

Shenzhen HTT Technology Co., Ltd.

Report No.: HTT202311523F01

TEST Report

Applicant: Shenzhen Uwatch Technology Co., Ltd.

Address of Applicant: A626, Gaoxingi Technology Park, No. 2, Liuxian 1st Road,

Xingdong Community, Xin'an Street, Bao'an District, Shenzhen

City

Manufacturer: Shenzhen Uwatch Technology Co., Ltd.

Address of A626, Gaoxinqi Technology Park, No. 2, Liuxian 1st Road,

Manufacturer: Xingdong Community, Xin'an Street, Bao'an District, Shenzhen

City

Equipment Under Test (EUT)

Product Name: Smart watch

Model No.: UC003

Series model: UC09, BY03, UC05, UC06, UC07, UC10,

UC12, UC13, UC15, UC16, UC18, UC19

Trade Mark: UWQ

FCC ID: 2BDSB-UC003

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: Nov. 21, 2023

Date of Test: Nov. 21, 2023~Nov. 27, 2023

Date of report issued: Nov. 27, 2023

Test Result: PASS *

^{*} In the configuration tested, the EUT complied with the standards specified above.

1. Version

Version No.	Date	Description
00	Nov. 27, 2023	Original

Tested/ Prepared By	Heber He	Date:	Nov. 27, 2023
	Project Engineer	_	
Check By:	Bruce Zhu	Date:	Nov. 27, 2023
	Reviewer		
Approved By :	Kevin Yang HTT	Date:	Nov. 27, 2023

Authorized Signature

2. Contents

	Page
1. VERSION	2
2. CONTENTS	3
3. TEST SUMMARY	4
4. GENERAL INFORMATION	
4.1. GENERAL DESCRIPTION OF EUT 4.2. TEST MODE 4.3. DESCRIPTION OF SUPPORT UNITS 4.4. DEVIATION FROM STANDARDS 4.5. ABNORMALITIES FROM STANDARD CONDITIONS 4.6. TEST FACILITY 4.7. TEST LOCATION 4.8. ADDITIONAL INSTRUCTIONS	
5. TEST INSTRUMENTS LIST	8
6. TEST RESULTS AND MEASUREMENT DATA	9
6.1. CONDUCTED EMISSIONS 6.2. CONDUCTED OUTPUT POWER 6.3. CHANNEL BANDWIDTH 6.4. POWER SPECTRAL DENSITY 6.5. BAND EDGES 6.5.1 Conducted Emission Method 6.5.2 Radiated Emission Method 6.6. SPURIOUS EMISSION 6.6.1 Conducted Emission Method 6.6.2 Radiated Emission Method 6.6.2 Radiated Emission Method 6.7. ANTENNA REQUIREMENT	
7. TEST SETUP PHOTO	30
8 FUT CONSTRUCTIONAL DETAILS	30

3. Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Output Power	15.247 (b)(3)	Pass
Channel Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Spurious Emission	15.205/15.209	Pass

Remarks:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. Test according to ANSI C63.10:2013

Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes		
Radiated Emission	30~1000MHz	3.45 dB	(1)		
Radiated Emission	1~6GHz	3.54 dB	(1)		
Radiated Emission	6~40GHz	5.38 dB	(1)		
Conducted Disturbance	0.15~30MHz	2.66 dB	(1)		
Note (1): The measurement uncertainty is for coverage factor of k=2 and a level of confidence of 95%.					

4. General Information

4.1. General Description of EUT

<u> </u>	
Product Name:	Smart watch
Model No.:	UC003
Series model:	UC09, BY03, UC05, UC06, UC07, UC10,
	UC12, UC13, UC15, UC16, UC18, UC19
Test sample(s) ID:	HTT202311523-1(Engineer sample)
	HTT202311523-2(Normal sample)
Operation frequency	2402~2480 MHz
Number of Channels	40
Modulation Type	GFSK
Channel separation	2MHz
Antenna Type:	PCB Antenna
Antenna Gain:	0dBi
Power Supply:	DC 3.7V From Battery and DC 5V From External Circuit
Adapter Information	Mode: GS-0500200
(Auxiliary test provided by the	Input: AC100-240V, 50/60Hz, 0.3A max
lab):	Output: DC 5V, 2A

Channel	Frequency(MHz)	Channel	Frequency(MHz)
0	2402	20	2442
1	2404	21	2444
2	2406	22	2446
3	2408	23	2448
4	2410	24	2450
5	2412	25	2452
6	2414	26	2454
7	2416	27	2456
8	2418	28	2458
9	2420	29	2460
10	2422	30	2462
11	2424	31	2464
12	2426	32	2466
13	2428	33	2468
14	2430	34	2470
15	2432	35	2472
16	2434	36	2474
17	2436	37	2476
18	2438	38	2478
19	2440	39	2480

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2440MHz
The Highest channel	2480MHz

4.2. Test mode

Transmitting mode Keep the EUT in continuously transmitting mode.

Remark: During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

4.3. Description of Support Units

None.

4.4. Deviation from Standards

None.

4.5. Abnormalities from Standard Conditions

None.

4.6. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 779513 Designation Number: CN1319

Shenzhen HTT Technology Co.,Ltd. has been accredited on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

A2LA-Lab Cert. No.: 6435.01

Shenzhen HTT Technology Co.,Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

4.7. Test Location

All tests were performed at:

Shenzhen HTT Technology Co.,Ltd.

1F, Building B, Huafeng International Robotics Industrial Park, Hangcheng Road, Nanchang Community, Xixiang Street, Bao'an District, Shenzhen, Guangdong, China

Tel: 0755-23595200 Fax: 0755-23595201

4.8. Additional Instructions

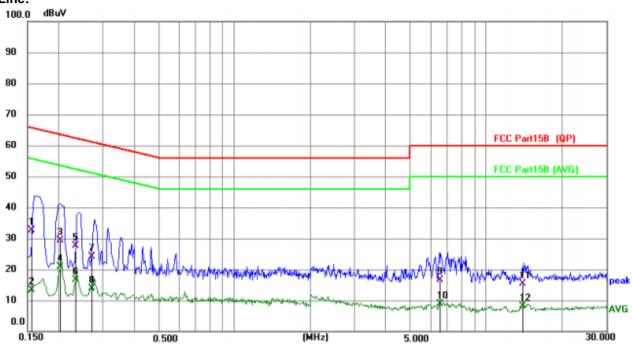
Test Software	Special AT test command provided by manufacturer to Keep the EUT in continuously transmitting mode and hopping mode
Power level setup	Default

5. Test Instruments list

Item	Test Equipment	Manufacturer	Model No.	Inventory	Cal.Date	Cal.Due date
		0		No.	(mm-dd-yy)	(mm-dd-yy)
1	3m Semi- Anechoic Chamber	Shenzhen C.R.T technology co., LTD	9*6*6	HTT-E028	Aug. 10 2021	Aug. 09 2024
2	Control Room	Shenzhen C.R.T technology co., LTD	4.8*3.5*3.0	HTT-E030	Aug. 10 2021	Aug. 09 2024
3	EMI Test Receiver	Rohde&Schwar	ESCI7	HTT-E022	Apr. 26 2023	Apr. 25 2024
4	Spectrum Analyzer	Rohde&Schwar	FSP	HTT-E037	Apr. 26 2023	Apr. 25 2024
5	Coaxial Cable	ZDecl	ZT26-NJ-NJ-0.6M	HTT-E018	Apr. 26 2023	Apr. 25 2024
6	Coaxial Cable	ZDecl	ZT26-NJ-SMAJ-2M	HTT-E019	Apr. 26 2023	Apr. 25 2024
7	Coaxial Cable	ZDecl	ZT26-NJ-SMAJ-0.6M	HTT-E020	Apr. 26 2023	Apr. 25 2024
8	Coaxial Cable	ZDecl	ZT26-NJ-SMAJ-8.5M	HTT-E021	Apr. 26 2023	Apr. 25 2024
9	Composite logarithmic antenna	Schwarzbeck	VULB 9168	HTT-E017	May. 21 2023	May. 20 2024
10	Horn Antenna	Schwarzbeck	BBHA9120D	HTT-E016	May. 20 2023	May. 19 2024
11	Loop Antenna	Zhinan	ZN30900C	HTT-E039	Apr. 26 2023	Apr. 25 2024
12	·	Beijing Hangwei Dayang	OBH100400	HTT-E040	Apr. 26 2023	Apr. 25 2024
13	low frequency Amplifier	Sonoma Instrument	310	HTT-E015	Apr. 26 2023	Apr. 25 2024
14	high-frequency Amplifier	HP	8449B	HTT-E014	Apr. 26 2023	Apr. 25 2024
15	Variable frequency power supply	Shenzhen Anbiao Instrument Co., Ltd	ANB-10VA	HTT-082	Apr. 26 2023	Apr. 25 2024
16	EMI Test Receiver	Rohde & Schwarz	ESCS30	HTT-E004	Apr. 26 2023	Apr. 25 2024
17	Artificial Mains	Rohde & Schwarz	ESH3-Z5	HTT-E006	May. 23 2023	May. 22 2024
18	Artificial Mains	Rohde & Schwarz	ENV-216	HTT-E038	May. 23 2023	May. 22 2024
19	Cable Line	Robinson	Z302S-NJ-BNCJ-1.5M	HTT-E001	Apr. 26 2023	Apr. 25 2024
20	Attenuator	Robinson	6810.17A	HTT-E007	Apr. 26 2023	Apr. 25 2024
21	Variable frequency power supply	Shenzhen Yanghong Electric Co., Ltd	YF-650 (5KVA)	HTT-E032	Apr. 26 2023	Apr. 25 2024
22	Control Room	Shenzhen C.R.T technology co., LTD	8*4*3.5	HTT-E029	Aug. 10 2021	Aug. 09 2024
23	DC power supply	Agilent	E3632A	HTT-E023	Apr. 26 2023	Apr. 25 2024
24	EMI Test Receiver	Agilent	N9020A	HTT-E024	Apr. 26 2023	Apr. 25 2024
25	Analog signal generator	Agilent	N5181A	HTT-E025	Apr. 26 2023	Apr. 25 2024
26	Vector signal generator	Agilent	N5182A	HTT-E026	Apr. 26 2023	Apr. 25 2024
27	Power sensor	Keysight	U2021XA	HTT-E027	Apr. 26 2023	Apr. 25 2024
28	Temperature and humidity meter	Shenzhen Anbiao Instrument Co., Ltd	TH10R	HTT-074	Apr. 28 2023	Apr. 27 2024
29	Radiated Emission Test Software	Farad	EZ-EMC	N/A	N/A	N/A
30	Conducted Emission Test Software	Farad	EZ-EMC	N/A	N/A	N/A
31	RF Test Software	panshanrf	TST	N/A	N/A	N/A

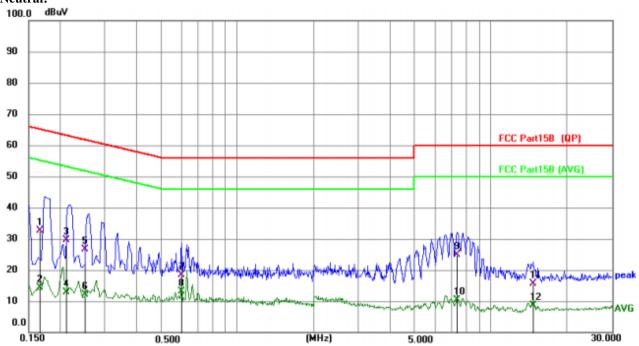
6. Test results and Measurement Data

6.1. Conducted Emissions


Test Requirement:	FCC Part15 C Section 15.207				
Test Method:	ANSI C63.10:2013				
Test Frequency Range:	150KHz to 30MHz				
Class / Severity:	Class B				
Receiver setup:	RBW=9KHz, VBW=30KHz, Sv	weep time=auto			
Limit:	Frequency range (MHz)	Limit	(dBuV)		
		Quasi-peak	Aver		
	0.15-0.5	66 to 56*	56 to		
	0.5-5	56	46		
	5-30 * Decreases with the logarithn	60	50)	
Test setup:	Reference Plane				
Test procedure:	Remark E.U.T Equipment Under Test LISN Line Impedence Stabilization Network Test table height=0.8m 1. The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 500hm/50uH coupling impedance for the measuring equipment. 2. The peripheral devices are also connected to the main power through a				
	termination. (Please refer to the block diagram of the test setup and photographs). 3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10:2013 on conducted measurement.				
Test Instruments:	Refer to section 6.0 for details				
Test mode:	Refer to section 5.2 for details				
Test environment:	Temp.: 25 °C Hun	nid.: 52%	Press.:	1012mbar	
Test voltage:	AC 120V, 60Hz	<u>.</u>			
Test results:	PASS				

Remark: Both high and low voltages have been tested to show only the worst low voltage test data.

Measurement data:



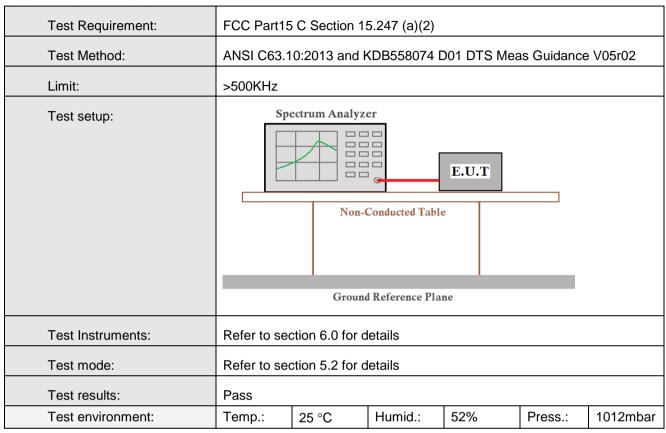
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz		dB	dBuV	dBuV	dB	Detector
1		0.1562	22.52	10.16	32.68	65.66	-32.98	QP
2		0.1562	3.26	10.16	13.42	55.66	-42.24	AVG
3		0.2034	19.24	10.21	29.45	63.47	-34.02	QP
4	*	0.2034	10.58	10.21	20.79	53.47	-32.68	AVG
5		0.2333	17.30	10.22	27.52	62.33	-34.81	QP
6		0.2333	6.33	10.22	16.55	52.33	-35.78	AVG
7		0.2701	13.88	10.23	24.11	61.11	-37.00	QP
8		0.2701	3.60	10.23	13.83	51.11	-37.28	AVG
9		6.5771	5.89	10.62	16.51	60.00	-43.49	QP
10		6.5771	-1.69	10.62	8.93	50.00	-41.07	AVG
11		14.0007	4.44	10.99	15.43	60.00	-44.57	QP
12		14.0007	-2.80	10.99	8.19	50.00	-41.81	AVG

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz		dB	dBuV	dBuV	dB	Detector
1	*	0.1662	22.46	10.18	32.64	65.15	-32.51	QP
2		0.1662	4.19	10.18	14.37	55.15	-40.78	AVG
3		0.2112	19.34	10.21	29.55	63.16	-33.61	QP
4		0.2112	2.71	10.21	12.92	53.16	-40.24	AVG
5		0.2514	16.48	10.22	26.70	61.71	-35.01	QP
6		0.2514	1.98	10.22	12.20	51.71	-39.51	AVG
7		0.6021	8.02	10.34	18.36	56.00	-37.64	QP
8		0.6021	2.86	10.34	13.20	46.00	-32.80	AVG
9		7.3478	14.11	10.71	24.82	60.00	-35.18	QP
10		7.3478	-0.44	10.71	10.27	50.00	-39.73	AVG
11		14.6849	4.36	11.15	15.51	60.00	-44.49	QP
12		14.6849	-2.57	11.15	8.58	50.00	-41.42	AVG

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Los

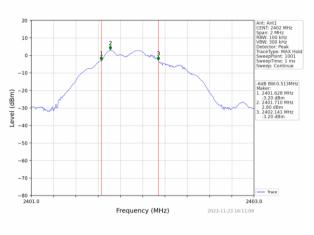
6.2. Conducted Output Power


Test Requirement: Test Method:	FCC Part15 C Section 15.247 (b)(3) ANSI C63.10:2013 and KDB558074 D01 DTS Meas Guidance V05r02						
Limit:	30dBm						
Test setup:	Power Meter E.U.T Non-Conducted Table Ground Reference Plane						
Test Instruments:	Refer to section 6.0 for details						
Test mode:	Refer to section 5.2 for details						
Test results:	Pass						
Test environment:	Temp.: 25 °C Humid.: 52% Press.: 1012mbar						

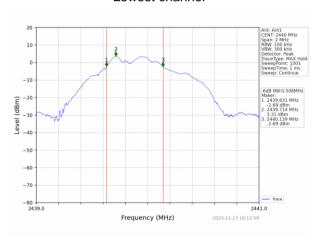
Measurement Data

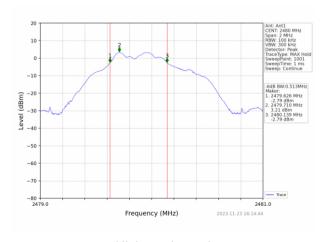
Test channel	Peak Output Power (dBm)	Limit(dBm)	Result
Lowest	2.96		
Middle	3.48	30.00	Pass
Highest	3.39		

6.3. Channel Bandwidth

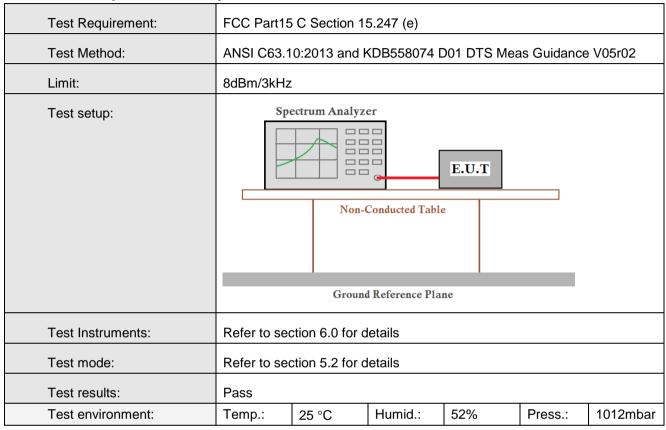


Measurement Data


Test channel	Channel Bandwidth (MHz)	Limit(KHz)	Result
Lowest	0.513		
Middle	0.508	>500	Pass
Highest	0.513		

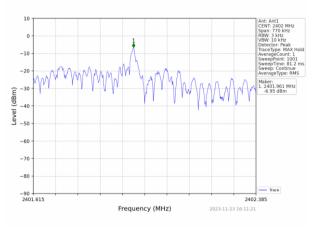

Test plot as follows:

Lowest channel

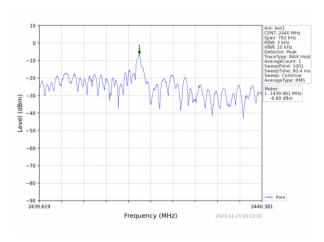

Middle channel

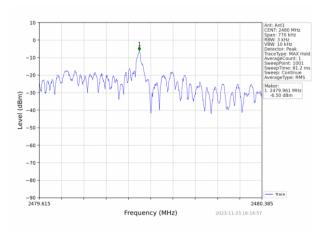
Highest channel

6.4. Power Spectral Density



Measurement Data

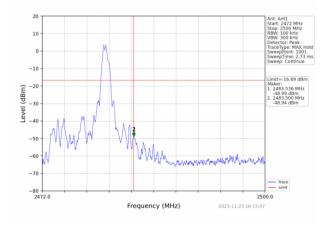

Test channel	Power Spectral Density (dBm/3kHz)	Limit(dBm/3kHz)	Result
Lowest	-6.95		
Middle	-6.68	8.00	Pass
Highest	-6.50		


Test plot as follows:

Lowest channel

Middle channel

Highest channel


6.5. Band edges

6.5.1 Conducted Emission Method

6.5.1 Conducted Emission Method								
Test Requirement:	FCC Part15	C Section 15	5.247 (d)					
Test Method:	ANSI C63.1	0:2013 and k	(DB558074 [001 DTS Mea	as Guidance	e V05r02		
Limit:	spectrum int is produced the 100 kHz the desired	n any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in he 100 kHz bandwidth within the band that contains the highest level of he desired power, based on either an RF conducted or a radiated measurement.						
Test setup:	Spe							
Test Instruments:	Refer to sec	tion 6.0 for d	etails					
Test mode:	Refer to sec	tion 5.2 for d	etails					
Test results:	Pass							
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar		

Test plot as follows:

Lowest channel

Highest channel

¹F, Building B, Huafeng International Robotics Industrial Park, Hangcheng Road, Nanchang Community, Xixiang Street, Bao'an District, Shenzhen, Guangdong, China

6.5.2 Radiated Emission Method

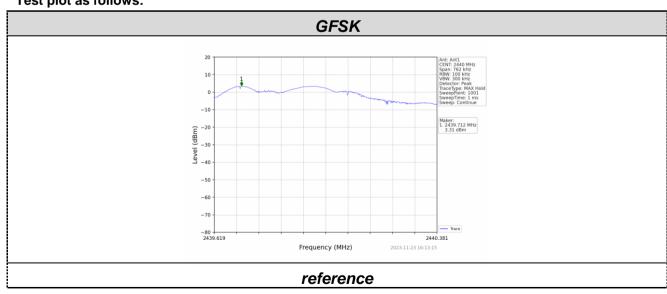
Test Requirement:		C Section 15	5.209 and	d 15.205					
Test Method:	ANSI C63.10								
Test Frequency Range:	All of the re	strict bands ata was sho		ted, only	the wor	st band's (2	2310MHz to		
Test site:		nt Distance:							
Receiver setup:	Frequenc	y Detec	ctor	RBW	VBW	/ \	/alue		
·	Above 1GH	Dog	ık	1MHz	3MH:		Peak		
	Above IGF	TZ RM	S	1MHz	3MH:	z Av	erage		
Limit:	Fre	quency	Lin	nit (dBuV/	/m @3m	n) \	/alue		
	Abov	ve 1GHz		54.0 74.0			Average Peak		
Test setup:	Tum Table <150cm>	?		Test Antenna < 1m 4m >	?				
Test Procedure:	the groun determine 2. The EUT antenna, tower. 3. The anter ground to horizonta measurer 4. For each and then and the rothe maxir 5. The test-respective of the EUT of 10dB mark average respective of the rediament of the rediame	which was mana height is determine to and vertical ment. suspected e the antenna ota table was num reading receiver syst. Bandwidth vasion level o iffied, then te would be reprgin would be method as speciments.	er camber of the his eters aware ounted of varied from e maxim polarization, was tuned for the EUT sting could orted. Other ere-tested pecified a gements a positioning could be re-tested a gements a goositioning could be re-tested a gements a goositioning could be re-tested a gement of the re-tested a general a gen	er. The takinghest race ay from the top om one monum value tions of the the EUT and to height from 0 degrees to Pearmum Hole of in peak and then rare performing which is an incompared to the top one by the top one by the top one t	ole was diation. The interfer to be of the from the anten was arrangees to be discounted and mode wooped and he emisone using eported med in X t is wors	rotated 360 erence-rece riable-heigh four meters field strengt na are set t anged to its 1 meter to 360 degree et Function a ras 10dB lov d the peak v sions that d ng peak, qu in a data sh K, Y, Z axis	degrees to eiving t antenna above the h. Both o make the worst case 4 meters es to find and wer than the values of id not have asi-peak or neet. positioning.		
Test Instruments:		tion 6.0 for d		1000					
Test mode:		tion 5.2 for d							
Test results:	Pass								
Test environment:	Temp.: 25 °C Humid.: 52% Press.: 1012mbar								

Measurement Data

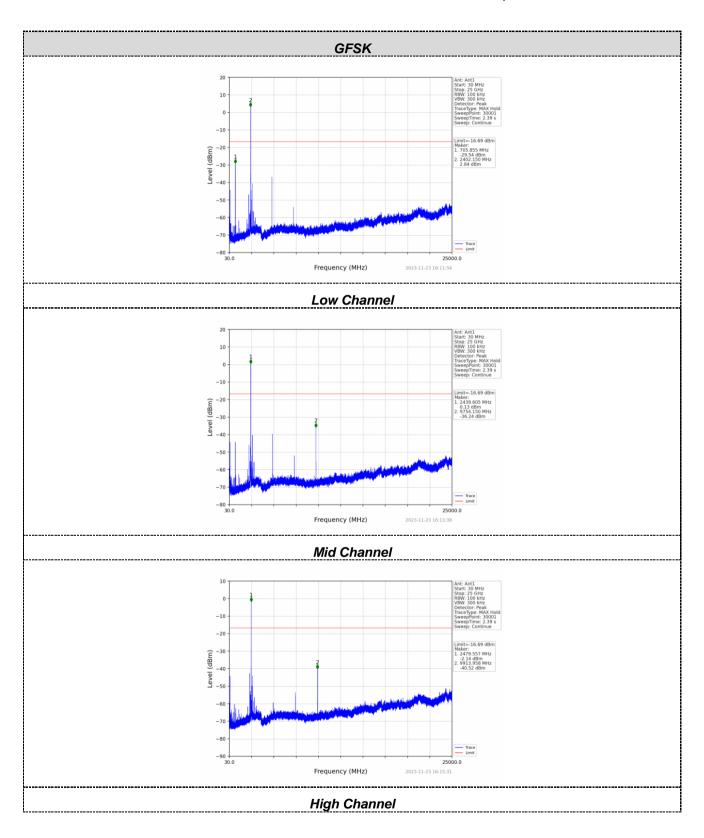
Report No.: HTT202311523F01

Operation Mode: GFSK

Freque	ncy(MHz)	:	24	.02	Pola	arity:	HORIZONTAL		L
Frequency (MHz)	Emis Le (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2390.00	59.62	PK	74	14.38	61.01	27.2	4.31	32.9	-1.39
2390.00	44.27	AV	54	9.73	45.66	27.2	4.31	32.9	-1.39
Freque	ncy(MHz)	:	24	.02	Pola	arity:		VERTICAL	
Frequency (MHz)	Emis Le (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2390.00	58.19	PK	74	15.81	59.58	27.2	4.31	32.9	-1.39
2390.00	45.96	AV	54	8.04	47.35	27.2	4.31	32.9	-1.39
Freque	ncy(MHz)	:	24	80	P olarity:		н	IORIZONTA	\L
Frequency (MHz)	Emis Le (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2483.50	55.35	PK	74	18.65	56.28	27.4	4.47	32.8	-0.93
2483.50	45.16	AV	54	8.84	46.09	27.4	4.47	32.8	-0.93
Freque	ncy(MHz)	:	24	80	Pola	arity:		VERTICAL	
Frequency (MHz)	Emis Le (dBu	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2483.50	55.71	PK	74	18.29	56.64	27.4	4.47	32.8	-0.93
2483.50	43.58	AV	54	10.42	44.51	27.4	4.47	32.8	-0.93

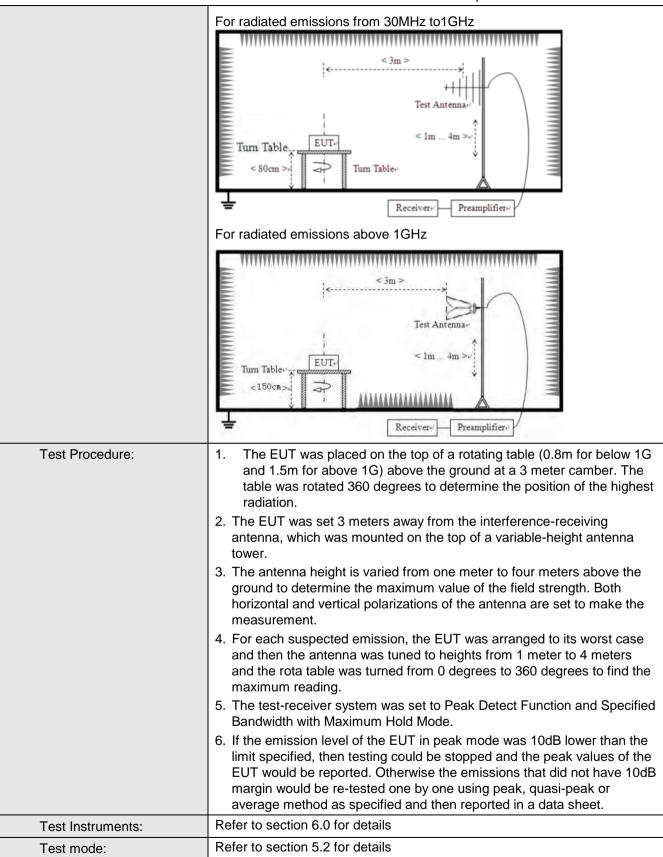


6.6. Spurious Emission


6.6.1 Conducted Emission Method

0.0.1 Conducted Emission Method								
Test Requirement:	FCC Part15 C Se	ection 15	5.247 (d)					
Test Method:	ANSI C63.10:201	13 and k	(DB558074 E	001 DTS Mea	as Guidance	v05r02		
Limit:	spectrum intention is produced by the the 100 kHz band	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.						
Test setup:	Spectrum	Non-C						
Test Instruments:	Refer to section 6	6.0 for d	etails					
Test mode:	Refer to section 5	5.2 for d	etails					
Test results:	Pass							
Test environment:	Temp.: 25 °	С	Humid.:	52%	Press.:	1012mbar		

Test plot as follows:



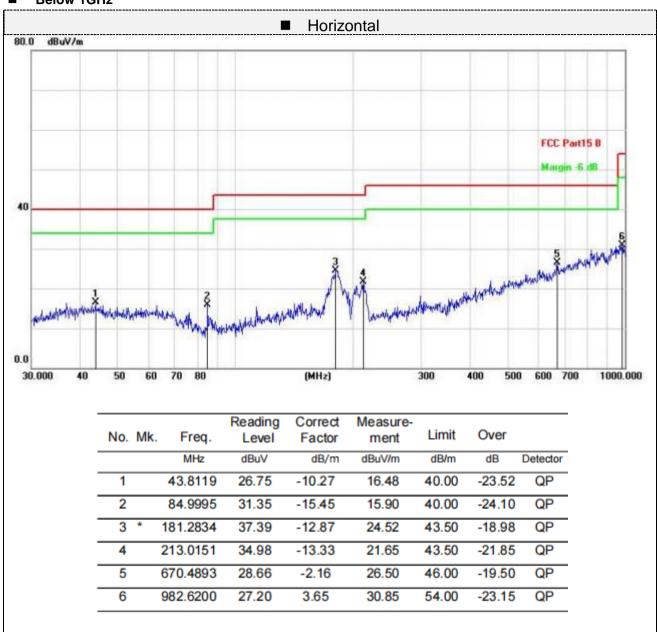
6.6.2 Radiated Emission Method

Test Requirement:	FCC Part15 C Section 15.209							
Test Method:	ANSI C63.10:2013							
Test Frequency Range:	9kHz to 25GHz							
Test site:	Measurement Distar	ice: 3	3m					
Receiver setup:	Frequency		Detector RBV		W VBW		Value	
	9KHz-150KHz	Qı	uasi-peak 200		200Hz 6		z Quasi-peak	
	150KHz-30MHz	ď	ıasi-peak	9KH	Ηz	30KH	z Quasi-peak	
	30MHz-1GHz	Q	ıasi-peak	120K	Ήz	300KH	lz Quasi-peak	
	Above 1GHz		Peak	1MF	Ηz	3MHz	z Peak	
	Above Toriz		Peak	1MF	Ηz	10Hz	Average	
Limit:	Frequency		Limit (u\	//m)	٧	'alue	Measurement Distance	
	0.009MHz-0.490M	Hz	2400/F(k	(Hz)		QP	300m	
	0.490MHz-1.705M	Hz	24000/F(KHz)	QP		30m	
	1.705MHz-30MHz		30		QP		30m	
	30MHz-88MHz		100		QP			
	88MHz-216MHz		150			QP		
	216MHz-960MHz		200			QP	3m	
	960MHz-1GHz		500		QP			
	Above 1GHz		500		Average			
_			5000		F	Peak		
Test setup:	For radiated emissio	ns fr	om 9kHz to	30MH	Z			
	Turn Table E	JT-	< 3m > Tes	at Antenna lm		v /		

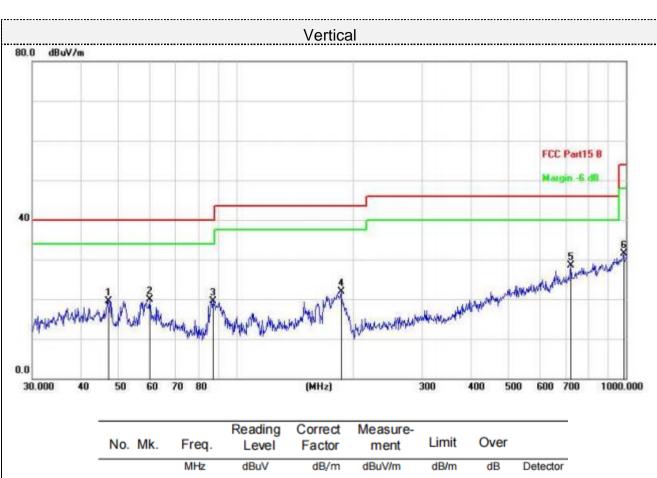
Test environment:	Temp.:	25 °C	Humid.:	52%	Press.:	1012mbar
Test voltage:	AC 120V, 60Hz					
Test results:	Pass					

Measurement data:

Remark:


Pre-scan all kind of the place mode (X-axis, Y-axis, Z-axis), and found the Y-axis which it is worse case.

■ 9kHz~30MHz


The low frequency, which started from 9 kHz to 30 MHz, was pre-scanned and the result which was 20 dB lower than the limit line per 15.31(o) was not reported.

■ Below 1GHz

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dB/m	dB	Detector
1		46.9948	30.32	-10.72	19.60	40.00	-20.40	QP
2		60.0691	31.60	-11.62	19.98	40.00	-20.02	QP
3		87.1117	35.05	-15.47	19.58	40.00	-20.42	QP
4		185.7882	35.10	-13.12	21.98	43.50	-21.52	QP
5	*	721.7259	29.42	-0.97	28.45	46.00	-17.55	QP
6		986.0717	27.89	3.68	31.57	54.00	-22.43	QP

Final Level =Receiver Read level + Correct Factor

■ Above 1-25GHz

Frequency(MHz):			2402		Polarity:		HORIZONTAL		
Frequency	Emission		Limit M	Margin	Raw	Antenna	Cable	Pre-	Correction
(MHz)	Level	(dBuV/m)	(dB)	Value	Factor	Factor	amplifier	Factor	
(2)	(dBuV/m)			(4247/11)	(dBuV)	(dB/m)	(dB)	(dB)	(dB/m)
4804.00	58.44	PK	74	15.56	52.74	31	6.5	31.8	5.7
4804.00	41.85	AV	54	12.15	36.15	31	6.5	31.8	5.7
7206.00	54.54	PK	74	19.46	41.89	36	8.15	31.5	12.65
7206.00	43.58	AV	54	10.42	30.93	36	8.15	31.5	12.65

Frequency(MHz):			2402		Polarity:		VERTICAL		
Frequency (MHz)	Emission		Limit	Margin	Raw	Antenna	Cable	Pre-	Correction
	Le	vel	(dBuV/m)	(dB)	Value	Factor	Factor	amplifier	Factor
(1711 12)	(dBuV/m)		(ubuv/III)	(ub)	(dBuV)	(dB/m)	(dB)	(dB)	(dB/m)
4804.00	59.80	PK	74	14.20	54.10	31	6.5	31.8	5.7
4804.00	42.43	AV	54	11.57	36.73	31	6.5	31.8	5.7
7206.00	53.89	PK	74	20.11	41.24	36	8.15	31.5	12.65
7206.00	44.01	AV	54	9.99	31.36	36	8.15	31.5	12.65

Frequency(MHz):			2440		Polarity:		HORIZONTAL		
Frequency (MHz)	Emission Level (dBuV/m)		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4880.00	59.92	PK	74	14.08	53.76	31.2	6.61	31.65	6.16
4880.00	43.42	AV	54	10.58	37.26	31.2	6.61	31.65	6.16
7320.00	52.75	PK	74	21.25	39.80	36.2	8.23	31.48	12.95
7320.00	43.15	AV	54	10.85	30.20	36.2	8.23	31.48	12.95

Frequency(MHz):			2440		Polarity:		VERTICAL		
Frequency (MHz)	Emission Level		Limit (dBuV/m)	Margin (dB)	Raw Value	Antenna	Cable	Pre- amplifier	Correction
4880.00	(dBu 61.55	V/m) PK	74	12.45	(dBuV) 55.39	(dB/m) 31.2	(dB) 6.61	(dB) 31.65	(dB/m) 6.16
4880.00	42.64	AV	54	11.36	36.48	31.2	6.61	31.65	6.16
7320.00	53.49	PK	74	20.51	40.54	36.2	8.23	31.48	12.95
7320.00	43.88	AV	54	10.12	30.93	36.2	8.23	31.48	12.95

Frequency(MHz):			2480		Polarity:		HORIZONTAL		
Frequency (MHz)	Emission Level (dBuV/m)		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4960.00	62.38	PK	74	11.62	55.72	31.4	6.76	31.5	6.66
4960.00	41.27	AV	54	12.73	34.61	31.4	6.76	31.5	6.66
7440.00	53.16	PK	74	20.84	39.86	36.4	8.35	31.45	13.3
7440.00	45.12	AV	54	8.88	31.82	36.4	8.35	31.45	13.3

Frequency(MHz):			2480		Polarity:		VERTICAL		
Frequency (MHz)	Emission Level (dBuV/m)		Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4960.00	63.77	PK	74	10.23	57.11	31.4	6.76	31.5	6.66
4960.00	43.15	AV	54	10.85	36.49	31.4	6.76	31.5	6.66
7440.00	53.69	PK	74	20.31	40.39	36.4	8.35	31.45	13.3
7440.00	44.97	AV	54	9.03	31.67	36.4	8.35	31.45	13.3

Remark:

⁽¹⁾ Data of measurement within this frequency range shown "--- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.

⁽²⁾ When the test results of Peak Detected below the limits of Average Detected, the Average Detected is not need completed.

6.7. Antenna Requirement

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited

FCC CFR Title 47 Part 15 Subpart C Section 15.247(c) (1) (I):

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

Antenna Connected Construction

The maximum gain of antenna was 0.0 dBi.

Remark: The antenna gain is provided by the customer, if the data provided by the customer is not accurate, Shenzhen HTT Technology Co., Ltd. does not assume any responsibility.

7. Test Setup Photo

Reference to the appendix I for details.

8. EUT Constructional Details

Reference to the appendix II for details.

