

FCC RADIO TEST REPORT FCC ID: 2BDTM-HSD-215ZJ

Product: 21.5 inch intelligent all-in-one machine

Trade Mark: N/A

Model No.: HSD-215ZJ

P215ZJ-S***(" * "can be any letter, number, symbol or blank, representing different sales

Family Model: areas, does not affect the safety and

electromagnetic compatibility performance of

the product)

Report No.: S23110901209003

Issue Date: 23 Dec, 2023

Prepared for

Shenzhen Hongshengda Optoelectronic Technology Co., Ltd

3rd Floor, Building 4, No.161, Xingye Road, Fenghuang Community, Fuyong Street, Bao 'an District, Shenzhen, China

Prepared by

Shenzhen NTEK Testing Technology Co., Ltd.

1&5/F, Building C, 1&2/F, Building E, Fenda Science Park, Sanwei Community, Hangcheng Street, Baoan District, Shenzhen ,Guangdong, China
Tel. 400-800-6106, 0755-2320 0050, 0755-2320 0090
Website: http://www.ntek.org.cn

Version.1.3 Page 1 of 88

TABLE OF CONTENTS

1 7	TEST RESULT CERTIFICATION	3
2 5	SUMMARY OF TEST RESULTS	4
3 1	FACILITIES AND ACCREDITATIONS	5
3.1		
3.2		
3.3		
4	GENERAL DESCRIPTION OF EUT	6
5 1	DESCRIPTION OF TEST MODES	8
6 5	SETUP OF EQUIPMENT UNDER TEST	10
6.1	BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM	10
6.2		
6.3		
7	TEST REQUIREMENTS	14
7.1	CONDUCTED EMISSIONS TEST	14
7.2		
7.3	v= = = = : = : = = = = = : = : = = = = : =	
7.4		
7.5		
7.6		
7.7		
7.8		
7.9		
8	TEST RESULTS	38
8.1	201101022	
8.2	MAXIMUM CONDUCTED OUTPUT POWER	45
8.3		
8.4		
8.5		
8.6		
8.7	CONDUCTED RF SPURIOUS EMISSION	76

1 TEST RESULT CERTIFICATION

Applicant's name:	Shenzhen Hongshengda Optoelectronic Technology Co. , Ltd
Address:	3rd Floor, Building 4, No.161, Xingye Road, Fenghuang Community, Fuyong Street, Bao 'an District, Shenzhen, China
Manufacturer's Name:	Shenzhen Hongshengda Optoelectronic Technology Co. , Ltd
Address	3rd Floor, Building 4, No.161, Xingye Road, Fenghuang Community, Fuyong Street, Bao 'an District, Shenzhen, China
Product description	
Product name:	21.5 inch intelligent all-in-one machine
Model and/or type reference:	HSD-215ZJ
Family Model:	P215ZJ-S***(" * "can be any letter, number, symbol or blank, representing different sales areas, does not affect the safety and electromagnetic compatibility performance of the product)
Sample number	S231109012009
Date (s) of performance of tests	28 Nov. 2023 ~ 20 Dec, 2023

Measurement Procedure Used:

APPLICABLE STANDARDS				
APPLICABLE STANDARD/ TEST PROCEDURE	TEST RESULT			
FCC 47 CFR Part 2, Subpart J				
FCC 47 CFR Part 15, Subpart C	Compliad			
ANSI C63.10-2013	Complied			
KDB 558074 D01 15.247 Meas Guidance v05r02				

This device described above has been tested by Shenzhen NTEK Testing Technology Co., Ltd., and the test results show that the equipment under test (EUT) is in compliance with the FCC requirements. And it is applicable only to the tested sample identified in the report.

This report shall not be reproduced except in full, without the written approval of Shenzhen NTEK Testing Technology Co., Ltd., this document may be altered or revised by Shenzhen NTEK Testing Technology Co., Ltd., personnel only, and shall be noted in the revision of the document.

The test results of this report relate only to the tested sample identified in this report.

Prepared By: Allen Liu (Project Engineer)

Reviewed By: Aaron Cheng (Supervisor)

Approved By: Alex Li (Manager)

Version.1.3 Page 3 of 88

2 SUMMARY OF TEST RESULTS

FCC Part15 (15.247), Subpart C						
Standard Section Test Item Verdict Remark						
15.207	Conducted Emission	PASS				
15.247 (a)(2)	6dB Bandwidth	PASS				
15.247 (b)	Maximum Output Power	PASS				
15.209 (a) 15.205 (a)	Radiated Spurious Emission	PASS				
15.247 (e)	Power Spectral Density	PASS				
15.247 (d)	Band Edge Emission	PASS				
15.247 (d)	Spurious RF Conducted Emission	PASS				
15.203	Antenna Requirement	PASS				

Remark:

- 1. "N/A" denotes test is not applicable in this Test Report.
- 2. All test items were verified and recorded according to the standards and without any deviation during the test.
- This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

Version.1.3 Page 4 of 88

3 FACILITIES AND ACCREDITATIONS

3.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

1&5/F, Building C, 1&2/F, Building E, Fenda Science Park, Sanwei Community, Hangcheng Street, Baoan District, Shenzhen ,Guangdong, China

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.

3.2 LABORATORY ACCREDITATIONS AND LISTINGS

Site Description

CNAS-Lab. : The Certificate Registration Number is L5516. IC-Registration
The Certificate Registration Number is 9270A.

CAB identifier: CN0074

FCC- Accredited Test Firm Registration Number: 463705.

Designation Number: CN1184

A2LA-Lab. The Certificate Registration Number is 4298.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for

the competence of testing and calibration laboratories.

This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communiqué dated 8 January 2009).

Name of Firm : Shenzhen NTEK Testing Technology Co., Ltd.

Site Location : 1&5/F, Building C, 1&2/F, Building E, Fenda Science Park, Sanwei

Community, Hangcheng Street, Baoan District, Shenzhen, Guangdong,

China

3.3 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement y±U, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

di loortali it	ancertainty indisplied by a coverage factor of K=2, providing a level of confidence of approximately 35 %.				
No.	Item	Uncertainty			
1	Conducted Emission Test	±2.80dB			
2	RF power, conducted	±0.16dB			
3	Spurious emissions, conducted	±0.21dB			
4	All emissions, radiated(30MHz~1GHz)	±2.64dB			
5	All emissions, radiated(1GHz~6GHz)	±2.40dB			
6	All emissions, radiated(>6GHz)	±2.52dB			
7	Temperature	±0.5°C			
8	Humidity	±2%			
9	All emissions, radiated(9KHz~30MHz)	±6dB			
10	Occupied bandwidth	±4.7dB			

Version.1.3 Page 5 of 88

4 GENERAL DESCRIPTION OF EUT

Product Feature and Specification					
Equipment 21.5 inch intelligent all-in-one machine					
Trade Mark N/A					
FCC ID	2BDTM-HSD-215ZJ				
Model No.	HSD-215ZJ				
Family Model	P215ZJ-S***(" * "can be any letter, number, symbol or blank, representing different sales areas, does not affect the safety and electromagnetic compatibility performance of the product)				
Model Difference	All the model are the same circuit and RF module, except the colour and sales channels.				
Operating Frequency	2412-2462MHz for 802.11b/g/11n(HT20); 2422-2452MHz for 802.11n(HT40);				
Modulation DSSS with DBPSK/DQPSK/CCK for 802.11b; OFDM with BPSK/QPSK/16QAM/64QAM for 802.11g/n;					
Number of Channels	11 channels for 802.11b/g/11n(HT20); 7 channels for 802.11n(HT40);				
Antenna Type	Metal Antenna				
Antenna Gain	-0.34 dBi				
Adapter	MODEL: TDX36-1202500U INPUT: 100-240V~50/60Hz 1.5A OUTPUT: 12V2.5A				
Battery	DC 11.1V, 6000mAh				
Power supply	DC 11.1V from battery or DC 12V from Adapter.				
Hardware version:	PF828-8183				
Firmware version:	N/A				

Note: Based on the application, features, or specification exhibited in User's Manual, the EUT is considered as an ITE/Computing Device. More details of EUT technical specification, please refer to the User's Manual.

Version.1.3 Page 6 of 88

Revision History

Report No.	Version	Description	Issued Date
S23110901209003	Rev.01	Initial issue of report	23 Dec, 2023

Version.1.3 Page 7 of 88

5 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.

The Transmitter was operated in the normal operating mode. The TX frequency was fixed which was for the purpose of the measurements.

Test of channel included the lowest and middle and highest frequency to perform the test, then record on this report.

Those data rates (802.11b: 1 Mbps; 802.11g: 6 Mbps; 802.11n (HT20): MCS0; 802.11n (HT40): MCS0) were used for all test.

The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement –X, Y, and Z-plane. The Y-plane results were found as the worst case and were shown in this report.

Frequency and Channel list for 802.11b/g/n (HT20/HT40):

Channel	Frequency(MHz)
1	2412
2	2417
5	2432
6	2437
	•••
10	2457
11	2462

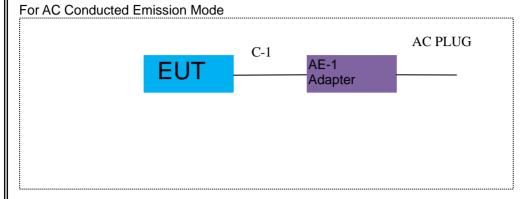
Note: fc=2412MHz+(k-1)×5MHz k=1 to 11

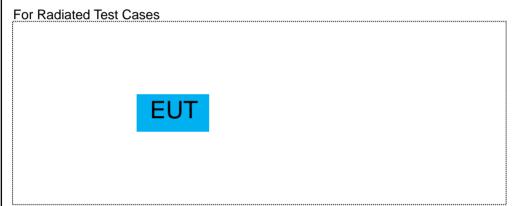
EUT built-in battery-powered, the battery is fully-charged.

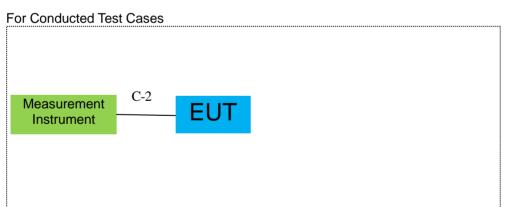
Version.1.3 Page 8 of 88

Test	ΝЛ	\sim	\sim
1621	11//1	()()	_

Test Items	Mode	Data Rate	Channel	Ant
AC Power Line Conducted Emissions	Normal Link	-	-	-
	11b/CCK	1 Mbps	1/6/11	1
Maximum Conducted Output	11g/BPSK	6 Mbps	1/6/11	1
Power	11n HT20	MCS0	1/6/11	1
	11n HT40	MCS0	3/6/9	1
	11b/CCK	1 Mbps	1/6/11	1
Power Spectral Density	11g/BPSK	6 Mbps	1/6/11	1
rower Spectral Density	11n HT20	MCS0	1/6/11	1
	11n HT40	MCS0	3/6/9	1
				<u>.</u>
	11b/CCK	1 Mbps	1/6/11	1
6dB Spectrum Bandwidth	11g/BPSK	6 Mbps	1/6/11	1
	11n HT20	MCS0	1/6/11	1
	11n HT40	MCS0	3/6/9	1
Radiated Emissions Below 1GHz	Normal Link	-	-	-
			1	-
Radiated Emissions Above	11b/CCK	1 Mbps	1/6/11	1
1GHz	11g/BPSK	6 Mbps	1/6/11	1
	11n HT20	MCS0	1/6/11	1
	11n HT40	MCS0	3/6/9	1
Dand Edge Entireier	11b/CCK	1 Mbps	1/6/11	1
Band Edge Emissions	11g/BPSK	6 Mbps	1/6/11	1
	11n HT20	MCS0	1/6/11	1
	11n HT40	MCS0	3/6/9	1


Version.1.3 Page 9 of 88





6 SETUP OF EQUIPMENT UNDER TEST

6.1 BLOCK DIAGRAM CONFIGURATION OF TEST SYSTEM

Note: The temporary antenna connector is soldered on the PCB board in order to perform conducted tests and this temporary antenna connector is listed in the equipment list.

Version.1.3 Page 10 of 88

6.2 SUPPORT EQUIPMENT

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Model/Type No.	Series No.	Note
	21.5 inch HSD-215ZJ		N/A	EUT
intelligent				
	all-in-one			
	machine			
AE-1	Adapter	TDX36-1202500U	N/A	Peripherals

Item	Cable Type	Shielded Type	Ferrite Core	Length
C-1	USB Cable	YES	NO	1.2m
C-2	RF Cable	YES	NO	0.1m

Notes:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in <code>[Length]</code> column.
- (3) "YES" is means "shielded" "with core"; "NO" is means "unshielded" "without core".

Version.1.3 Page 11 of 88

6.3 EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiation& Conducted Test equipment

Kadiati	on& Conducted I	est equipment					
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibrati on period
1	Spectrum Analyzer	Aglient	E4407B	MY45108040	2023.03.27	2024.03.26	1 year
2	Spectrum Analyzer	Agilent	N9020A	MY49100060	2023.05.29	2024.05.28	1 year
3	Spectrum Analyzer	R&S	FSV40	101417	2023.03.27	2024.03.26	1 year
4	Test Receiver	R&S	ESPI7	101318	2023.03.27	2024.03.26	1 year
5	Bilog Antenna	TESEQ	CBL6111D	31216	2023.03.27	2024.03.26	1 year
6	50Ω Coaxial Switch	Anritsu	MP59B	6200983705	2023.05.06	2026.05.05	3 year
7	Horn Antenna	EM	EM-AH-1018 0	2011071402	2023.03.27	2024.03.26	1 year
8	Broadband Horn Antenna	SCHWARZBE CK	BBHA 9170	803	2023.05.29	2024.05.28	1 year
9	Amplifier	EMC	EMC051835 SE	980246	2023.05.29	2024.05.28	1 year
10	Active Loop Antenna	SCHWARZBE CK	FMZB 1519 B	055	2023.05.29	2024.05.28	1 year
11	Power Meter	DARE	RPR3006W	15I00041SN O84	2023.05.29	2024.05.28	1 year
12	Test Cable (9KHz-30MHz)	N/A	R-01	N/A	2023.05.06	2026.05.05	3 year
13	Test Cable (30MHz-1GHz)	N/A	R-02	N/A	2023.05.06	2026.05.05	3 year
14	High Test Cable(1G-40G Hz)	N/A	R-03	N/A	2022.06.17	2025.06.16	3 year
15	Filter	TRILTHIC	2400MHz	29	2023.05.29	2024.05.28	1 year
16	temporary antenna connector (Note)	NTS	R001	N/A	N/A	N/A	N/A

Note:

We will use the temporary antenna connector (soldered on the PCB board) When conducted test And this temporary antenna connector is listed within the instrument list

Version.1.3 Page 12 of 88

Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until	Calibration period
1	Test Receiver	R&S	ESCI	101160	2023.03.27	2024.03.26	1 year
2	LISN	R&S	ENV216	101313	2023.03.27	2024.03.26	1 year
3	LISN	SCHWARZBE CK	NNLK 8129	8129245	2023.03.27	2024.03.26	1 year
4	50Ω Coaxial Switch	ANRITSU CORP	MP59B	6200983704	2023.05.06	2026.05.05	3 year
5	Test Cable (9KHz-30MH z)	N/A	C01	N/A	2023.05.06	2026.05.05	3 year
6	Test Cable (9KHz-30MH z)	N/A	C02	N/A	2023.05.06	2026.05.05	3 year
7	Test Cable (9KHz-30MH z)	N/A	C03	N/A	2023.05.06	2026.05.05	3 year

Note: Each piece of equipment is scheduled for calibration once a year except the Aux Equipment & Test Cable which is scheduled for calibration every 2 or 3 years.

Version.1.3 Page 13 of 88

7 TEST REQUIREMENTS

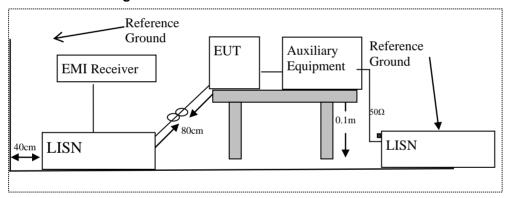
7.1 CONDUCTED EMISSIONS TEST

7.1.1 Applicable Standard

According to FCC Part 15.207(a)

7.1.2 Conformance Limit

Fraguency/MHz)	Conducted Emission Limit		
Frequency(MHz)	Quasi-peak	Average	
0.15-0.5	66-56*	56-46*	
0.5-5.0	56	46	
5.0-30.0	60	50	


Note: 1. *Decreases with the logarithm of the frequency

- 2. The lower limit shall apply at the transition frequencies
- 3. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

7.1.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

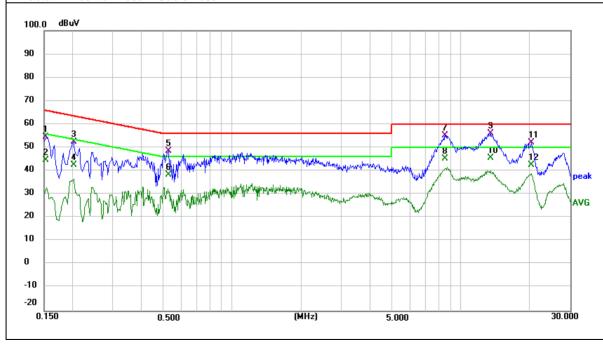
7.1.4 Test Configuration

7.1.5 Test Procedure

According to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 Conducted emissions the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and average detector mode.

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room.
- 2. The EUT was placed on a table which is 0.01m above ground plane.
- 3. Connect EUT to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- 4. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40cm long.
- 5. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- 6. LISN at least 80 cm from nearest part of EUT chassis.
- 7. The frequency range from 150KHz to 30MHz was searched.
- 8. Set the test-receiver system to Peak Detect Function and specified bandwidth(IF bandwidth=9KHz) with Maximum Hold Mode
- 9. For the actual test configuration, please refer to the related Item –EUT Test Photos.

Version.1.3 Page 14 of 88


7.1.6 Test Results

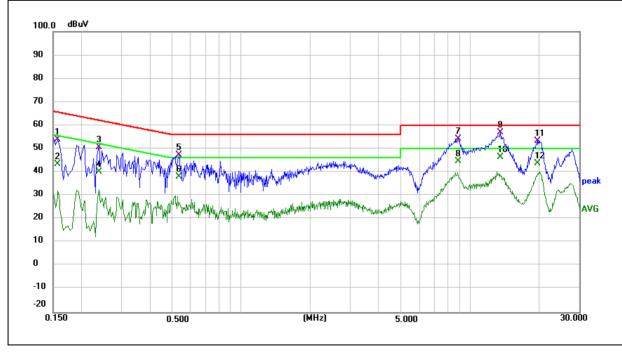
EUT:	21.5 inch intelligent all-in-one machine	Model Name:	HSD-215ZJ
Temperature:	22 ℃	Relative Humidity:	57%
Pressure:	1010hPa	Phase :	L
Test Voltage:	DC 12V from Adapter AC 120V/60Hz	Test Mode:	Normal Link

Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Domork
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.1539	44.63	9.93	54.56	65.79	-11.23	QP
0.1539	34.76	9.93	44.69	55.79	-11.10	AVG
0.2020	42.45	10.03	52.48	63.53	-11.05	QP
0.2020	32.53	10.03	42.56	53.53	-10.97	AVG
0.5260	37.94	10.71	48.65	56.00	-7.35	QP
0.5260	27.64	10.71	38.35	46.00	-7.65	AVG
8.5380	45.60	9.68	55.28	60.00	-4.72	QP
8.5380	35.65	9.68	45.33	50.00	-4.67	AVG
13.4740	46.27	9.70	55.97	60.00	-4.03	QP
13.4740	35.95	9.70	45.65	50.00	-4.35	AVG
20.3380	42.40	9.71	52.11	60.00	-7.89	QP
20.3380	32.98	9.71	42.69	50.00	-7.31	AVG

Remark:

- 1. All readings are Quasi-Peak and Average values.
- 2. Factor = Insertion Loss + Cable Loss.

Version.1.3 Page 15 of 88



	21.5 inch intelligent all-in-one machine	Model Name:	HSD-215ZJ
Temperature:	22 ℃	Relative Humidity:	57%
Pressure:	1010hPa	Phase :	N
Test Voltage:	DC 12V from Adapter AC 120V/60Hz	Test Mode:	Normal Link

Frequency	Reading Level	Correct Factor	Measure-ment	Limits	Margin	Remark
(MHz)	(dBµV)	(dB)	(dBµV)	(dBµV)	(dB)	Remark
0.1580	44.03	9.95	53.98	65.57	-11.59	QP
0.1580	33.38	9.95	43.33	55.57	-12.24	AVG
0.2380	40.51	10.12	50.63	62.17	-11.54	QP
0.2380	30.13	10.12	40.25	52.17	-11.92	AVG
0.5340	36.53	10.71	47.24	56.00	-8.76	QP
0.5340	27.31	10.71	38.02	46.00	-7.98	AVG
8.8940	44.58	9.69	54.27	60.00	-5.73	QP
8.8940	34.96	9.69	44.65	50.00	-5.35	AVG
13.5780	47.25	9.70	56.95	60.00	-3.05	QP
13.5780	36.66	9.70	46.36	50.00	-3.64	AVG
19.8260	43.74	9.72	53.46	60.00	-6.54	QP
19.8260	33.93	9.72	43.65	50.00	-6.35	AVG

Remark:

- 1. All readings are Quasi-Peak and Average values.
- 2. Factor = Insertion Loss + Cable Loss.

Version.1.3 Page 16 of 88

7.2 RADIATED SPURIOUS EMISSION

7.2.1 Applicable Standard

According to FCC Part 15.247(d) and 15.209 and ANSI C63.10-2013

7.2.2 Conformance Limit

According to FCC Part 15.247(d): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). According to FCC Part15.205. Restricted bands

According to FCC Part 15.20	o, restricted barras		
MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(2)
13.36-13.41			

20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

	(= 1,7,7 = = = = = = = = = = = = = = = = = =	(a) minic in the table below i	
Restricted Frequency(MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance
0.009~0.490	2400/F(KHz)	20 log (uV/m)	300
0.490~1.705	24000/F(KHz)	20 log (uV/m)	30
1.705~30.0	30	29.5	30
30-88	100	40	3
88-216	150	43.5	3
216-960	200	46	3
Above 960	500	54	3

Limits of Radiated Emission Measurement(Above 1000MHz)

Frequency(MHz)	Class B (dBuV	/m) (at 3M)
	PEAK	AVERAGE
Above 1000	74	54

Remark :1. Emission level in dBuV/m=20 log (uV/m)

- 2. Measurement was performed at an antenna to the closed point of EUT distance of meters.
- 3. For Frequency 9kHz~30MHz:

Distance extrapolation factor =40log(Specific distance/ test distance)(dB);

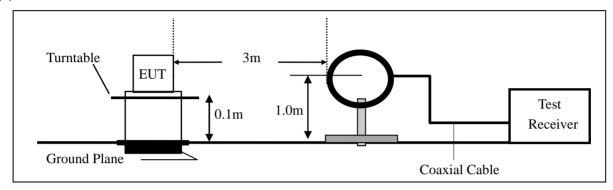
Limit line=Specific limits(dBuV) + distance extrapolation factor.

For Frequency above 30MHz:

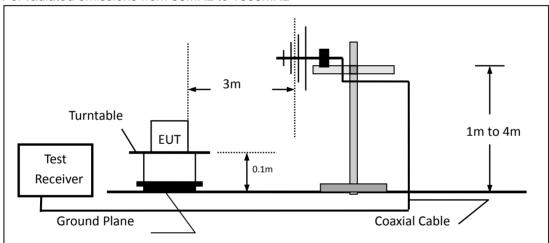
Distance extrapolation factor =20log(Specific distance/ test distance)(dB);

Limit line=Specific limits(dBuV) + distance extrapolation factor.

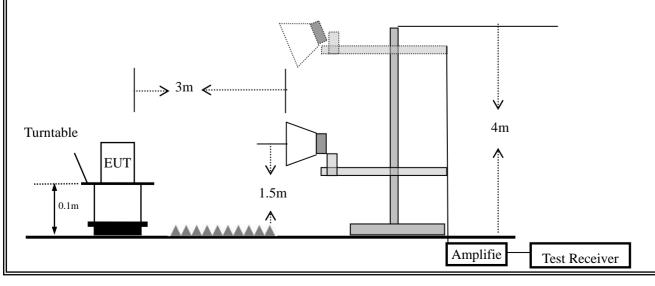
Version.1.3 Page 17 of 88



7.2.3 Measuring Instruments


The Measuring equipment is listed in the section 6.3 of this test report.

7.2.4 Test Configuration


(a) For radiated emissions below 30MHz

(b) For radiated emissions from 30MHz to 1000MHz

(c) For radiated emissions above 1000MHz

Version.1.3 Page 18 of 88

7.2.5 Test Procedure

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10-2013. The test distance is 3m. The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT.

Use the following spectrum analyzer settings:

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 1MHz for Average

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz and frequencies above 1GHz,
- b. The EUT was placed on the top of a rotating table 0.01 m for below 1GHz and 1.5m for above 1GHz the ground at a 3 meter. The table was rotated 360 degrees to determine the position of the highest radiation
- c. The height of the equipment or of the substitution antenna shall be 0.8 m for below 1GHz and 1.5m for above 1GHz; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For the radiated emission test above 1GHz:
 - Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.
- e. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- f. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- g For the actual test configuration, please refer to the related Item –EUT Test Photos.

Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

During the radiated emission test, the Spectrum Analyzer was set with the following configurations: For peak measurement:

Set RBW=120 kHz for f < 1 GHz; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold; Set RBW = 1 MHz, VBW= 3MHz for f≥1 GHz

For average measurement:

VBW = 10 Hz, when duty cycle is no less than 98 percent.

VBW \geq 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.

Version.1.3 Page 19 of 88

Note: for the frequency ranges below 30 MHz, a narrower RBW is used for these ranges but the measured value should add a RBW correction factor (RBWCF) where RBWCF [dB] =10*lg(100 [kHz]/narrower RBW [kHz])., the narrower RBW is 1 kHz and RBWCF is 20 dB for the frequency 9 kHz to 150 kHz, and the narrower RBW is 10 kHz and RBWCF is 10 dB for the frequency 150 kHz to 30 MHz.

7.2.6 Test Results

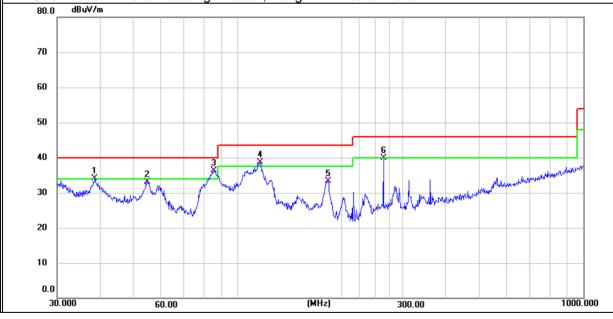
■ Spurious Emission below 30MHz (9KHz to 30MHz)

IFUI:	21.5 inch intelligent all-in-one machine	Model No.:	HSD-215ZJ
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	802.11b/g/n(HT20, HT40)	Test By:	Allen Liu

Freq.	Ant.Pol.	Emission L	evel(dBuV/m)	Limit 3	m(dBuV/m)	Over(dB)	
(MHz)	H/V	PK AV		PK	AV	PK	AV

Note: the amplitude of spurious emission that is attenuated by more than 20dB below the permissible limit has no need to be reported.

Version.1.3 Page 20 of 88


■ Spurious Emission below 1GHz (30MHz to 1GHz)
All the modulation modes have been tested, and the worst result was report as below:

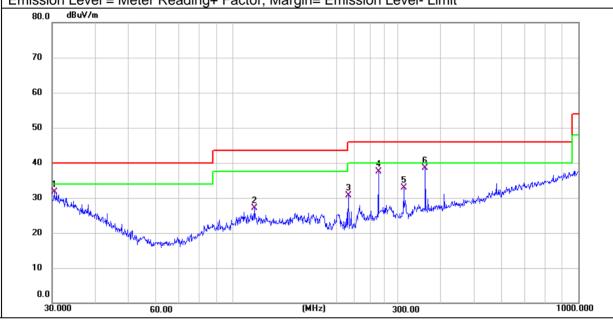
EUT:	21.5 inch intelligent all-in-one machine	Model Name:	HSD-215ZJ
Temperature:	25 ℃	Relative Humidity:	55%
Pressure:	1010hPa	Test Mode:	802.11b CH01
Test Voltage:	DC 11.1V		

Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	T to main
V	38.6160	12.43	21.70	34.13	40.00	-5.87	QP
V	54.6429	20.22	12.98	33.20	40.00	-6.80	QP
V	85.2980	20.20	16.02	36.22	40.00	-3.78	QP
V	116.1321	20.24	18.54	38.78	43.50	-4.72	QP
V	182.5592	16.76	16.63	33.39	43.50	-10.11	QP
V	263.8190	20.52	19.42	39.94	46.00	-6.06	QP

Remark:

Emission Level = Meter Reading+ Factor, Margin= Emission Level- Limit

Version.1.3 Page 21 of 88



Polar	Frequency	Meter Reading	Factor	Emission Level	Limits	Margin	Remark	
(H/V)	(MHz)	(dBuV)	(dB)	(dBuV/m)	(dBuV/m)	(dB)		
Н	30.4237	5.43	26.18	31.61	40.00	-8.39	QP	
Н	115.7256	8.65	18.53	27.18	43.50	-16.32	QP	
Н	216.0240	13.96	16.68	30.64	46.00	-15.36	QP	
Н	263.8190	18.05	19.42	37.47	46.00	-8.53	QP	
Н	312.1794	12.63	20.22	32.85	46.00	-13.15	QP	
Н	360.4476	16.50	22.08	38.58	46.00	-7.42	QP	

Remark:

Version.1.3 Page 22 of 88

■ Spurious Emission Above 1GHz (1GHz to 25GHz)

F() ·	21.5 inch intelligent all-in-one machine	Model No.:	HSD-215ZJ
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	802.11b/g/n(HT20, HT40)	Test By:	Allen Liu

All the modulation modes have been tested, and the worst result was report as below:

Frequency	Read Level	Cable loss	Antenna Factor	Preamp Factor	Emission Level	Limits	Margin	Remark	Comment
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµV/m)	(dB)		
Low Channel (2412 MHz)(802.11b)Above 1G									
4824.265	62.64	5.21	35.59	44.30	59.14	74.00	-14.86	Pk	Vertical
4824.265	40.36	5.21	35.59	44.30	36.86	54.00	-17.14	AV	Vertical
7236.296	60.09	6.48	36.27	44.60	58.24	74.00	-15.76	Pk	Vertical
7236.296	44.16	6.48	36.27	44.60	42.31	54.00	-11.69	AV	Vertical
4824.414	61.43	5.21	35.55	44.30	57.89	74.00	-16.11	Pk	Horizontal
4824.414	43.15	5.21	35.55	44.30	39.61	54.00	-14.39	AV	Horizontal
7236.428	62.53	6.48	36.27	44.52	60.76	74.00	-13.24	Pk	Horizontal
7236.428	46.39	6.48	36.27	44.52	44.62	54.00	-9.38	AV	Horizontal
			Mid Char	nel (2437 l	MHz)(802.11	b)Above 10	3		
4874.312	63.33	5.21	35.66	44.20	60.00	74.00	-14.00	Pk	Vertical
4874.312	42.59	5.21	35.66	44.20	39.26	54.00	-14.74	AV	Vertical
7311.227	60.48	7.10	36.50	44.43	59.65	74.00	-14.35	Pk	Vertical
7311.227	46.83	7.10	36.50	44.43	46.00	54.00	-8.00	AV	Vertical
4874.529	60.53	5.21	35.66	44.20	57.20	74.00	-16.80	Pk	Horizontal
4874.529	48.44	5.21	35.66	44.20	45.11	54.00	-8.89	AV	Horizontal
7311.313	59.34	7.10	36.50	44.43	58.51	74.00	-15.49	Pk	Horizontal
7311.313	41.95	7.10	36.50	44.43	41.12	54.00	-12.88	AV	Horizontal
			High Cha	nnel (2462	MHz)(802.11	b)Above 10	G		
4924.102	65.81	5.21	35.52	44.21	62.33	74.00	-11.67	Pk	Vertical
4924.102	42.26	5.21	35.52	44.21	38.78	54.00	-15.22	AV	Vertical
7386.425	61.13	7.10	36.53	44.60	60.16	74.00	-13.84	Pk	Vertical
7386.425	44.25	7.10	36.53	44.60	43.28	54.00	-10.72	AV	Vertical
4924.066	66.51	5.21	35.52	44.21	63.03	74.00	-10.97	Pk	Horizontal
4924.066	46.63	5.21	35.52	44.21	43.15	54.00	-10.85	AV	Horizontal
7386.198	60.53	7.10	36.53	44.60	59.56	74.00	-14.44	Pk	Horizontal
7386.198	44.47	7.10	36.53	44.60	43.50	54.00	-10.50	AV	Horizontal

Note:

- (1) Emission Level= Antenna Factor + Cable Loss + Read Level Preamp Factor
- (2) Other emissions are attenuated more than 20dB below the permissible limits, so it does not recorded in the report.
- (3)"802.11b" mode is the worst mode. When PK value is lower than the Average value limit, average don't record.

Version.1.3 Page 23 of 88

■ Spurious Emission in Restricted Band 2310MHz -18000MHz All the modulation modes have been tested, and the worst result was report as below:

modulation						iii was iep	ort as b	GIOW.	
Frequency	Meter Reading	Cable Loss	Antenna Factor	Preamp Factor	Emission Level	Limits	Margin	Detector	Comment
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Type	
				80	2.11b				
2310.00	58.07	2.97	27.80	43.80	45.04	74	-28.96	Pk	Horizontal
2310.00	43.23	2.97	27.80	43.80	30.20	54	-23.80	AV	Horizontal
2310.00	58.76	2.97	27.80	43.80	45.73	74	-28.27	Pk	Vertical
2310.00	41.61	2.97	27.80	43.80	28.58	54	-25.42	AV	Vertical
2390.00	57.61	3.14	27.21	43.80	44.16	74	-29.84	Pk	Vertical
2390.00	42.22	3.14	27.21	43.80	28.77	54	-25.23	AV	Vertical
2390.00	56.74	3.14	27.21	43.80	43.29	74	-30.71	Pk	Horizontal
2390.00	41.28	3.14	27.21	43.80	27.83	54	-26.17	AV	Horizontal
2483.50	57.99	3.58	27.70	44.00	45.27	74	-28.73	Pk	Vertical
2483.50	42.88	3.58	27.70	44.00	30.16	54	-23.84	AV	Vertical
2483.50	59.26	3.58	27.70	44.00	46.54	74	-27.46	Pk	Horizontal
2483.50	41.71	3.58	27.70	44.00	28.99	54	-25.01	AV	Horizontal
				80	2.11g				
2310.00	59.11	2.97	27.80	43.80	46.08	74	-27.92	Pk	Horizontal
2310.00	44.51	2.97	27.80	43.80	31.48	54	-22.52	AV	Horizontal
2310.00	57.36	2.97	27.80	43.80	44.33	74	-29.67	Pk	Vertical
2310.00	42.96	2.97	27.80	43.80	29.93	54	-24.07	AV	Vertical
2390.00	57.41	3.14	27.21	43.80	43.96	74	-30.04	Pk	Vertical
2390.00	42.11	3.14	27.21	43.80	28.66	54	-25.34	AV	Vertical
2390.00	57.75	3.14	27.21	43.80	44.30	74	-29.70	Pk	Horizontal
2390.00	43.41	3.14	27.21	43.80	29.96	54	-24.04	AV	Horizontal
2483.50	59.14	3.58	27.70	44.00	46.42	74	-27.58	Pk	Vertical
2483.50	43.95	3.58	27.70	44.00	31.23	54	-22.77	AV	Vertical
2483.50	58.74	3.58	27.70	44.00	46.02	74	-27.98	Pk	Horizontal
2483.50	41.90	3.58	27.70	44.00	29.18	54	-24.82	AV	Horizontal
				802	.11n20				
2310.00	58.40	2.97	27.80	43.80	45.37	74	-28.63	Pk	Horizontal
2310.00	44.09	2.97	27.80	43.80	31.06	54	-22.94	AV	Horizontal
2310.00	59.22	2.97	27.80	43.80	46.19	74	-27.81	Pk	Vertical
2310.00	42.37	2.97	27.80	43.80	29.34	54	-24.66	AV	Vertical
2390.00	57.58	3.14	27.21	43.80	44.13	74	-29.87	Pk	Vertical
2390.00	41.82	3.14	27.21	43.80	28.37	54	-25.63	AV	Vertical
2390.00	57.20	3.14	27.21	43.80	43.75	74	-30.25	Pk	Horizontal
2390.00	42.71	3.14	27.21	43.80	29.26	54	-24.74	AV	Horizontal
2483.50	57.61	3.58	27.70	44.00	44.89	74	-29.11	Pk	Vertical
2483.50	42.27	3.58	27.70	44.00	29.55	54	-24.45	AV	Vertical
2483.50	58.98	3.58	27.70	44.00	46.26	74	-27.74	Pk	Horizontal
2483.50	42.40	3.58	27.70	44.00	29.68	54	-24.32	AV	Horizontal

Page 24 of 88 Version.1.3

	802.11n40									
2310.00	59.64	2.97	27.80	43.80	46.61	74	-27.39	Pk	Horizontal	
2310.00	44.80	2.97	27.80	43.80	31.77	54	-22.23	AV	Horizontal	
2310.00	56.52	2.97	27.80	43.80	43.49	74	-30.51	Pk	Vertical	
2310.00	43.43	2.97	27.80	43.80	30.40	54	-23.60	AV	Vertical	
2390.00	58.28	3.14	27.21	43.80	44.83	74	-29.17	Pk	Vertical	
2390.00	42.31	3.14	27.21	43.80	28.86	54	-25.14	AV	Vertical	
2390.00	58.08	3.14	27.21	43.80	44.63	74	-29.37	Pk	Horizontal	
2390.00	43.72	3.14	27.21	43.80	30.27	54	-23.73	AV	Horizontal	
2483.50	58.90	3.58	27.70	44.00	46.18	74	-27.82	Pk	Vertical	
2483.50	44.54	3.58	27.70	44.00	31.82	54	-22.18	AV	Vertical	
2483.50	58.79	3.58	27.70	44.00	46.07	74	-27.93	Pk	Horizontal	
2483.50	42.63	3.58	27.70	44.00	29.91	54	-24.09	AV	Horizontal	

Version.1.3 Page 25 of 88

Spurious Emission in Restricted Bands 3260MHz- 18000MHz

All the modulation modes have been tested, the worst result was report as below:

Frequency	Reading Level	Cable Loss	Antenna Factor	Preamp Factor	Emission Level	Limits	Margin	Detector	Comment
(MHz)	(dBµV)	(dB)	dB/m	(dB)	(dBµV/m)	(dBµV/m)	(dB)	Туре	
3260	60.14	4.04	29.57	44.70	49.05	74	-24.95	Pk	Vertical
3260	55.72	4.04	29.57	44.70	44.63	54	-9.37	AV	Vertical
3260	61.64	4.04	29.57	44.70	50.55	74	-23.45	Pk	Horizontal
3260	56.73	4.04	29.57	44.70	45.64	54	-8.36	AV	Horizontal
3332	64.26	4.26	29.87	44.40	53.99	74	-20.01	Pk	Vertical
3332	53.39	4.26	29.87	44.40	43.12	54	-10.88	AV	Vertical
3332	63.41	4.26	29.87	44.40	53.14	74	-20.86	Pk	Horizontal
3332	52.91	4.26	29.87	44.40	42.64	54	-11.36	AV	Horizontal
17797	42.61	10.99	43.95	43.50	54.05	74	-19.95	Pk	Vertical
17797	33.23	10.99	43.95	43.50	44.67	54	-9.33	AV	Vertical
17788	43.43	11.81	43.69	44.60	54.33	74	-19.67	Pk	Horizontal
17788	32.18	11.81	43.69	44.60	43.08	54	-10.92	AV	Horizontal

[&]quot;802.11b" mode is the worst mode. When PK value is lower than the Average value limit, average don't record.

Other emissions are attenuated more than 20dB below the permissible limits, so it does not recorded in the report.

Version.1.3 Page 26 of 88

7.3 6DB BANDWIDTH

7.3.1 Applicable Standard

According to FCC Part 15.247(a)(2) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.2.

7.3.2 Conformance Limit

The minimum permissible 6dB bandwidth is 500 kHz.

7.3.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.3.4 Test Setup

Please refer to Section 6.1 of this test report.

7.3.5 Test Procedure

The testing follows Subclause 11.8 of ANSI C63.10.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Use the following spectrum analyzer settings:

Span = the frequency band of operation

RBW = 100KHz

 $VBW \geq 3^*RBW$

Sweep = auto

Detector function = peak

Trace = max hold

Version.1.3 Page 27 of 88

7.3.6 Test Results

IFUI:	21.5 inch intelligent all-in-one machine	Model No.:	HSD-215ZJ
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	802.11b/g/n20/n40	Test By:	Allen Liu

Test data reference attachment.

Version.1.3 Page 28 of 88

7.4 DUTY CYCLE

7.4.1 Applicable Standard

According to KDB 558074 D01 15.247 Meas Guidance v05r02 Section 6.

7.4.2 Conformance Limit

No limit requirement.

7.4.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.4.4 Test Setup

Please refer to Section 6.1 of this test report.

7.4.5 Test Procedure

- a) A diode detector and an oscilloscope that together have a sufficiently short response time to permit accurate measurements of the ON and OFF times of the transmitted signal.
- b) The zero-span mode on a spectrum analyzer or EMI receiver if the response time and spacing between bins on the sweep are sufficient to permit accurate measurements of the ON and OFF times of the transmitted signal:
- 1) Set the center frequency of the instrument to the center frequency of the transmission.
- 2) Set RBW ≥ OBW if possible; otherwise, set RBW to the largest available value.
- 3) Set VBW ≥ RBW. Set detector = peak or average.
- 4) The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T and the number of sweep points across duration T exceeds 100. (For example, if VBW and/or RBW are limited to 3 MHz, then the zero-span method of measuring the duty cycle shall not be used if T \leq 16.7 μ s.)

Measure Ttotal and Ton

Calculate Duty Cycle = Ton / Ttotal

7.4.6 Test Results

EUT:	21.5 inch intelligent all-in-one machine	Model No.:	HSD-215ZJ
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	802.11b/g/n20/n40	Test By:	Allen Liu

Test data reference attachment.

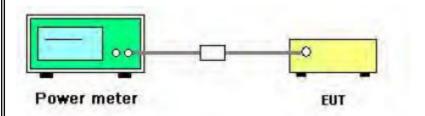
Version.1.3 Page 29 of 88

7.5 MAXIMUM OUTPUT POWER

7.5.1 Applicable Standard

According to FCC Part 15.247(b)(3) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.3.2.3.

7.5.2 Conformance Limit


The maximum peak conducted output power of the intentional radiator for systems using digital modulation in the 2400 - 2483.5 MHz bands shall not exceed: 1 Watt (30dBm). If transmitting antenna of directional gain greater than 6dBi is used, the peak output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi.

7.5.3 Measuring Instruments

The following table is the setting of the power meter.

Power meter parameter	Setting	
Detector	PK	

7.5.4 Test Setup

7.5.5 Test Procedure

The testing follows Measurement Procedure Subclause 11.9.1.3 of ANSI C63.10

7.5.6 EUT operation during Test

The EUT was programmed to be in continuously transmitting mode.

Version.1.3 Page 30 of 88

7.5.7 Test Results

	21.5 inch intelligent all-in-one machine	Model No.:	HSD-215ZJ
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	802.11b/g/n20/n40	Test By:	Allen Liu

Test data reference attachment.

Version.1.3 Page 31 of 88

7.6 POWER SPECTRAL DENSITY

7.6.1 Applicable Standard

According to FCC Part 15.247(e) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.4.

7.6.2 Conformance Limit

The transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

7.6.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.6.4 Test Setup

Please refer to Section 6.1 of this test report.

7.6.5 Test Procedure

The testing follows Measurement Procedure Subclause 11.10.2 of ANSI C63.10

This procedure shall be used if maximum peak conducted output power was used to demonstrate compliance, and is optional if the maximum conducted (average) output power was used to demonstrate compliance.

- a) Set analyzer center frequency to DTS channel center frequency.
- b) Set the span to 1.5 times the DTS bandwidth.
- c) Set the RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.
- d) Set the VBW ≥ 3 *RBW.
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum amplitude level within the RBW.
- j) If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.

Version.1.3 Page 32 of 88

7.6.6 Test Results

EUT:	21.5 inch intelligent all-in-one machine	Model No.:	HSD-215ZJ
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	802.11b/g/n20/n40	Test By:	Allen Liu

Test data reference attachment.

Version.1.3 Page 33 of 88

7.7 CONDUCTED BAND EDGE MEASUREMENT

7.7.1 Applicable Standard

According to FCC Part 15.247(d) and KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.7.

7.7.2 Conformance Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

7.7.3 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.7.4 Test Setup

Please refer to Section 6.1 of this test report.

7.7.5 Test Procedure

The testing follows FCC KDB 558074 D01 15.247 Meas Guidance v05r02 Section 8.7.

The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator.

The path loss was compensated to the results for each measurement.

Set to the maximum power setting and enable the EUT transmit continuously.

The EUT was operating in controlled its channel.

Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.

Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.

Repeat above procedures until all measured frequencies were complete.

Version.1.3 Page 34 of 88

7.7.6 Test Results

EUT.	21.5 inch intelligent all-in-one machine	Model No.:	HSD-215ZJ
Temperature:	20 ℃	Relative Humidity:	48%
Test Mode:	802.11b/g/n20/n40	Test By:	Allen Liu

Test data reference attachment.

Version.1.3 Page 35 of 88

7.8 SPURIOUS RF CONDUCTED EMISSIONS

7.8.1 Conformance Limit

- 1. Below -20dB of the highest emission level in operating band.
- 2. Fall in the restricted bands listed in section 15.205. The maximum permitted average field strength is listed in section 15.209.

7.8.2 Measuring Instruments

The Measuring equipment is listed in the section 6.3 of this test report.

7.8.3 Test Setup

Please refer to Section 6.1 of this test report.

7.8.4 Test Procedure

The Spurious RF conducted emissions compliance of RF radiated emission should be measured by following the guidance in ANSI C63.10-2013 with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization etc. Set RBW=100kHz and VBW= 300KHz to measure the peak field strength, and measure frequency range from 30MHz to 26.5GHz.

7.8.5 Test Results

Remark: The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandege measurement data.

Test data reference attachment.

Version.1.3 Page 36 of 88

7.9 ANTENNA APPLICATION

7.9.1 Antenna Requirement

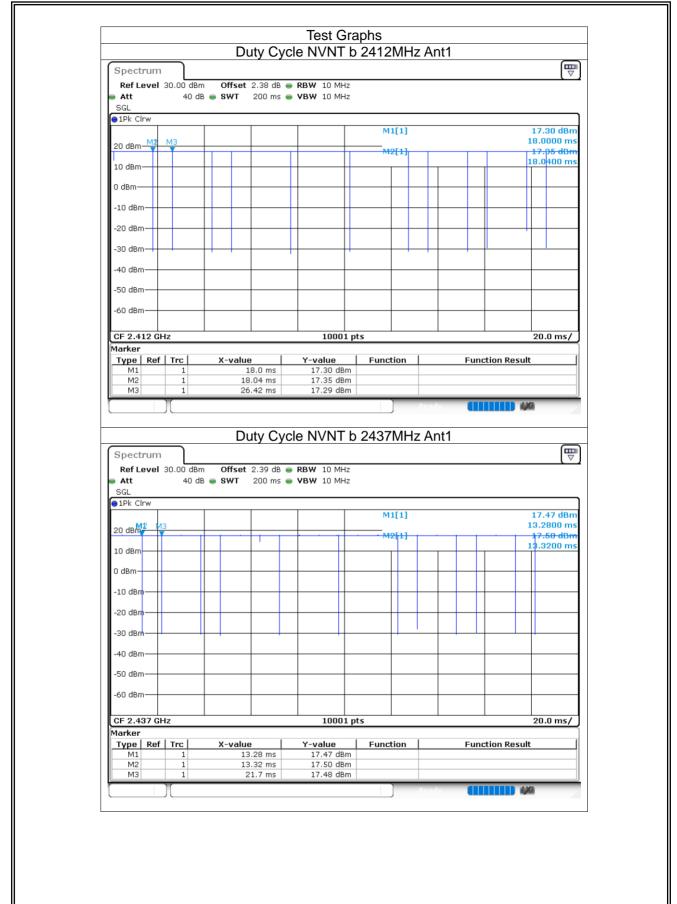
15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

7.9.2 Result

The	EUT antenna	is permanent	attached M	etal Antenna	(Gain:	-0.34dBi).	It comply w	ith the	e standard
requ	uirement.								

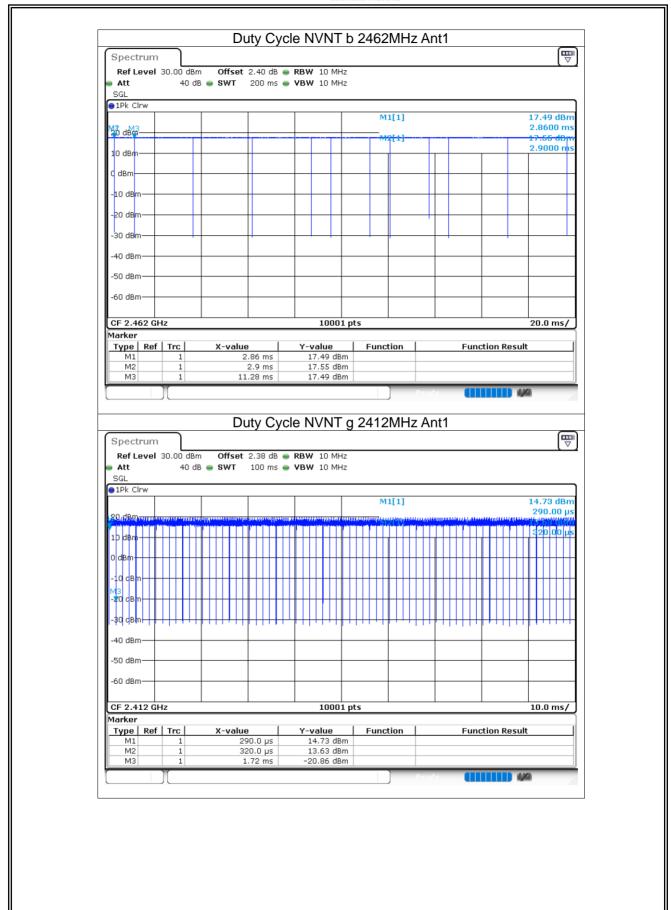
Version.1.3 Page 37 of 88

8 TEST RESULTS

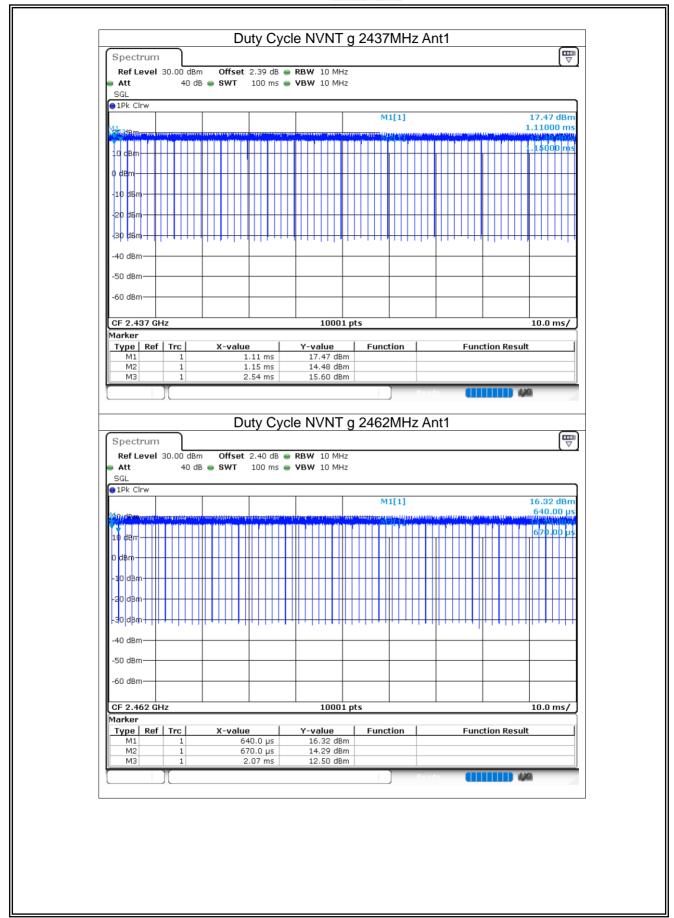

8.1 DUTY CYCLE

Condition	Mode	Frequency (MHz)	Antenna	Duty Cycle (%)
NVNT	b	2412	Ant1	99.88
NVNT	b	2437	Ant1	99.88
NVNT	b	2462	Ant1	99.88
NVNT	g	2412	Ant1	98.22
NVNT	g	2437	Ant1	98.22
NVNT	g	2462	Ant1	98.23
NVNT	n20	2412	Ant1	98.07
NVNT	n20	2437	Ant1	98.09
NVNT	n20	2462	Ant1	98.1
NVNT	n40	2422	Ant1	98.03
NVNT	n40	2437	Ant1	98.05
NVNT	n40	2452	Ant1	98.01

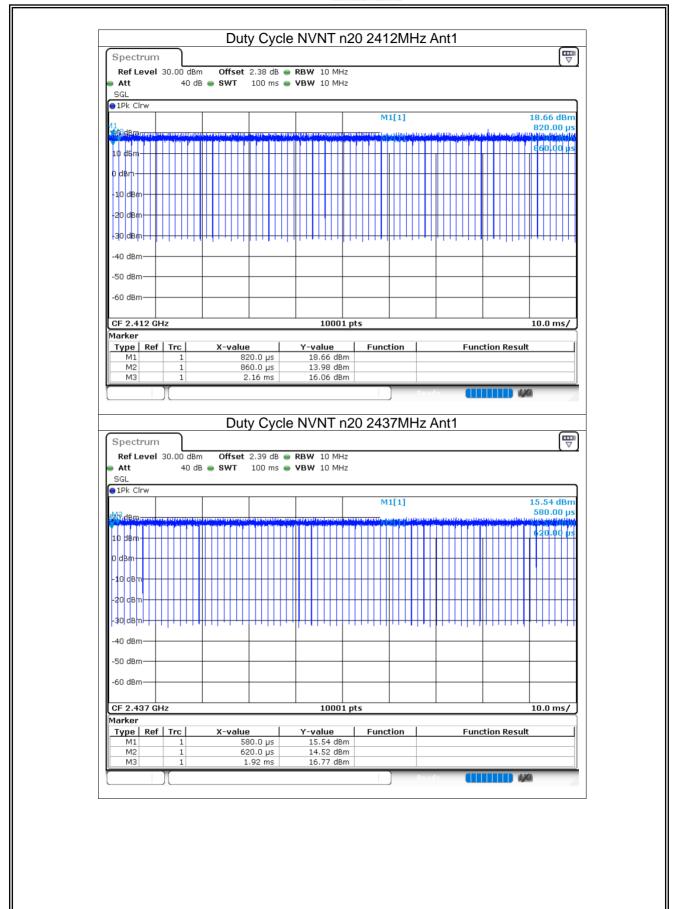
Version.1.3 Page 38 of 88



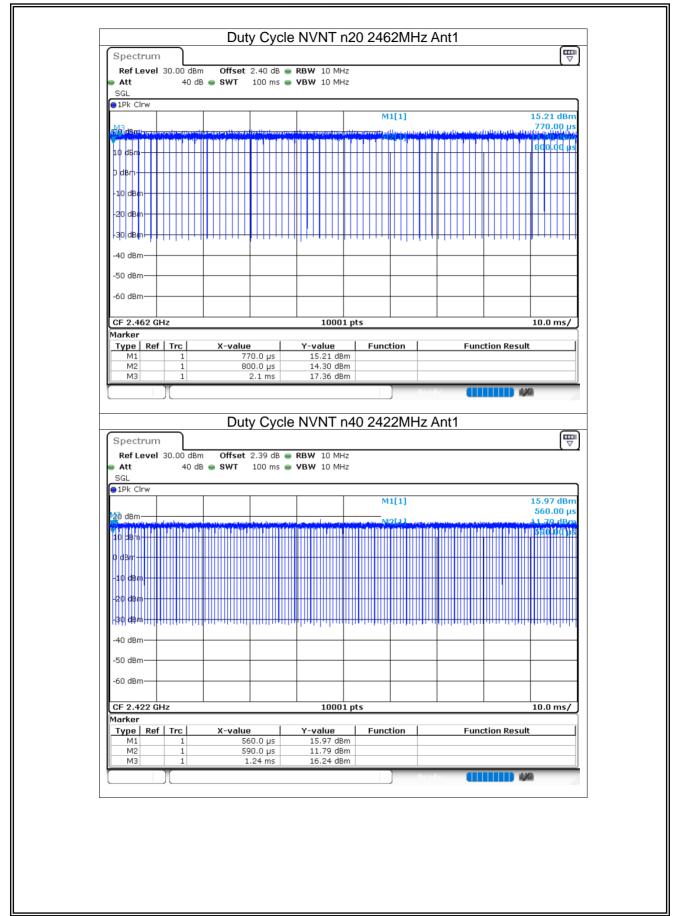
Version.1.3 Page 39 of 88



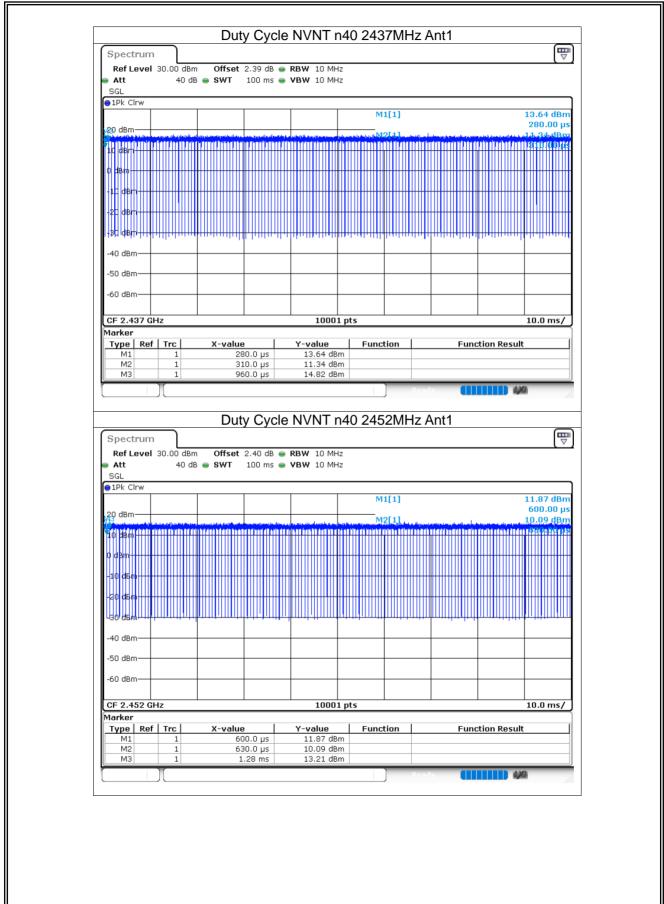
Version.1.3 Page 40 of 88



Version.1.3 Page 41 of 88



Version.1.3 Page 42 of 88



Version.1.3 Page 43 of 88

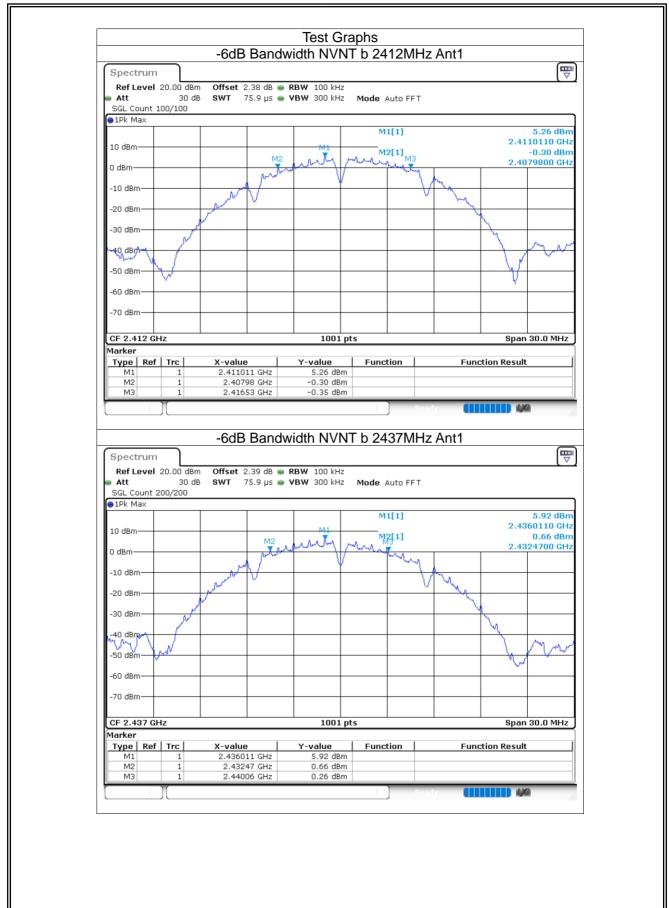
Version.1.3 Page 44 of 88

8.2 MAXIMUM CONDUCTED OUTPUT POWER

Condition	Mode	Frequency (MHz)	Antenna	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	b	2412	Ant1	16.32	30	Pass
NVNT	b	2437	Ant1	16.32	30	Pass
NVNT	b	2462	Ant1	16.4	30	Pass
NVNT	g	2412	Ant1	13.63	30	Pass
NVNT	g	2437	Ant1	13.87	30	Pass
NVNT	g	2462	Ant1	13.98	30	Pass
NVNT	n20	2412	Ant1	13.37	30	Pass
NVNT	n20	2437	Ant1	13.71	30	Pass
NVNT	n20	2462	Ant1	13.88	30	Pass
NVNT	n40	2422	Ant1	13.69	30	Pass
NVNT	n40	2437	Ant1	13.66	30	Pass
NVNT	n40	2452	Ant1	13.72	30	Pass

Version.1.3 Page 45 of 88

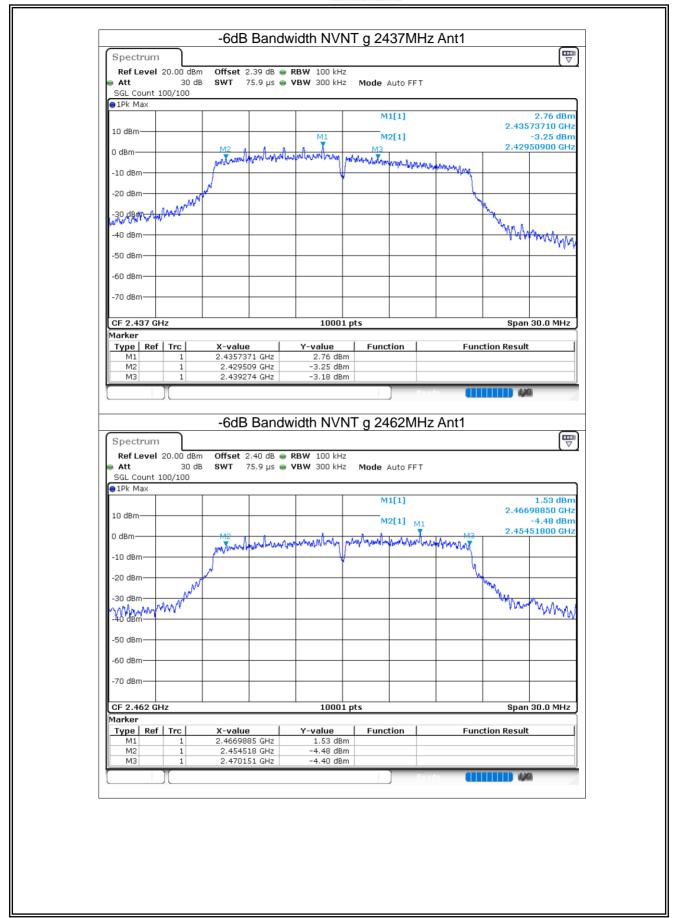
8.3 -6DB BANDWIDTH


Condition	Mode	Frequency (MHz)	Antenna	-6 dB Bandwidth	Limit -6 dB Bandwidth (MHz)	Verdict
		(1411 12)		(MHz)	Banawiath (Miliz)	
NVNT	b	2412	Ant1	8.55	0.5	Pass
NVNT	b	2437	Ant1	7.59	0.5	Pass
NVNT	b	2462	Ant1	8.094	0.5	Pass
NVNT	g	2412	Ant1	14.484	0.5	Pass
NVNT	g	2437	Ant1	9.765	0.5	Pass
NVNT	g	2462	Ant1	15.633	0.5	Pass
NVNT	n20	2412	Ant1	17.679	0.5	Pass
NVNT	n20	2437	Ant1	14.418	0.5	Pass
NVNT	n20	2462	Ant1	16.044	0.5	Pass
NVNT	n40	2422	Ant1	20.904	0.5	Pass
NVNT	n40	2437	Ant1	28.8	0.5	Pass
NVNT	n40	2452	Ant1	23.136	0.5	Pass

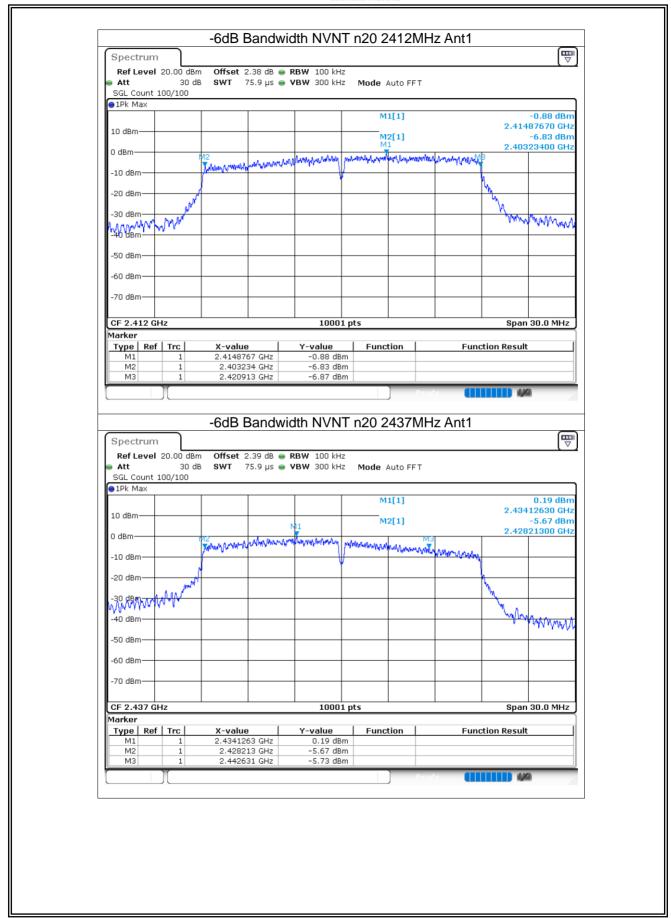
Version.1.3 Page 46 of 88



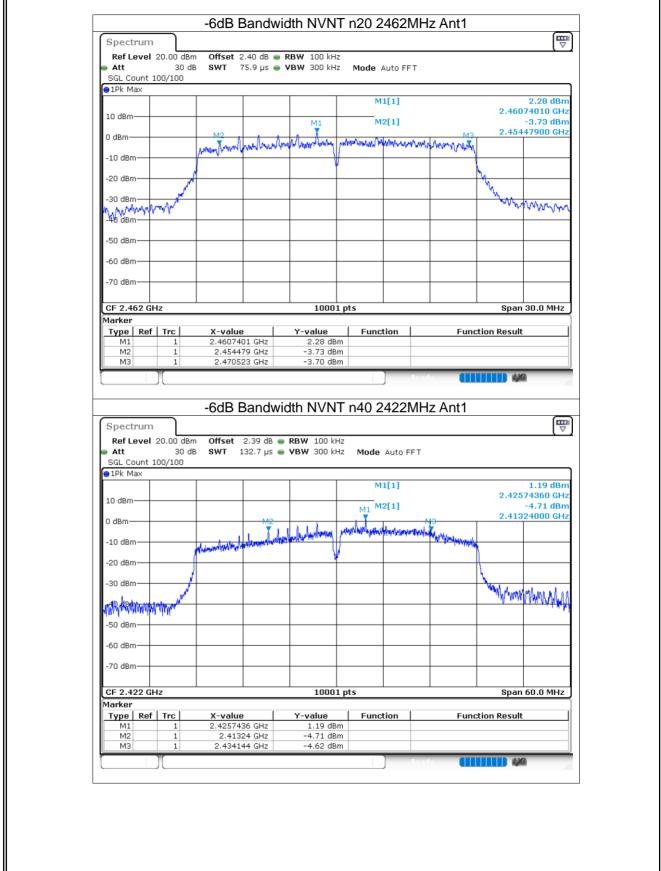
Version.1.3 Page 47 of 88



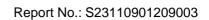
Version.1.3 Page 48 of 88

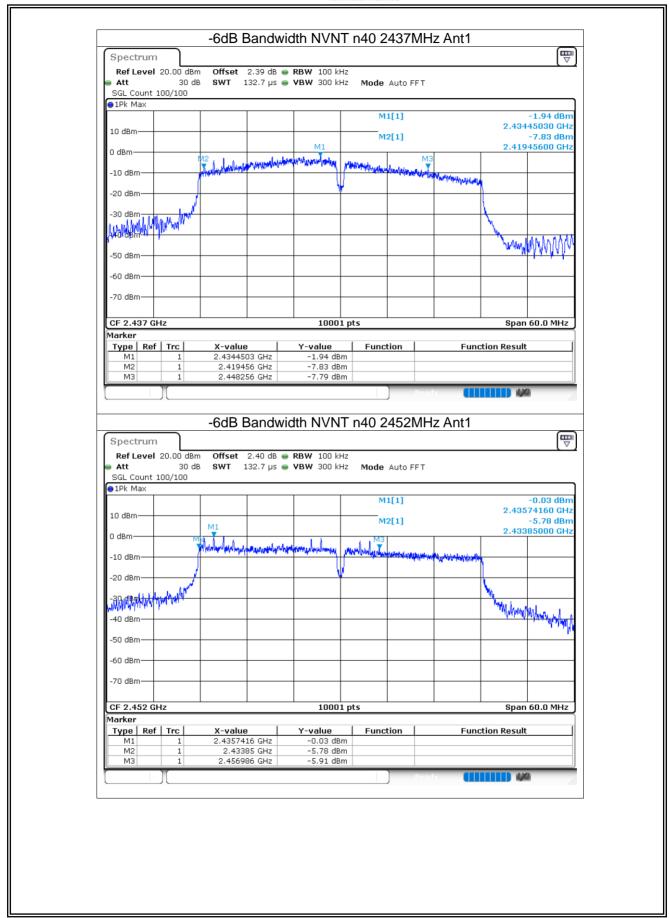


Version.1.3 Page 49 of 88



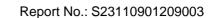
Version.1.3 Page 50 of 88



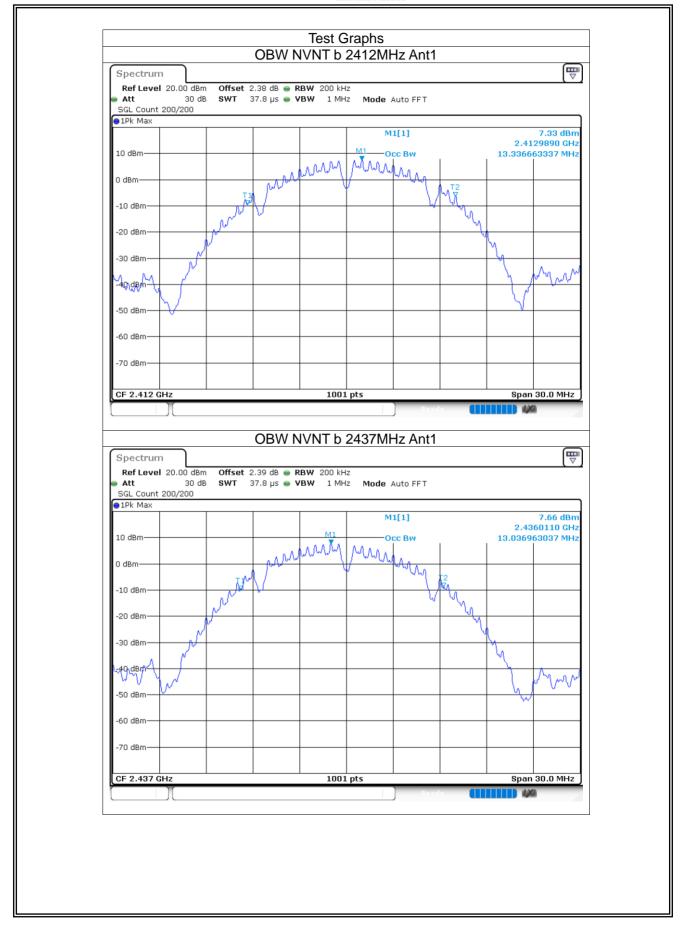


Version.1.3 Page 51 of 88

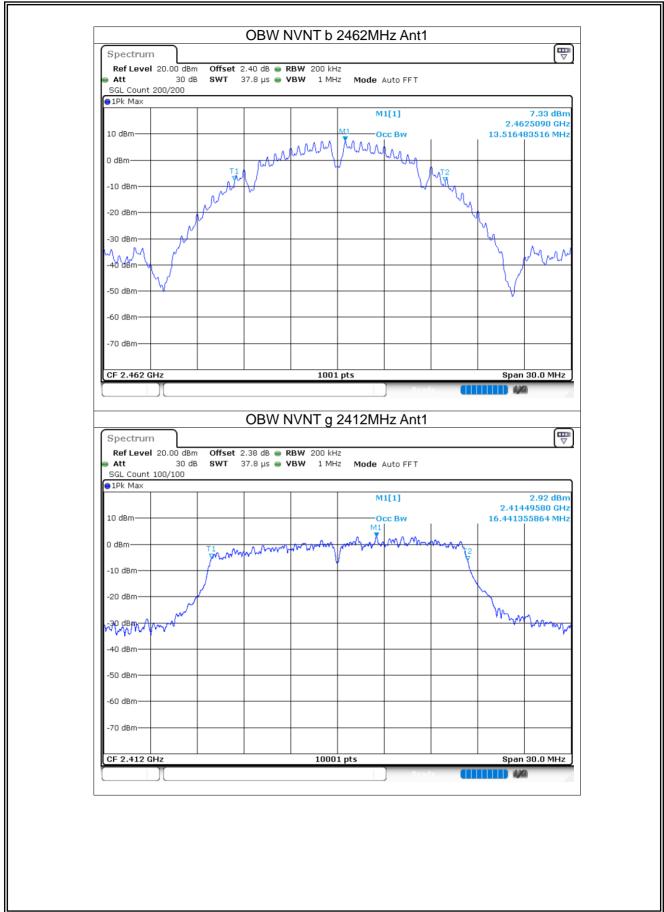
Version.1.3 Page 52 of 88



8.4 OCCUPIED CHANNEL BANDWIDTH

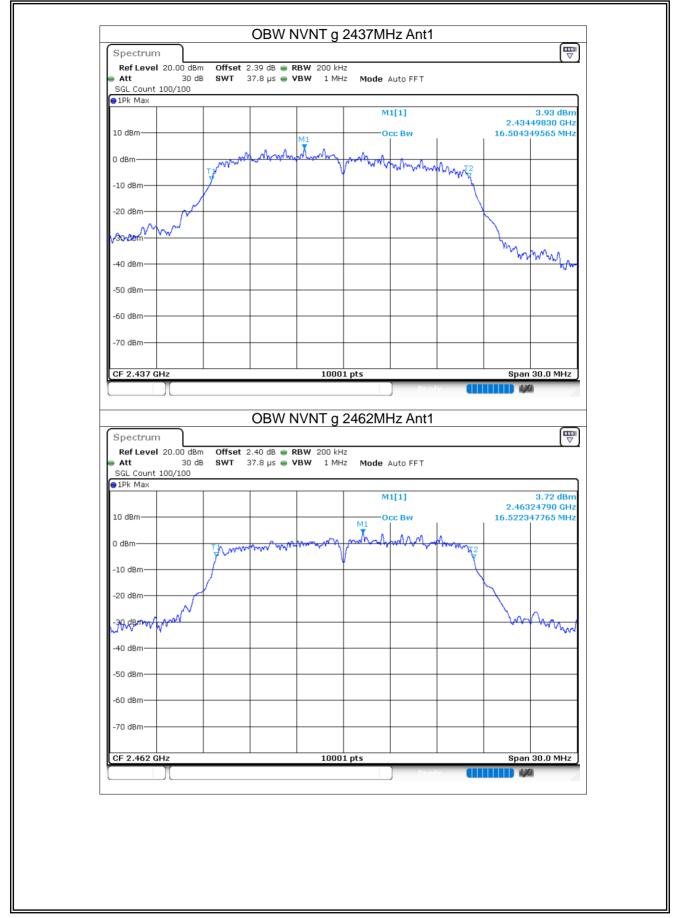

Condition	Mode	Frequency (MHz)	Antenna	99% OBW (MHz)
NVNT	b	2412	Ant1	13.337
NVNT	b	2437	Ant1	13.037
NVNT	b	2462	Ant1	13.516
NVNT	g	2412	Ant1	16.441
NVNT	g	2437	Ant1	16.504
NVNT	g	2462	Ant1	16.522
NVNT	n20	2412	Ant1	17.629
NVNT	n20	2437	Ant1	17.494
NVNT	n20	2462	Ant1	17.611
NVNT	n40	2422	Ant1	35.414
NVNT	n40	2437	Ant1	35.39
NVNT	n40	2452	Ant1	36.674

Version.1.3 Page 53 of 88

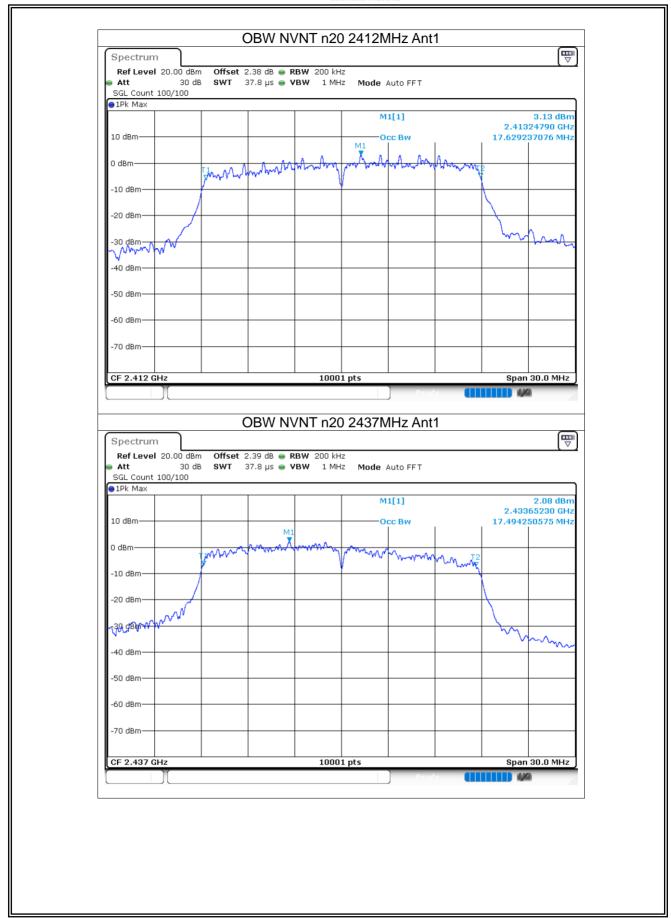


Version.1.3 Page 54 of 88

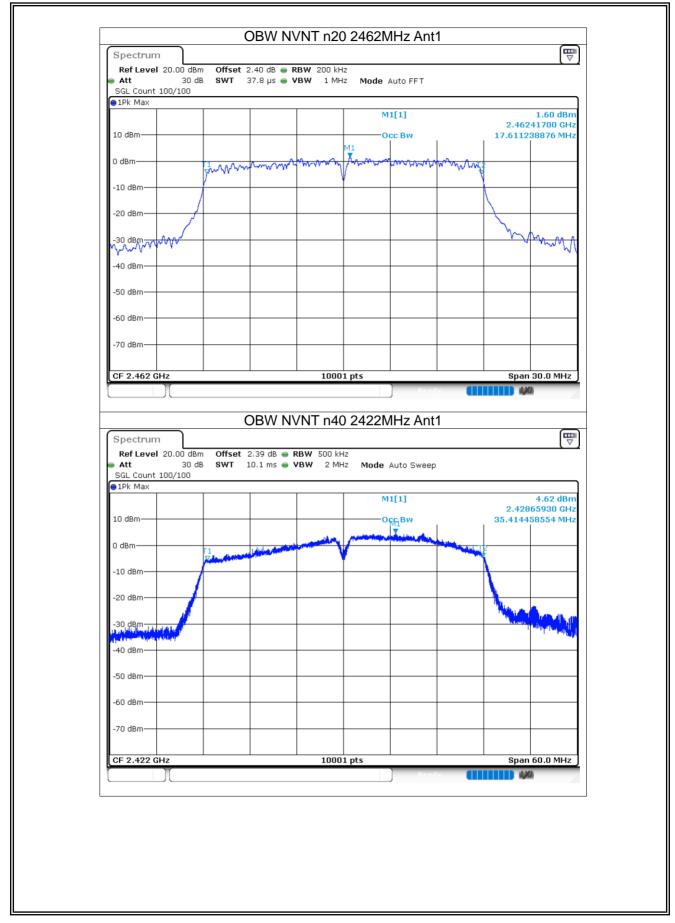




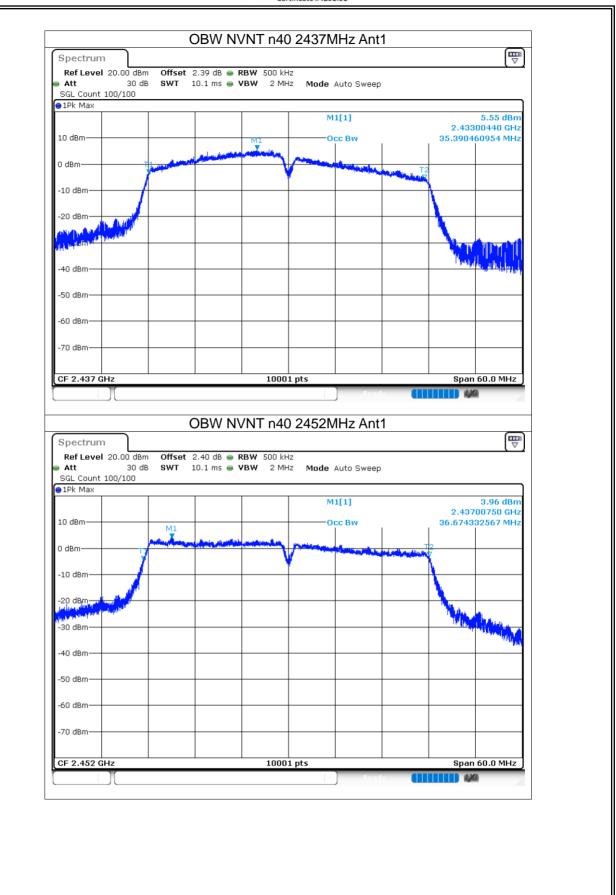
Version.1.3 Page 55 of 88



Version.1.3 Page 56 of 88

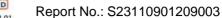


Version.1.3 Page 57 of 88



Version.1.3 Page 58 of 88

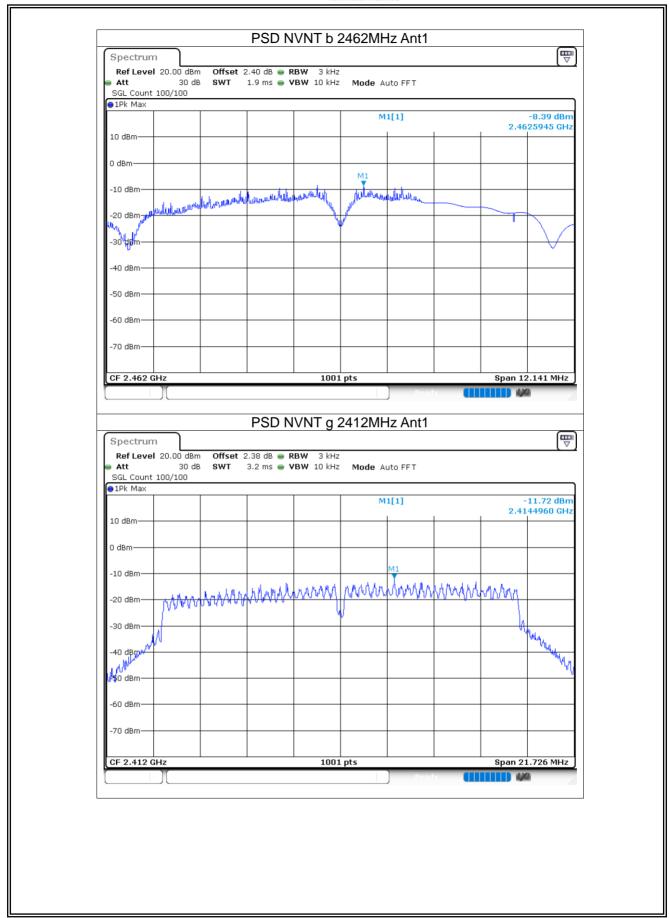
Version.1.3 Page 59 of 88



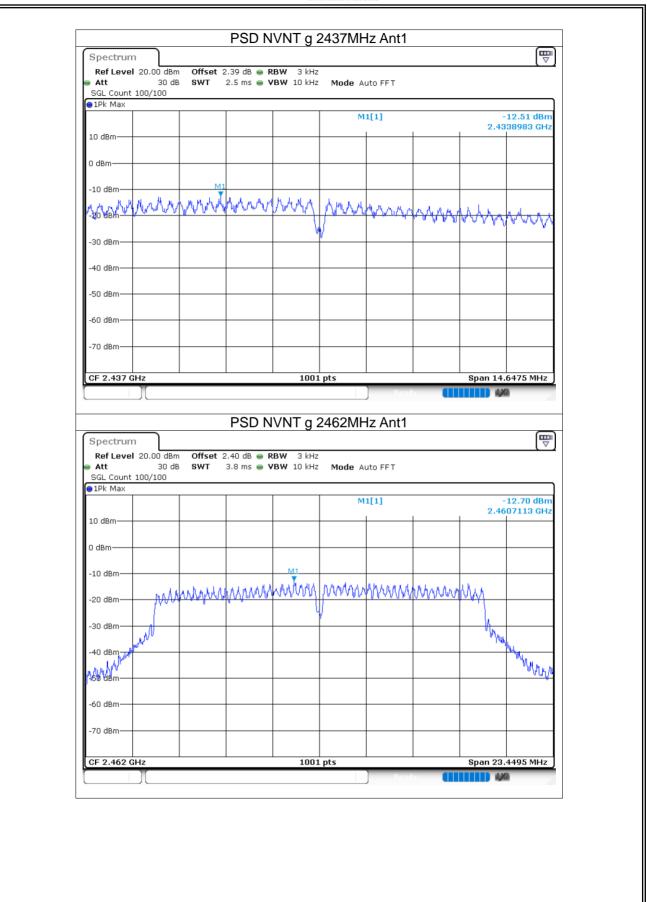
8.5 MAXIMUM POWER SPECTRAL DENSITY LEVEL


Condition	Mode	Frequency (MHz)	Antenna	Conducted PSD (dBm)	Limit (dBm)	Verdict
NVNT	b	2412	Ant1	-12.3	8	Pass
NVNT	b	2437	Ant1	-8.91	8	Pass
NVNT	b	2462	Ant1	-8.39	8	Pass
NVNT	g	2412	Ant1	-11.72	8	Pass
NVNT	g	2437	Ant1	-12.51	8	Pass
NVNT	g	2462	Ant1	-12.7	8	Pass
NVNT	n20	2412	Ant1	-12.76	8	Pass
NVNT	n20	2437	Ant1	-11.34	8	Pass
NVNT	n20	2462	Ant1	-12.18	8	Pass
NVNT	n40	2422	Ant1	-13.99	8	Pass
NVNT	n40	2437	Ant1	-13.11	8	Pass
NVNT	n40	2452	Ant1	-15.45	8	Pass

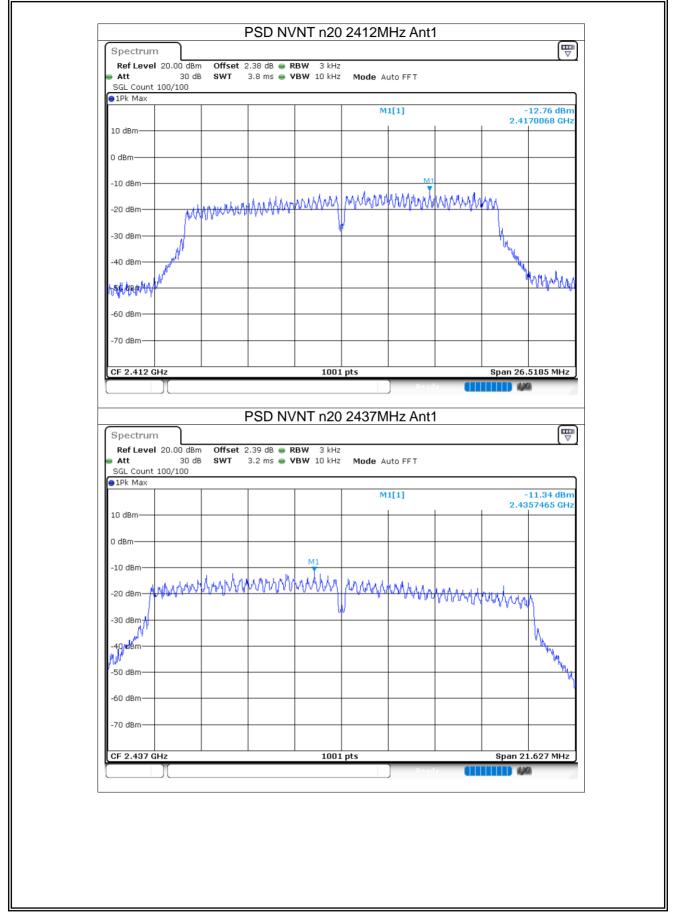
Version.1.3 Page 60 of 88



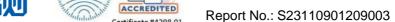
Version.1.3 Page 61 of 88

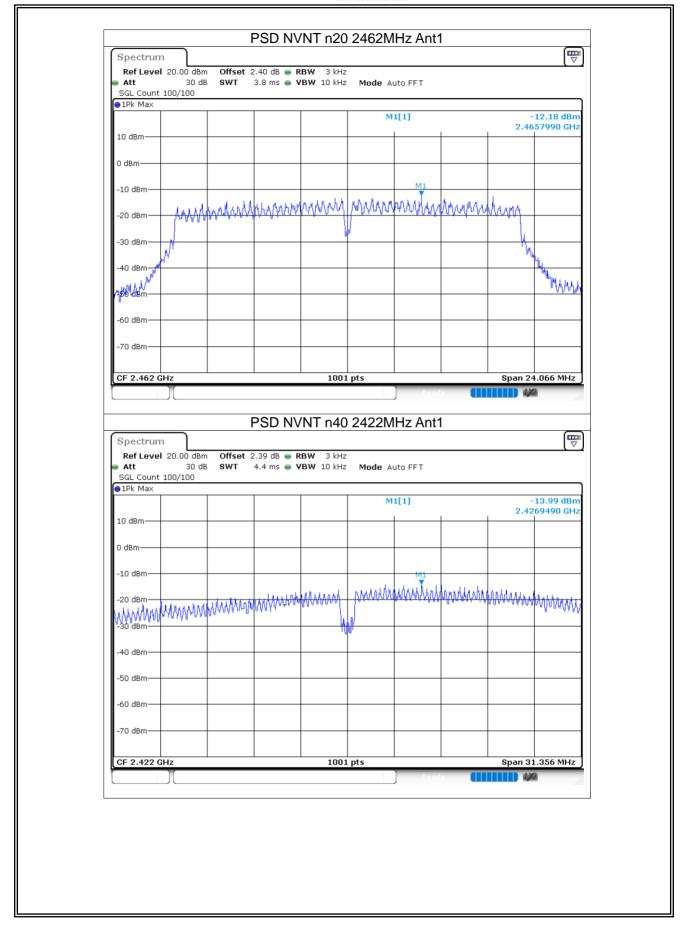


Version.1.3 Page 62 of 88

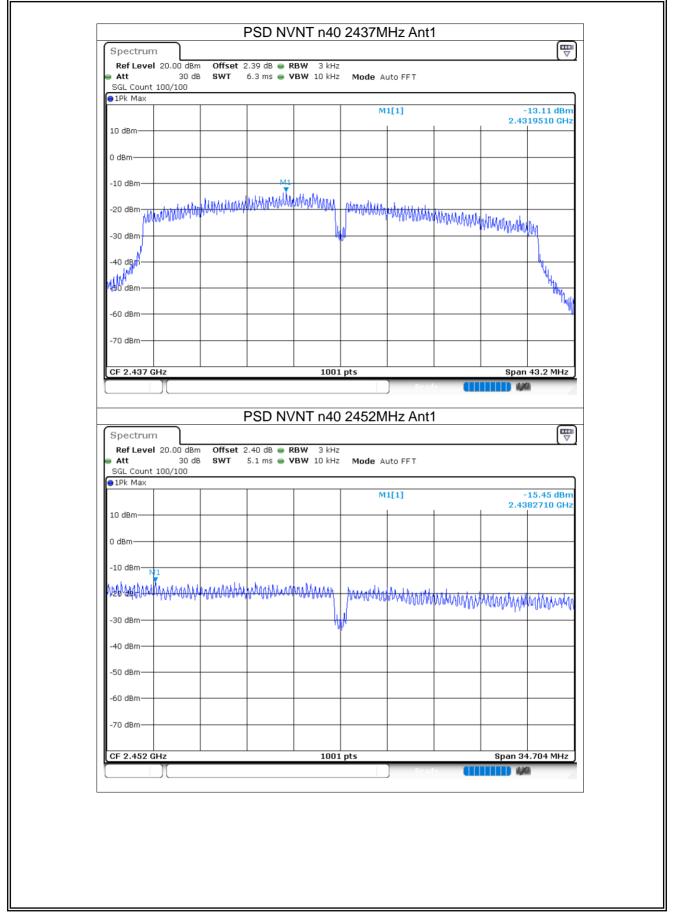


Version.1.3 Page 63 of 88



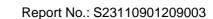


Version.1.3 Page 64 of 88

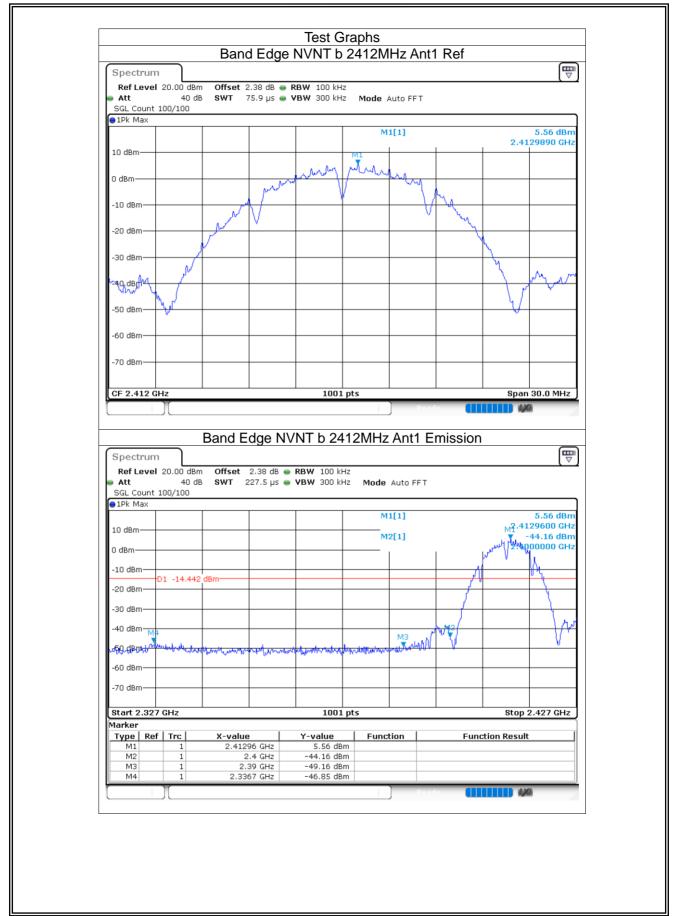


Version.1.3 Page 65 of 88

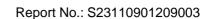
Version.1.3 Page 66 of 88

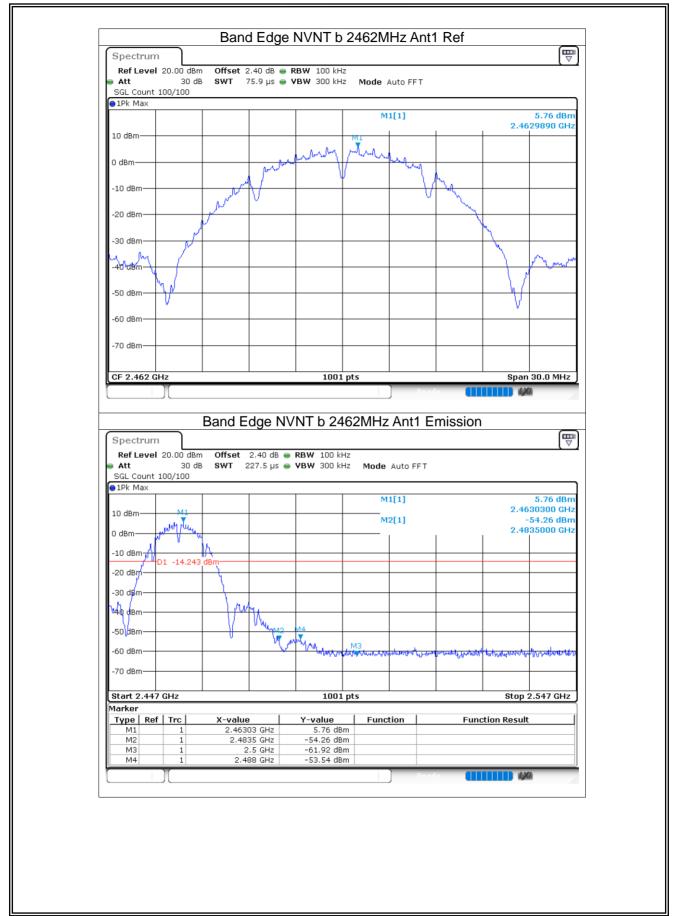


8.6 BAND EDGE

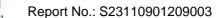

Condition	Mode	Frequency (MHz)	Antenna	Max Value (dBc)	Limit (dBc)	Verdict
NVNT	b	2412	Ant1	-52.41	-20	Pass
NVNT	b	2462	Ant1	-59.29	-20	Pass
NVNT	g	2412	Ant1	-52.2	-20	Pass
NVNT	g	2462	Ant1	-52.09	-20	Pass
NVNT	n20	2412	Ant1	-47.86	-20	Pass
NVNT	n20	2462	Ant1	-50.03	-20	Pass
NVNT	n40	2422	Ant1	-45.83	-20	Pass
NVNT	n40	2452	Ant1	-38.73	-20	Pass

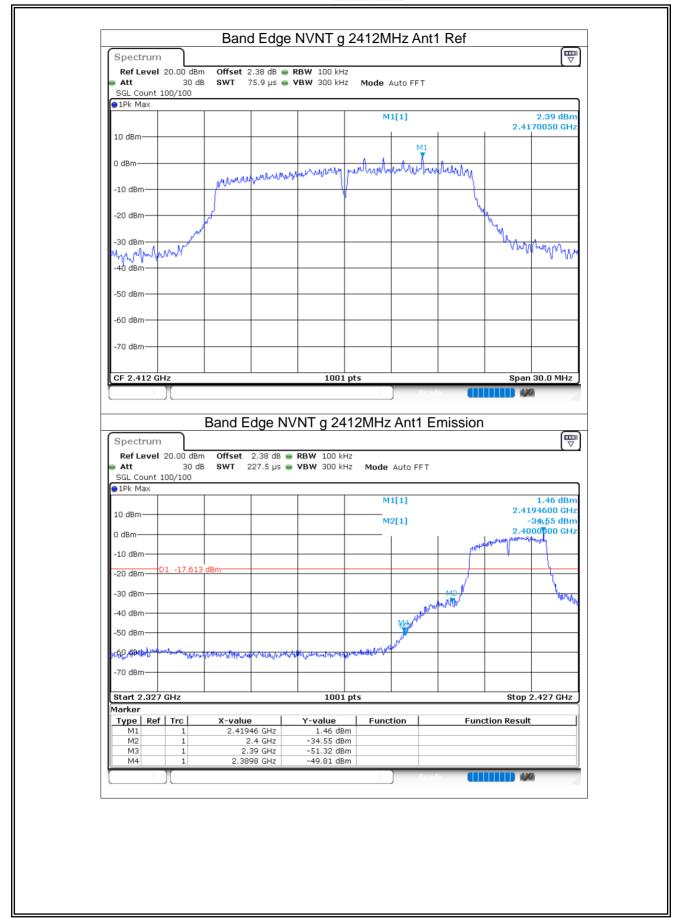
Version.1.3 Page 67 of 88



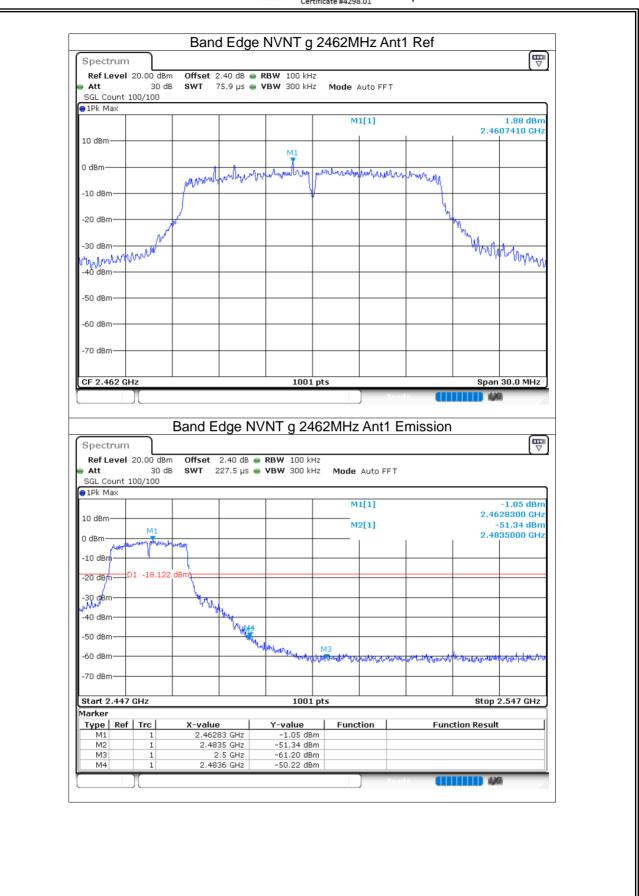


Version.1.3 Page 68 of 88





Version.1.3 Page 69 of 88



Version.1.3 Page 70 of 88

Version.1.3 Page 71 of 88

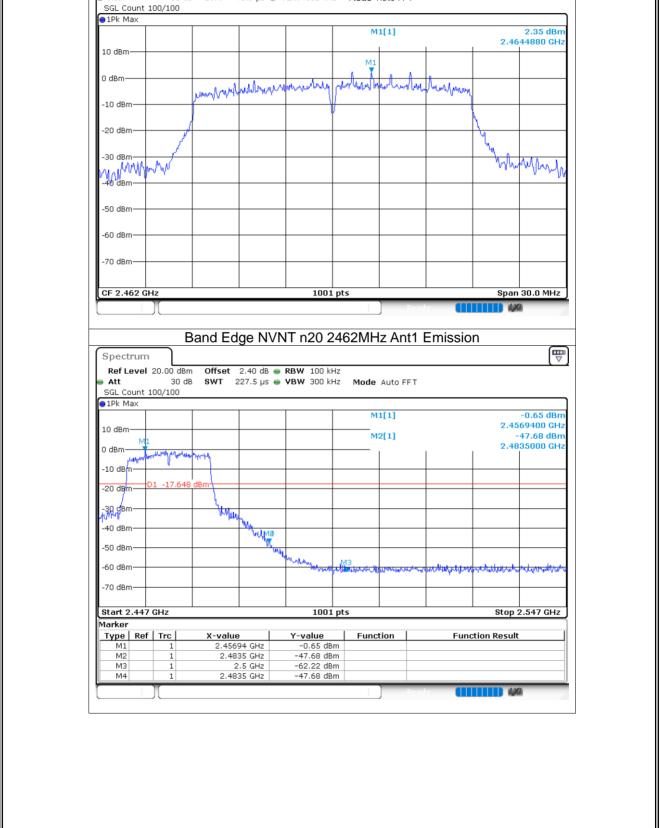
Certificate #4298.01 Band Edge NVNT n20 2412MHz Ant1 Ref Spectrum Ref Level 20.00 dBm Offset 2.38 dB e RBW 100 kHz 30 dB Att SWT 75.9 µs ● VBW 300 kHz Mode Auto FFT SGL Count 100/100 ●1Pk Max M1[1] 2.16 dBm 2.4170050 GH 10 dBm 0 dBm who we have been been been been been the superior and a -20 dBm wardenand -50 dBm -70 dBm Span 30.0 MHz CF 2.412 GHz 1001 pts Band Edge NVNT n20 2412MHz Ant1 Emission Spectrum Ref Level 20.00 dBm Offset 2.38 dB • RBW 100 kHz Att 30 dB **SWT** 227.5 µs ● **VBW** 300 kHz Mode Auto FFT SGL Count 100/100 1Pk Max M1[1] 2.4169600 GHz 10 dBm M2[1] M**3**2.36 dBm -10 dBm-D1 -17.840 dBi -30 dBm -40 dBm Start 2.327 GHz 1001 pts Stop 2.427 GHz Marker Type | Ref | X-value Y-value 2.41696 GHz 2.45 dBm -32.36 dBm M2 2.4 GHz МЗ 2.39 GHz -45.71 dBm -45.71 dBm Μ4 2.39 GHz

Version.1.3 Page 72 of 88

Ref Level 20.00 dBm

30 dB

Spectrum


Att

Offset 2.40 dB e RBW 100 kHz

SWT 75.9 µs ● VBW 300 kHz

Report No.: S23110901209003 Band Edge NVNT n20 2462MHz Ant1 Ref Mode Auto FFT M1[1] 2.35 dBm 2.4644880 GH Maylan Span 30.0 MHz M1[1] -0.65 dBm 2.4569400 GHz M2[1] -47.68 dBm 2.4835000 GHz Stop 2.547 GHz

Version.1.3 Page 73 of 88