



# **FCC Radio Test Report**

FCC ID: 2BE2UCMT2380F29

This report concerns: Original Grant

**Project No.** : 2312C182

**Equipment** : sub-1GHz soc transceiver

Brand Name : CMOSTEK

Test Model : CMT2380F29-EQR

Series Model : N/A

**Applicant**: Shenzhen Hope Microelectronics Co., Ltd.

Address : 30th floor of 8th Building, C Zone, Vanke Cloud City, Xili Sub-district,

Nanshan, Shenzhen, GD, China

**Manufacturer**: Shenzhen Hope Microelectronics Co., Ltd.

Address : 30th floor of 8th Building, C Zone, Vanke Cloud City, Xili Sub-district,

Nanshan, Shenzhen, GD, China

**Factory**: Shenzhen Hope Microelectronics Co., Ltd.

Address : 30th floor of 8th Building, C Zone, Vanke Cloud City, Xili Sub-district,

Nanshan, Shenzhen, GD, China

Date of Receipt : Jan. 02, 2024

**Date of Test** : Jan. 02, 2024 ~ Feb. 03, 2024

**Issued Date** : Oct. 25, 2024

Report Version : R01

Test Sample : Engineering Sample No.: DG20240102130 Standard(s) : FCC CFR Title 47, Part 15, Subpart C

The above equipment has been tested and found compliance with the requirement of the

relative standards by BTL Inc.

Prepared by :

Sheldon Ou

Approved by : \_

Chay Cai

Room 108, Building 2, No. 1, Yile Road, Songshan Lake Zone, Dongguan City, Guangdong

523000 China

Tel: +86-769-8318-3000 Web: www.newbtl.com Service mail: btl qa@newbtl.com



### **Declaration**

**BTL** represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with standards traceable to international standard(s) and/or national standard(s).

**BTL**'s reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. **BTL** shall have no liability for any declarations, inferences or generalizations drawn by the client or others from **BTL** issued reports.

The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the U.S. Government.

This report is the confidential property of the client. As a mutual protection to the clients, the public and ourselves, the test report shall not be reproduced, except in full, without our written approval.

**BTL**'s laboratory quality assurance procedures are in compliance with the ISO/IEC 17025: 2017 requirements, and accredited by the conformity assessment authorities listed in this test report.

BTL is not responsible for the sampling stage, so the results only apply to the sample as received.

The information, data and test plan are provided by manufacturer which may affect the validity of results, so it is manufacturer's responsibility to ensure that the apparatus meets the essential requirements of applied standards and in all the possible configurations as representative of its intended use.

### Limitation

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective. Please note that the measurement uncertainty is provided for informational purpose only and are not use in determining the Pass/Fail results.



| Table of Contents                                                          | Page     |
|----------------------------------------------------------------------------|----------|
| REPORT ISSUED HISTORY                                                      | 5        |
| 1 . APPLICABLE STANDARDS                                                   | 6        |
| 2 . SUMMARY OF TEST RESULTS                                                | 6        |
| 2.1 TEST FACILITY                                                          | 7        |
| 2.2 MEASUREMENT UNCERTAINTY                                                | 7        |
| 2.3 TEST ENVIRONMENT CONDITIONS                                            | 7        |
| 3 . GENERAL INFORMATION                                                    | 8        |
| 3.1 GENERAL DESCRIPTION OF EUT                                             | 8        |
| 3.2 DESCRIPTION OF TEST MODES                                              | 9        |
| 3.3 DUTY CYCLE                                                             | 10       |
| 3.4 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED               | 11       |
| 3.5 SUPPORT UNITS                                                          | 11       |
| 4 . AC POWER LINE CONDUCTED EMISSIONS                                      | 12       |
| 4.1 LIMIT                                                                  | 12       |
| 4.2 TEST PROCEDURE                                                         | 12       |
| 4.3 DEVIATION FROM TEST STANDARD                                           | 12       |
| 4.4 TEST SETUP                                                             | 13       |
| 4.5 EUT OPERATING CONDITIONS                                               | 13       |
| 4.6 TEST RESULTS                                                           | 13       |
| 5 . RADIATED EMISSION                                                      | 14       |
| 5.1 LIMIT                                                                  | 14       |
| 5.2 TEST PROCEDURE                                                         | 15       |
| 5.3 DEVIATION FROM TEST STANDARD                                           | 16       |
| 5.4 TEST SETUP                                                             | 17       |
| 5.5 EUT OPERATING CONDITIONS                                               | 18       |
| 5.6 TEST RESULTS - 9 KHZ TO 30 MHZ                                         | 18       |
| 5.7 TEST RESULTS - 30 MHZ TO 1000 MHZ<br>5.8 TEST RESULTS - ABOVE 1000 MHZ | 18<br>18 |
|                                                                            |          |
| 6 . 20 DB SPECTRUM BANDWIDTH MEASUREMENT                                   | 19       |
| 6.1 LIMIT                                                                  | 19       |
| 6.2 TEST PROCEDURE                                                         | 19<br>40 |
| 6.3 DEVIATION FROM STANDARD 6.4 TEST SETUP                                 | 19<br>19 |
| 0.4 IE31 3E1UF                                                             | 13       |



| Table of Contents                                   | Page |
|-----------------------------------------------------|------|
| 6.5 EUT OPERATION CONDITIONS                        | 19   |
| 6.6 TEST RESULTS                                    | 19   |
| 7 . TIMING TESTING                                  | 20   |
| 7.1 LIMIT                                           | 20   |
| 7.2 TEST PROCEDURE                                  | 20   |
| 7.3 DEVIATION FROM STANDARD                         | 20   |
| 7.4 TEST SETUP                                      | 20   |
| 7.5 EUT OPERATION CONDITIONS                        | 20   |
| 7.6 TEST RESULTS                                    | 20   |
| 8 . MEASUREMENT INSTRUMENTS LIST                    | 21   |
| 9 . EUT TEST PHOTO                                  | 23   |
| APPENDIX A - AC POWER LINE CONDUCTED EMISSIONS      | 27   |
| APPENDIX B - RADIATED EMISSION - 9 KHZ TO 30 MHZ    | 28   |
| APPENDIX C - RADIATED EMISSION - 30 MHZ TO 1000 MHZ | 33   |
| APPENDIX D - RADIATED EMISSION- ABOVE 1000 MHZ      | 38   |
| APPENDIX E - 20 DB SPECTRUM BANDWIDTH               | 41   |
| APPENDIX F - TIMING TESTING                         | 43   |



# **REPORT ISSUED HISTORY**

| Report No.          | Version | Description                         | Issued Date   | Note    |
|---------------------|---------|-------------------------------------|---------------|---------|
| BTL-FCCP-1-2312C182 | R00     | Original Report.                    | Mar. 18, 2024 | Invalid |
| BTL-FCCP-1-2312C182 | R01     | Revised report to address comments. | Oct. 25, 2024 | Valid   |



### 1. APPLICABLE STANDARDS

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

ANSI C63.10-2013

### 2. SUMMARY OF TEST RESULTS

Test procedures according to the technical standard(s):

| FCC CFR Title 47, Part 15, Subpart C   |                                      |                                        |          |         |
|----------------------------------------|--------------------------------------|----------------------------------------|----------|---------|
| Standard(s) Section Test Item Test Res |                                      |                                        | Judgment | Remark  |
| 15.207                                 | AC Power Line Conducted<br>Emissions | APPENDIX A                             | N/A      |         |
| 15.205<br>15.209<br>15.231(e)          | Radiated Emission                    | APPENDIX B<br>APPENDIX C<br>APPENDIX D | PASS     |         |
| 15.231(c)                              | 20 dB Spectrum Bandwidth             | APPENDIX E                             | PASS     |         |
| 15.231(e)                              | Timing Testing                       | APPENDIX F                             | PASS     |         |
| 15.203                                 | Antenna Requirement                  |                                        | PASS     | Note(2) |

### Note:

- (1) "N/A" denotes test is not applicable in this test report.
- (2) The device what use a non-standard antenna jack were considered sufficient to comply with the provisions of 15.203.



### 2.1 TEST FACILITY

The test facilities used to collect the test data in this report is at the location of No. 3 Jinshagang 1st Rd. Shixia, Dalang Town, Dongguan City, Guangdong 523792.

BTL's Registration Number for FCC: 162128 BTL's Designation Number for FCC: CN5042

### 2.2 MEASUREMENT UNCERTAINTY

ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report. The measurement uncertainties given below are based on a 95.45% confidence level (based on a coverage factor (k=2)) The BTL measurement uncertainty as below table:

### A. Radiated emissions test:

| Test Site | Method | Measurement Frequency Range | U,(dB) |
|-----------|--------|-----------------------------|--------|
| DG-CB01   | CISPR  | 9kHz ~ 30MHz                | 2.36   |

| Test Site | Method         | Measurement Frequency Range | Ant.<br>H / V | U,(dB) |
|-----------|----------------|-----------------------------|---------------|--------|
|           |                | 30MHz ~ 200MHz              | V             | 4.40   |
| DG-CB03   | 30MHz ~ 200MHz | Н                           | 3.62          |        |
| (3m)      | CISPR          | 200MHz ~ 1,000MHz           | V             | 4.58   |
|           |                | 200MHz ~ 1,000MHz           | Н             | 3.98   |

| Test Site | Method | Measurement Frequency Range | U,(dB) |
|-----------|--------|-----------------------------|--------|
| DG-CB03   | CISPR  | 1GHz ~ 6GHz                 | 4.08   |

### B. Other Measurement test:

| Test Item   | Uncertainty |
|-------------|-------------|
| Bandwidth   | 0.90 %      |
| Temperature | 0.8 °C      |
| Humidity    | 2.2 %       |

Note: Unless specifically mentioned, the uncertainty of measurement has not been taken into account to declare the compliance or non-compliance to the specification.

### 2.3 TEST ENVIRONMENT CONDITIONS

| Test Item                           | Temperature | Humidity | Test Voltage | Tested By   |
|-------------------------------------|-------------|----------|--------------|-------------|
| Radiated Emissions-9kHz to 30 MHz   | 22°C        | 54%      | DC 4.5V      | Hayden Chen |
| Radiated Emissions-30MHz to 1000MHz | 25°C        | 43%      | DC 4.5V      | Berton Luo  |
| Radiated Emissions-Above 1000MHz    | 25°C        | 43%      | DC 4.5V      | Berton Luo  |
| 20 dB Spectrum Bandwidth            | 23°C        | 52%      | DC 4.5V      | Parker Yang |
| Timing Testing                      | 24°C        | 49%      | DC 4.5V      | Steve Zhou  |



# 3. GENERAL INFORMATION

### 3.1 GENERAL DESCRIPTION OF EUT

| Equipment           | sub-1GHz soc transceiver            |
|---------------------|-------------------------------------|
| Brand Name          | CMOSTEK                             |
| Test Model          | CMT2380F29-EQR                      |
| Series Model        | N/A                                 |
| Model Difference(s) | N/A                                 |
| Software Version    | V2.0                                |
| Hardware Version    | V2.0                                |
| Power Source        | Supplied from 3 * AAA size battery. |
| Power Rating        | DC 4.5V                             |
| Operation Frequency | 433.92MHz                           |
| Modulation Type     | FSK                                 |
| Field Strength      | 82.60dBµV/m                         |

### Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the user's manual.

### 2. Channel List:

| EUT Test Channel | Test Frequency<br>(MHz) |
|------------------|-------------------------|
| CH01             | 433.92                  |

### 3. Table for Filed Antenna:

| Ant. | Manufacturer                                    | Model Name      | Antenna Type | Connector | Gain<br>(dBi) |
|------|-------------------------------------------------|-----------------|--------------|-----------|---------------|
| 1    | SHEN ZHEN GERBOLE ELEC.<br>TECHNOLOGY CO. , LTD | TLB-433-J-3800E | Dipole       | SMA/J     | 2.15          |

Note: The antenna gain is provided by the manufacturer.



### 3.2 DESCRIPTION OF TEST MODES

The test system was pre-tested based on the consideration of all possible combinations of EUT operation mode.

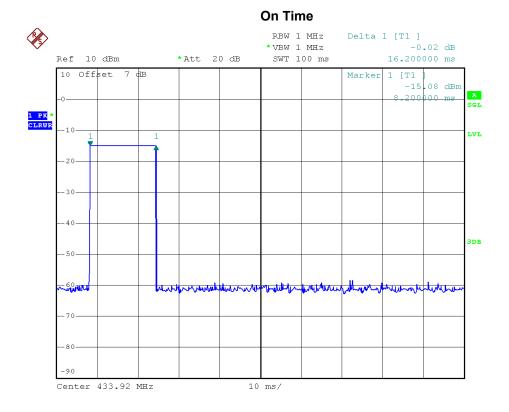
| Pretest Mode | Description       |
|--------------|-------------------|
| Mode 1       | TX Mode_433.92MHz |

Following mode(s) was (were) found to be the worst case(s) and selected for the final test.

| Radiated Emissions test - Below 1GHz |                     |  |  |
|--------------------------------------|---------------------|--|--|
| Final Test Mode Description          |                     |  |  |
| Mode 1                               | 1 TX Mode_433.92MHz |  |  |

| Radiated Emissions test - Above 1GHz |                   |  |
|--------------------------------------|-------------------|--|
| Final Test Mode Description          |                   |  |
| Mode 1                               | TX Mode_433.92MHz |  |

| Conducted test              |  |  |
|-----------------------------|--|--|
| Final Test Mode Description |  |  |
| Mode 1 TX Mode_433.92MHz    |  |  |




### 3.3 DUTY CYCLE

| Test Frequency | On Time | Total Time | Duty Cycle |
|----------------|---------|------------|------------|
| (MHz)          | (ms)    | (ms)       | (%)        |
| 433.92         | 16.2    | 100        | 16.20      |

Average Reading = Peak Reading (dBuV/m) + 20log (Duty cycle)

Average Reading = Peak+20\*log (Duty Cycle) = Peak-15.81



Date: 3.FEB.2024 15:44:35



|        | Trapartito BTE-1 Col -1-2012010                              |               |                |            |  |
|--------|--------------------------------------------------------------|---------------|----------------|------------|--|
| 3.4 BL | 3.4 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED |               |                |            |  |
| 3.5 SL | EUT  3.5 SUPPORT UNITS                                       |               |                |            |  |
| Item   | Equipment                                                    | Mfr/Brand     | Model/Type No. | Series No. |  |
| -      | -                                                            | -             | -              | -          |  |
| Item   | Cable Type                                                   | Shielded Type | Ferrite Core   | Length     |  |
| -      | -                                                            | -             | -              | -          |  |
|        |                                                              |               |                |            |  |



### 4. AC POWER LINE CONDUCTED EMISSIONS

### **4.1 LIMIT**

| Fraguency of Emission (MHz) | Limit (dBμV) |           |  |
|-----------------------------|--------------|-----------|--|
| Frequency of Emission (MHz) | Quasi-peak   | Average   |  |
| 0.15 - 0.5                  | 66 to 56*    | 56 to 46* |  |
| 0.5 - 5.0                   | 56           | 46        |  |
| 5.0 - 30.0                  | 60           | 50        |  |

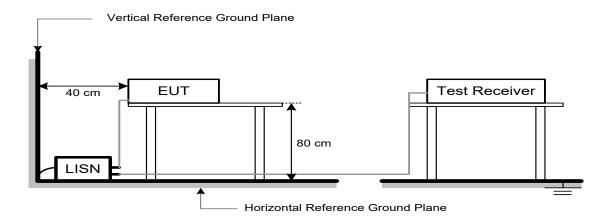
### Note:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " \* " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

### **4.2 TEST PROCEDURE**

- a. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipment powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.

The following table is the setting of the receiver:


| Receiver Parameters | Setting  |
|---------------------|----------|
| Start Frequency     | 0.15 MHz |
| Stop Frequency      | 30 MHz   |
| IF Bandwidth        | 9 kHz    |

### 4.3 DEVIATION FROM TEST STANDARD

No deviation.



### 4.4 TEST SETUP



### 4.5 EUT OPERATING CONDITIONS

EUT was programmed to be in continuously transmitting mode.

### 4.6 TEST RESULTS

Please refer to the APPENDIX A.



### 5. RADIATED EMISSION

### **5.1 LIMIT**

| Frequency Band<br>(MHz) | Fundamental Emissions Limit(µV/m) at 3m |  |
|-------------------------|-----------------------------------------|--|
| 40.66-40.70             | 1000                                    |  |
| 70-130                  | 500                                     |  |
| 130-174                 | 500-1500(Note1)                         |  |
| 174-260                 | 1500                                    |  |
| 260-470                 | 1500-5000(Note1)                        |  |
| Above 470               | 5000                                    |  |

| Frequency Band<br>(MHz) | Spurious Emissions Limit(µV/m) at 3m (Note2) |
|-------------------------|----------------------------------------------|
| 40.66-40.70             | 100                                          |
| 70-130                  | 50                                           |
| 130-174                 | 50-150(Note1)                                |
| 174-260                 | 150                                          |
| 260-470                 | 150-500(Note1)                               |
| Above 470               | 500                                          |

### Note

- 1) Linear interpolations, the formulas for calculating the maximum permitted fundamental field strengths are as follows:
  - a) For the band 130 174 MHz,  $\mu$ V/m at 3 meters = 22.73×(operating frequency, MHz) 2454.55;
  - b) For the band 260 470 MHz,  $\mu$ V/m at 3 meters =16.67×(operating frequency, MHz) 2833.33. So the field strength of emission limits has been calculated in below table.

| Carrier Frequency<br>(MHz) | Fundamental Emissions Limit(dBµV/m) at 3m |  |
|----------------------------|-------------------------------------------|--|
| 433.92 MHz                 | 72.87 (Average)                           |  |
| 433.92 MHz                 | 92.87 (Peak)                              |  |

2) The limits on the field strength of the spurious emissions in the above table are based on the fundamental frequency of the intentional radiator. Spurious emissions shall be attenuated to the average (or, alternatively, CISPR quasi-peak) limits shown in this table or to the general limits shown in 15.209, whichever limit permits a higher field strength.



In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

### LIMITS OF RADIATED EMISSION MEASUREMENT (9 kHz-1000 MHz)

| Frequency   | Field Strength     | Measurement Distance |
|-------------|--------------------|----------------------|
| (MHz)       | (microvolts/meter) | (meters)             |
| 0.009-0.490 | 2400/F(kHz)        | 300                  |
| 0.490-1.705 | 24000/F(kHz)       | 30                   |
| 1.705-30.0  | 30                 | 30                   |
| 30-88       | 100                | 3                    |
| 88-216      | 150                | 3                    |
| 216-960     | 200                | 3                    |
| Above 960   | 500                | 3                    |

### LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000 MHz)

| Frequency (MHz)      | (dBuV/m at 3 m) |         |  |
|----------------------|-----------------|---------|--|
| r requericy (wir iz) | Peak            | Average |  |
| Above 1000           | 74              | 54      |  |

### NOTE:

- (1) The limit for radiated test was performed according to FCC CFR Title 47, Part 15, Subpart C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

### **5.2 TEST PROCEDURE**

- a. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 0.8 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(below 1 GHz)
- b. The measuring distance of 3 m shall be used for measurements. The EUT was placed on the top of a rotating table 1.5 meter above the ground at a 3 meter semi-anechoic chamber. The table was rotated 360 degrees to determine the position of the highest radiation.(above 1 GHz)
- c. The height of the equipment or of the substitution antenna shall be 0.8m or 1.5m; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights find the maximum reading (used Bore sight function).
- e. The receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz.
- f. The initial step in collecting radiated emission data is a receiver peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- g. All readings are Peak unless otherwise stated QP in column of Note. Peak denotes that the Peak reading compliance with the QP Limits and then QP Mode measurement didn't perform. (below 1 GHz)
- h. All readings are Peak Mode value unless otherwise stated AVG in column of Note. If the Peak Mode Measured value compliance with the Peak Limits and lower than AVG Limits, the EUT shall be deemed to meet both Peak & AVG Limits and then only Peak Mode was measured, but AVG Mode didn't perform. (above 1 GHz)
- i. For the actual test configuration, please refer to the related Item -EUT Test Photos.



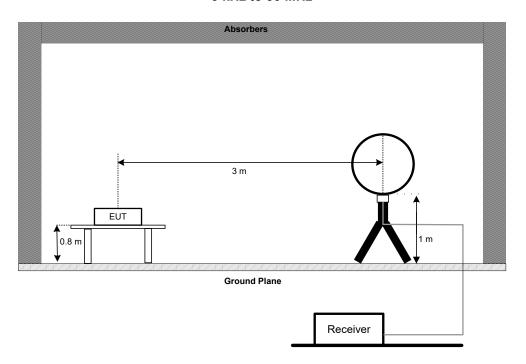
The following table is the setting of the receiver:

| Spectrum Parameters    | Setting                         |
|------------------------|---------------------------------|
| Start ~ Stop Frequency | 9 kHz~150 kHz for RBW 200 Hz    |
| Start ~ Stop Frequency | 0.15 MHz~30 MHz for RBW 9 kHz   |
| Start ~ Stop Frequency | 30 MHz~1000 MHz for RBW 100 kHz |

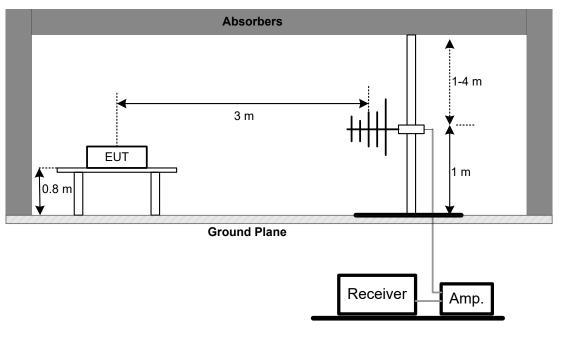
| Receiver Parameter | Setting               |
|--------------------|-----------------------|
| Attenuation        | Auto                  |
| Center Frequency   | Fundamental Frequency |
| RBW                | 120 kHz               |
| Detector           | Peak / Average        |

| Spectrum Parameters           | Setting                                         |
|-------------------------------|-------------------------------------------------|
| Start Frequency               | 1000 MHz                                        |
| Stop Frequency                | 10th carrier harmonic                           |
| RBW / VBW                     | 1MLlz / 1MLlz for Dook, AV Mode with Dwell time |
| (Emission in restricted band) | 1MHz / 1MHz for Peak, AV Mode with Dwell time   |

| Receiver Parameters    | Setting                                    |
|------------------------|--------------------------------------------|
| Start ~ Stop Frequency | 9 kHz~90 kHz for PK/AVG detector           |
| Start ~ Stop Frequency | 90 kHz~110 kHz for QP detector             |
| Start ~ Stop Frequency | 110 kHz~490 kHz for PK/AVG detector        |
| Start ~ Stop Frequency | 490 kHz~30 MHz for QP detector             |
| Start ~ Stop Frequency | 30 MHz~1000 MHz for QP detector            |
| Start ~ Stop Frequency | 1 GHz~6 GHz for PK/AVG detector            |
| Start ~ Stop Frequency | 431.920 MHz~435.92 MHz for PK/AVG detector |

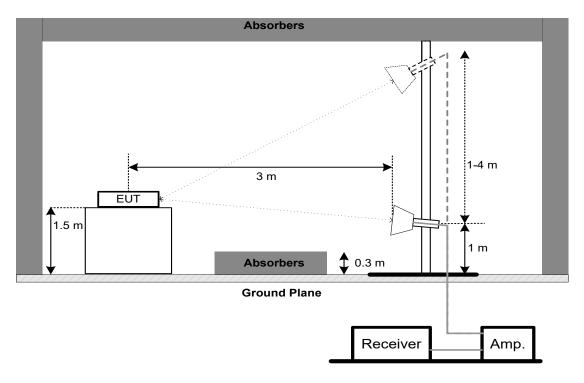

### **5.3 DEVIATION FROM TEST STANDARD**

No deviation.




### **5.4 TEST SETUP**

### 9 kHz to 30 MHz




# 30 MHz to 1 GHz





### **Above 1 GHz**



### **5.5 EUT OPERATING CONDITIONS**

The EUT was programmed to be in continuously transmitting mode.

### 5.6 TEST RESULTS - 9 KHZ TO 30 MHZ

Please refer to the APPENDIX B.

### Remark:

- (1) Distance extrapolation factor = 40 log (specific distance / test distance) (dB).
- (2) Limit line = specific limits (dBuV) + distance extrapolation factor.

### 5.7 TEST RESULTS - 30 MHZ TO 1000 MHZ

Please refer to the APPENDIX C.

### 5.8 TEST RESULTS - ABOVE 1000 MHZ

Please refer to the APPENDIX D.



### 6. 20 DB SPECTRUM BANDWIDTH MEASUREMENT

### 6.1 LIMIT

The bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating above 70 MHz and below 900 MHz. For devices operating above 900 MHz, the emission shall be no wider than 0.5% of the center frequency. Bandwidth is determined at the points 20 dB down from the modulated carrier.

### **6.2 TEST PROCEDURE**


- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- b. The following table is the setting of the spectrum analyzer:

| Spectrum Parameters | Setting          |  |
|---------------------|------------------|--|
| Span Frequency      | > 20dB Bandwidth |  |
| RBW                 | 10 kHz           |  |
| VBW                 | 10 kHz           |  |
| Detector            | Peak             |  |
| Trace               | Max Hold         |  |
| Sweep Time          | Auto             |  |

### **6.3 DEVIATION FROM STANDARD**

No deviation.

### **6.4 TEST SETUP**



### **6.5 EUT OPERATION CONDITIONS**

The EUT was programmed to be in continuously transmitting mode.

### 6.6 TEST RESULTS

Please refer to the APPENDIX E.



### 7. TIMING TESTING

### **7.1 LIMIT**

Devices operated under the provisions of this paragraph shall be provided with a means for automatically limiting operation so that the duration of each transmission shall not be greater than one second and the silent period between transmissions shall be at least 30 times the duration of the transmission but in no case less than 10 seconds.

### 7.2 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- b. The following table is the setting of the spectrum analyzer:

| Spectrum Parameters Setting |                |  |
|-----------------------------|----------------|--|
| Span Frequency              | Zero Span      |  |
| RBW                         | 1 MHz          |  |
| VBW                         | 1 MHz          |  |
| Detector Peak               |                |  |
| Trace Max Hold              |                |  |
| Sweep Time                  | On Time: 100ms |  |
| Sweep Time                  | Off Time: 20s  |  |

### 7.3 DEVIATION FROM STANDARD

No deviation.

### 7.4 TEST SETUP



### 7.5 EUT OPERATION CONDITIONS

The EUT was programmed to be in continuously transmitting mode.

### 7.6 TEST RESULTS

Please refer to the APPENDIX F.



# **8. MEASUREMENT INSTRUMENTS LIST**

|      | Radiated Emissions - 9 kHz to 30 MHz |              |                           |               |                  |
|------|--------------------------------------|--------------|---------------------------|---------------|------------------|
| Item | Kind of Equipment                    | Manufacturer | Type No.                  | Serial No.    | Calibrated until |
| 1    | Active Loop Antenna                  | Schwarzbeck  | FMZB 1513-60B             | 1513-60 B-034 | Apr. 01, 2024    |
| 2    | MXE EMI Receiver                     | Keysight     | N9038A                    | MY56400091    | Dec. 22, 2024    |
| 3    | Cable                                | N/A          | RW2350-3.8A-NMB<br>M-1.5M | N/A           | Jun. 10, 2024    |
| 4    | Measurement<br>Software              | Farad        | EZ-EMC<br>Ver.NB-03A1-01  | N/A           | N/A              |
| 5    | 966 Chamber room                     | ETS          | 9*6*6                     | N/A           | Jul. 11, 2024    |

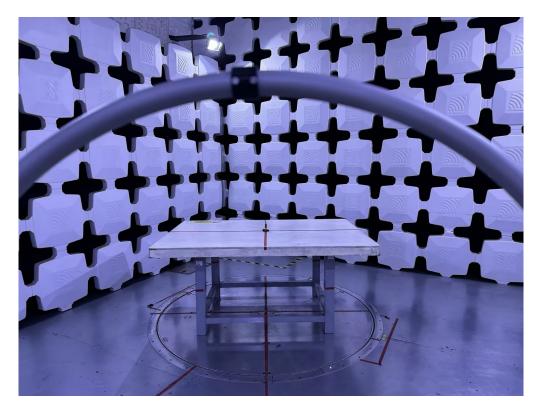
|      | Radiated Emissions - 30 MHz to 1 GHz |                   |                          |            |                  |
|------|--------------------------------------|-------------------|--------------------------|------------|------------------|
| Item | Kind of Equipment                    | Manufacturer      | Type No.                 | Serial No. | Calibrated until |
| 1    | Trilog-Broadband<br>Antenna          | Schwarzbeck       | VULB 9168                | 1462       | Dec. 13, 2024    |
| 2    | Attenuator                           | EMC<br>INSTRUMENT | EMCI-N-6-06              | AT-06009   | Dec. 13, 2024    |
| 3    | Preamplifier                         | EMC<br>INSTRUMENT | EMC001330                | 980863     | Nov. 17, 2024    |
| 4    | Cable                                | RegalWay          | LMR400-NMNM-12<br>.5m    | N/A        | Jul. 04, 2024    |
| 5    | Cable                                | RegalWay          | LMR400-NMNM-3<br>m       | N/A        | Jul. 04, 2024    |
| 6    | Cable                                | RegalWay          | LMR400-NMNM-0.<br>5m     | N/A        | Jul. 04, 2024    |
| 7    | Receiver                             | Agilent           | N9038A                   | MY52130039 | Dec. 22, 2024    |
| 8    | Filter                               | STI               | STI15-9923               | N/A        | Jun. 16, 2024    |
| 9    | Positioning Controller               | MF                | MF-7802                  | N/A        | N/A              |
| 10   | Measurement<br>Software              | Farad             | EZ-EMC<br>Ver.NB-03A1-01 | N/A        | N/A              |
| 11   | 966 Chamber room                     | СМ                | 9*6*6                    | N/A        | May 17, 2024     |

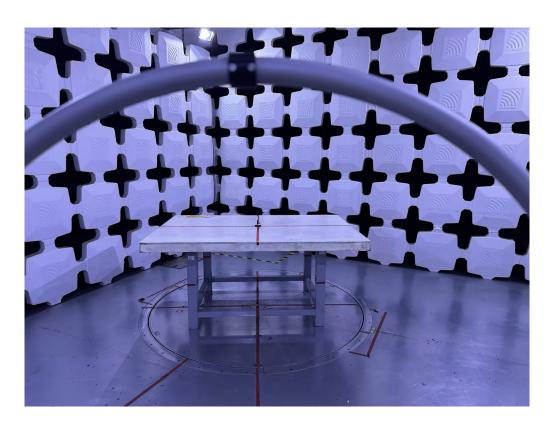


|      | Radiated Emissions - Above 1 GHz |                   |                               |            |                  |
|------|----------------------------------|-------------------|-------------------------------|------------|------------------|
| Item | Kind of Equipment                | Manufacturer      | Type No.                      | Serial No. | Calibrated until |
| 1    | Receiver                         | Agilent           | N9038A                        | MY52130039 | Dec. 22, 2024    |
| 2    | Preamplifier                     | EMC<br>INSTRUMENT | EMC118A45SE                   | 980888     | Nov. 17, 2024    |
| 3    | EXA Spectrum<br>Analyzer         | Keysight          | N9010A                        | MY55150209 | Jun. 16, 2024    |
| 4    | Double Ridged Guide<br>Antenna   | ETS               | 3115                          | 75789      | May 31, 2024     |
| 5    | Cable                            | RegalWay          | A81-SMAMSMAM-<br>12.5M        | N/A        | Aug. 08, 2024    |
| 6    | Cable                            | RegalWay          | RWLP50-4.0A-NM<br>RASM-2.5M   | N/A        | Aug. 08, 2024    |
| 7    | Cable                            | RegalWay          | RWLP50-4.0A-NM<br>RASMRA-0.8M | N/A        | Aug. 08, 2024    |
| 8    | 966 Chamber room                 | СМ                | 9*6*6                         | N/A        | May 17, 2024     |
| 9    | Attenuator                       | Talent Microwave  | TA10A2-S-18                   | N/A        | N/A              |
| 10   | Filter                           | COM-MW            | ZHPF-M1-13G-W1<br>02          | N/A        | Jun. 16, 2024    |
| 11   | Positioning Controller           | MF                | MF-7802                       | N/A        | N/A              |
| 12   | Measurement<br>Software          | Farad             | EZ-EMC<br>Ver.NB-03A1-01      | N/A        | N/A              |

|      | 20 dB Spectrum Bandwidth & Timing Testing          |                  |               |            |                  |
|------|----------------------------------------------------|------------------|---------------|------------|------------------|
| Item | Kind of Equipment                                  | Manufacturer     | Type No.      | Serial No. | Calibrated until |
| 1    | 1 Spectrum Analyzer R&S FSP40 100185 Jun. 16, 2024 |                  |               |            |                  |
| 2    | 2 DC Block N/A N/A N/A N/A                         |                  |               |            |                  |
| 3    | Attenuator                                         | Talent Microwave | TA10A0-S-26.5 | N/A        | N/A              |

Remark "N/A" denotes no model name, serial no. or calibration specified.

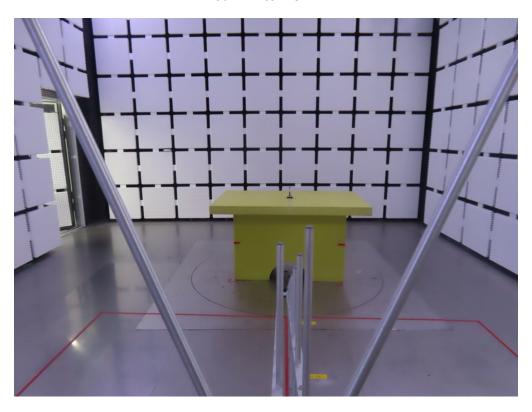

All calibration period of equipment list is one year.

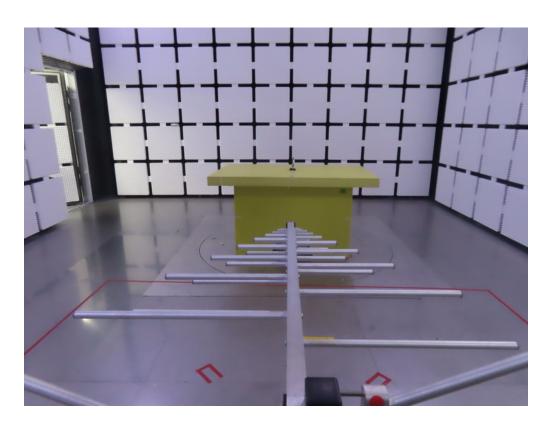



# 9. EUT TEST PHOTO

### **Radiated Emissions Test Photos**

9 kHz to 30 MHz

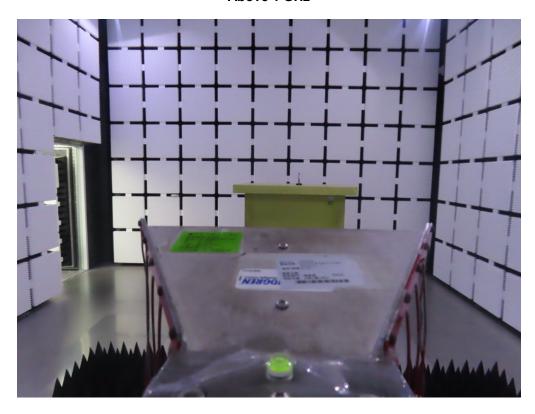





# **Radiated Emissions Test Photos**

30 MHz to 1 GHz

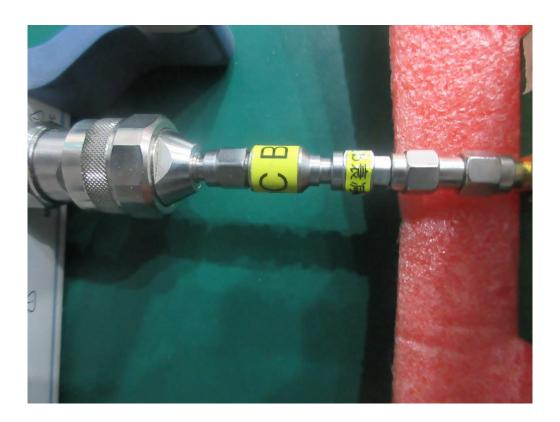







# **Radiated Emissions Test Photos**

# Above 1 GHz







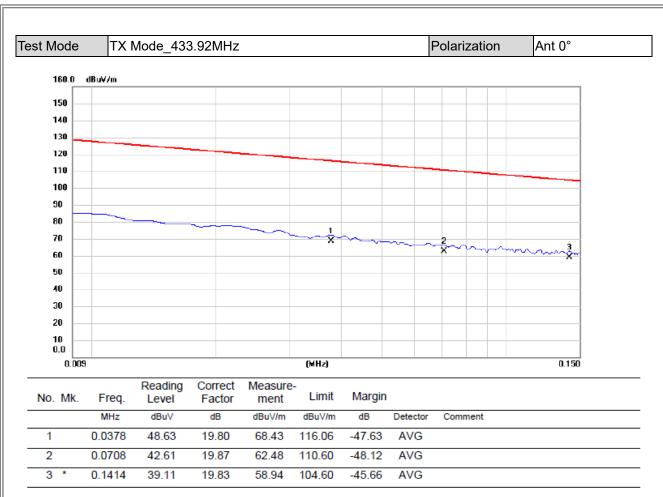

# **Conducted Test Photos**





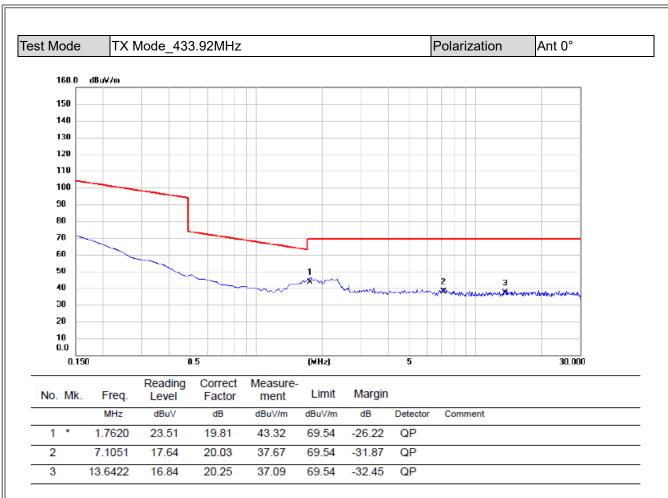


# **APPENDIX A - AC POWER LINE CONDUCTED EMISSIONS**


**Test Mode: N/A** 

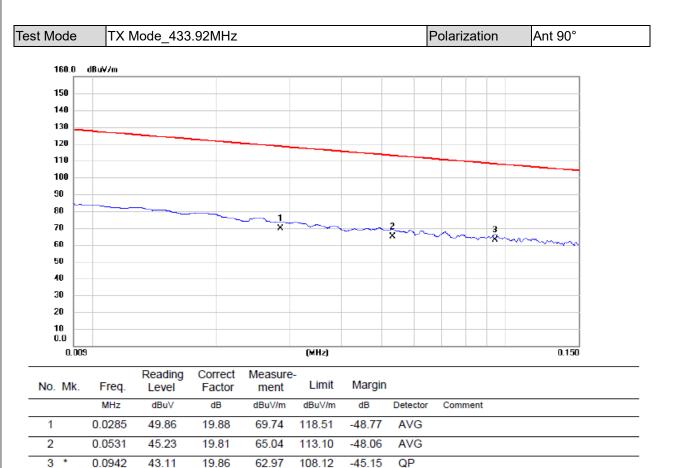
Note: "N/A" denotes test is not applicable to this device.




# **APPENDIX B - RADIATED EMISSION - 9 KHZ TO 30 MHZ**

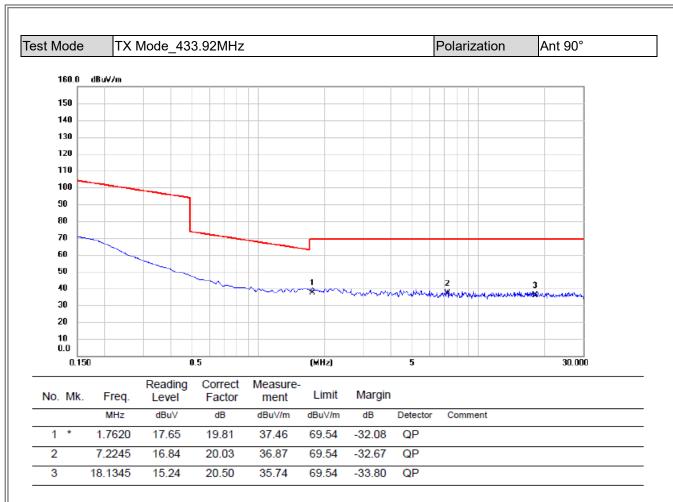





- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.





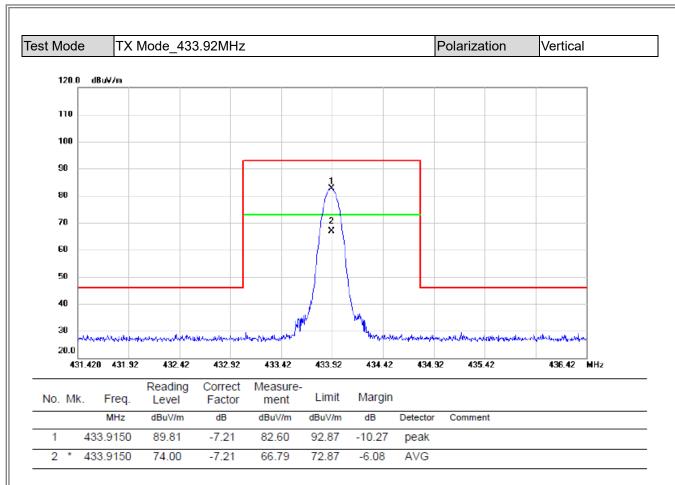

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.





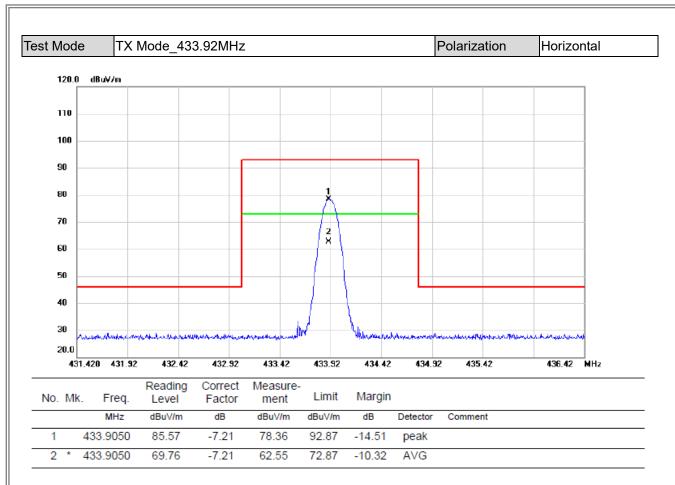
- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.





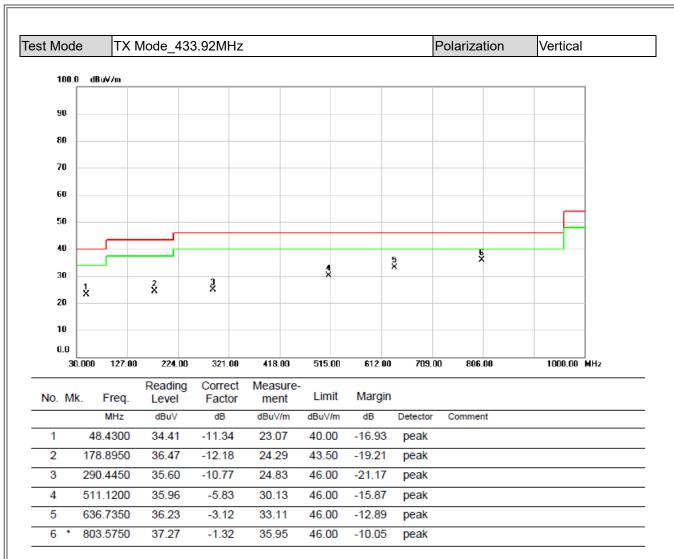

- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.




| AP | PENDIX C - RADIATED EMISSION - 30 MHZ TO 1000 MHZ |
|----|---------------------------------------------------|
|    |                                                   |
|    |                                                   |
|    |                                                   |
|    |                                                   |
|    |                                                   |
|    |                                                   |
|    |                                                   |
|    |                                                   |
|    |                                                   |
|    |                                                   |
|    |                                                   |
|    |                                                   |
|    |                                                   |
|    |                                                   |
|    |                                                   |

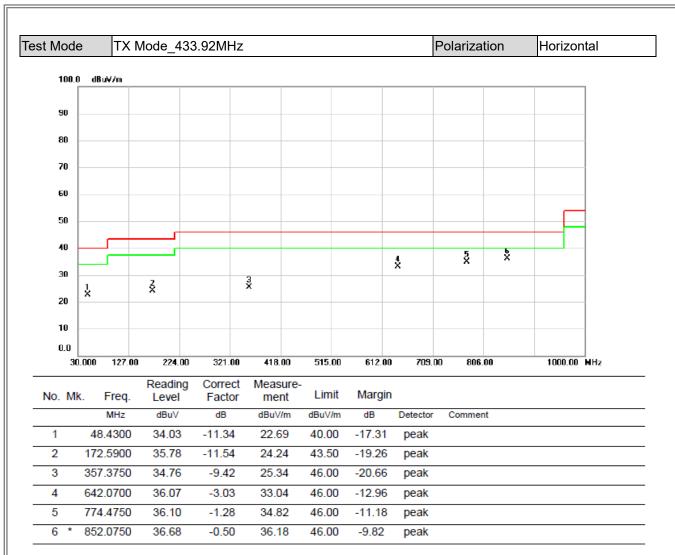





- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.
- (3) About the duty cycle correction factor calculated, please refer to the Section 3.3.






- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.
- (3) About the duty cycle correction factor calculated, please refer to the Section 3.3.





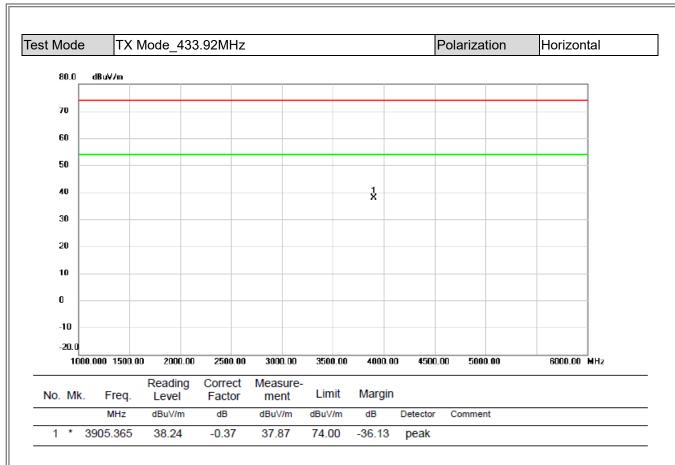
- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.





- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.




# **APPENDIX D - RADIATED EMISSION- ABOVE 1000 MHZ**



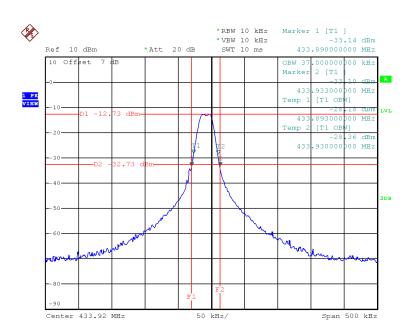


- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.





- (1) Measurement Value = Reading Level + Correct Factor.
- (2) Margin Level = Measurement Value Limit Value.




| APPENDIX E - 20 DB SPECTRUM BANDWIDTH |  |
|---------------------------------------|--|
|                                       |  |
|                                       |  |
|                                       |  |
|                                       |  |
|                                       |  |
|                                       |  |
|                                       |  |
|                                       |  |
|                                       |  |
|                                       |  |
|                                       |  |
|                                       |  |



Test Mode TX Mode\_433.92MHz

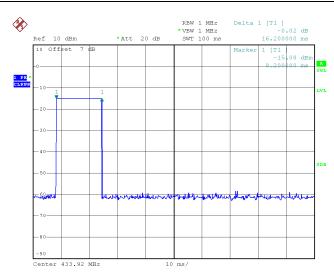
| Frequency<br>(MHz) | 20 dB Bandwidth<br>(MHz) | Limit<br>(MHz) | Result |
|--------------------|--------------------------|----------------|--------|
| 433.92             | 0.0430                   | 1.0848         | PASS   |



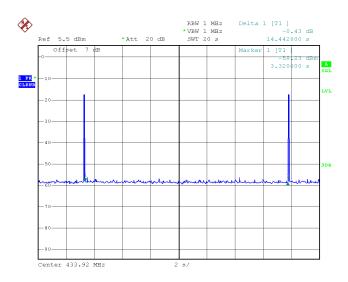
Date: 12.JAN.2024 13:39:56



| APPENDIX F - TIMING TESTING |  |
|-----------------------------|--|
|                             |  |
|                             |  |
|                             |  |
|                             |  |
|                             |  |
|                             |  |
|                             |  |
|                             |  |
|                             |  |
|                             |  |




Test Mode TX Mode\_433.92MHz


| Frequency | On Time | Limit |
|-----------|---------|-------|
| (MHz)     | (Sec)   | (Sec) |
| 433.92    | 0.0162  | <1    |

| Frequency | Off Time | Limit |
|-----------|----------|-------|
| (MHz)     | (Sec)    | (Sec) |
| 433.92    | 14.4428  | >10   |

| Frequency | On Time*30 | Limit   |
|-----------|------------|---------|
| (MHz)     | (Sec)      | (Sec)   |
| 433.92    | 0.486      | 14.4428 |



Date: 3.FEB.2024 15:44:35



Date: 31.JAN.2024 09:02:01

### **End of Test Report**