

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

	T 15 SUBPART C TEST REPORT
	FCC PART 15.247
Report Reference No FCC ID :	FCC PART 15.247 CTA24080801901 2BDQV-AK-3820
Compiled by (position+printed name+signature) .:	File administrators Jinghua Xiao
Supervised by (position+printed name+signature) .:	Project Engineer Xudong Zhang
Approved by (position+printed name+signature) .:	RF Manager Eric Wang
Date of issue	Aug. 15, 2024
Testing Laboratory Name	Shenzhen CTA Testing Technology Co., Ltd.
Address:	Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China
Applicant's name	Shenzhen Tenganda Intelligent Equipment Co., Ltd
Address:	Second floor, building B, No. 1, Bantian shangxue science and Technology Park, Longgang District, Shenzhen, Guangdong China
Test specification:	TATES
Standard	FCC Part 15.247
TRF Originator	Shenzhen CTA Testing Technology Co., Ltd.
CTA Testing Technology Co., Ltd. is a CTA Testing Technology Co., Ltd. take	whole or in part for non-commercial purposes as long as the Shenzhen cknowledged as copyright owner and source of the material. Shenzhen as no responsibility for and will not assume liability for damages on of the reproduced material due to its placement and context.
Test item description	Surveillance camera
	Surveillance camera N/A
Trade Mark	N/A Shenzhen Tenganda Intelligent Equipment Co., Ltd
Trade Mark	N/A Shenzhen Tenganda Intelligent Equipment Co., Ltd
Trade Mark Manufacturer Model/Type reference	N/A Shenzhen Tenganda Intelligent Equipment Co., Ltd
Trade Mark Manufacturer Model/Type reference Listed Models	N/A Shenzhen Tenganda Intelligent Equipment Co., Ltd
Trade Mark Manufacturer Model/Type reference Listed Models	N/A Shenzhen Tenganda Intelligent Equipment Co., Ltd AK-3820 Refer to page 2
Test item description Trade Mark Manufacturer Model/Type reference Listed Models Modulation Type Operation Frequency	N/A Shenzhen Tenganda Intelligent Equipment Co., Ltd
Trade Mark Manufacturer Model/Type reference Listed Models	N/A Shenzhen Tenganda Intelligent Equipment Co., Ltd AK-3820 Refer to page 2 CCK/DSSS/OFDM From 2412 - 2462MHz (AK-3120, AK-3820S, AK-3120SZ, AK-3120SZ-H, AK-3920, AK-5020, AK-5220, AK-5320, AK-6020, AK-1920, AK-A120, AK-6220, AK-7220, AK-3120SZ-WIFI, AK-3120SZ-H-WIFI, SQ-3120SZ-WIFI, AK-6220-WIFI, AK-7320): DC 5.0V From external circuit
Trade Mark	N/A Shenzhen Tenganda Intelligent Equipment Co., Ltd AK-3820 Refer to page 2 CCK/DSSS/OFDM From 2412 - 2462MHz (AK-3120, AK-3820S, AK-3120SZ, AK-3120SZ-H, AK-3920, AK-5020, AK-5220, AK-5320, AK-6020, AK-1920, AK-A120, AK-6220, AK-7220, AK-3120SZ-WIFI, AK-3120SZ-H-WIFI, SQ-3120SZ-WIFI,

	TATESTING	TEST	REPORT	
	Equipment under Test	: Surveillance came	era	
	Model /Type	: AK-3820	era	STING
CTATESTI	Listed Models	AK-3120S-DP-H, AK-1920, AK-A12 WIFI, AK-3120SZ	0S-DP, AK-3820S, AK-3120SZ, A AK-3920, AK-5020, AK-5220, AK- 0, AK-6220, AK-7220, AK-3320S- -WIFI, AK-3120SZ-H-WIFI, SQ-31 AK-6220-WIFI, AK-7320	K-3120SZ-H, 5320, AK-6020, DP, AK-3120S-DP-
	Differential description		ve the same RF modules, the sam ds, different power boards, and di	
	Applicant	: Shenzhen Tenga	nda Intelligent Equipment Co., I	_td
	Address		ding B, No. 1, Bantian shangxue s Longgang District, Shenzhen, Gu	
	Manufacturer	: Shenzhen Tenga	nda Intelligent Equipment Co., I	Ltd
	Address		ding B, No. 1, Bantian shangxue s Longgang District, Shenzhen, Gu	
CTATESTI	Test Re	esult:	PASS	

The test report merely corresponds to the test sample. It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

	TATESTING Conte	ents
<u>1</u>	TEST STANDARDS	
2	SUMMARY	
—	Street, St	CIA
2.1	General Remarks	5
2.2	Product Description	5
2.3	Equipment Under Test	5
2.4	Short description of the Equipment under Te	
2.5	EUT operation mode	6
2.6	Block Diagram of Test Setup 6	6
2.7	Related Submittal(s) / Grant (s)	6
2.8	Modifications	6
2.0	inourinoutions The	TING
<u>3</u>	TEST ENVIRONMENT	
		C'
3.1	Address of the test laboratory	CTATESTIN 7
3.2	Test Facility	C C T
3.3	Environmental conditions	7
3.4	Test Description	8
3.5	Statement of the measurement uncertainty	8
3.6	Equipments Used during the Test	9
4.1 4.2 4.3 4.4 4.5 4.6 4.7	AC Power Conducted Emission Radiated Emission Maximum Peak Conducted Output Power Power Spectral Density 6dB Bandwidth Out-of-band Emissions Antenna Requirement	CTATESTING 11 20 21 24 27 34
<u>5</u>	TEST SETUP PHOTOS OF THE E	JT 35
<u>6</u>	PHOTOS OF THE EUT	
		CTATESTING CTATESTIN
	TATESTING CTATESTIN	
	TA	
	TATES	TESTING

TEST STANDARDS 1

The tests were performed according to following standards:

FCC Rules Part 15.247: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz. ANSI C63.10-2013: American National Standard for Testing Unlicensed Wireless Devices KDB558074 D01 v05r02: Guidance for Compliance Measurements on Digital Transmission Systems (DTS), Frequency Hopping Spread Spectrum System(HFSS), and Hybrid System Devices Operating Under CTATE §15.247 of The FCC rules.

2 <u>SUMMARY</u>

2.1 General Remarks

2.1 General Remarks		
Date of receipt of test sample		Aug. 08, 2024
Testing commenced on	G	Aug. 08, 2024
Testing concluded on	:	Aug. 15, 2024

	Testing concluded on	: Aug. 15, 2024
	2.2 Product Descrip	tion
CTATE	Product Name:	Surveillance camera
	Model/Type reference:	AK-3820
	Power supply:	(AK-3120, AK-3820S, AK-3120SZ, AK-3120SZ-H, AK-3920, AK-5020, AK-5220, AK-5320, AK-6020, AK-1920, AK-A120, AK-6220, AK-7220, AK-3120SZ-WIFI, AK-3120SZ-H-WIFI, SQ-3120SZ-WIFI, AK-6220-WIFI, AK-7320): DC 5.0V From external circuit (AK-3120S-DP, AK-3120S-DP-H, AK-3320S-DP, AK-3120S-DP- WIFI, SQ-3120S-DP-WIFI): AC 120V 60Hz
	Adapter information (Auxiliary test supplied by test Lab):	Model: EP-TA20CBC Input: AC 100-240V 50/60Hz Output: DC 5V 2A
	testing sample ID:	CTA240808019-1# (Engineer sample), CTA240808019-2#(Normal sample)
	Hardware version:	V1.0
	Software version:	V1.0
	WIFI :	
	Supported type:	802.11b/802.11g/802.11n(H20)
CTATE	Modulation:	802.11b: DSSS 802.11g/802.11n(H20): OFDM
	Operation frequency:	802.11b/802.11g/802.11n(H20): 2412MHz~2462MHz
	Channel number:	802.11b/802.11g/802.11n(H20): 11
	Channel separation:	5MHz
	Antenna type:	PIFA antenna
	Antenna gain:	0.92 dBi
	, anomia gam	

2.3 Equipment Under Test

Power supply system utilised

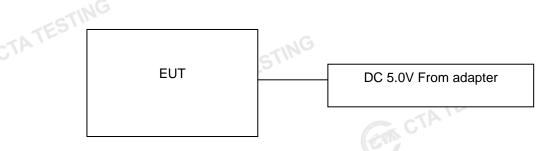
Power supply voltage	:	0	230V / 50 Hz	0	120V / 60Hz
		0	12 V DC	Ο	24 V DC
3		•	Other (specified in blank bel	ow	TATES

(AK-3120, AK-3820S, AK-3120SZ, AK-3120SZ-H, AK-3920, AK-5020, AK-5220, AK-5320, AK-6020, AK-1920, AK-A120, AK-6220, AK-7220,

AK-3120SZ-WIFI, AK-3120SZ-H-WIFI, SQ-3120SZ-WIFI, AK-6220-WIFI, AK-7320): DC 5.0V From external circuit (AK-3120S-DP, AK-3120S-DP-H, AK-3320S-DP, AK-3120S-DP-WIFI, SQ-3120S-DP-WIFI): AC 120V 60Hz

2.4 Short description of the Equipment under Test (EUT) CTATESTING

This is a Surveillance camera.


For more details, refer to the user's manual of the EUT.

EUT operation mode 2.5

The application provider specific test software(AT command) to control sample in continuous TX and RX (Duty Cycle >98%) for testing meet KDB558074 test requirement. IEEE 802.11b/g/n: Thirteen channels are provided to the EUT.

Channel	Frequency(MHz)	Channel	Frequency(MHz)
1	2412	8	2447
2	2417	9_NG	2452
3	2422	10	2457
4	2427	11	2462
5	2432		STIN
6	2437	1	TES
7	2442		CIL

2.6 **Block Diagram of Test Setup**

Related Submittal(s) / Grant (s) 2.7

This submittal(s) (test report) is intended for filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

Modifications 2.8

CTATESTING No modifications were implemented to meet testing criteria.

Shenzhen CTA Testing Technology Co., Ltd.

3 TEST ENVIRONMENT

3.1 Address of the test laboratory

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

3.2 **Test Facility**

The test facility is recognized, certified, or accredited by the following organizations: FCC-Registration No.: 517856 Designation Number: CN1318

Shenzhen CTA Testing Technology Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

A2LA-Lab Cert. No.: 6534.01

Shenzhen CTA Testing Technology Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

3.3 Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Radiated	Emission:	

Temperature:	25 ° C
Git	5.
Humidity:	45 %
Atmospheric pressure:	950-1050mbar

Conducted testing:

Temperature:	25 ° C
· *	
Humidity:	44 %
-ESI'	
Atmospheric pressure:	950-1050mbar

AC Power Conducted Emission

Atmospheric pressure:	950-1050mbar	ATESTI
Temperature:	24 ° C	
·	(CATA)	
Humidity:	44 %	
Atmospheric pressure:	950-1050mbar	
CTATESTING	CTATESTING	

Test Description 3.4

	FCC PART 15.247			
	FCC Part 15.207 AC Power Conducted Emission			
	FCC Part 15.247(a)(2)	6dB Bandwidth	PASS	
	FCC Part 15.247(d)	Spurious RF Conducted Emission	PASS	
	FCC Part 15.247(b)	Maximum Peak Conducted Output Power	PASS	
	FCC Part 15.247(e)	Power Spectral Density	PASS	
	FCC Part 15.109/ 15.205/ 15.209	Radiated Emissions	PASS	
CIF	FCC Part 15.247(d)	Band Edge	PASS	
V	FCC Part 15.203/15.247 (b)	Antenna Requirement	PASS	

Data Rate Used:

Preliminary tests were performed in different data rate to find the worst radiated emission. The data rate shown in the table below is the worst-case rate with respect to the specific test item. Investigation has been done on all the possible configurations for searching the worst cases. The following table is a list of the test modes shown in this test report.

Test Items	Mode	Data Rate	Channel	
Maximum Peak Conducted Output Power	11b/DSSS	1 Mbps	1/6/11	
Power Spectral Density 6dB Bandwidth	11g/OFDM	6 Mbps	1/6/11	
Spurious RF conducted emission Radiated Emission 9KHz~1GHz& Radiated Emission 1GHz~10 th Harmonic	11n(20MHz)/OFDM	6.5Mbps	1/6/11	
(AN)	11b/DSSS	S1 Mbps	1/11	
Band Edge	11g/OFDM	6 Mbps	1/11	
	11n(20MHz)/OFDM	6.5Mbps	1/11	
3.5 Statement of the measurement unce	rtainty			ATC

3.5 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the Shenzhen CTA Testing Technology Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device. Hereafter the best measurement capability for Shenzhen CTA Testing Technology Co., Ltd. :

Test	Range	Measurement Uncertainty	Notes
Radiated Emission	9KHz~30MHz	3.02 dB	(1)
Radiated Emission	30~1000MHz	4.06 dB	(1)
Radiated Emission	1~18GHz	5.14 dB	(1)
Radiated Emission	18-40GHz	5.38 dB	(1)
Conducted Disturbance	0.15~30MHz	2.14 dB	(1)
Output Peak power	30MHz~18GHz	0.55 dB	(1)
Power spectral density	/	0.57 dB	(1)
Spectrum bandwidth	1	1.1%	(1)
Radiated spurious emission (30MHz-1GHz)	30~1000MHz	4.10 dB	(1)

Shenzhen CTA Testing Technology Co., Ltd.

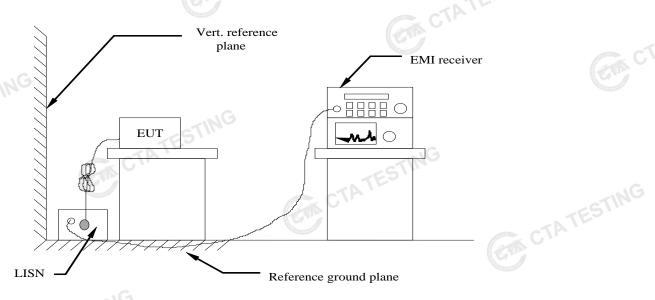
Page 9 of 59

Radiated spurious emission (1GHz-18GHz)	1~18GHz	4.32 dB	(1)
Radiated spurious emission (18GHz-40GHz)	18-40GHz	5.54 dB	(1)

(1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2. GTA CTATESTING

Equipments Used during the Test 3.6

	Test Equipment	Manufacturer	Model No.	Equipment No.	Calibration Date	Calibration Due Date
	STINGLISN	R&S	ENV216	CTA-308	2024/08/03	2025/08/02
CTATE	LISN	R&S	ENV216	CTA-314	2024/08/03	2025/08/02
Ý	EMI Test Receiver	R&S	ESPI	CTA-307	2024/08/03	2025/08/02
	EMI Test Receiver	R&S	ESCI	CTA-306	2024/08/03	2025/08/02
	Spectrum Analyzer	Agilent	N9020A	CTA-301	2024/08/03	2025/08/02
	Spectrum Analyzer	R&S	FSP	CTA-337	2024/08/03	2025/08/02
	Vector Signal generator	G Agilent	N5182A	CTA-305	2024/08/03	2025/08/02
	Analog Signal Generator	R&S	SML03	CTA-304	2024/08/03	2025/08/02
	WIDEBAND RADIO COMMUNICATION TESTER	CMW500	R&S	CTA-302	2024/08/03	2025/08/02
	Temperature and humidity meter	Chigo	ZG-7020	CTA-326	2024/08/03	2025/08/02
	Ultra-Broadband Antenna	Schwarzbeck	VULB9163	CTA-310	2023/10/17	2024/10/16
	Horn Antenna	Schwarzbeck	BBHA 9120D	CTA-309	2023/10/13	2024/10/12
	Loop Antenna	Zhinan	ZN30900C	CTA-311	2023/10/17	2024/10/16
CTATE	Horn Antenna	Beijing Hangwei Dayang	OBH100400	CTA-336	2023/10/17	2024/10/16
	Amplifier	Schwarzbeck	BBV 9745	CTA-312	2024/08/03	2025/08/02
	Amplifier	Taiwan chengyi	EMC051845B	CTA-313	2024/08/03	2025/08/02
	Directional coupler	NARDA	4226-10	CTA-303	2024/08/03	2025/08/02
G	High-Pass Filter	XingBo	XBLBQ-GTA18	CTA-402	2024/08/03	2025/08/02
	High-Pass Filter	G XingBo	XBLBQ-GTA27	CTA-403	2024/08/03	2025/08/02
	Automated filter bank	Tonscend	JS0806-F	CTA-404	2024/08/03	2025/08/02
	Power Sensor	Agilent	U2021XA	CTA-405	2024/08/03	2025/08/02
	Amplifier	Schwarzbeck	BBV9719	CTA-406	2024/08/03	2025/08/02
	μ	100mm				


Page 10 of 59

Test Equipment	G Manufacturer	Model No.	Version number	Calibration Date	Calibration Due Date	
EMI Test Software	Tonscend	TS®JS32-RE	5.0.0.2	N/A	N/A	
EMI Test Software	Tonscend	TS®JS32-CE	5.0.0.1	N/A	N/A	
RF Test Software	Tonscend	TS®JS1120-3	3.1.65	N/A	N/A	
RF Test Software	Tonscend	TS®JS1120	3.1.46	N/A	N/A	
STING					(cm c	, AY

4 TEST CONDITIONS AND RESULTS

4.1 AC Power Conducted Emission

TEST CONFIGURATION

TEST PROCEDURE

1 The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10-2013.

2 Support equipment, if needed, was placed as per ANSI C63.10-2013

3 All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10-2013

4 The EUT received power from adapter, the adapter received AC120V/60Hz and AC 240V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.

5 All support equipments received AC power from a second LISN, if any.

6 The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT.The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.

7 Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes. 8 During the above scans, the emissions were maximized by cable manipulation.

AC Power Conducted Emission Limit

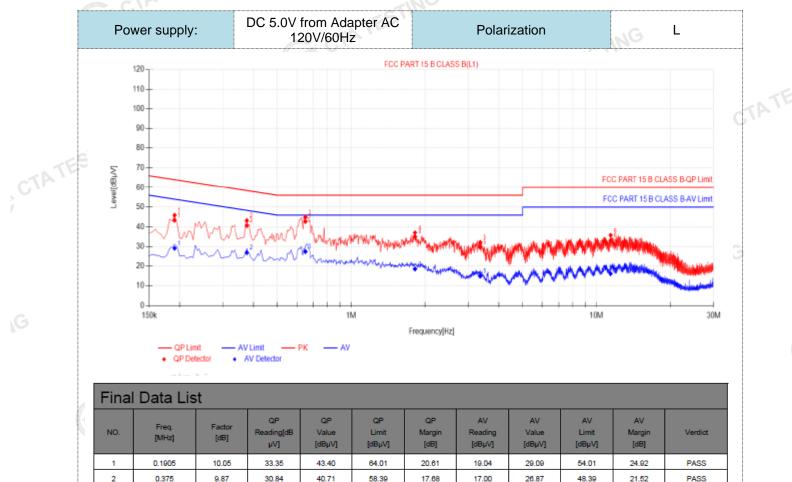
For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following :

Limit (dBuV)			
Quasi-peak	Average		
66 to 56*	56 to 46*		
56	46		
60	50		
	Quasi-peak 66 to 56* 56		

* Decreases with the logarithm of the frequency.

Remark:

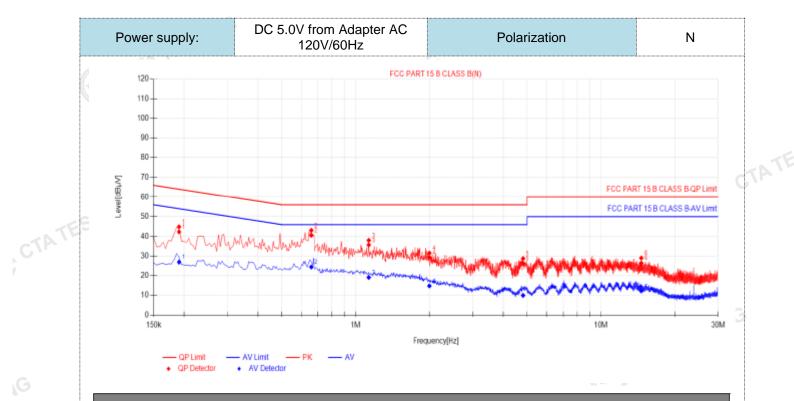
1. All modes of 802.11b/g/n were tested at Low, Middle, and High channel; only the worst result of 802.11b CH11 was reported as below:


Shenzhen CTA Testing Technology Co., Ltd.

PASS PASS PASS PASS

CTA TESTING

2. Both 120 VAC, 50/60 Hz and 240 VAC, 50/60 Hz power supply have been tested, only the worst result of 120 VAC, 60 Hz was reported as below:

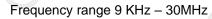

3. We tested all models and recorded in the report that the worst case was model AK-3820.

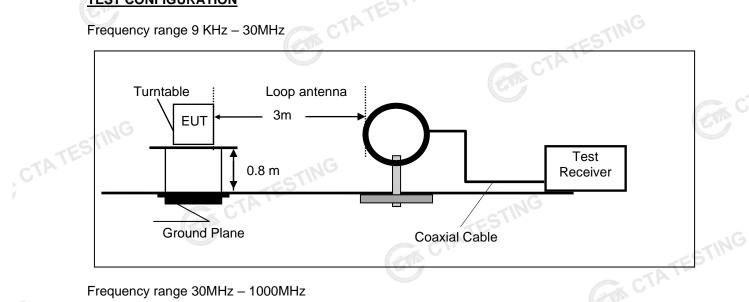
	2	0.375	9.87	30.84	40.71	58.39	17.68	17.00	26.87	48.39	21.52	
	3	0.6495	9.98	32.81	42.79	56.00	13.21	17.42	27.40	46.00	18.60	
	4	1.8195	9.91	25.01	34.92	56.00	21.08	8.77	18.68	46.00	27.32	
	5	3.354	9.98	19.58	29.56	56.00	26.44	5.10	15.08	46.00	30.92	
	6	11.418	10.27	22.70	32.97	60.00	27.03	6.03	16.30	50.00	33.70	
6												

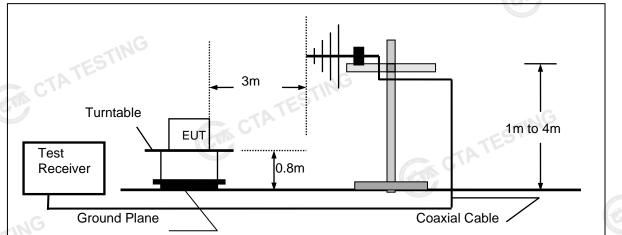
Note:1).QP Value (dBµV)= QP Reading (dBµV)+ Factor (dB)

- 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)
- 3). QPMargin(dB) = QP Limit (dB μ V) QP Value (dB μ V)
- CTATESTING 4). AVMargin(dB) = AV Limit (dB μ V) - AV Value (dB μ V)

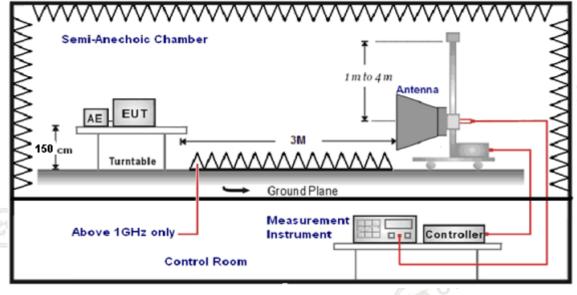
Final Dat 1.3.


	NO.	Freq. [MHz]	Factor [dB]	QP Reading[dB µV]	QP Value [dBµV]	QP Limit [dBµV]	QP Margin [dB]	AV Reading [dBµV]	AV Value [dBµV]	AV Limit [dBµV]	AV Margin [dB]	Verdict	
1	1	0.1905	9.99	32.37	42.36	64.01	21.65	16.89	26.88	54.01	27.13	PASS	
	2	0.6585	10.10	30.50	40.60	56.00	15.40	14.33	24.43	46.00	21.57	PASS	
	3	1.131	10.16	25.38	35.54	56.00	20.46	9.03	19.19	46.00	26.81	PASS	
	4	1.9995	10.19	19.10	29.29	56.00	26.71	4.71	14.90	46.00	31.10	PASS	
	5	4.8075	10.09	16.15	26.24	56.00	29.76	-0.19	9.90	46.00	36.10	PASS	
	6	14.6175	10.42	15.96	26.38	60.00	33.62	1.77	12.19	50.00	37.81	PASS	
Note:1).QP Value (dBμV)= QP Reading (dBμV)+ Factor (dB) 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)										CTAN			
		()			• • •		· ·	/					
0). QPN	Margin(dB)	i = QP Li	ππι (ασμ	v) - QP	value (u	σμν)						


Note:1).QP Value ($dB\mu V$)= QP Reading ($dB\mu V$)+ Factor (dB) 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB) 3). QPMargin(dB) = QP Limit (dB μ V) - QP Value (dB μ V)


4). AVMargin(dB) = AV Limit (dB μ V) - AV Value (dB μ V) CTATES

4.2 Radiated Emission



Frequency range above 1GHz-25GHz

Shenzhen CTA Testing Technology Co., Ltd.

TEST PROCEDURE

- The EUT was placed on a turn table which is 0.8m above ground plane when testing frequency range 9 KHz -1GHz; the EUT was placed on a turn table which is 1.5m above ground plane when testing frequency range 1GHz - 25GHz.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0° to 360° to acquire the highest emissions from EUT.
- And also, each emission was to be maximized by changing the polarization of receiving 3. antenna both horizontal and vertical.
- 4. Repeat above procedures until all frequency measurements have been completed.
- 5. Radiated emission test frequency band from 9KHz to 25GHz.
- 6. The distance between test antenna and EUT as following table states:

Test Frequency range	Test Antenna Type	Test Distance	
9KHz-30MHz	Active Loop Antenna	3	Contraction of the second second
30MHz-1GHz	Ultra-Broadband Antenna	3	
1GHz-18GHz	Double Ridged Horn Antenna	3	
18GHz-25GHz	Horn Anternna	1	
Setting test receiver/enactri	um an fallowing table states: 🔿		

•	Setting test receiver/spectrum as following table states:						
	Test Frequency range	Test Receiver/Spectrum Setting	Detector				
	9KHz-150KHz	QP					
150KHz-30MHz RBW=9KHz/VBW=100KHz,Sweep tin			QP				
	30MHz-1GHz	RBW=120KHz/VBW=1000KHz,Sweep time=Auto	QP				
	1GHz-40GHz	Peak Value: RBW=1MHz/VBW=3MHz, Sweep time=Auto Average Value: RBW=1MHz/VBW=10Hz, Sweep time=Auto	Peak				

Field Strength Calculation

7.

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG

FS = RA + AF + CL - AG	CTATESTING
Where FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)
RA = Reading Amplitude	AG = Amplifier Gain
AF = Antenna Factor	

Transd=AF +CL-AG

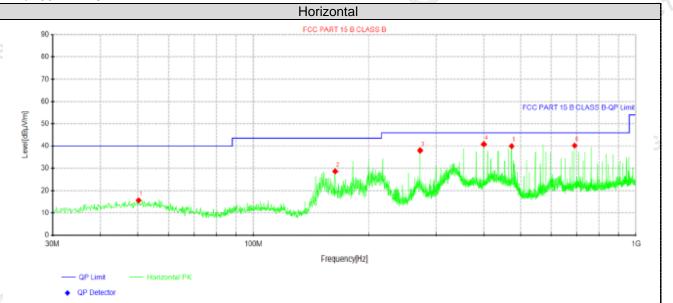
RADIATION LIMIT

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission from intentional radiators at a distance of 3 meters shall not exceed the following table. According to § 15.247(d), in any 100kHz bandwidth outside the frequency band in which the EUT is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the100kHz bandwidth within the band that contains the highest level of desired power.

The pre-test have done for the EUT in three axes and found the worst emission at position shown in test setup photos.

Frequency (MHz)	Distance (Meters)	Radiated (dBµV/m)	Radiated (µV/m)
0.009-0.49	3	20log(2400/F(KHz))+40log(300/3)	2400/F(KHz)
0.49-1.705	3	20log(24000/F(KHz))+ 40log(30/3)	24000/F(KHz)
1.705-30	3	20log(30)+ 40log(30/3)	30
30-88	3 C V	40.0	100
88-216	3	43.5	150
216-960	3	46.0	200
Above 960	3	54.0	500

Shenzhen CTA Testing Technology Co., Ltd.


CTATESTING

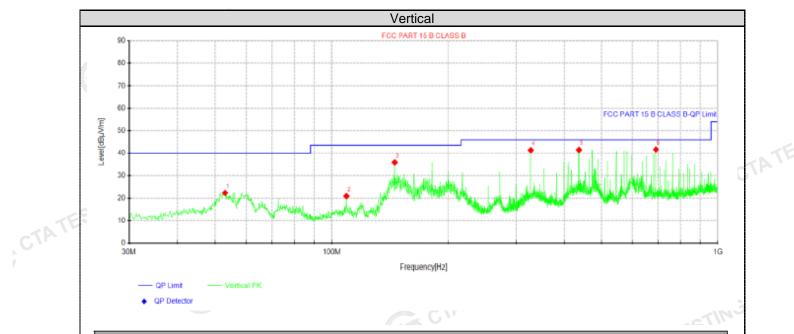
TEST RESULTS

Remark:

- This test was performed with EUT in X, Y, Z position and the worse case was found when EUT in X 1. position.
- 2. All three channels (lowest/middle/highest) of each mode were measured below 1GHz and recorded worst case at 802.11b low channel.
- Radiated emission test from 9 KHz to 10th harmonic of fundamental was verified, and no emission found 3. except system noise floor in 9 KHz to 30MHz and not recorded in this report.
- We tested all models and recorded in the report that the worst case was model AK-3820. 4.

Suspected Data List

CTATE


NO.	Freq.	Reading	Level	Factor	Limit	Margin	Height	Angle	Polarity		
NO.	[MHz]	[dBµV]	[dBµV/m]	[dB/m]	[dBµV/m]	[dB]	[cm]	[°]	rolanty		
1	50.37	26.74	15.57	-11.17	40.00	24.43	100	360	Horizontal		
2	163.617	44.17	28.66	-15.51	43.50	14.84	100	3	Horizontal		
3	272.742	49.58	38.01	-11.57	46.00	7.99	100	241	Horizontal		
4	400.055	50.93	40.84	-10.09	46.00	5.16	100	360	Horizontal		
5	472.805	49.33	39.98	-9.35	46.00	6.02	100	193	Horizontal		
6	690.933	45.38	40.22	-5.16	46.00	5.78	100	79	Horizontal		

Note:1).Level (dBµV/m)= Reading (dBµV)+ Factor (dB/m)

2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB)

3). Margin(dB) = Limit (dB μ V/m) - Level (dB μ V/m)

CTATE

Suspected Data List											
NO.	Freq.	Reading	Level	Factor	Limit	Margin	Height	Angle	Polarity		
NO.	[MHz]	[dBµV]	[dBµV/m]	[dB/m]	[dBµV/m]	[dB]	[cm]	[°]	Folanty		
1	53.1588	33.74	22.34	-11.40	40.00	17.66	100	0	Vertical		
2	109.055	34.15	20.87	-13.28	43.50	22.63	100	5	Vertical		
3	145.43	51.50	35.96	-15.54	43.50	7.54	100	282	Vertical		
4	327.305	52.22	41.34	-10.88	46.00	4.66	100	97	Vertical		
5	436.308	51.33	41.50	-9.83	46.00	4.50	100	73	Vertical		
6	690.933	46.82	41.66	-5.16	46.00	4.34	100	214	Vertical		

Note:1).Level ($dB\mu V/m$) = Reading ($dB\mu V$)+ Factor (dB/m)

2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB)

3). Margin(dB) = Limit (dB μ V/m) - Level (dB μ V/m)

CTATESTING

For 1GHz to 25GHz

Note:

- 1. 802.11b/802.11g/802.11n (H20) Mode all have been tested, only worse case 802.11b mode is reported
- 2. We tested all models and recorded in the report that the worst case was model AK-3820.

C V				(above	1GHz)					
Freque	ncy(MHz)	:	2412		Pola	Polarity:		HORIZONTAL		
Frequency (MHz)	-	sion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)	
4824.00	61.64	PK	74	12.36	66.00	32.4	5.11	41.87	-4.36	
4824.00	45.16	AV	54	8.84	49.52	32.4	5.11	41.87	-4.36	
7236.00			74	19.64	54.99	36.58	6.43	43.64	-0.63	
7236.00	7236.00 43.43 AV		54	10.57	44.06	36.58	6.43	43.64	-0.63	
rES !!										

Freque	ncy(MHz)	:	2412		Polarity:		VERTICAL		
Frequency (MHz)		sion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4824.00	59.70	PK	74	14.30	64.06	32.4	5.11	41.87	-4.36
4824.00	43.29	AV	54	10.71	47.65	32.4	5.11	41.87	-4.36
7236.00	52.61	PK	74	21.39	53.24	36.58	6.43	43.64	-0.63
7236.00	41.74	AV	54	12.26	42.37	36.58	6.43	43.64	-0.63
								1	

Freque	ncy(MHz)	:	2437		Polarity:		HORIZONTAL		
Frequency (MHz)	Emis Lev (dBu)	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4874.00	60.95	PK	74	13.05	64.90	32.56	5.34	41.85	-3.95
4874.00	44.62	AV	54	9.38	48.57	32.56	5.34	41.85	-3.95
7311.00	53.31	PK	74 G	20.69	53.67	36.54	6.81	43.71	-0.36
7311.00	42.83	AV	54	11.17	43.19	36.54	6.81	43.71	-0.36

y(MHz):		2437		Polarity:		VERTICAL		
Leve	el	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
58.99	PK	74	15.01	62.94	32.56	5.34	41.85	-3.95
2.86	AV	54 G	11.14	46.81	32.56	5.34	41.85	-3.95
51.54	PK	~ 574	22.46	51.90	36.54	6.81	43.71	-0.36
1.36	AV	54	12.64	41.72	36.54	6.81	43.71	-0.36
	Emiss Leve (dBuV) 8.99 2.86 1.54	Emission Level (dBuV/m) 8.99 PK 2.86 AV 1.54 PK	Emission Level (dBuV/m) Limit (dBuV/m) 8.99 PK 74 2.86 AV 54 1.54 PK 74	Emission Level (dBuV/m) Limit (dBuV/m) Margin (dB) 8.99 PK 74 15.01 2.86 AV 54 11.14 1.54 PK 74 22.46	Emission Level (dBuV/m) Limit (dBuV/m) Margin (dB) Raw Value (dBuV) 8.99 PK 74 15.01 62.94 2.86 AV 54 11.14 46.81 1.54 PK 74 22.46 51.90	Emission Level (dBuV/m) Limit (dBuV/m) Margin (dB) Raw Value (dBuV) Antenna Factor (dB/m) 8.99 PK 74 15.01 62.94 32.56 2.86 AV 54 11.14 46.81 32.56 1.54 PK 74 22.46 51.90 36.54	Emission Level (dBuV/m) Limit (dBuV/m) Margin (dB) Raw Value (dBuV) Antenna Factor (dBuV) Cable Factor (dB) 8.99 PK 74 15.01 62.94 32.56 5.34 2.86 AV 54 11.14 46.81 32.56 5.34 1.54 PK 74 22.46 51.90 36.54 6.81	Emission Level (dBuV/m) Limit (dBuV/m) Margin (dB) Raw (dB) Antenna Value (dBuV) Cable Factor (dB/m) Pre- amplifier (dB) 8.99 PK 74 15.01 62.94 32.56 5.34 41.85 2.86 AV 54 11.14 46.81 32.56 5.34 41.85 1.54 PK 74 22.46 51.90 36.54 6.81 43.71

Freque	ncy(MHz)	:	2462		Polarity:		HORIZONTAL		
Frequency (MHz)	Le	sion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4924.00	60.33	PK	74	13.67	63.79	32.73	5.64	41.83	-3.46
4924.00	43.62	AV	54	10.38	47.08	32.73	5.64	41.83	-3.46
7386.00			74	21.64	52.42	36.5	7.23	43.79	-0.06
7386.00			54	11.77	42.29	36.5	7.23	43.79	-0.06

Freque	ncy(MHz)	:	2462		Polarity:		VERTICAL		
Frequency (MHz)	-	sion vel V/m)	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
4924.00	58.05	PK	74	15.95	61.51	32.73	5.64	41.83	-3.46
4924.00	41.88	AV	54	12.12	45.34	32.73	5.64	41.83	-3.46
7386.00	50.57	PK	74	23.43	50.63	36.5	7.23	43.79	-0.06
7386.00	40.62	PK	54	13.38	40.68	36.5	7.23	43.79	-0.06

 Shenzhen CTA Testing Technology Co., Ltd.

 Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

 Tel:+86-755 2322 5875

 E-mail:cta@cta-test.cn

- 1) Emission level (dBuV/m) = Meter Reading+ antenna Factor+ cable loss- preamp factor.
- 2) Margin value = Limits-Emission level.
- 3) -- Mean the PK detector measured value is below average limit.
- 4) The other emission levels were very low against the limit.
- 5) RBW1MHz VBW3MHz Peak detector is for PK value; RBW 1MHz VBW10Hz Peak detector is for AV value.

Results of Band Edges Test (Radiated)

Note:

Freque	ncy(MHz)	:	24	12	Polarity:		HORIZONTAL		
Frequency (MHz)	Emis Lev (dBu)	sion vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2390.00	61.43	PK	74	12.57	71.85	27.42	4.31	42.15	-10.42
2390.00	43.14	AV	54	10.86	53.56	27.42	4.31	42.15	-10.42
Freque	ncy(MHz)	:	24	12	Pola	arity:		VERTICAL	•
Frequency (MHz)	Emis Lev (dBu)	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2390.00	59.06	ΡK	74	14.94	69.48	27.42	4.31	42.15	-10.42
2390.00	41.58	AV	54	12.42	52.00	27.42	4.31	42.15	-10.42
Freque	ncy(MHz)	:	2462		Polarity:		HORIZONTAL		
Frequency (MHz)	Emis Lev (dBu)	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2483.50	60.13	PK	74	13.87	70.24	27.7	4.47	42.28	-10.11
2483.50	42.08	AV	54	11.92	52.19	27.7	4.47	42.28	-10.11
Freque	ncy(MHz)	:	24	62	Pola	arity:		VERTICAL	
Frequency (MHz)	Emis Lev (dBu)	vel	Limit (dBuV/m)	Margin (dB)	Raw Value (dBuV)	Antenna Factor (dB/m)	Cable Factor (dB)	Pre- amplifier (dB)	Correction Factor (dB/m)
2483.50	58.67	PK	74	15.33	68.78	27.7	4.47	42.28	-10.11
2483.50	40.81	AV	54	13.19	50.92	27.7	4.47	42.28	-10.11

Note:

1) Emission level (dBuV/m) = Meter Reading+ antenna Factor+ cable loss- preamp factor.

2) Margin value = Limits-Emission level.

3) -- Mean the PK detector measured value is below average limit.

4) The other emission levels were very low against the limit.

CTATESTING 5) RBW1MHz VBW3MHz Peak detector is for PK value; RBW 1MHz VBW10Hz Peak detector is for AV value.

4.3 Maximum Peak Conducted Output Power

Limit

The Maximum Peak Output Power Measurement is 30dBm.

Test Procedure

GTA CTATE Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the power sensor.

Test Configuration CTATES

Test Results

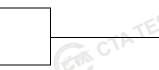
Туре	Channel	Output power PK (dBm)	Limit (dBm)	Result
	01	14.54		
802.11b	06	14.09	30.00	Pass
TING	11	12.85		
TATES	01	13.77		
802.11g	06	13.52	30.00	Pass
	11 C	12.50	GTING	
	01	13.77	TATES	
802.11n(HT20)	06	13.34	30.00	Pass
	11	12.34		C
NG				G

Note:

- Measured output power at difference data rate for each mode and recorded worst case for each mode. 1)
- Test results including cable loss. 2)
- 3) Worst case data at 1Mbps at IEEE 802.11b; 6Mbps at IEEE 802.11g; 6.5Mbps at IEEE 802.11n HT20; CTA TESTIN

4.4 **Power Spectral Density**

Limit


For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

Test Procedure

- 1. Use this procedure when the maximum peak conducted output power in the fundamental emission is used to demonstrate compliance.
- 2. Set the RBW \geq 3 kHz.
- 3. Set the VBW \geq 3× RBW.
- CTA TESTING 4. Set the span to 1.5 times the DTS channel bandwidth.
- 5. Detector = peak.
- Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Use the peak marker function to determine the maximum power level.
- 10. If measured value exceeds limit, reduce RBW (no less than 3 kHz) and repeat.
- 11. The resulting peak PSD level must be 8dBm.

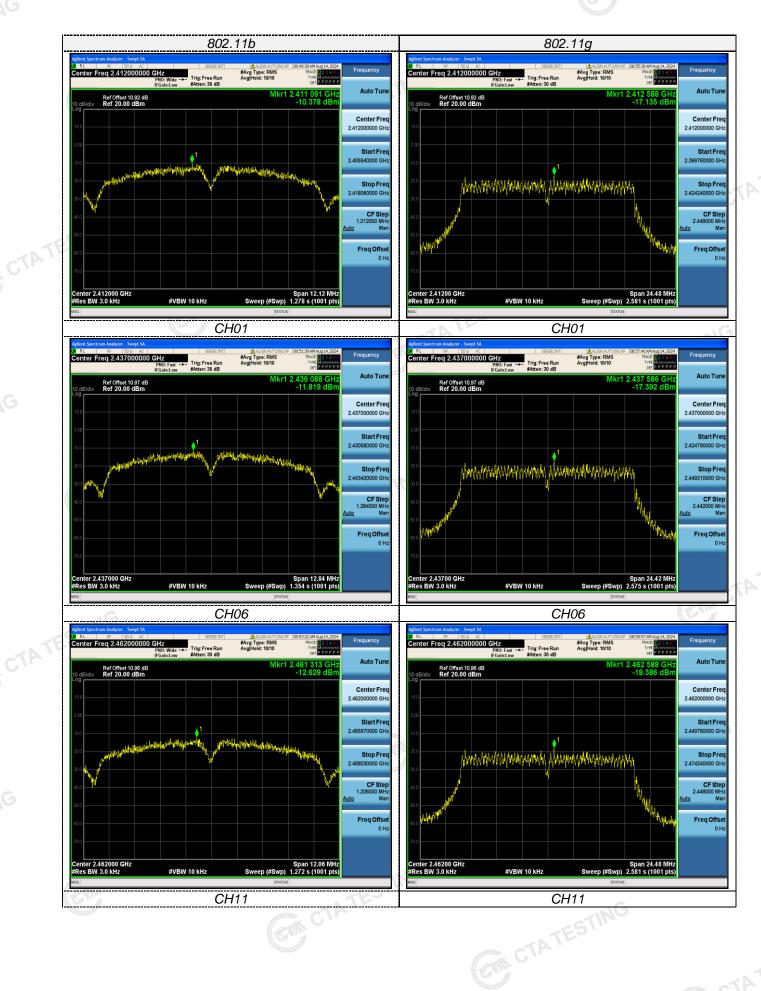
Test Configuration

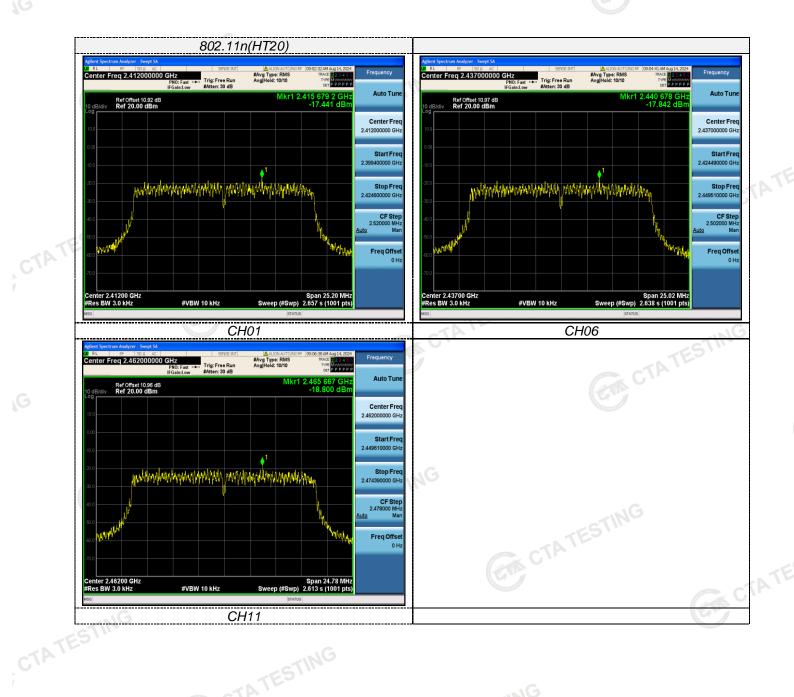
CTA TESTING SPECTRUM ANALYZER

Test Results

Туре	Channel	Power Spectral Density (dBm/3KHz)	Limit (dBm/3KHz)	Result	
5	01	-10.38			
802.11b	06	Joint June 2017		Pass	
	11-5	-12.63			
	01	-17.14	JNG		
802.11g	06	-17.39	8.00	Pass	
	11	-18.39		-NG	
	01	-17.44		STIN	
802.11n(HT20)	06	-17.84	8.00	Pass	
	11	-18.80		GVE	

Note:


Measured peak power spectrum density at difference data rate for each mode and recorded worst case 1) for each mode.


- Test results including cable loss; 2)
- Worst case data at 1Mbps at IEEE 802.11b; 6Mbps at IEEE 802.11g; 6.5Mbps at IEEE 802.11n HT20; 3)

Please refer to following plots;

Shenzhen CTA Testing Technology Co., Ltd.

Page 22 of 59

4.5 6dB Bandwidth

<u>Limit</u>

For digital modulation systems, the minimum 6 dB bandwidth shall be at least 500 kHz STING

Test Procedure

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 100 KHz RBW and 300 KHz VBW. The 6dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 6dB.

Test Configuration

Test Results

Test Results		GTA CTATES!		TATESTING
Туре	Channel	6dB Bandwidth (MHz)	Limit (KHz)	Result
	01	8.080	To an and the second second	
802.11b	06	8.560	≥500	Pass
GTIN	11	8.040		
TES	01	16.320		
802.11g	06	16.280	≥500	Pass
S	11	16.320		
	01 C	16.800	STINC	
802.11n(HT20)	06	16.680	≥500	Pass
	11	16.520	G	

Note:

Measured peak power spectrum density at difference data rate for each mode and recorded worst case 1) for each mode.

2) Test results including cable loss;

3) Worst case data at 1Mbps at IEEE 802.11b; 6Mbps at IEEE 802.11g; 6.5Mbps at IEEE 802.11n HT20;

Please refer to following plots;

Page 25 of 59

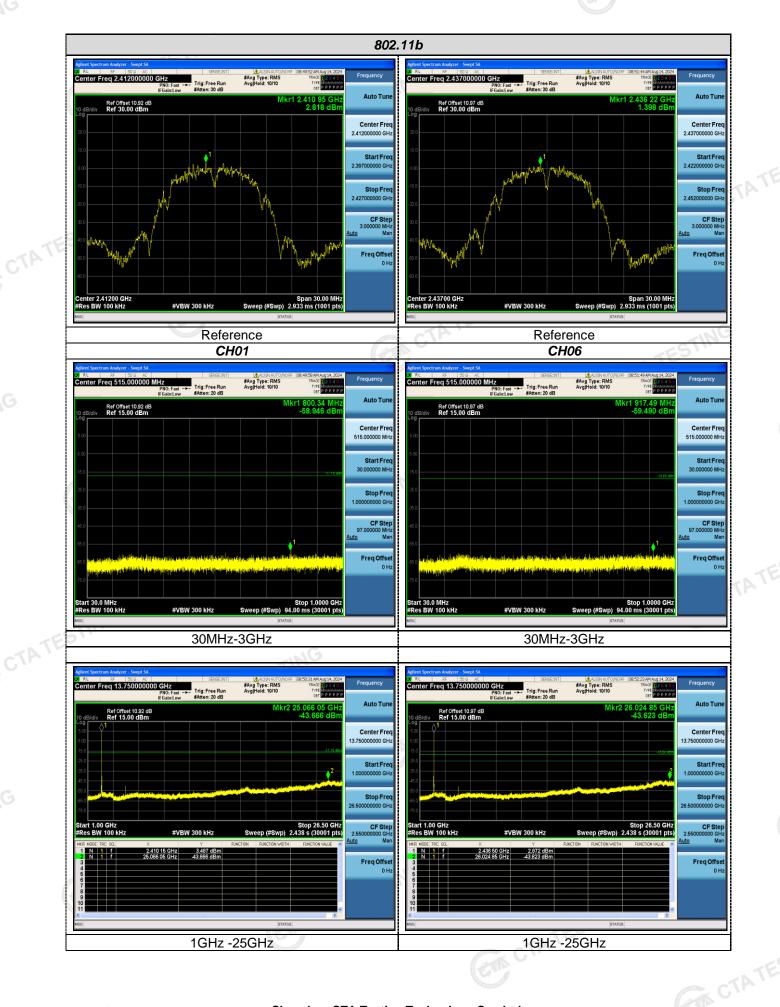
Out-of-band Emissions 4.6

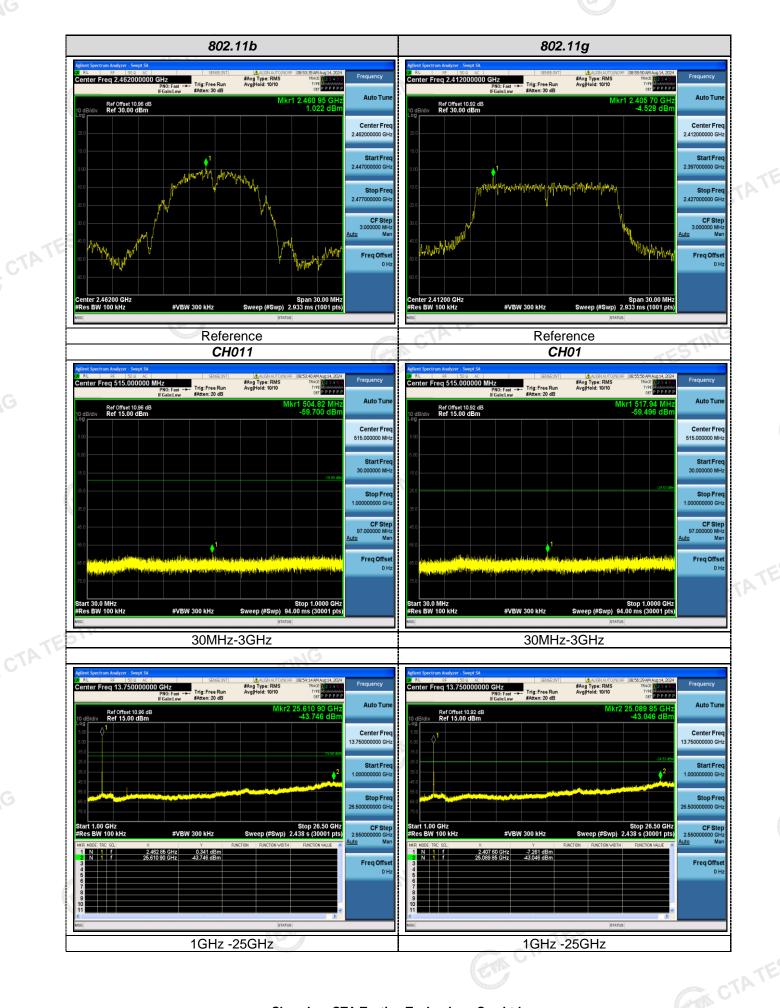
Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, pro-vided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter com-plies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required.

Test Procedure

Connect the transmitter output to spectrum analyzer using a low loss RF cable, and set the spectrum analyzer to RBW=100 kHz, VBW= 300 kHz, peak detector, and max hold. Measurements utilizing these setting are GTA CTATESTING made of the in-band reference level, bandedge and out-of-band emissions.


Test Configuration


Test Results

Remark: The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandage measurement data. And record the worst data in the report.

Test plot as follows: CTATESTING

Page 29 of 59

