

FCC ID: 2BDY9-VM602 Report No.: 18220WC30271102 Page 1 of 30

FCC Test Report

Applicant MKETech Electronics

2000 South Grove Avenue, Suite 109, Ontario, Address

California, United States

WIRELESS MOUSE Product Name

: May 20, 2024 **Report Date**

ce Laboratory Limited

Report No.: 18220WC30271102 FCC ID: 2BDY9-VM602 Page 2 of 30

Contents

i. Gene	ral Information	A ^{nb} .			Zoz,	0,	···········	<i>(</i>	
1.1	Client Information	16 ^k	nboten	Anba	, ₍₀)	hotek.	Anbore	otek	ats
1.3	Description of Device (EU Auxiliary Equipment Used	During Te	est						900
14	Operation channel list								-
⁹⁰ 1.5.	Description of Test Modes	An		ze ^K	70pg.	h.,		2000	P
1.7.	Measurement Uncertainty Test Summary	PUPO	.:::	botek	Anbore	p3	etek V	nbo	
1.8	Description of Test Facility	√ <i>d</i> Ω4\		r		O. Co.	VU.		otek (
1.9	Disclaimer	igh.	,po <u>†</u> 81		iek	nbotek	kupo,	P'	(
2 Anton	D. Test Equipment List na requirement Conclusion	otek	Aupotek	VUD.	181	abotek	Anbo	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Z. AIILEI		-te/k	ofe above	V.	⁻ /-		ek Ar	poler.	
o ^{ten} 2.1.	Conclusion	Aupo, ok	224	otek	Vupore,		atek	Nototh].
3. Cond	ucted Emission at AC power	er line	V An	otek	<u>Anbotel</u>	فهر	10k	r	1:ـــــــــــــــــــــــــــــــــ
3.1.	EUT Operation	todna	S.L.	rup.	2000	rek	W.pos	VII.	
3.2	Test Data	e	oo _{tek} .	AUPOL		hotek.	1.Stodna		12
4. Occu	Conclusion		^{Asrodo}	Anbot	, V	notek no	Anbo	'ek	Anbo. 16
4.1.	EUT Operation		h.	k An	Dole.	Ann	1/5	botek	16
4.2	Test Setup	bupor	ν.,	, ek	Anborer .	Anb		bojek	16
nbotek 4.3.	Test Data	Anbote	<u>4224</u>	otek			⁵ 0,	Pr.	, 16
5. Maxir	num Conducted Output Po	wer	b	upo ek	~/00	,e/	Allogo	A	17
5.1	EUT Operation Test Setup	/r	orek	Pupore	r. V.,	~07e}	AHOOYER	Anc	1
5.3	Test Setup Test Data		botek	Anbot	e	~tek	"odpa	° _{//}	17
6. Powe	r Spectral Density								
6.1				201	,	h		ootek	Anboy
*** O.1.	FLIT Operation	'upolek	Autoore.	tek An	nbotek	Anbote	. e.y	potek Dotek	18
6.2	EUT Operation	_{Jupoley}	Antoore.	kek Ma	vootek Vootek	Anbote Anbote	lag	hapotek botek	18 18
6.3	Test Datar Spectral Density	k0	· · · · · · · · · · · · · · · · · · ·	3P~			07	· · · · · · · · · · · · · · · · · · ·	18
6.3	EUT Operation Test Setup Test Data sions in non-restricted frequency	k0	· · · · · · · · · · · · · · · · · · ·	3P~			07	· · · · · · · · · · · · · · · · · · ·	18
6.3 7. Emiss 7.1	iest Datasions in non-restricted frequence. EUT Operation	uency bar	nds	Mapo _{de}	Anbo ^r An))) (Annotek	k Vup _i	18 19
6.3 7. Emiss 7.1	iest Datasions in non-restricted frequence. EUT Operation	uency bar	nds	Mapo _{de}	Anbo ^r An))) (Annotek	k Vup _i	18 19
6.3 7. Emiss 7.1	iest Datasions in non-restricted frequence. EUT Operation	uency bar	nds	Mapo _{de}	Anbo ^r An))) (Annotek	k Vup _i	18 19
6.3 7. Emiss 7.1	iest Datasions in non-restricted frequence. EUT Operation	uency bar	nds	Mapo _{de}	Anbo ^r An))) (Annotek	k Vup _i	18 19
6.3 7. Emiss 7.1	iest Datasions in non-restricted frequence. EUT Operation	uency bar	nds	Mapo _{de}	Anbo ^r An))) (Annotek	k Vup _i	18 19
6.3 7. Emiss 7.1	iest Datasions in non-restricted frequence. EUT Operation	uency bar	nds	Mapo _{de}	Anbo ^r An))) (Annotek	k Vup _i	18 19
6.3 7. Emiss 7.1	iest Datasions in non-restricted frequence. EUT Operation	uency bar	nds	Mapo _{de}	Anbo ^r An))) (Annotek	k Vup _i	18 19
6.3 7. Emiss 7.1	iest Datasions in non-restricted frequence. EUT Operation	uency bar	nds	Mapo _{de}	Anbo ^r An))) (Annotek	k Vup _i	18 19
6.3 7. Emiss 7.1	Iest Datasions in non-restricted frequents EUT Operation	uency bar	nds	Pispo _{te}	Anbo ^r An))) (Annotek	k Vup _i	18 19

Report No.: 18220WC30271102 FCC II	D: 2BDY9-V	′M602	Page 3	of 30
10. Emissions in frequency bands (above 1GHz)	Mpojek A	upose, Aur	otek Anbote	26
10.1. EUT Operation	botek	Aupore Air	iek nb	o ^{ter} 26
10.2. Test Setup	No.	po _{jok}	AUD	26
10.3. Test Data	Anbo,	br.	choter F	27
APPENDIX I TEST SETUP PHOTOGRAPH	k vapojek	Aupo.	w. hotek	
APPENDIX II EXTERNAL PHOTOGRAPH		iek Vupoje	V.	30
APPENDIX III INTERNAL PHOTOGRAPH	oter And	, at e	ik Vupos	30

Report No.: 18220WC30271102 FCC ID: 2BDY9-VM602 Page 4 of 30

TEST REPORT

Applicant : MKETech Electronics

Manufacturer : Dongguan ShangGui Electronics Co.,Ltd.

Product Name : WIRELESS MOUSE

Test Model No. : MKE 602

Reference Model No. : VM602

Trade Mark : N/A

Rating(s) : Input: 5V-- (with DC 3.7V, 500mAh battery inside)

47 CFR Part 15.247

Test Standard(s) : ANSI C63.10-2020

KDB 558074 D01 15.247 Meas Guidance v05r02

The device described above is tested by Shenzhen Anbotek Compliance Laboratory Limited to determine the maximum emission levels emanating from the device and the severe levels of the device can endure and its performance criterion. The measurement results are contained in this test report and Shenzhen Anbotek Compliance Laboratory Limited is assumed full of responsibility for the accuracy and completeness of these measurements. Also, this report shows that the EUT (Equipment Under Test) is technically compliant with above listed standard(s) requirements. This report applies to above tested sample only and shall not be reproduced in part without written approval of Shenzhen Anbotek Compliance Laboratory Limited.

Date of Receipt:	Dec. 20, 2023
Anbotek Anbotek Anbote Ali	Aupotek Aupotek Vupotek Vupos
Date of Test:	Dec. 20, 2023 to Jan. 02, 2024
anbotek Anbotek Anbotek Anbote	cek Chotek Anbour Anbotek Anb
Prepared By:	Stella Zhu
anbotek Anbotek Anbotek Anbotek	(Stella Zhu)
	Anbotek Anbotek Anbotek
Aupotek Aupote Andorek Anboten	Idward pan
Approved & Authorized Signer:	Ant tok shother Anbo
All sak shotek Ande	otek Michael Dan) sek stotek Ar

Report No.: 18220WC30271102 FCC ID: 2BDY9-VM602 Page 5 of 30

Revision History

	Report Version	Description	Issued Date
	Anbore R00 potek Ant	Original Issue.	May 20, 2024
9,	Anbotek Anbotek	Anbotek Anbotek Anbotek	K Anbotek Anbotek Ant
10	ore Ambotek Anbotek	Anbotek Anbotek Anbot	tek Anbotek Anboter

Report No.: 18220WC30271102 FCC ID: 2BDY9-VM602 Page 6 of 30

1. General Information

1.1. Client Information

Applicant	: MKETech Electronics	hote
Address	: 2000 South Grove Avenue, Suite 109, Ontario, California, United States	V.
Manufacturer	: Dongguan ShangGui Electronics Co.,Ltd.	Ve.
Address	Room 101,No.7, Yincheng 7nd Road.,Xiabian Village, Chang'an Town,Dongguan City, GuangDong Province, China	K
Factory	: Dongguan ShangGui Electronics Co.,Ltd.	
Address	Room 101,No.7, Yincheng 7nd Road.,Xiabian Village, Chang'an Town, Dongguan City, GuangDong Province, China	nbote!

1.2. Description of Device (EUT)

:	WIRELESS MOUSE
:	MKE 602 Andrew Andrew Andrew
:	VM602 (Note: All samples are the same except the model number, so we prepare "MKE 602" for test only.)
:	N/A Anbore Anti-
:	DC 5V from Adapter input AC 120V/60Hz; DC 3.7V battery inside
:	1-2-1(Normal Sample), 1-2-2(Engineering Sample)
:	N/A otek Anbotek Anbotek Anbotek Anbotek
:	2405-2475MHz
:	or 8 Anbotek Anborek Anborek Anborek Anborek Anborek
:	GFSK Andrew Andrew Andrew Andrew Andrew
:	PCB Antenna
:	4.43dBi Anbotek Anbotek Anbotek Anbotek Anbotek
	: : : : : : : : : : : : : : : : : : : :

Remark:

- (1) All of the RF specification are provided by customer.
- (2) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

Report No.: 18220WC30271102 FCC ID: 2BDY9-VM602 Page 7 of 30

1.3. Auxiliary Equipment Used During Test

Title	Manufacturer	Model No.	Serial No.
Xiaomi 33W adapter	Xiaomi	MDY-11-EX	SA62212LA04358J

1.4. Operation channel list

Operation Band:

hook!	Channel		Channel Frequency (MHz)		Channel			Frequency (MHz)			
Anl	otek O An	otek.	VU _p	2405	'upoter	Pur	iek 4	Yupotek	Anbo	2457	Anbotek
	Anboret 1	Anbo		2411	Auport	Direction	toote ^V 5	Anbotek	V.Upp	2463	Anborek
-	Anbore 2	VUD	4ek	2417	Aupor	8 _K	6.K	Anbo	Is. Vup.	2469	Anbot
nek-	Anb 3	V Anb.	-oiek	2451	Aupo	.ek	7 ore	K AT	poter A	2475	k anl

1.5. Description of Test Modes

Pretest Modes	Descriptions	
Anbor TM1	Keep the EUT in continuously transmitting mode	Anboten

1.6. Measurement Uncertainty

Parameter	Uncertainty
Conducted emissions (AMN 150kHz~30MHz)	3.8dB Anbotek Anbotek Anbote
Occupied Bandwidth	925Hz
Conducted Output Power	0.76dB
Power Spectral Density	0.76dB borek Anborek Anborek Anborek
Conducted Spurious Emission	1.24dB
Radiated spurious emissions (above 1GHz)	1G-6GHz: 4.78dB; 6G-18GHz: 4.88dB 18G-40GHz: 5.68dB
Radiated emissions (Below 30MHz)	3.53dB Anbotek Anbotek
Radiated spurious emissions (30MHz~1GHz)	Horizontal: 3.92dB; Vertical: 4.52dB

The measurement uncertainty and decision risk evaluated according to AB/WI-RF-F-032.

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Report No.: 18220WC30271102 FCC ID: 2BDY9-VM602 Page 8 of 30

1.7. Test Summary

Test Items	Test Modes	Status
Antenna requirement	Anbotek / Anbote	Ann Potek
Conducted Emission at AC power line	Mode1	P
Occupied Bandwidth	Mode1	P PART
Maximum Conducted Output Power	Mode1	P
Power Spectral Density	Mode1	rupo, br
Emissions in non-restricted frequency bands	Mode1	Anb P tek
Band edge emissions (Radiated)	Mode1	P P
Emissions in frequency bands (below 1GHz)	Mode1	P ^{Ant}
Emissions in frequency bands (above 1GHz)	Mode1	PAR
Note: P: Pass N: N/A pot applicable	Anbotek Anbotek A	upotek

N: N/A, not applicable

Report No.: 18220WC30271102 FCC ID: 2BDY9-VM602 Page 9 of 30

1.8. Description of Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.:434132

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No. 434132.

ISED-Registration No.: 8058A

Shenzhen Anbotek Compliance Laboratory Limited, EMC Laboratory has been registered and fully described in a report filed with the (ISED) Innovation, Science and Economic Development Canada. The acceptance letter from the ISED is maintained in our files. Registration 8058A.

Test Location

Shenzhen Anbotek Compliance Laboratory Limited.

1/F, Building D, Sogood Science and Technology Park, Sanwei community, Hangcheng Street, Bao'an District, Shenzhen, Guangdong, China.

1.9. Disclaimer

- 1. The test report is invalid if not marked with the signatures of the persons responsible for preparing and approving the test report.
- 2. The test report is invalid if there is any evidence and/or falsification.
- 3. The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein.
- 4. This document may not be altered or revised in any way unless done so by Anbotek and all revisions are duly noted in the revisions section.
- 5. Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.
- 6. The authenticity of the information provided by the customer is the responsibility of the customer and the laboratory is not responsible for its authenticity.

The laboratory is only responsible for the data released by the laboratory, except for the part provided by the applicant.

18220WC30271102 Report No.: Page 10 of 30 FCC ID: 2BDY9-VM602

1.10. Test Equipment List

Cond	ucted Emission at A	C power line	Aupo	k spotel	Anbore	An
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due Date
. 1	L.I.S.N. Artificial Mains Network	Rohde & Schwarz	ENV216	100055	2023-10-12	2024-10-11
2 2 50 tek	Three Phase V- type Artificial Power Network	CYBERTEK	EM5040DT	E215040D T001	2023-07-05	2024-07-04
3	EMI Test Receiver	Rohde & Schwarz	ESCI	100627	2023-10-12	2024-10-11
4	Software Name EZ-EMC	Farad Technology	ANB-03A	N/A	rek /Anbotek	Anborotek

Occupied Bandwidth

Maximum Conducted Output Power

Power Spectral Density
Emissions in non-restricted frequency bands

		-[-0/1]2/4				
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due Date
1 _{Anh}	Constant Temperature Humidity Chamber	ZHONGJIAN	ZJ- KHWS80B	N/A	2023-10-16	2024-10-15
2	DC Power Supply	IVYTECH	IV3605	1804D360 510	2023-10-20	2024-10-19
3	Spectrum Analyzer	Rohde & Schwarz	FSV40-N	101792	2023-05-26	2024-05-25
An4ote	MXA Spectrum Analysis	KEYSIGHT	N9020A	MY505318 23	2023-02-23	2024-02-22
5,00	Oscilloscope	Tektronix	MDO3012	C020298	2023-10-12	2024-10-11
6	MXG RF Vector Signal Generator	Agilent	N5182A	MY474206 47	2023-02-23	2024-10-22

Hotline

www.anbotek.com.cn

400-003-0500

Report No.: 18220WC30271102 FCC ID: 2BDY9-VM602 Page 11 of 30

Ote.	And	otek pupo.	N. ak	-boye.	VU _D	ysio
	edge emissions (Ra sions in frequency ba		Auporgoiek	Anbotek	Aupoter.	Anbotek
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due Date
1 00	EMI Test Receiver	Rohde & Schwarz	ESR26	101481	2023-10-12	2024-10-11
2	EMI Preamplifier	SKET Electronic	LNPA- 0118G-45	SKET-PA- 002	2023-10-12	2024-10-11
3	Double Ridged Horn Antenna	SCHWARZBECK	BBHA 9120D	02555	2022-10-16	2025-10-15
nbole 4	EMI Test Software EZ-EMC	SHURPLE	N/A	N/A	Anbotek	Aupolek
5	Horn Antenna	A-INFO	LB-180400- KF	J21106062 8	2023-10-12	2024-10-11
6	Spectrum Analyzer	Rohde & Schwarz	FSV40-N	101792	2023-05-26	2024-05-25
e ^k 7	Amplifier	Talent Microwave	TLLA18G40 G-50-30	23022802	2023-05-25	2024-05-24

Emissions in frequency bands (below 1GHz)										
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal.Due Date				
1	EMI Test Receiver	Rohde & Schwarz	ESR26	101481	2023-10-12	2024-10-11				
. 2	Pre-amplifier	SONOMA	310N	186860	2023-10-12	2024-10-11				
34	Bilog Broadband Antenna	Schwarzbeck	VULB9163	345	2022-10-23	2025-10-22				
Andorel	Loop Antenna (9K- 30M)	Schwarzbeck	FMZB1519 B	00053	2023-10-12	2024-10-11				
5,00	EMI Test Software EZ-EMC	SHURPLE	N/A nbor	N/A.cbott	Nupon pole	k Anbotek				

Report No.: 18220WC30271102 FCC ID: 2BDY9-VM602 Page 12 of 30

2. Antenna requirement

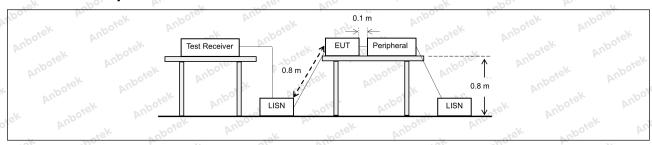
Test Requirement:

Refer to 47 CFR Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

2.1. Conclusion

The antenna is a PCB antenna which permanently attached, and the best case gain of the antenna is 4.43 dBi . It complies with the standard requirement.

Report No.: FCC ID: 2BDY9-VM602 Page 13 of 30 18220WC30271102

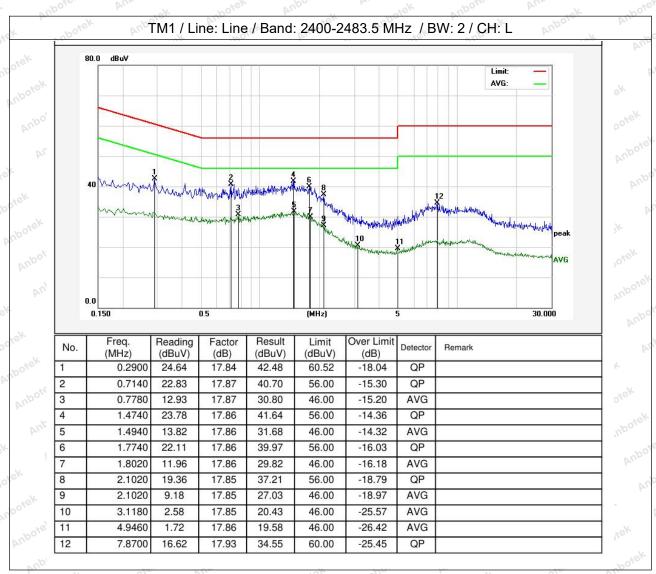

3. Conducted Emission at AC power line

Test Requirement:	Refer to 47 CFR 15.207(a), Except section, for an intentional radiator public utility (AC) power line, the reback onto the AC power line on ar band 150 kHz to 30 MHz, shall no measured using a 50 µH/50 ohms	that is designed to be con adio frequency voltage tha ny frequency or frequencie t exceed the limits in the f	nected to the at is conducted as, within the ollowing table, as
o h spoiek	(LISN).	Can duated limit (dD:\/)	Anbore
Aupore All.	Frequency of emission (MHz)	Conducted limit (dBµV)	Averego
sotek Anbo.	W. The Work William	Quasi-peak	Average
Test Limit:	0.15-0.5	66 to 56*	56 to 46*
rest Littit.	0.5-5 dek nabote Ame	56 hotel An	46
Ans above	5-30 And San	60	50 And
Anbors Air	*Decreases with the logarithm of t	he frequency.	
Test Method:	ANSI C63.10-2020 section 6.2	Anbores.	Aug Otek
Procedure:	Refer to ANSI C63.10-2020 section line conducted emissions from unline conducted emissions from the conducted emission		

3.1. EUT Operation

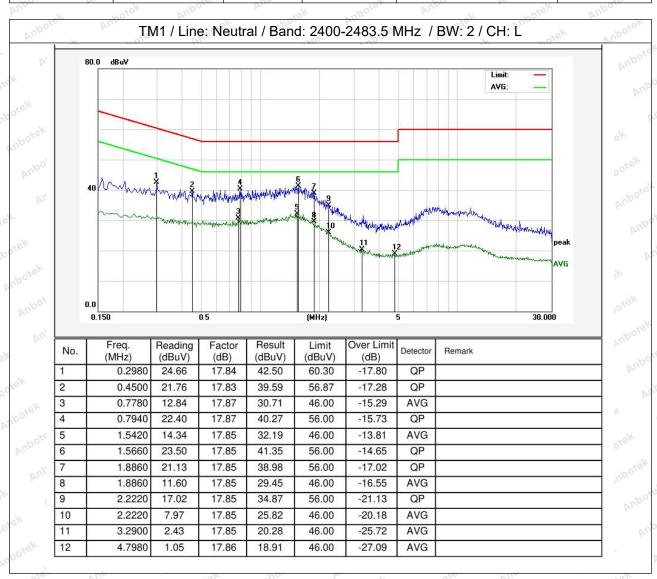
Operating Er	nvironment:	Aupo,	Pr. Polek	Anbore.	Ann	anbotek	Aupo.
Test mode:	1: TM1: K	eep the EUT i	n continuous	y transmittin	g mode	k botek	Anbo

3.2. Test Setup


Hotline

Report No.: 18220WC30271102 FCC ID: 2BDY9-VM602 Page 14 of 30

3.3. Test Data

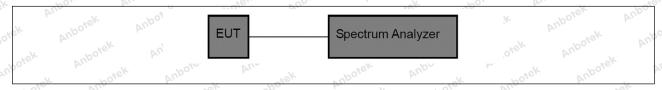

Temperature: 23	3.9 °C	Humidity:	55.8 %	Atmospheric Pressure:	101 kPa
-----------------	--------	-----------	--------	-----------------------	---------

Report No.: 18220WC30271102 FCC ID: 2BDY9-VM602 Page 15 of 30

Temperature: 23.9 °C Humidity: 55.8 % Atmospheric Pressure: 101 kPa

Note: Only record the worst data in the report.

Report No.: 18220WC30271102 FCC ID: 2BDY9-VM602 Page 16 of 30


4. Occupied Bandwidth

Refer to 47 CFR 15.247(a)(2), Systems using digital modulation techniques
may operate in the 902-928 MHz, and 2400-2483.5 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.
ANSI C63.10-2020, section 11.8 KDB 558074 D01 15.247 Meas Guidance v05r02
11.8.1 Option 1 The steps for the first option are as follows: a) Set RBW = shall be in the range of 1% to 5% of the OBW but not less than 100 kHz. b) Set the VBW ≥ [3 × RBW]. c) Detector = peak.
d) Trace mode = max-hold. e) Sweep = No faster than coupled (auto) time. f) Allow the trace to stabilize. g) Measure the maximum width of the emission by placing two markers, one at the lowest frequency and the other at the highest frequency of the
envelope of the spectral display, such that each marker is at or slightly below the "-6 dB down amplitude". If a marker is below this "-6 dB down amplitude" value, then it shall be as close as possible to this value.
11.8.2 Option 2 The automatic bandwidth measurement capability of an instrument may be employed using the X dB bandwidth mode with X set to 6 dB, if the
functionality described in 11.8.1 (i.e., RBW = 100 kHz, VBW ≥ 3 × RBW, and peak detector with maximum hold) is implemented by the instrumentation function. When using this capability, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the

4.1. EUT Operation

Operating Env	ironment:	Aur	Anbotek	Anbo	, abotek	Anbore
Test mode:	1: TM1: Keep th	e EUT in contin	uously trans	mitting mode	k hotek	Aupoter.

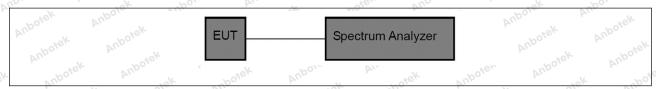
4.2. Test Setup

4.3. Test Data

Temperature:	25.3 °C	Humidity: 4	41 % Anbore	Atmospheric Pressure:	101 kPa	the contract of the contract o

Please Refer to Appendix for Details.

Report No.: Page 17 of 30 18220WC30271102 FCC ID: 2BDY9-VM602


5. Maximum Conducted Output Power

Test Requirement:	47 CFR 15.247(b)(3)
Anbotek	Refer to 47 CFR 15.247(b)(3), For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.
Test Method:	ANSI C63.10-2020 section 11.9.1 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	ANSI C63.10-2020, section 11.9.1 Maximum peak conducted output power

5.1. EUT Operation

N.	Operating Envir	ronment:	hotek	Anbore	Vier Potek	Anborek	Auparek	7/00
	Test mode:	1: TM1: Kee	ep the EUT in	continuously	transmitting	mode Model	Aupo.	, , , , , , , , , , , , , , , , , , ,

5.2. Test Setup

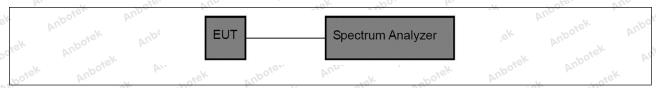
5.3. Test Data

Temperature:	25.3 °C	Humidity:	41 %	Atmospheric Pressure:	101 kPa
av ·	'/r ~ ~ 0,	Dec	_x6,	, QV	~O.

Please Refer to Appendix for Details.

Hotline

Report No.: 18220WC30271102 Page 18 of 30 FCC ID: 2BDY9-VM602


6. Power Spectral Density

Test Requirement:	47 CFR 15.247(e)
Test Limit:	Refer to 47 CFR 15.247(e), For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.
Test Method:	ANSI C63.10-2020, section 11.10 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	ANSI C63.10-2020, section 11.10, Maximum power spectral density level in the fundamental emission

6.1. EUT Operation

Operating Environment:	hoiek	Anboick	Aup tek	aporek	Auporg	Ar. boiek
Test mode: 1: TM1: k	Keep the E	UT in contir	nuously transn	nitting mode	Aupole	Augusta
6.2. Test Setup		Anbote				

6.2. Test Setup

6.3. Test Data

		177.		- LJ			12/1
Temperature:	25.3 °C	Humidity	41 %	~0; _i ,	Atmospheric Press	ure:	101 kPa

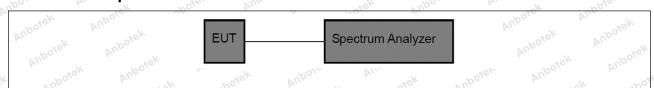
Please Refer to Appendix for Details.

Hotline

www.anbotek.com.cn

400-003-0500

Report No.: 18220WC30271102 FCC ID: 2BDY9-VM602 Page 19 of 30


7. Emissions in non-restricted frequency bands

Test Requirement:	47 CFR 15.247(d), 15.209, 15.205
Anbotek	Refer to 47 CFR 15.247(d), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required.
Test Method:	ANSI C63.10-2020 section 11.11 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	ANSI C63.10-2020 Section 11.11.1, Section 11.11.2, Section 11.11.3

7.1. EUT Operation

Operating Envi	ronment:	abotek	Anbore	And	Anbotek	Aupo	100
Test mode:	1: TM1: Keep	the EUT in	continuously	transmitting r	node Mootel	Aupo,	by.

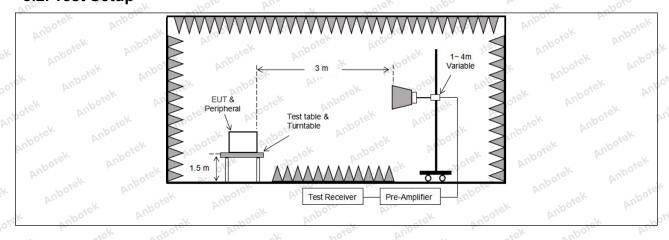
7.2. Test Setup

7.3. Test Data

Tei	mperature:	25.3 °C	Humidity	: 41 %	.ek	Atmospheric Pressure:	101 kPa	
-----	------------	---------	----------	--------	-----	-----------------------	---------	--

Please Refer to Appendix for Details.

Report No.: 18220WC30271102 FCC ID: 2BDY9-VM602 Page 20 of 30

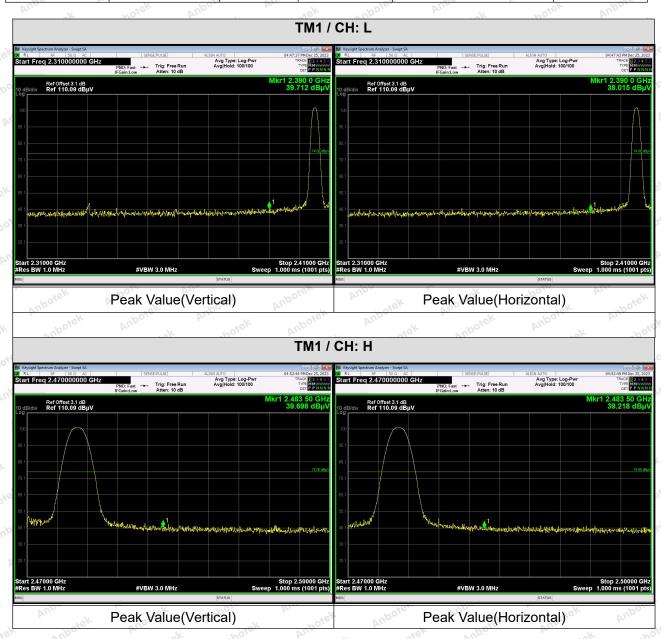

8. Band edge emissions (Radiated)

NO.	PO, DI.	76,	-ok - 60,
Test Requirement:	restricted bands, as defined	, In addition, radiated emissions d in § 15.205(a), must also comp ecified in § 15.209(a)(see § 15.2	oly with the
k Aupotek Aupot	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
	0.009-0.490	2400/F(kHz)	300
poiek Anbo.	0.490-1.705	24000/F(kHz)	30
	1.705-30.0	30	30
	30-88	100 **	3,ek nbote
	88-216	150 **	3
	216-960	200 **	3 botel And
	Above 960	500	3
	intentional radiators operatifrequency bands 54-72 MH However, operation within the sections of this part, e.g., § In the emission table above The emission limits shown employing a CISPR quasi-part of the emission table above 190 kHz, 110–490 kHz and a section of the control	aragraph (g), fundamental emissing under this section shall not be lz, 76-88 MHz, 174-216 MHz or these frequency bands is permittly 15.231 and 15.241. The tighter limit applies at the bein the above table are based on beak detector except for the frequency above 1000 MHz. Radiated emisted on measurements employing	te located in the 470-806 MHz. ted under other band edges. measurements uency bands 9—ssion limits in
Test Method:	ANSI C63.10-2020 section KDB 558074 D01 15.247 M		ek Anbotek
Procedure:	ANSI C63.10-2020 section	6.10.5.2	ore, but
. 4V	Poor Div.	46.	

8.1. EUT Operation

Operating Envir	ronment:	upotek	Anbo.	An boiek	Anbote	And	20	
Test mode:	1: TM1: Keep	the EUT in c	ontinuously tr	ansmitting mo	ode Anbotek	Anbo		

8.2. Test Setup



Report No.: 18220WC30271102 FCC ID: 2BDY9-VM602 Page 21 of 30

8.3. Test Data

Temperature: 25.3 °C Humidity: 41 % Atmospheric Pressure: 101 kPa

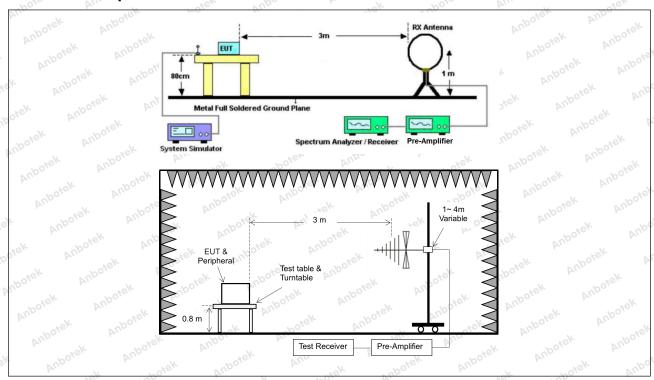
Note: When the PK measure result value is less than the AVG limit value, the AV measure result values test not applicable.

Report No.: 18220WC30271102 FCC ID: 2BDY9-VM602 Page 22 of 30

9. Emissions in frequency bands (below 1GHz)

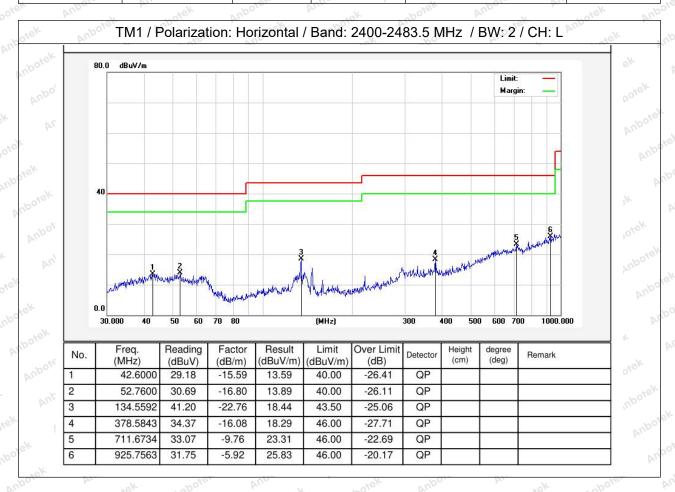
1 V	70, D.	461 VOD	10 VO
Test Requirement:	restricted bands, as defined	In addition, radiated emissions d in § 15.205(a), must also comp ecified in § 15.209(a)(see § 15.2	ly with the
k Anbotek Anbot	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
o. p. Siek	0.009-0.490	2400/F(kHz)	300 Mboto
abotek Anbo	0.490-1.705	24000/F(kHz)	30
The spores	1.705-30.0	30	30
Aupo, Bi	30-88	100 **	3,ek nbore
shotek Anbu	88-216	150 **	3
VII. * Sk	216-960	200 **	3 poter And
Anbor Air	Above 960	500 Morek Anbox	3 rek ab
nbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek	intentional radiators operatifrequency bands 54-72 MH However, operation within t sections of this part, e.g., § In the emission table above The emission limits shown employing a CISPR quasi-page 110–490 kHz and a	ragraph (g), fundamental emissing under this section shall not bz, 76-88 MHz, 174-216 MHz or hese frequency bands is permitt§ 15.231 and 15.241. In the tighter limit applies at the bin the above table are based on peak detector except for the frequency above 1000 MHz. Radiated emisted on measurements employing	e located in the 470-806 MHz. sed under other band edges. measurements uency bands 9—ssion limits in
por bu	ANSI C63.10-2020 section	6.6.4 Anbort	ak abotek
Test Method:	KDB 558074 D01 15.247 M		ek spotek
Procedure:	ANSI C63.10-2020 section	6.6.4 And	or Arr

9.1. EUT Operation


o'i	Operating Envir	onment:	upotek	Anbo.	by.	oie ^k	hpote.	Ann	20	Ç
	Test mode:	1: TM1: Keep	the EUT in c	ontinuously t	ransmitti	ing mode	Anboten	Aup. "ek		

Report No.: 18220WC30271102 FCC ID: 2BDY9-VM602 Page 23 of 30

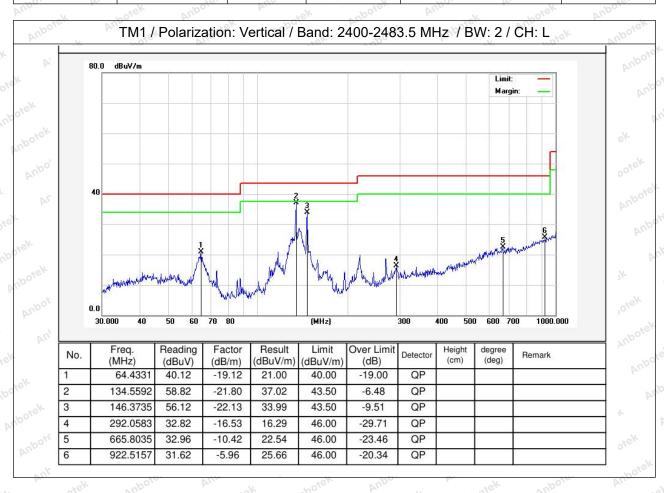
9.2. Test Setup



Report No.: 18220WC30271102 FCC ID: 2BDY9-VM602 Page 24 of 30

9.3. Test Data

The test results of 9kHz-30MHz was attenuated more than 20dB below the permissible limits, so the results don't record in the report.

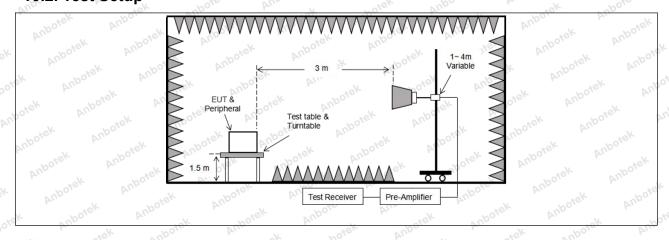

- 1000	- A/-		O. D.		164 740	10°
Temperature:	25.3 °C	Vu.	Humidity:	41 %	Atmospheric Pressure:	101 kPa

Report No.: 18220WC30271102 FCC ID: 2BDY9-VM602 Page 25 of 30

Temperature: 25.3 °C Humidity: 41 % Atmospheric Pressure: 101 kPa

Note: Only record the worst data in the report.

Report No.: 18220WC30271102 Page 26 of 30


10. Emissions in frequency bands (above 1GHz)

Test Requirement:		ons which fall in the restricted background by with the radiated emission 5(c)).	
k Aupotek Aupot	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
o. W. Potek	0.009-0.490	2400/F(kHz)	300 Mbon
"upous Yun	0.490-1.705	24000/F(kHz)	30
botek Anbore	1.705-30.0	30	30
Yu. "ek "potek	30-88	100 **	3 ek
Anbor Air	88-216 216-960	150 ** 200 **	3
r upotek Aupo.	Above 960	500	3
nbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek Anbotek	frequency bands 54-72 MH However, operation within to sections of this part, e.g., § In the emission table above The emission limits shown employing a CISPR quasi- 90 kHz, 110–490 kHz and a	ing under this section shall not be z, 76-88 MHz, 174-216 MHz or these frequency bands is permitted as 15.231 and 15.241. In the tighter limit applies at the bein the above table are based on beak detector except for the frequency above 1000 MHz. Radiated emisted on measurements employing	470-806 MHz. ted under other pand edges. measurements quency bands 9–ssion limits in
potek Pupo, h	18k 190, by	O O PEK Spokek Pupo	V NOTOK
Test Method:	ANSI C63.10-2020 section KDB 558074 D01 15.247 M		er Aupotek
Procedure:	ANSI C63.10-2020 section	6.6.4	DOL VIE

10.1. EUT Operation

o'l	Operating Envir	ronment:	Mbotek	Anbo.	h. boick	Anbote.	And	20
Į	Test mode:	1: TM1: Keep	1: TM1: Keep the EUT in continuously transmitting mode					

10.2. Test Setup

Page 27 of 30 Report No.: 18220WC30271102 FCC ID: 2BDY9-VM602

10.3. Test Data

Temperature: 25.3 °C	Humidity: 41 %	Atmospheric Pressure:	101 kPa
----------------------	----------------	-----------------------	---------

N	POLE. VUL		Hek Nupo.		ok botes	An
			TM1 / CH: L			
Peak value:						
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4810.00	28.25	15.27	43.52	74.00	-30.48	Vertical
7215.00	29.84	18.09	47.93	74.00	-26.07	Vertical
9620.00	30.82	23.76	54.58	74.00	-19.42	Vertical
12025.00	Aupole * Al	49:	abotek Anb	74.00	otek Anboti	Vertical
14430.00	"Upo#sk	Aupo	hotek p	74.00	ick on	Vertical
4810.00	28.73	15.27	44.00	74.00	-30.00	Horizontal
7215.00	30.10	18.09	48.19	74.00	-25.81	Horizontal
9620.00	29.30	23.76	53.06	74.00	-20.94	Horizontal
12025.00	otek * Aupo	<i>y</i> 500	ick Vupose,	74.00	botek	Horizontal
14430.00	woick*	poter Amb	sek spc	74.00	-k hote	Horizontal
Average value:						
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	polarization
4810.00	17.63	15.27	32.90	54.00	-21.10	Vertical
7215.00	18.87	18.09	36.96	54.00	-17.04	Vertical
9620.00	19.84	23.76	43.60	54.00	-10.40	Vertical
12025.00	NO4-8K	Aupoter, Au	19 °	54.00	- No Pro-	Vertical
14430.00	And *	anbotek	Anbo	54.00	ipote. Aug	Vertical
4810.00	17.08	15.27	32.35	54.00	-21.65	Horizontal
7215.00	19.16	18.09	37.25	54.00	-16.75	Horizontal
9620.00	18.61	23.76	42.37	54.00	-11.63	Horizontal
12025.00	*** *	otek Aupor	N 20%	54.00	Aug. "ek	Horizontal
14430.00	4 ×	otek ant	Oter And	54.00	ek Aupor	Horizontal

Report No.: 18220WC30271102 FCC ID: 2BDY9-VM602 Page 28 of 30

			ГМ1 / СН: М			
Peak value:						
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4902.00	28.27	15.42	43.69	74.00	-30.31	Vertical
7353.00	29.69	18.02	47.71	74.00	-26.29	Vertical
9804.00	29.83	23.80	53.63	74.00	-20.37	Vertical
12255.00	ek * spotek	Anborr	h worek	74.00	And	Vertical
14706.00	*	tek Wipose	Pun de	74.00	Anbo	Vertical
4902.00	28.43	15.42	43.85	74.00	-30.15	Horizontal
7353.00	30.09	18.02	48.11	74.00	-25.89	Horizontal
9804.00	29.00	23.80	52.80	74.00	-21.20	Horizontal
12255.00	*otek	Aupole.	Aug	74.00	YUPO'S BY	Horizontal
14706.00	Art rek	nbotek	Aupo	74.00	Aupoter	Horizontal
Average value:						
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	polarization
4902.00	17.36	15.42	32.78	54.00	-21.22	Vertical
7353.00	18.97	18.02	36.99	54.00	-17.01	Vertical
9804.00	19.70	23.80	43.50	54.00	-10.50	Vertical
12255.00	k *upo,	An Siek	anbotek	54.00	botek	Vertical
14706.00	otek * Anbot	Anb	sk spojek	54.00	bu. Potek	Vertical
4902.00	16.99	15.42 nbo	32.41	54.00	-21.59	Horizontal
7353.00	18.72	18.02 A	36.74	54.00	-17.26	Horizontal
9804.00	19.12	23.80	42.92	54.00	1000 And	Horizontal
12255.00	Anb*otek	Anbo	abotek	54.00	"Otek Vi	Horizontal
14706.00	* "otek	VUPO.	A. tek	54.00	AUG	Horizontal

Report No.: 18220WC30271102 FCC ID: 2BDY9-VM602 Page 29 of 30

V.U.D.	tek	"upo,	by.	-pote.	VUD.	atel ^k
		•	TM1 / CH: H			
Peak value:						
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4950.00	28.54	15.58	44.12	74.00	-29.88	Vertical
7425.00	29.70	17.93	47.63	74.00	-26.37	Vertical
9900.00	30.38	23.83	54.21	74.00	-19.79	Vertical
12375.00	* otek	anbotes	Aups "Sk	74.00	Aupor	Vertical
14850.00	* And	iek "potel	, Vupo,	74.00	Aupote	Vertical
4950.00	28.50	15.58	44.08	74.00	-29.92	Horizontal
7425.00	30.12	17.93	48.05	74.00	-25.95	Horizontal
9900.00	29.68	23.83	53.51	74.00	-20.49	Horizontal
12375.00	Vup.*	abotek	Aupor b	74.00	rupoter Vul	Horizontal
14850.00	W. Po	hotek	Anborek	74.00	anbotek	Horizontal
Average value:						
Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Over Limit (dB)	polarizatio
4950.00	18.48	15.58	34.06	54.00	-19.94	Vertical
7425.00	19.98	17.93	37.91	54.00	16.09 M	Vertical
9900.00	20.25	23.83	44.08	54.00	-9.92	Vertical ¹
12375.00	k * "potek	Aupo,	hotek	54.00	Aug	Vertical
14850.00	* * *	k Aupore	Aug	54.00	Vupo.	Vertical
4950.00	18.43	15.58 No ⁰	34.01	54.00	-19.99	Horizontal
7425.00	20.09	17.93	38.02	54.00	-15.98	Horizonta
9900.00	19.02	23.83	42.85	54.00 Ann	-11.15	Horizonta
12375.00	* tek	Anbores	Aur	54.00	100 Vr	Horizonta
14850 00	An*	hotek	Anbo	54 00	Vupote V	Horizontal

Remark:

- 1. Result =Reading + Factor
- 2. "*" means the test results were attenuated more than 20dB below the permissible limits, so the results don't record in the report.

Report No.: 18220WC30271102 FCC ID: 2BDY9-VM602 Page 30 of 30

APPENDIX I -- TEST SETUP PHOTOGRAPH

Please refer to separated files Appendix I -- Test Setup Photograph_RF

APPENDIX II -- EXTERNAL PHOTOGRAPH

Please refer to separated files Appendix II -- External Photograph

APPENDIX III -- INTERNAL PHOTOGRAPH

Please refer to separated files Appendix III -- Internal Photograph

----- End of Report -----

