2023/09/18	2024/09/17				
temperature humidity chamber	Espec	SH-241	SH-241-2014	2023/09/18	2024/09/17				
RF Test Software	MWRF-test	MTS8310E (Ver. V2/0)	N/A	N/A	N/A				

6. MEASURING EQUIPMENT AND SOFTWARE USED

Test Equipment of Radiated emissions below 1GHz							
Equipment	Manufacturer	Manufacturer Model No. Serial No. Last C					
3m Semi-anechoic Chamber	ETS	9m*6m*6m	Q2146	2022/08/30	2025/08/29		
EMI Test Receiver	Rohde & Schwarz	ESCI3	101409	2023/09/18	2024/09/17		
Spectrum Analyzer	KEYSIGHT	N9020A	MY51283932	2023/09/18	2024/09/17		
Pre-Amplifier	HzEMC	HPA-9K0130	HYPA21001	2023/09/18	2024/09/17		
Biconilog Antenna	Schwarzbeck	VULB 9168	01315	2022/10/10	2025/10/09		
Biconilog Antenna	ETS	3142E	00243646	2022/03/23	2025/03/22		
Loop Antenna	ETS	6502	243668	2022/03/30	2025/03/29		
Test Software	Farad	EZ-EMC (Ver.FA-03A2 RE)	N/A	N/A	N/A		

Test Equipment of Radiated emissions above 1GHz							
Equipment Manufacturer Model No. Serial No. Last Cal. Due Da							
3m Semi-anechoic Chamber	ETS	9m*6m*6m	Q2149	2022/08/30	2025/08/29		
Spectrum Analyzer	Rohde & Schwarz	FSV40	101413	2023/09/18	2024/09/17		
Spectrum Analyzer	KEYSIGHT	N9020A	MY51283932	2023/09/18	2024/09/17		
Pre-Amplifier	A-INFO	HPA-1G1850	HYPA21003	2023/09/18	2024/09/17		

Horn antenna	A-INFO	3117	246069	2022/03/11	2025/03/10
Pre-Amplifier	ZKJC	HPA-184057	HYPA21004	2023/09/18	2024/09/17
Horn antenna	ZKJC	3116C	246265	2022/03/29	2025/03/28
Test Software	Farad	EZ-EMC (Ver.FA-03A2 RE+)	N/A	N/A	N/A

Test Equipment of Conducted emissions					
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Due Date
Shielded Room	CHENG YU	8m*5m*4m	N/A	2022/10/29	2025/10/28
EMI Test Receiver	Rohde & Schwarz	ESR3	102647	2023/09/18	2024/09/17
LISN/AMN	Rohde & Schwarz	ENV216	102843	2023/09/18	2024/09/17
NNLK 8129 RC	Schwarzbeck	NNLK 8129 RC	5046	2023/09/18	2024/09/17
Test Software	Farad	EZ-EMC (Ver. EMC-con-3A1 1+)	N/A	N/A	N/A

7. ANTENNA PORT TEST RESULTS 7.1. CONDUCTED OUTPUT POWER LIMITS

CFR 47 FCC Part15 (15.247) Subpart C				
Section	Test Item	Limit	Frequency Range (MHz)	
CFR 47 FCC 15.247(b)(3)	Peak Conduct Output Power	1 watt or 30 dBm	2400-2483.5	

TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 7.8.5.

Connect the EUT to the spectrum Analyzer and use the following settings:

Center Frequency	The center frequency of the channel under test
Detector	Peak
RBW	>20 dB bandwidth of the emission being measured
VBW	≥RBW
Span	Approximately five times the 20 dB bandwidth, centered on a hopping channel.
Trace	Max hold
Sweep time	Auto

Allow trace to stabilize.

Use the marker-to-peak function to set the marker to the peak of the emission.

TEST SETUP

TEST ENVIRONMENT

Temperature	22.6 ℃	Relative Humidity	51%
Atmosphere Pressure	101kPa		

TEST RESULTS

Please refer to section "Test Data" - Appendix A

TRF No.: 04-E001-0B

7.2. 20 DB BANDWIDTH AND 99% OCCUPIED BANDWIDTH

<u>LIMITS</u>

CFR 47FCC Part15 (15.247) Subpart C			
Section	Test Item	Limit	Frequency Range (MHz)
CFR 47 FCC 15.247 (a) (1)	20 dB Bandwidth	None; for reporting purposes only.	2400-2483.5

TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 6.9.2.

Connect the EUT to the spectrum analyser and use the following settings:

Center Frequency	The center frequency of the channel under test
Detector	Peak
IBBW/	For 20 dB Bandwidth: 1 % to 5 % of the 20 dB bandwidth For 99 % Occupied Bandwidth: 1 % to 5 % of the occupied bandwidth
	For 20 dB Bandwidth: approximately 3×RBW For 99 % Occupied Bandwidth: ≥ 3×RBW
Span	Approximately 2 to 3 times the 20dB bandwidth
Trace	Max hold
Sweep	Auto couple

a) Use the occupied bandwidth function of the instrument, allow the trace to stabilize and report the measured 99 % occupied bandwidth and 20 dB Bandwidth.

TEST SETUP

TEST ENVIRONMENT

Temperature	22.6 ℃	Relative Humidity	51%
Atmosphere Pressure	101kPa		

TEST RESULTS

Please refer to section "Test Data" - Appendix A

7.3. CARRIER HOPPING CHANNEL SEPARATION

LIMITS

CFR 47 FCC Part15 (15.247),				
Section	Test Item	Limit	Frequency Range (MHz)	
CFR 47 FCC 15.247 (a) (1)	Carrier Frequency Separation	Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel.	2400-2483.5	

TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 7.8.2.

Connect the EUT to the spectrum analyzer and use the following settings:

Center Frequency	The center frequency of the channel under test		
Span	wide enough to capture the peaks of two adjacent channels		
Detector	Peak		
RBW	Start with the RBW set to approximately 30 % of the channel spacing; adjust as necessary to best identify the center of each individual channel.		
VBW	≥RBW		
Trace	Max hold		
Sweep time	Auto couple		

Allow the trace to stabilize and use the marker-delta function to determine the separation between the peaks of the adjacent channels.

Compliance of an EUT with the appropriate regulatory limit shall be determined.

TEST SETUP

TEST ENVIRONMENT

Temperature	22.6 ℃	Relative Humidity	51%
Atmosphere Pressure	101kPa		

TEST RESULTS

Please refer to section "Test Data" - Appendix A

7.4. NUMBER OF HOPPING FREQUENCY

<u>LIMITS</u>

CFR 47 FCC Part15 (15.247), Subpart C		
Section	Test Item	Limit
CFR 47 15.247 (a) (1) III	Number of Hopping Frequency	at least 15 hopping channels

TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 7.8.3.

Connect the EUT to the spectrum Analyzer and use the following settings:

Detector	Peak
RBW	To identify clearly the individual channels, set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller.
VBW	≥RBW
Span	The frequency band of operation. Depending on the number of channels the device supports, it may be necessary to divide the frequency range of operation across multiple spans, to allow the individual channels to be clearly seen.
Trace	Max hold
Sweep time	Auto couple

Set EUT to transmit maximum output power and switch on frequency hopping function. then set enough count time (larger than 5000 times) to get all the hopping frequency channel displayed on the screen of spectrum analyzer, count the quantity of peaks to get the number of hopping channels.

TEST SETUP

TEST ENVIRONMENT

Temperature	22.6 ℃	Relative Humidity	51%
Atmosphere Pressure	101kPa		

TEST RESULTS

Please refer to section "Test Data" - Appendix A

7.5. TIME OF OCCUPANCY (DWELL TIME)

<u>LIMITS</u>

CFR 47 FCC Part15 (15.247), Subpart C			
Section	Test Item	Limit	
CFR 47 15.247 (a) (1) III	Time of Occupancy (Dwell Time)	The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds, multiplied by the number of hopping channels employed.	

TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 7.8.4.

Connect the EUT to the spectrum Analyzer and use the following settings:

Center Frequency	The center frequency of the channel under test
Detector	Peak
RBW	1 MHz
VBW	≥RBW
Span	Zero span, centered on a hopping channel
Trace	Max hold
Sweep time	As necessary to capture the entire dwell time per hopping channel; where possible use a video trigger and trigger delay so that the transmitted signal starts a little to the right of the start of the plot. The trigger level might need slight adjustment to prevent triggering when the system hops on an adjacent channel

Use the marker-delta function to determine the transmit time per hop (Burst Width). If this value varies with different modes of operation (data rate, modulation format, number of hopping channels, etc.), then repeat this test for each variation in transmit time.

For FHSS Mode (79 Channel):

DH1/3DH1 Dwell Time: Burst Width * (1600/2) * 31.6 / (channel number) DH3/3DH3 Dwell Time: Burst Width * (1600/4) * 31.6 / (channel number) DH5/3DH5 Dwell Time: Burst Width * (1600/6) * 31.6 / (channel number)

For AFHSS Mode (20 Channel):

DH1/3DH1 Dwell Time: Burst Width * (1600/2) * 8 / (channel number) DH3/3DH3 Dwell Time: Burst Width * (1600/4) * 8 / (channel number) DH5/3DH5 Dwell Time: Burst Width * (1600/6) * 8 / (channel number)

TEST SETUP

TEST ENVIRONMENT

Temperature	22.6 ℃	Relative Humidity	51%
Atmosphere Pressure	101kPa		

TEST RESULTS

Please refer to section "Test Data" - Appendix A

7.6. CONDUCTED BANDEDGE AND SPURIOUS EMISSION

<u>LIMITS</u>

CFR 47 FCC Part15 (15.247), Subpart C			
Section Test Item Limit			
CFR 47 FCC §15.247 (d)	Conducted Spurious Emission	at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power	

TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 7.8.6 and 7.8.8.

Connect the EUT to the spectrum analyser and use the following settings for reference level measurement:

Center Frequency	The center frequency of the channel under test
Detector	Peak
RBW	100 kHz
VBW	≥3 × RBW
Span	1.5 x DTS bandwidth
Trace	Max hold
Sweep time	Auto couple.

Allow trace to fully stabilize and use the peak marker function to determine the maximum PSD level.

Change the settings for emission level measurement:

5040	Set the center frequency and span to encompass frequency range to be measured
Detector	Peak
RBW	100 kHz
VBW	≥3 × RBW
measurement points	≥span/RBW
Trace	Max hold
Sweep time	Auto couple.

Allow trace to fully stabilize and use the peak marker function to determine the maximum PSD level. Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) is attenuated by at least the minimum

TEST SETUP

TEST ENVIRONMENT

Temperature	22.6 ℃	Relative Humidity	51%
Atmosphere Pressure	101kPa		

TEST RESULTS

Please refer to section "Test Data" - Appendix A

8. RADIATED TEST RESULTS

LIMITS

Please refer to CFR 47 FCC §15.205 and §15.209.

Radiation Disturbance Test Limit for FCC (Class B) (9 kHz-1 GHz)

Emissions radiated outside of the specified frequency bands above 30 MHz			
Frequency Range (MHz)	Field Strength Limit (uV/m) at 3 m) at 3 m
00.00	100	Quasi-	
30 - 88	100	40	
88 - 216	150	43.5	
216 - 960	200	46	
Above 960	500	54	
Above 1000	500	Peak	Average
	500	74	54

FCC Emissions radiated outside of the specified frequency bands below 30 MHz		
Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30

FCC Restricted bands of operation refer to FCC §15.205 (a):

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
¹ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(²)
13.36-13.41			

Note: ¹Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. ²Above 38.6c

TRF No.: 04-E001-0B

TEST PROCEDURE

Below 30 MHz

The setting of the spectrum analyser

RBW	200 Hz (From 9 kHz to 0.15 MHz)/ 9 kHz (From 0.15 MHz to 30 MHz)
VBW	200 Hz (From 9 kHz to 0.15 MHz)/ 9 kHz (From 0.15 MHz to 30 MHz)
Sweep	Auto

1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.4.

2. The EUT was arranged to its worst case and then turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both Horizontal, Face-on and Face-off polarizations of the antenna are set to make the measurement.

3. The EUT was placed on a turntable with 80 cm above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a 1 m height antenna tower.

5. The radiated emission limits are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz Radiated emission limits in these three bands are based on measurements employing an average detector.

6. For measurement below 1 GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak and average detector mode remeasured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak and average detector and reported.

7. Although these tests were performed other than open field site, adequate comparison measurements were confirmed against 30m open field site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field site based on KDB 414788.

8. The limits in CFR 47, Part 15, Subpart C, paragraph 15.209 (a), are identical to those in RSS-GEN Section 8.9, Table 6, since the measurements are performed in terms of magnetic field strength and converted to electric field strength levels (as reported in the table) using the free space impedance of 377Ω . For example, the measurement frequency X KHz resulted in a level of Y dBuV/m, which is equivalent to Y-51.5 = Z dBuA/m, which has the same margin, W dB, to the corresponding RSS-GEN Table 6 limit as it has to be 15.209(a) limit.

Below 1 GHz and above 30 MHz

RBW	120 kHz
VBW	300 kHz
Sweep	Auto
Detector	Peak/QP
Trace	Max hold

The setting of the spectrum analyser

1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.5.

2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

3. The EUT was placed on a turntable with 80 cm above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.

5. For measurement below 1 GHz, the initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured. If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.

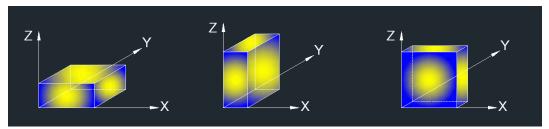
Above 1 GHz

RBW	MHz			
NRW	AK: 3 MHz G: see note 6			
Sweep	Auto			
Detector	Peak			
Trace	Max hold			

The setting of the spectrum analyser

1. The testing follows the guidelines in ANSI C63.10-2013 clause 6.6.

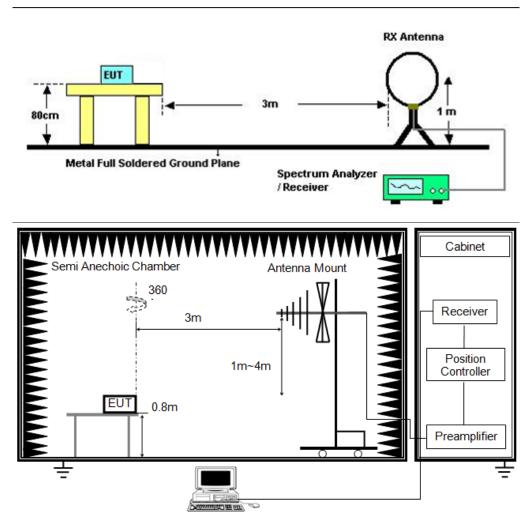
2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level. Both horizontal and vertical polarizations of the antenna are set to make the measurement.

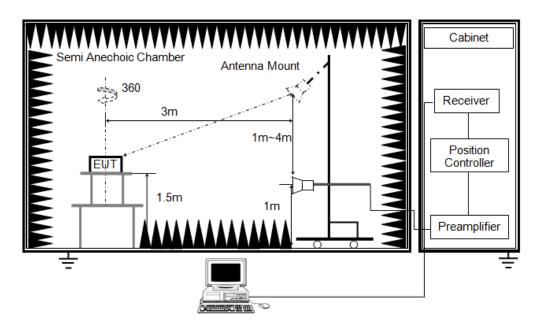

3. The EUT was placed on a turntable with 1.5 m above ground.

4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.

5. For measurement above 1 GHz, the emission measurement will be measured by the peak detector. This peak level, once corrected, must comply with the limit specified in Section 15.209.

6. For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements and 1 MHz resolution bandwidth with 1/T video bandwidth with peak detector for average measurements. For the Duty Cycle please refer to clause 7.1.ON TIME AND DUTY CYCLE.


X axis, Y axis, Z axis positions:

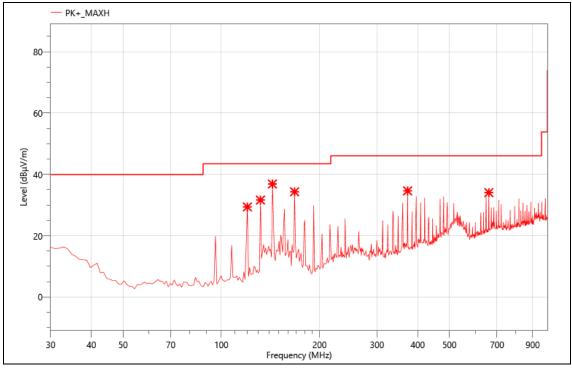


Note 1: For all radiated test, EUT in each of three orthogonal axis emissions had been tested, but only the worst case (X axis) data recorded in the report.

Note 2: The EUT was fully exercised with external accessories during the test. In the case of multiple accessory external ports, an external accessory shall be connected to one of each type of port.

TEST SETUP

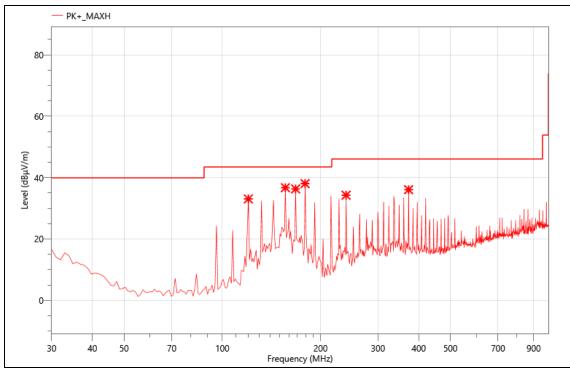
TEST ENVIRONMENT


Temperature	24.3 ℃	Relative Humidity	54%
Atmosphere Pressure	101kPa		

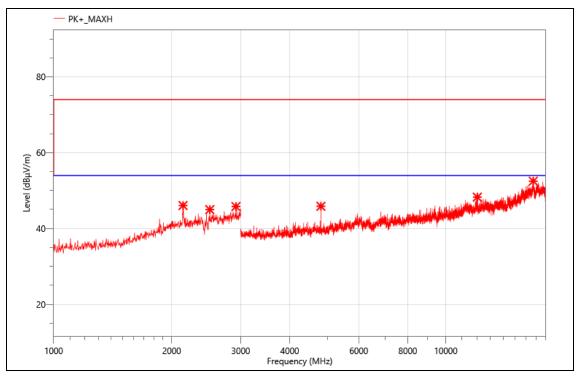
TEST RESULTS

Please refer to section 8.1.

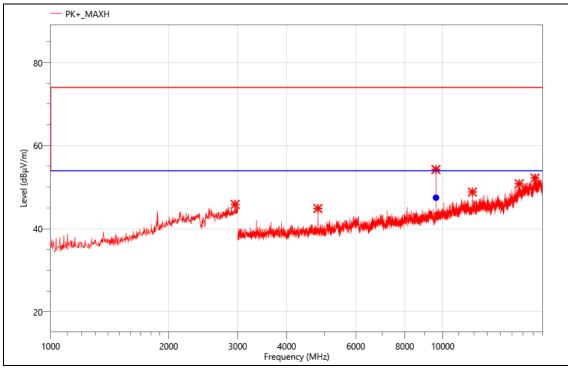
Mode:	3-DH5 2402MHz
Power:	DC 3.8V
TE:	Berny
Date	2024/3/13
T/A/P	24.3°C/54%/101Kpa


8.1. RADIATED BAND EDGE AND SPURIOUS EMISSION

Critical_Freqs


No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.
1	120.210	53.98	-24.59	29.39	43.50	(dD) 14.11	PK+	V
	120.210	55.90	-24.09	29.39	43.00	14.11		v
2	131.850	55.75	-24.1	31.65	43.50	11.85	PK+	V
3	143.490	60.40	-23.52	36.88	43.50	6.62	PK+	V
4	167.740	57.04	-22.7	34.34	43.50	9.16	PK+	V
5	372.410	49.90	-15.26	34.64	46.00	11.36	PK+	V
6	660.500	42.35	-8.29	34.06	46.00	11.94	PK+	V

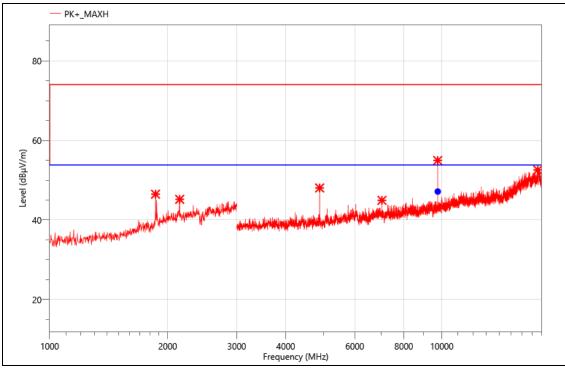
Mode:	3-DH5 2402MHz
Power:	DC 3.8V
TE:	Berny
Date	2024/3/13
T/A/P	24.3°C/54%/101Kpa


No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.
1	120.210	57.65	-24.59	33.06	43.50	10.44	PK+	Н
2	156.100	57.95	-21.24	36.71	43.50	6.79	PK+	Н
3	167.740	59.02	-22.7	36.32	43.50	7.18	PK+	Н
4	179.380	60.19	-22.15	38.04	43.50	5.46	PK+	Н
5	239.520	53.94	-19.66	34.28	46.00	11.72	PK+	Н
6	372.410	51.33	-15.26	36.07	46.00	9.93	PK+	Н

Mode:	3-DH5 2402MHz
Power:	DC 3.8V
TE:	Berny
Date	2024/3/21
T/A/P	24.3°C/54%/101Kpa

No.	Freq.	Reading	Corr.	Meas.	Limit	Margin	Det.	Pol.
110.	(MHz)	$(dB\mu V)$	(dB)	$(dB\mu V/m)$	$(dB\mu V/m)$	(dB)	Det.	1 01.
1	2138.000	55.10	-9.05	46.05	74.00	27.95	PK+	V
2	2502.000	53.39	-8.41	44.98	74.00	29.02	PK+	V
3	2916.000	53.43	-7.64	45.79	74.00	28.21	PK+	V
4	4803.000	57.19	-11.34	45.85	74.00	28.15	PK+	V
5	12033.000	49.34	-1.08	48.26	74.00	25.74	PK+	V
6	16714.500	46.58	5.89	52.47	74.00	21.53	PK+	V

Mode:	3-DH5 2402MHz
Power:	DC 3.8V
TE:	Berny
Date	2024/3/21
T/A/P	24.3℃/54%/101Kpa

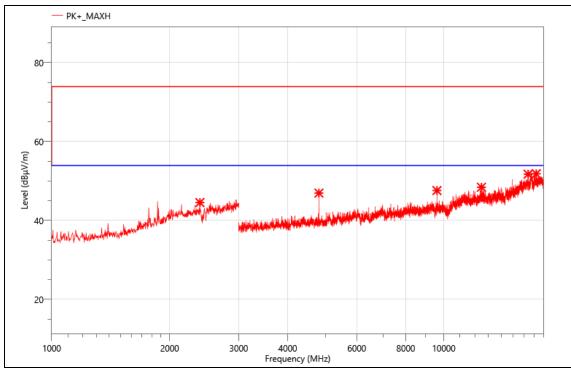


No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.
1	2954.000	53.26	-7.41	45.85	74.00	28.15	PK+	Н
2	4803.000	56.21	-11.34	44.87	74.00	29.13	PK+	Н
3	9607.500	58.91	-4.64	54.27	74.00	19.73	PK+	Н
4	11901.000	49.32	-0.49	48.83	74.00	25.17	PK+	Н
5	15657.000	47.33	3.5	50.83	74.00	23.17	PK+	Н
6	17179.500	46.22	5.99	52.21	74.00	21.79	PK+	Н

Final_Result

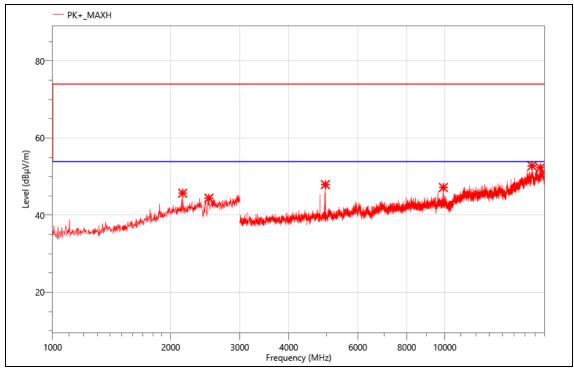
No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.	Verdict
1	9607.595	52.11	-4.64	47.47	53.90	6.43	AVG	Н	PASS

Mode:	3-DH5 2441MHz
Power:	DC 3.8V
TE:	Berny
Date	2024/3/21
T/A/P	24.3℃/54%/101Kpa

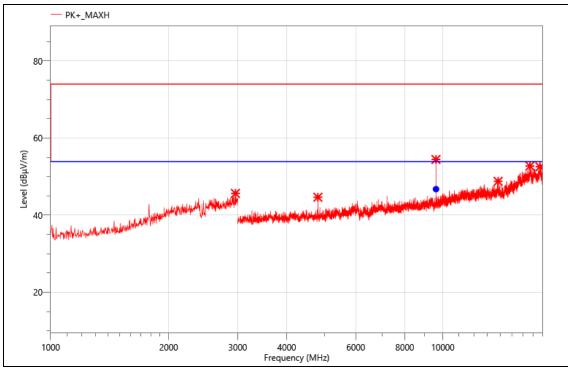


No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.
1	1862.000	56.89	-10.41	46.48	74.00	27.52	PK+	Н
2	2146.000	54.24	-9.05	45.19	74.00	28.81	PK+	Н
3	4881.000	59.20	-11.14	48.06	74.00	25.94	PK+	Н
4	7036.500	51.20	-6.26	44.94	74.00	29.06	PK+	Н
5	9763.500	59.44	-4.47	54.97	74.00	19.03	PK+	Н
6	17569.500	45.98	6.6	52.58	74.00	21.42	PK+	Н

Final_Result


No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.	Verdict
1	9763.405	51.62	-4.47	47.15	53.90	6.75	AVG	Н	PASS

Mode:	3-DH5 2441MHz
Power:	DC 3.8V
TE:	Berny
Date	2024/3/21
T/A/P	24.3°C/54%/101Kpa


No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.
1	2388.000	53.08	-8.53	44.55	74.00	29.45	PK+	V
2	4804.500	58.29	-11.34	46.95	74.00	27.05	PK+	V
3	9607.500	52.24	-4.64	47.60	74.00	26.40	PK+	V
4	12474.000	49.10	-0.67	48.43	74.00	25.57	PK+	V
5	16405.500	46.81	4.93	51.74	74.00	22.26	PK+	V
6	17206.500	45.92	5.93	51.85	74.00	22.15	PK+	V

Mode:	3-DH5 2480MHz
Power:	DC 3.8V
TE:	Berny
Date	2024/3/21
T/A/P	24.3°C/54%/101Kpa

No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.
1	2146.000	54.74	-9.05	45.69	74.00	28.31	PK+	V
2	2504.000	52.82	-8.41	44.41	74.00	29.59	PK+	V
3	4959.000	59.27	-11.35	47.92	74.00	26.08	PK+	V
4	9919.500	50.94	-3.76	47.18	74.00	26.82	PK+	V
5	16686.000	46.55	6.21	52.76	74.00	21.24	PK+	V
6	17536.500	45.78	6.5	52.28	74.00	21.72	PK+	V

Mode:	3-DH5 2480MHz
Power:	DC 3.8V
TE:	Berny
Date	2024/3/21
T/A/P	24.3°C/54%/101Kpa

No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.
1	2960.000	52.99	-7.34	45.65	74.00	28.35	PK+	Н
2	4803.000	55.99	-11.34	44.65	74.00	29.35	PK+	Н
3	9607.500	59.08	-4.64	54.44	74.00	19.56	PK+	Н
4	13837.500	48.16	0.6	48.76	74.00	25.24	PK+	Н
5	16680.000	46.55	6.19	52.74	74.00	21.26	PK+	Н
6	17691.000	45.49	7.06	52.55	74.00	21.45	PK+	Н

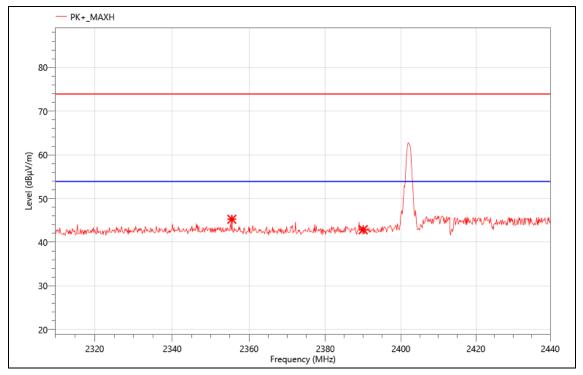
Final_Result

No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.	Verdict
1	9607.600	51.39	-4.64	46.75	53.90	7.15	AVG	Η	PASS

Note: [Margin=Limit-Meas.]; [Meas.=Reading+Corr.]

Note:

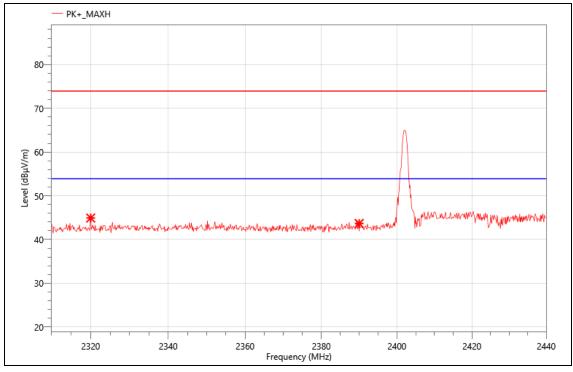
1. Measurement = Reading Level + Correct Factor.


2. If Peak Result complies with AV limit, AV Result is deemed to comply with AV limit.

3. Peak: Peak detector.

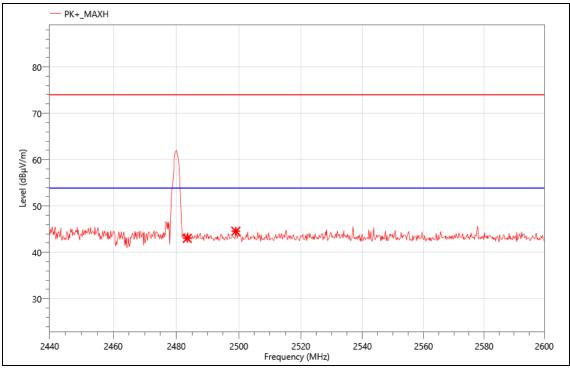
4. Only the worst data was recorded, if it complies with the limit, the other emissions deemed to comply with the limit.

5. The frequency, which started from 18 GHz to 26.5GHz, was pre-scanned and the result which was 20dB lower than the limit line was not reported.


Mode:	3-DH5 2402MHz
Power:	DC 3.8V
TE:	Berny
Date	2024/3/21
T/A/P	24.3°C/54%/101Kpa

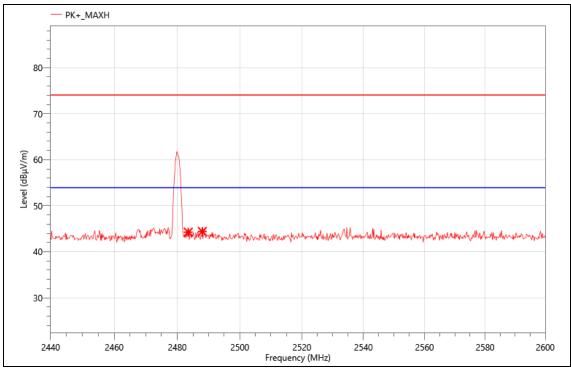
No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.
1	2355.500	22.48	22.77	45.25	74.00	28.75	PK+	Н
2	2390.000	20.14	22.72	42.86	74.00	31.14	PK+	Н

Note: [Margin=Limit-Meas.]; [Meas.=Reading+Corr.]


Mode:	3-DH5 2402MHz
Power:	DC 3.8V
TE:	Berny
Date	2024/3/21
T/A/P	24.3°C/54%/101Kpa

1 2320.010 22.49 22.43 44.92 74.00 29.08 PK+ 2 2390.000 20.95 22.72 43.67 74.00 30.33 PK+	No.	Freq. (MHz)	Reading (dBµV)	Corr. (dB)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.
2 2390.000 20.95 22.72 43.67 74.00 30.33 PK+	1	2320.010	22.49	22.43	44.92	74.00	29.08	PK+	V
	2	2390.000	20.95	22.72	43.67	74.00	30.33	PK+	V

Note: [Margin=Limit-Meas.]; [Meas.=Reading+Corr.]


Mode:	3-DH5 2480MHz
Power:	DC 3.8V
TE:	Berny
Date	2024/3/21
T/A/P	24.3°C/54%/101Kpa

1 2483.500 19.88 23.15 43.03 74.00 30.9		
	7 PK+	V
2 2499.040 21.44 23.11 44.55 74.00 29.4	5 PK+	V

Note: [Margin=Limit-Meas.]; [Meas.=Reading+Corr.]

Mode:	3-DH5 2480MHz
Power:	DC 3.8V
TE:	Berny
Date	2024/3/21
T/A/P	24.3°C/54%/101Kpa

	. (MHz)	(dBµV)	Corr. (dB)	Meas. (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Det.	Pol.
1	2483.500	21.10	23.15	44.25	74.00	29.75	PK+	Н
2	2488.000	21.26	23.14	44.40	74.00	29.60	PK+	Н

Note: [Margin=Limit-Meas.]; [Meas.=Reading+Corr.]

9. ANTENNA REQUIREMENT

REQUIREMENT

Please refer to FCC §15.203

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Please refer to FCC §15.247(b)(4)

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

DESCRIPTION

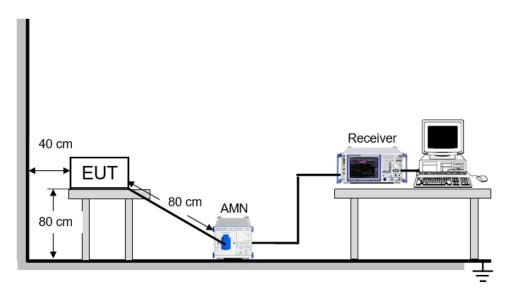
Pass

10. AC POWER LINE CONDUCTED EMISSION

LIMITS

Please refer to CFR 47 FCC §15.207 (a)

FREQUENCY (MHz)	Quasi-peak	Average
0.15 -0.5	66 - 56 *	56 - 46 *
0.50 -5.0	56.00	46.00
5.0 -30.0	60.00	50.00

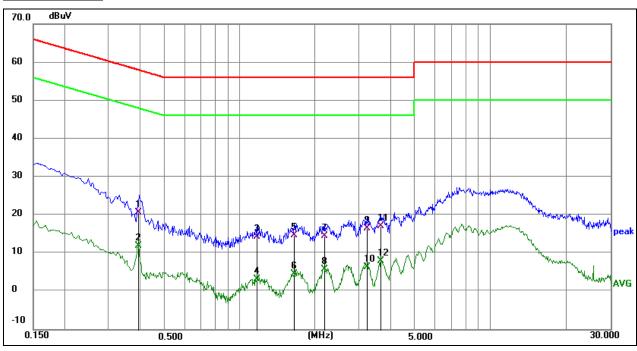

TEST PROCEDURE

Refer to ANSI C63.10-2013 clause 6.2.

The EUT is put on a table of non-conducting material that is 80 cm high. The vertical conducting wall of shielding is located 40 cm to the rear of the EUT. The power line of the EUT is connected to the AC mains through a Artificial Mains Network (A.M.N.). A EMI Measurement Receiver is used to test the emissions from the AC line. According to the requirements in Section 6.2 of ANSI C63.10-2013.Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode. The bandwidth of EMI test receiver is set at 9 kHz.

The arrangement of the equipment is installed to meet the standards and operating in a manner, which tends to maximize its emission characteristics in a normal application.

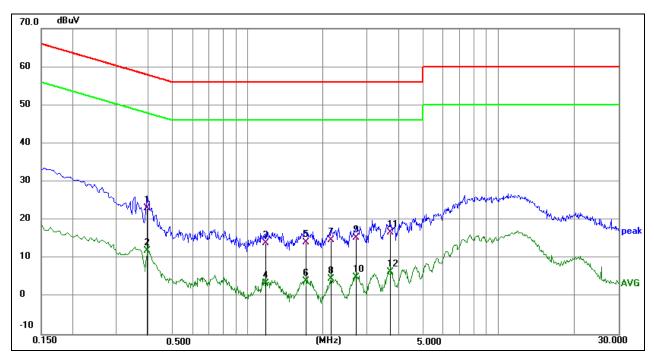
TEST SETUP



TEST ENVIRONMENT

Temperature	21.8℃	Relative Humidity	55%
Atmosphere Pressure	101kPa		

TRF No.: 04-E001-0B


Global Testing, Great Quality.

TEST RESULTS

Phase: L1	Mode: 3-DH5 2480MHz

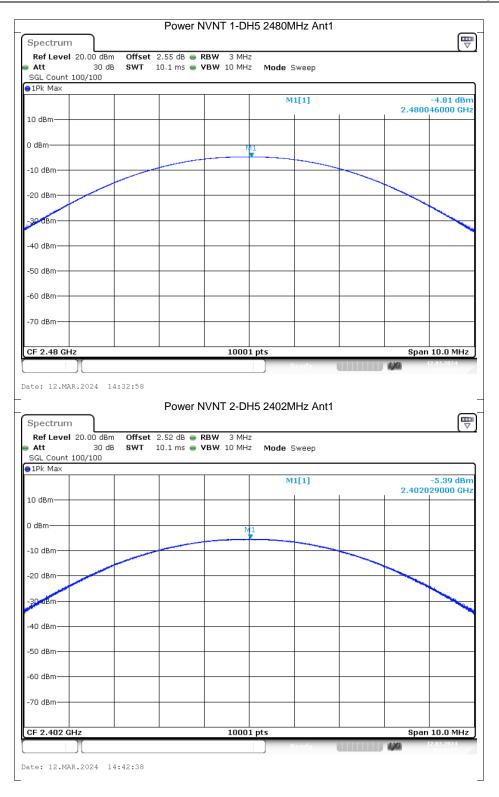
No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)	
1	0.3930	10.91	9.84	20.75	58.00	-37.25	QP
2	0.3930	2.09	9.84	11.93	48.00	-36.07	AVG
3	1.1670	4.17	10.05	14.22	56.00	-41.78	QP
4	1.1670	-6.92	10.05	3.13	46.00	-42.87	AVG
5	1.6530	4.37	10.25	14.62	56.00	-41.38	QP
6	1.6530	-5.62	10.25	4.63	46.00	-41.37	AVG
7	2.1885	4.41	10.15	14.56	56.00	-41.44	QP
8	2.1885	-4.36	10.15	5.79	46.00	-40.21	AVG
9	3.2100	6.38	10.09	16.47	56.00	-39.53	QP
10	3.2100	-3.62	10.09	6.47	46.00	-39.53	AVG
11	3.6600	6.97	10.16	17.13	56.00	-38.87	QP
12	3.6600	-2.16	10.16	8.00	46.00	-38.00	AVG

Phase: N	Mode: 3-DH5 2480MHz

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)	
1	0.3975	13.16	9.94	23.10	57.91	-34.81	QP
2	0.3975	2.04	9.94	11.98	47.91	-35.93	AVG
3	1.1849	3.74	10.13	13.87	56.00	-42.13	QP
4	1.1849	-6.82	10.13	3.31	46.00	-42.69	AVG
5	1.7070	3.93	10.17	14.10	56.00	-41.90	QP
6	1.7070	-6.15	10.17	4.02	46.00	-41.98	AVG
7	2.1525	4.57	10.15	14.72	56.00	-41.28	QP
8	2.1525	-5.52	10.15	4.63	46.00	-41.37	AVG
9	2.7015	5.09	10.21	15.30	56.00	-40.70	QP
10	2.7015	-5.29	10.21	4.92	46.00	-41.08	AVG
11	3.7095	6.38	10.25	16.63	56.00	-39.37	QP
12	3.7095	-3.93	10.25	6.32	46.00	-39.68	AVG

Note: 1. Result = Reading + Correct Factor.

2. If QP Result complies with AV limit, AV Result is deemed to comply with AV limit.

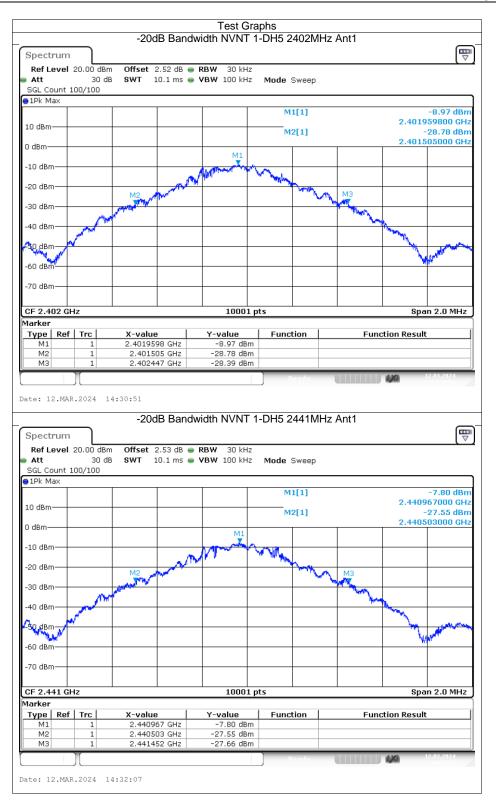

3. Test setup: RBW: 200 Hz (9 kHz ~ 150 kHz), 9 kHz (150 kHz ~ 30 MHz).

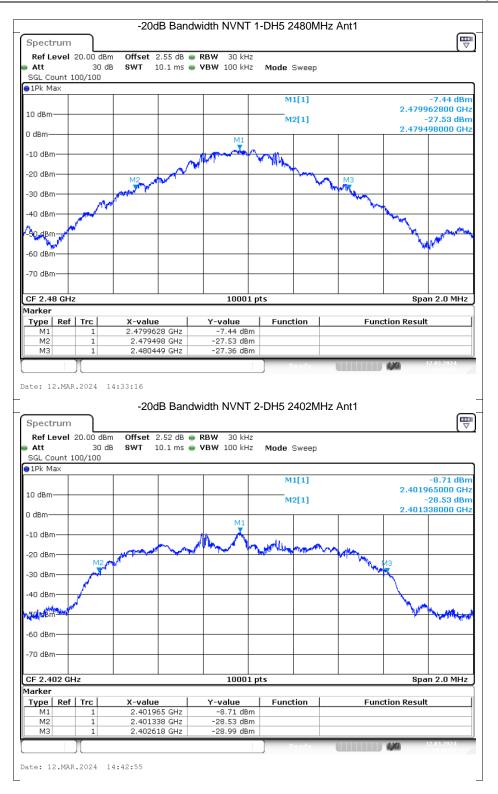
4. Step size: 80 Hz (0.009 MHz ~ 0.15 MHz), 4 kHz (0.15 MHz ~ 30 MHz), Scan time: auto.

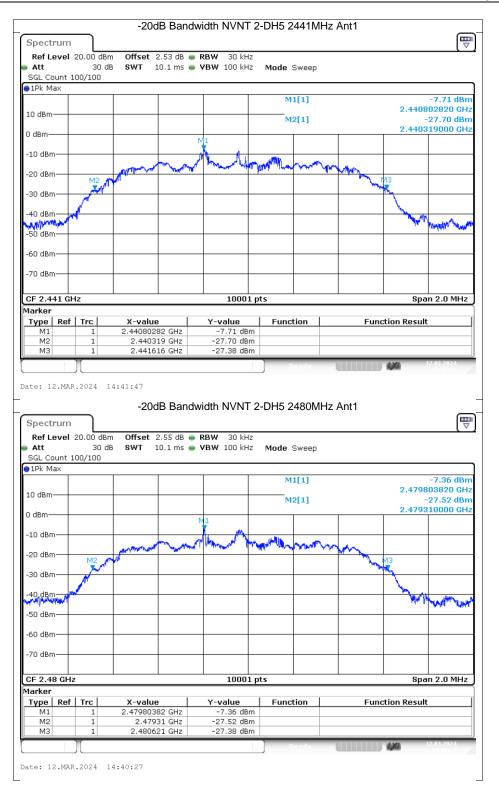
11. **TEST DATA - Appendix A**

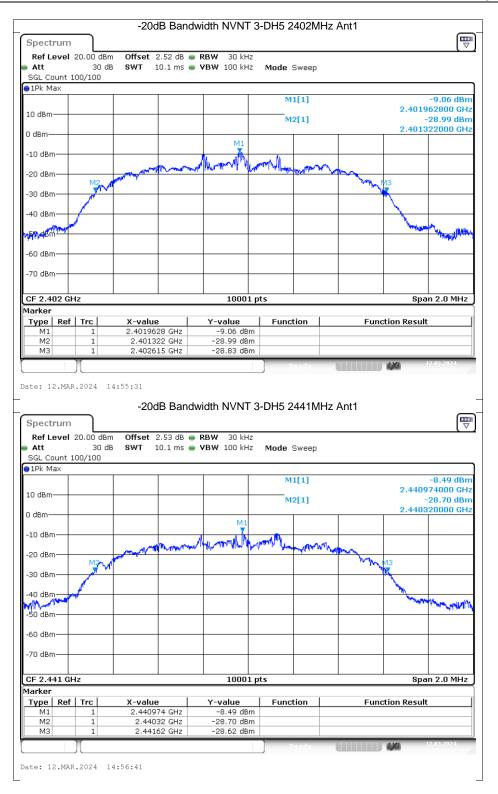
Condition Mode Frequency (MHz) Antenna **Conducted Power** Limit Verdict (dBm) (dBm) NVNT 1-DH5 2402 Ant1 -6.09 Pass 21 NVNT 1-DH5 2441 21 Ant1 -5.2 Pass Pass NVNT 1-DH5 Ant1 21 2480 -4.81 NVNT 2-DH5 2402 Ant1 -5.39 21 Pass NVNT 2-DH5 2441 -4.58 Pass Ant1 21 NVNT 2-DH5 2480 Ant1 -4.28 21 Pass Pass NVNT 3-DH5 2402 Ant1 -5.07 21 Pass NVNT 3-DH5 2441 Ant1 -4.28 21 NVNT 3-DH5 2480 Ant1 -4.05 21 Pass

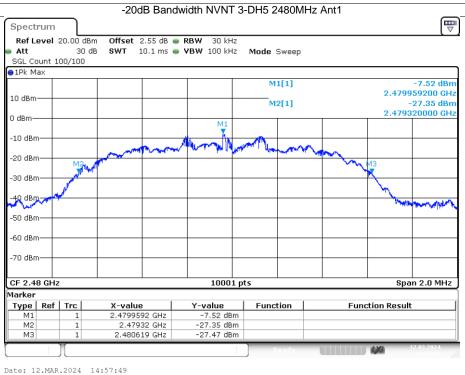
		Power NI	$/NII 1_I)H^{\prime}$	5 2402MHz Ant1			
Spectrum		1 OWCI IN					Æ
Ref Level 20.00 d	Bm Offset	2.52 dB 🔵 RB	3W 3 MHz				L v
Att 30		10.1 ms 👄 VI		Mode Sweep			
SGL Count 100/100 1Pk Max							
				M1[1]			-6.09 dBn
						2.4019	00000 GH
10 dBm							
D dBm							
			M1				
-10 dBm					-		
-20 dBm							
-30 d8m							
-40 dBm							
-50 dBm							
-60 dBm							
-70 dBm							
						Snan	10.0 MHz
	14:30:13	Power N	10001 /NT 1-DH	pts Pready 5 2441MHz Ant1			12.03.2024
CF 2.402 GHz		Power N		Ready			12.03.2024
Spectrum Ref Level 20.00 d	Bm Offset	2.53 dB 🖷 RE	/NT 1-DH зw з мнz	Bendy 5 2441MHz Ant1			12.03.2024
Spectrum Ref Level 20.00 d	Bm Offset	2.53 dB 🖷 RE	/NT 1-DH зw з мнz	Ready			12.03.2024
Spectrum Ref Level 20.00 d Att 30 SGL Count 100/100	Bm Offset	2.53 dB 🖷 RE	/NT 1-DH зw з мнz	9 Serviv 5 2441MHz Ant1 Mode Sweep			12.03.2024
Ate: 12.MAR.2024 Spectrum Ref Level 20.00 d Att 30	Bm Offset	2.53 dB 🖷 RE	/NT 1-DH зw з мнz	Bendy 5 2441MHz Ant1		4,459	-5.20 dBi
Ate: 12.MAR.2024 Spectrum Ref Level 20.00 d Att 30 SGL Count 100/100 1Pk Max	Bm Offset	2.53 dB 🖷 RE	/NT 1-DH зw з мнz	9 Serviv 5 2441MHz Ant1 Mode Sweep		4,459	-5.20 dBi
Ate: 12.MAR.2024 Spectrum Ref Level 20.00 d Att 30 SGL Count 100/100 PIPk Max 10 dBm	Bm Offset	2.53 dB 🖷 RE	/NT 1-DH зw з мнz	9 Serviv 5 2441MHz Ant1 Mode Sweep		4,459	-5.20 dBi
Ate: 12.MAR.2024 Spectrum Ref Level 20.00 d Att 30 SGL Count 100/100 PIPk Max 10 dBm	Bm Offset	2.53 dB 🖷 RE	/NT 1-DH зw з мнz	Bendy 5 2441MHz Ant1 Mode Sweep M1[1]		4,459	-5.20 dBi
Spectrum Ref Level 20.00 d Att 30 SGL Count 100/100 PIPk Max 10 dBm 0 dBm	Bm Offset	2.53 dB 🖷 RE	/NT 1-DH: 3W 3 MHz 8W 10 MHz	Bendy 5 2441MHz Ant1 Mode Sweep M1[1]		4,459	-5.20 dBi
Ate: 12.MAR.2024 Spectrum Ref Level 20.00 d Att 30 SGL Count 100/100 PIPk Max 10 dBm	Bm Offset	2.53 dB 🖷 RE	/NT 1-DH: 3W 3 MHz 8W 10 MHz	Bendy 5 2441MHz Ant1 Mode Sweep M1[1]		4,459	-5.20 dBi
Spectrum Ref Level 20.00 d Att 30 SGL Count 100/100 PIPk Max 10 dBm 0 dBm	Bm Offset	2.53 dB 🖷 RE	/NT 1-DH: 3W 3 MHz 8W 10 MHz	Bendy 5 2441MHz Ant1 Mode Sweep M1[1]		4,459	-5.20 dBi
Ate: 12.MAR.2024 Spectrum	Bm Offset	2.53 dB 🖷 RE	/NT 1-DH: 3W 3 MHz 8W 10 MHz	Bendy 5 2441MHz Ant1 Mode Sweep M1[1]		4,459	-5.20 dBi
Ate: 12.MAR.2024 Spectrum	Bm Offset	2.53 dB 🖷 RE	/NT 1-DH: 3W 3 MHz 8W 10 MHz	Bendy 5 2441MHz Ant1 Mode Sweep M1[1]		4,459	-5.20 dBi
Ate: 12.MAR.2024 Spectrum Ref Level 20.00 d Att 30 SGL Count 100/100 1Pk Max 10 dBm 0 -10 dBm -0 -20 dBm -30 dBm	Bm Offset	2.53 dB 🖷 RE	/NT 1-DH: 3W 3 MHz 8W 10 MHz	Bendy 5 2441MHz Ant1 Mode Sweep M1[1]		4,459	-5.20 dBi
ate: 12.MAR.2024 Spectrum	Bm Offset	2.53 dB 🖷 RE	/NT 1-DH: 3W 3 MHz 8W 10 MHz	Bendy 5 2441MHz Ant1 Mode Sweep M1[1]		4,459	-5.20 dBr
Ate: 12.MAR.2024 Spectrum Ref Level 20.00 d Att 30 SGL Count 100/100 1Pk Max 10 dBm 0 -10 dBm -0 -20 dBm -30 dBm	Bm Offset	2.53 dB 🖷 RE	/NT 1-DH: 3W 3 MHz 8W 10 MHz	Bendy 5 2441MHz Ant1 Mode Sweep M1[1]		4,459	-5.20 dBr
Ate: 12.MAR.2024 Spectrum Ref Level 20.00 d Att 30 SGL Count 100/100 10 PIPk Max 10 10 dBm	Bm Offset	2.53 dB 🖷 RE	/NT 1-DH: 3W 3 MHz 8W 10 MHz	Bendy 5 2441MHz Ant1 Mode Sweep M1[1]		4,459	-5.20 dBi
Ate: 12.MAR.2024 Spectrum Ref Level 20.00 d Att 30 SGL Count 100/100 1Pk Max 10 dBm .0 -10 dBm .0 -20 dBm .30 dBm -40 dBm .0	Bm Offset	2.53 dB 🖷 RE	/NT 1-DH: 3W 3 MHz 8W 10 MHz	Boody 5 2441MHz Ant1 Mode Sweep M1[1]		4,459	-5.20 dBi
Ate: 12.MAR.2024 Spectrum Ref Level 20.00 d Att 30 SGL Count 100/100 10 PIPk Max 10 10 dBm	Bm Offset	2.53 dB 🖷 RE	/NT 1-DH: 3W 3 MHz 8W 10 MHz	Boody 5 2441MHz Ant1 Mode Sweep M1[1]		4,459	-5.20 dBi
Ate: 12.MAR.2024 Spectrum Ref Level 20.00 d Att 30 SGL Count 100/100 10 PIPk Max 10 10 dBm	Bm Offset	2.53 dB 🖷 RE	/NT 1-DH: 3W 3 MHz 8W 10 MHz	Boody 5 2441MHz Ant1 Mode Sweep M1[1]		4,459	-5.20 dBr
Ate: 12.MAR.2024 Spectrum Ref Level 20.00 d Att 30 SGL Count 100/100 1Pk Max 10 dBm	Bm Offset	2.53 dB 🖷 RE	VNT 1-DH:	5 2441MHz Ant1 Mode Sweep M1[1]		2.4410	-5.20 dBr
Ate: 12.MAR.2024 Spectrum Ref Level 20.00 d Att 30 SGL Count 100/100 10 PIPk Max 10 10 dBm	Bm Offset	2.53 dB 🖷 RE	/NT 1-DH: 3W 3 MHz 8W 10 MHz	5 2441MHz Ant1 Mode Sweep M1[1]		2.4410	-5.20 dBr 61000 GH

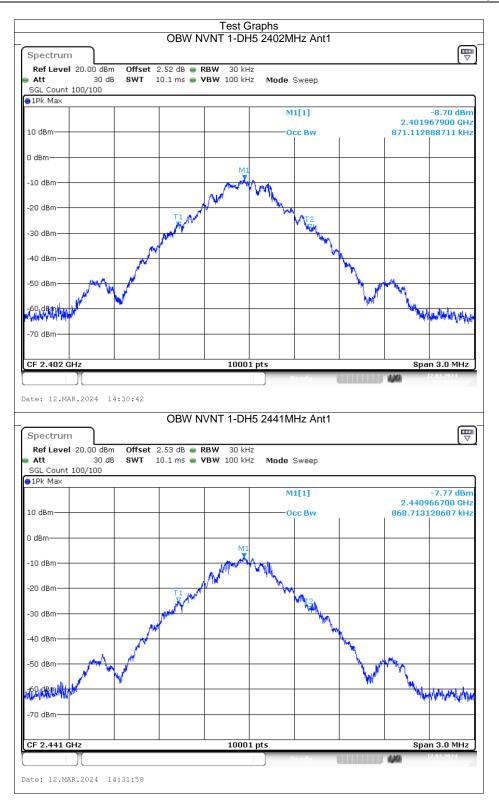


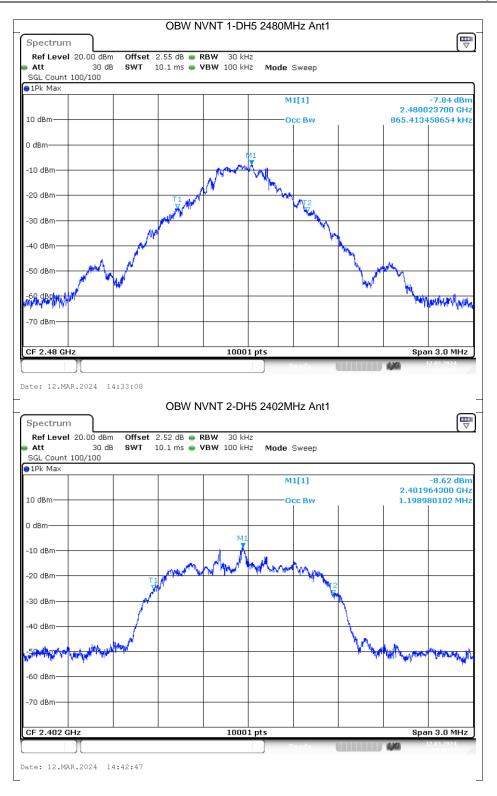





Condition Mode Frequency (MHz) Limit -20 dB Bandwidth (MHz) Antenna -20 dB Bandwidth (MHz) Verdict NVNT 1-DH5 2402 Ant1 0.94 N/A N/A NVNT 1-DH5 2441 Ant1 0.95 N/A N/A NVNT 1-DH5 2480 0.95 N/A N/A Ant1 NVNT 2-DH5 2402 Ant1 1.28 N/A N/A 2-DH5 2441 N/A N/A NVNT Ant1 1.3 NVNT 2-DH5 2480 1.31 N/A N/A Ant1 NVNT 3-DH5 2402 Ant1 1.29 N/A N/A N/A NVNT 2441 3-DH5 Ant1 1.3 N/A NVNT 3-DH5 2480 Ant1 1.3 N/A N/A

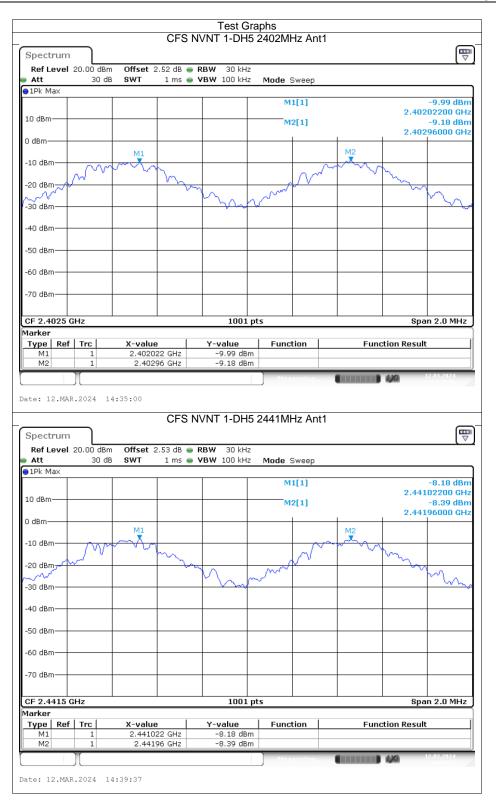

-20dB Bandwidth

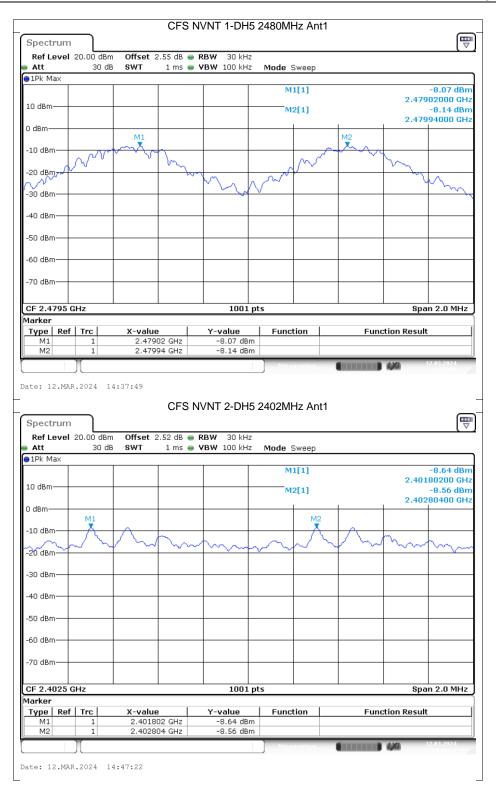


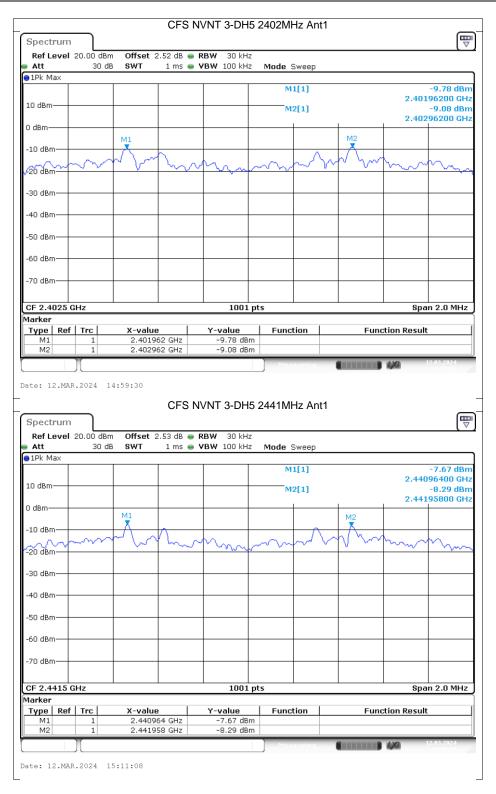


Occupied Channel Bandwidth

Condition	Mode	Frequency (MHz)	Antenna	99% OBW (MHz)
NVNT	1-DH5	2402	Ant1	0.871
NVNT	1-DH5	2441	Ant1	0.869
NVNT	1-DH5	2480	Ant1	0.865
NVNT	2-DH5	2402	Ant1	1.199
NVNT	2-DH5	2441	Ant1	1.226
NVNT	2-DH5	2480	Ant1	1.225
NVNT	3-DH5	2402	Ant1	1.2
NVNT	3-DH5	2441	Ant1	1.216
NVNT	3-DH5	2480	Ant1	1.233






Carrier Frequencies Separation

Condition	Mode	Antenna	Hopping Freq1 (MHz)	Hopping Freq2 (MHz)	HFS (MHz)	Limit (MHz)	Verdict
NVNT	1-DH5	Ant1	2402.022	2402.96	0.938	0.627	Pass
NVNT	1-DH5	Ant1	2441.022	2441.96	0.938	0.633	Pass
NVNT	1-DH5	Ant1	2479.02	2479.94	0.92	0.633	Pass
NVNT	2-DH5	Ant1	2401.802	2402.804	1.002	0.853	Pass
NVNT	2-DH5	Ant1	2440.798	2441.804	1.006	0.867	Pass
NVNT	2-DH5	Ant1	2478.796	2479.792	0.996	0.873	Pass
NVNT	3-DH5	Ant1	2401.962	2402.962	1	0.86	Pass
NVNT	3-DH5	Ant1	2440.964	2441.958	0.994	0.867	Pass
NVNT	3-DH5	Ant1	2478.958	2479.96	1.002	0.867	Pass

CFS NVNT 2-DH5 2441MHz Ant1 Spectrum Ref Level 20.00 dBm Offset 2.53 dB RBW 30 kHz Att 30 dB SWT 1 ms VBW 100 kHz Mode Sweep IPk Max M1[1] 0 dBm M1 10 dBm M1 -10 dBm -30 dBm -30 dBm -50 dBm	-8.10 dB 2.44079800 Gi -7.57 dB 2.44180400 Gi
Mathematical System Mathemathemathematical System Mathematical Sy	-8.10 dB 2.44079800 GI -7.57 dB
Att 30 dB SWT 1 ms VBW 100 kHz Mode Sweep 01Pk Max M1[1] M2[1]	2.44079800 GI -7.57 dB
• • • • •	2.44079800 GI -7.57 dB
10 dBm M2[1] 0 dBm M1 M2 10 dBm M1 M2 20 dBm M1 M2 20 dBm M1 M2 40 dBm M2 M2 10 dBm M2 10 dB	2.44079800 GI -7.57 dB
D dBm M2[1] 10 dBm M2 20 dBm M2 30 dBm M2 40 dBm M2 M2 M2 M2 M2 M2 M2 M2 M2 M2	-7.57 dB
D dBm M1 M2	
-10 dBm	mm
10 dBm	mm
-20 dBm	-n-n-n-
30 dBm	
40 dBm	
40 dBm	
50 dBm	
50 dBm	
60 dBm	
70 dBm	
CF 2.4415 GHz 1001 pts	Span 2.0 MH
larker	
Type Ref Trc X-value Y-value Function Function M1 1 2.440798 GHz -8.10 dBm	Result
M2 1 2.441804 GHz -7.57 dBm	
Measuring	12.03.2024
Spectrum	[
Ref Level 20.00 dBm Offset 2.55 dB RBW 30 kHz Att 30 dB SWT 1 ms VBW 100 kHz Mode Sweep	
Att 30 dB SWT 1 ms VBW 100 kHz Mode Sweep	
M1[1]	-7.96 dB
	2.47879600 GI
LO dBm	10.05 40
10 dBm M2[1]	-10.25 dB 2.47979200 GI
D dBm	
0 dBm M1 M2	
0 dBm M1 M2	
0 dBm M1 M2 10 dBm M2 20 dBm M1 M2	
0 dBm M1 M2 10 dBm M2 20 dBm M1 M2	
0 dBm M1 M2 10 dBm M2 20 dBm M1 M2 30 dBm M1 M2 10 dBm M2 10	
0 dBm M1 M2 10 dBm M2 20 dBm M1 M2 30 dBm M1 M2 10 dBm M2 10	
0 dBm M1 M2 10 dBm M1 M2 20 dBm M2 M2 30 dBm M2 M2 40 dBm M2 M2	
0 dBm M1 M2 10 dBm M2 20 dBm M2 30 dBm M2 40 dBm M2 50 dBm M2	
0 dBm M1 M2 -10 dBm M2 -20 dBm	
D dBm M1 M2 10 dBm M1 M2 20 dBm M2 M2 30 dBm M2 M2 -50 dBm M2 M2	
D dBm M1 M2 10 dBm M1 M2 20 dBm M2 M2 30 dBm M2 M2 -50 dBm M2 M2	
D dBm M1 M2 10 dBm M1 M2 20 dBm M2 20 dBm M2 30 dBm M2 40 dBm M2 50 dBm M2 60 dBm M2 70 dBm M2	2.47979200 GI
D dBm M1 M2 -10 dBm M1 M2 -20 dBm M2 M2 -30 dBm M2 M2 -50 dBm M2 M2 -60 dBm M2 M2 -70 dBm M2 M2 -70 dBm M2 M2 -70 dBm M2 M2 -70 dBm M2 M2	
D dBm M1 M2 M2 10 dBm M2 -10 dBm M2 -20 dBm M2 -30 dBm M2 -30 dBm M2 -30 dBm M2 -30 dBm M2 -30 dBm M2 -30 dBm M2 -40 dBm M2 -40 dBm M2 -40 dBm M2 -50	2.47979200 GI
M1 M2 10 dBm M1 -10 dBm M2 -20 dBm M2 -30 dBm	2.47979200 GI
0 dBm M1 M2 -10 dBm M2 -20 dBm M2 -30 dBm -40 dBm -40 dBm -40 dBm -50 dBm -50 dBm -60 dBm -50 dBm -70 dBm -50 dBm	2.47979200 GI

		CFS	NVNT 3-DH5	2480MHz Ant	1	
Spectrum						
Ref Level	20.00 dBr	n Offset 2.55 dB (BRBW 30 kHz			
Att	30 d	BSWT 1 ms (VBW 100 kHz	Mode Sweep		
∎1Pk Max						
				M1[1]		-7.97 dBr
10 dBm						2.47895800 GH
				M2[1]		-8.07 dBr 2.47996000 GH
0 dBm						2.47990000 GH
		M1			M2	
-10 dBm				~	$+ \Delta -$	<u>^</u>
m	m	h hann	mmala	mont	\sim \sim	man .
-20 dBm			- VIV-V			· / / / / /
-30 dBm-+						
-40 dBm						
-50 dBm						
-30 ubiii						
-60 dBm						
-70 dBm						
CF 2.4795 (GHz			ts		Span 2.0 MHz
larker			•			·
Type Ref	Trc	X-value	Y-value	Function	Func	tion Result
M1	1	2.478958 GHz	-7.97 dBm			
M2	1	2.47996 GHz	-8.07 dBm			
)(Measuring		12.03.2024
+ 10 Mai				_		

: 12.MAR.2024 15:05:42

Number of Hopping Channel

Condition	Mode	Antenna	Hopping Number	Limit	Verdict
NVNT	1-DH5	Ant1	79	15	Pass
NVNT	2-DH5	Ant1	79	15	Pass
NVNT	3-DH5	Ant1	79	15	Pass