

Shenzhen Toby Technology Co., Ltd.

Report No.: TBR-C-202403-0376-21

Page: 1 of 30

Radio Test Report

Report No. : TBR-C-202403-0376-21

Applicant: AZ Outstanding Co.Ltd

Equipment Under Test (EUT)

EUT Name : Smart Lock

Model No. : FX02

Series Model No. : ----

Brand Name : Hhuintell, Klwenas Maec

Sample ID : HC-C-202403-0376-2-01

Receipt Date : 2024-04-03

Test Date : 2024-04-03 to 2024-04-26

Issue Date : 2024-04-26

Standards : FCC Part 15, Subpart C 15.225

Test Method : ANSI C63.10: 2013

Conclusions : PASS

In the configuration tested, the EUT complied with the standards specified above.

Test By : Mike Yan

Reviewed By : Henry hunning

Approved By : WAW SV

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in the report.

TB-RF-074-1.0

Report No.: TBR-C-202403-0376-21 Page: 2 of 30

Contents

CON	NTENTS	2
1.	GENERAL INFORMATION ABOUT EUT	5
	1.1 Client Information	5
	1.2 General Description of EUT (Equipment Under Test)	5
	1.3 Block Diagram Showing the Configuration of System Tested	
	1.4 Description of Support Units	
	1.5 Description of Test Mode	7
	1.6 Description of Test Software Setting	8
	1.7 Measurement Uncertainty	8
	1.8 Test Facility	9
2.	TEST SUMMARY	10
3.	TEST SOFTWARE	10
4.	TEST EQUIPMENT AND TEST SITE	11
5.	CONDUCTED EMISSION TEST	
	5.1 Test Standard and Limit	12
	5.2 Test Setup	
	5.3 Test Procedure	
	5.4 Deviation From Test Standard	
	5.5 EUT Operating Mode	13
	5.6 Test Data	13
6.	RADIATED EMISSION TEST	14
	6.1 Test Standard and Limit	14
	6.2 Test Setup	14
	6.3 Test Procedure	15
	6.4 Deviation From Test Standard	15
	6.5 EUT Operating Condition	15
	6.6 Test Data	15
7.	ELECTRIC FIELD STRENGTH OF FUNDAMENTAL AND OUTSIDE THE	
ALL	OCATED BANDS	
	7.1 Test Standard and Limit	16
	7.2 Test Setup	17
	7.3 Test Procedure	
	7.4 Deviation From Test Standard	
	7.5 EUT Operating Condition	
	7.6 Test Data	
8.	OCCUPIED BANDWIDTH TEST	
	8.1 Test Standard and Limit	18
	8.2 Test Setup	18
	8.3 Test Procedure	18

Report No.: TBR-C-202403-0376-21 Page: 3 of 30

8.4 Deviation From Test Standard	18
8.5 EUT Operating Condition	18
8.6 Test Data	18
9. FUNDAMENTAL FREQUENCY TOLERANCE	19
9.1 Test Standard and Limit	19
9.2 Test Setup	19
9.3 Test Procedure	19
9.4 Deviation From Test Standard	19
9.5 EUT Operating Condition	
9.6 Test Data	19
ATTACHMENT A CONDUCTED EMISSION TEST DATA	20
ATTACHMENT CELECTRIC FIELD STRENGTH OF FUNDAMENTAL AND OUTS	IDE THE
ALLOCATED BANDS	24
ATTACHMENT D BANDWIDTH TEST DATA	29
ATTACHMENT EFUNDAMENTAL FREQUENCY TOLERANCE	30

Report No.: TBR-C-202403-0376-21 Page: 4 of 30

Revision History

Report No.	Version	Description	Issued Date
TBR-C-202403-0376-21	Rev.01	Initial issue of report	2024-04-26
	3 40 25		MUB.
3 100			
TO THE REAL PROPERTY.	20117		TODA .
		0000	
COLUMN TO THE REAL PROPERTY AND ADDRESS OF THE PERTY ADD	2 400		MIB
OBJ TO	33	TOP STORY	10 33
	100	TO TO TO THE ROLL OF THE PARTY	
The same	MOBY	TODY TO	Up Town
3 VERMEN		The state of the s	N W

Page: 5 of 30

1. General Information about EUT

1.1 Client Information

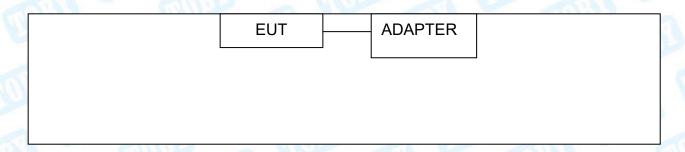
Applicant : AZ Outstanding Co.Ltd		AZ Outstanding Co.Ltd
Address : 213 w ramona blvd, San Gabriel, CA9177		213 w ramona blvd, San Gabriel, CA9177
Manufacturer : Guangdong Olang Security Technology		Guangdong Olang Security Technology Co.Ltd
Address : No.1 Plant, Guangfeng Industrial Zo Zhongshan, Guangdong, China		No.1 Plant,Guangfeng Industrial Zone, Liexiyi Community, Xiaolan, Zhongshan,Guangdong,China

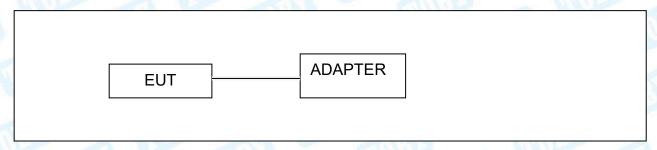
1.2 General Description of EUT (Equipment Under Test)

EUT Name	÷	Smart Lock			
HVIN/Models No.		FX02			
Model Different	:	NA			
W A		Operation Frequency:	NFC: 13.56MHz		
Product		Number of Channel:	1 channel		
Description		Antenna Gain:	1.2dBi PCB Antenna		
		Modulation Type:	OOK		
Power Rating	N.	USB Inpot DC 5V			
Battery		6V Battery			
Software Version	Ŀ	1.0.2			
Hardware Version					

Remark:

- (1) The antenna gain and USB cable provided by the applicant, the verified for the RF conduction test and adapter provided by TOBY test lab.
- (2) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.
- (3) Antenna information provided by the applicant.




Page: 6 of 30

1.3 Block Diagram Showing the Configuration of System Tested

Conducted Test

Radiated Test

1.4 Description of Support Units

	Equipment Information							
Name	Name Model FCC ID/VOC Manufacturer Used "√"							
	- A N		Tan B					
	Cable Information							
Number Shielded Type		Ferrite Core	Length	Note				
Cable 1	NO	NO	0.2M	Accessory				

Page: 7 of 30

1.5 Description of Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned follow was evaluated respectively.

For Conducted Test					
Final Test Mode Description					
Mode 1 USB Charging + NFC TX Mode					
	For Radiated Test				
Final Test Mode Description					
Mode 3 NFC TX Mode					

Note:

(1) For all test, we have verified the construction and function in typical operation. And all the test modes were carried out with the EUT in transmitting operation in maximum power with all kinds of data rate.

According to ANSI C63.10 standards, the measurements are performed at the highest, middle, lowest available channels, and the worst case data rate as follows:

TX Mode: Transmitting mode.

- (2) During the testing procedure, the continuously transmitting with the maximum power mode was programmed by the customer.
- (3) The EUT is considered a Mobile unit; in normal use it was positioned on X-plane. The worst case was found positioned on X-plane. Therefore only the test data of this X-plane was used for radiated emission measurement test.

Page: 8 of 30

1.6 Description of Test Software Setting

During testing channel& Power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of RF setting.

Test Software Version	N/A
Frequency	13.56 MHz
NFC	DEF

1.7 Measurement Uncertainty

The reported uncertainty of measurement y \pm U, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

Test Item	Parameters	Expanded Uncertainty (U _{Lab})
Conducted Emission	Level Accuracy: 9kHz~150kHz 150kHz to 30MHz	$\pm 3.50~\mathrm{dB}$ $\pm 3.10~\mathrm{dB}$
Radiated Emission	Level Accuracy: 9kHz to 30 MHz	±4.60 dB
Radiated Emission	Level Accuracy: 30MHz to 1000 MHz	±4.50 dB
Radiated Emission	Level Accuracy: Above 1000MHz	±4.20 dB

Page: 9 of 30

1.8 Test Facility

The testing report were performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at 1A/F., Bldg.6, Yusheng Industrial Zone, The National Road No.107 Xixiang Section 467, Xixiang, Bao'an, Shenzhen, Guangdong, China. At the time of testing, the following bodies accredited the Laboratory:

CNAS (L5813)

The Laboratory has been accredited by CNAS to ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories for the competence in the field of testing. And the Registration No.: CNAS L5813.

A2LA Certificate No.: 4750.01

The laboratory has been accredited by American Association for Laboratory Accreditation(A2LA) to ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories for the technical competence in the field of Electrical Testing. And the A2LA Certificate No.: 4750.01.FCC Accredited Test Site Number: 854351. Designation Number: CN1223.

IC Registration No.: (11950A)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A. CAB identifier: CN0056.

Page: 10 of 30

2. Test Summary

FCC Part 15 Subpart C(15.225)						
Standard Section FCC	Test Item	Test Sample(s)	Judgment	Remark		
15.207(a)	Conducted Emission	HC-C-202403-0376-2-01#	PASS	N/A		
15.209(a)&15.225	Radiated emissions	HC-C-202403-0376-2-01#	PASS	N/A		
15.225(a)	Fundamental field strength limit	HC-C-202403-0376-2-01#	PASS	N/A		
15.225(e)	Fundamental frequency tolerance	HC-C-202403-0376-2-01#	PASS	N/A		
15.225	Band edge compliance	HC-C-202403-0376-2-01#	PASS	N/A		
15.215(c)	Occupied bandwidth	HC-C-202403-0376-2-01#	PASS	N/A		

Note: N/A is an abbreviation for Not Applicable.

3. Test Software

Test Item	Test Software	Manufacturer	Version No.
Conducted Emission	EZ-EMC	EZ	CDI-03A2
Radiation Emission	EZ-EMC	EZ	FA-03A2RE
RF Conducted Measurement	MTS-8310	MWRFtest	V2.0.0.0
RF Test System	JS1120	Tonscend	V2.6.88.0336

Report No.: TBR-C-202403-0376-21 Page: 11 of 30

4. Test Equipment and Test Site

Test Site							
No.	Test Site	Manufactu rer	Specification	Used			
TB-EMCSR001	Shielding Chamber #1	YIHENG	7.5*4.0*3.0 (m)	√			
TB-EMCSR002	Shielding Chamber #2	YIHENG	8.0*4.0*3.0 (m)				
TB-EMCCA001	3m Anechoic Chamber #A	ETS	9.0*6.0*6.0 (m)	X			
TB-EMCCB002	3m Anechoic Chamber #B	YIHENG	9.0*6.0*6.0 (m)	√			

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
EMI Test Receiver	Rohde & Schwarz	ESCI	100321	Jun. 20, 2023	Jun. 19, 2024
RF Switching Unit	Compliance Direction Systems Inc	RSU-A4	34403	Jun. 20, 2023	Jun. 19, 2024
AMN	SCHWARZBECK	NNBL 8226-2	8226-2/164	Jun. 20, 2023	Jun. 19, 2024
LISN	Rohde & Schwarz	ENV216	101131	Jun. 20, 2023	Jun. 19, 2024
Radiation Emission	Test(B Site)				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	N9020A	MY49100060	Aug. 30, 2023	Aug. 29, 2024
Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102197	Jun. 20, 2023	Jun. 19, 2024
EMI Test Receiver	Rohde & Schwarz	ESU-8	100472/008	Feb. 23, 2024	Feb.22, 2025
Bilog Antenna	SCHWARZBECK	VULB 9168	1225	Nov. 13, 2023	Nov. 12, 2025
Horn Antenna	SCHWARZBECK	BBHA 9120 D	2463	Jun. 26, 2022	Jun.25, 2024
Horn Antenna	SCHWARZBECK	BBHA 9170	1118	Feb. 27, 2024	Feb.26, 2026
Loop Antenna	SCHWARZBECK	FMZB 1519 B	1519B-059	Jun. 26, 2022	Jun.25, 2024
HF Amplifier	Tonscend	TAP9E6343	AP21C806117	Aug. 30, 2023	Aug. 29, 2024
HF Amplifier	Tonscend	TAP051845	AP21C806141	Aug. 30, 2023	Aug. 29, 2024
HF Amplifier	Tonscend	TAP0184050	AP21C806129	Aug. 30, 2023	Aug. 29, 2024
Pre-amplifier	HP	8449B	3008A00849	Feb. 23, 2024	Feb.22, 2025
Highpass Filter	CD	HPM-6.4/18G	-	N/A	N/A
Highpass Filter	CD	HPM-2.8/18G		N/A	N/A
Highpass Filter	XINBO	XBLBQ-HTA67(8-25G)	22052702-1	N/A	N/A
Antenna Condi	ucted Emission				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102197	Jun. 20, 2023	Jun. 19, 2024
MXA Signal Analyzer	Agilent	N9020A	MY49100060	Aug. 30, 2023	Aug. 29, 2024
Spectrum Analyzer	KEYSIGHT	N9020B	MY60110172	Aug. 30, 2023	Aug. 29, 2024
	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO26	Aug. 30, 2023	Aug. 29, 2024
DE Dower Caraca	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO29	Aug. 30, 2023	Aug. 29, 2024
RF Power Sensor	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO31	Aug. 30, 2023	Aug. 29, 2024
a True	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO33	Aug. 30, 2023	Aug. 29, 2024
RF Control Unit	Tonsced	JS0806-2	21F8060439	Aug. 30, 2023	Aug. 29, 2024
Power Control Box	Tonsced	JS0806-4ADC	21C8060387	N/A	N/A

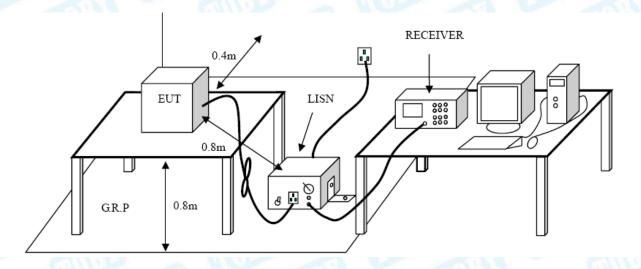
Page: 12 of 30

5. Conducted Emission Test

5.1 Test Standard and Limit

5.1.1Test Standard FCC Part 15.207

5.1.2 Test Limit


Conducted Emission Test Limit

Екопионом	Maximum RF Line Voltage (dBμV)				
Frequency	Quasi-peak Level	Average Level			
150kHz~500kHz	66 ~ 56 *	56 ~ 46 *			
500kHz~5MHz	56	46			
5MHz~30MHz	60	50			

Notes:

- (1) *Decreasing linearly with logarithm of the frequency.
- (2) The lower limit shall apply at the transition frequencies.
- (3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

5.2 Test Setup

Page: 13 of 30

5.3 Test Procedure

The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/50uH of coupling impedance for the measuring instrument.

Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.

I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.

LISN at least 80 cm from nearest part of EUT chassis.

The bandwidth of EMI test receiver is set at 9 kHz, and the test frequency band is from 0.15MHz to 30MHz.

5.4 Deviation From Test Standard

No deviation

5.5 EUT Operating Mode

Please refer to the description of test mode.

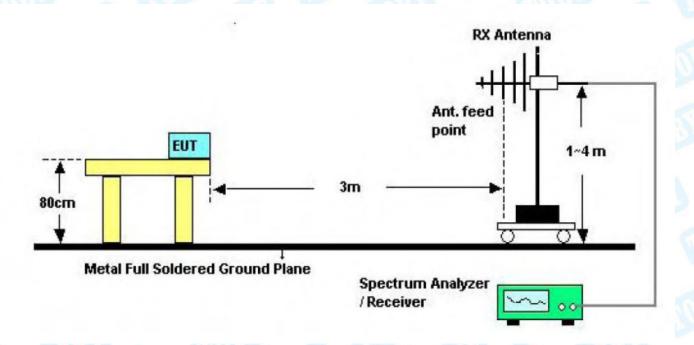
5.6 Test Data

Please refer to the Attachment A.

Page: 14 of 30

6. Radiated Emission Test

6.1 Test Standard and Limit


6.1.1 Test Standard FCC Part 15.209(a)&15.225

6.1.2 Test Limit

Radiated Emission Limits (30MHz~1000MHz)

Frequency Range (MHz)	E-field Strength Limit @ 3m (mV/m)	E-field Strength Limit @ 3m (dBµV/m)	E-field Strength Limit @ 10m (dBµV/m)
30-88	100	40	30
88-216	150	43.5	33.5
216-960	200	46	36
960-1000	500	54	44

6.2 Test Setup

Below 1000MHz Test Setup

Page: 15 of 30

6.3 Test Procedure

(1) The measuring distance of 3m shall be used for measurements at frequency up to 1GHz and above 1 GHz. The EUT was placed on a rotating 0.8m high above ground, the table was rotated 360 degrees to determine the position of the highest radiation.

- (2) The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.
- (3) The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- (4) If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Bellow 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.
- (5) Testing frequency range below 1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection.
- (6) For the actual test configuration, please see the test setup photo.

6.4 Deviation From Test Standard

No deviation

6.5 EUT Operating Condition

The Equipment Under Test was set to Continual Transmitting in maximum power.

6.6 Test Data

Please refer to the Attachment B.

Page: 16 of 30

7. Electric Field Strength of Fundamental and Outside the Allocated bands

7.1 Test Standard and Limit

7.1.1 Test Standard FCC Part 15.225(a) FCC Part 15.225

7.1.2 Test Limit

Electric Field Strength of Fundamental

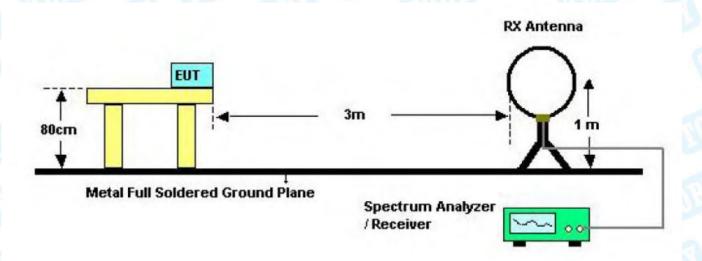
Frequency Range (MHz)	E-field Strength Limit @ 30m	E-field Strength Limit @ 3m	
	(μ V/m)	(dBµV/m)	
0.009-0.490	2400/F(kHz)	129-94	
0.490-1.705	24000/F(kHz)	74-63	
1.705-30	30	70	

Note: Where the limits have been defined at one distance, and a signal level measured at another, the limits have been extrapolated using the following formula: $\text{Extrapolation(dB)} = 40 \log_{10} \left(\text{Measurement Distance/Specification Distance} \right)$

Outside the Allocated bands

Francis Banga (MIII)	E-field Strength Limit @ 30 m	E-field Strength Limit @ 3 m	
Frequency Range (MHz)	(μ V/m)	(dBµV/m)	
13.560 ± 0.007	+15,848	124	
13.410 to 13.553	+334	90	
13.567 to 13.710	+334	90	
13.110 to 13.410	+106	81	
13.710 to 14.010	+106	01	

Note: Where the limits have been defined at one distance, and a signal level measured at another, the limits have been extrapolated using the following formula:


Extrapolation(dB) = $40\log_{10}$ (Measurement Distance/Specification Distance)

Page: 17 of 30

7.2 Test Setup

7.3 Test Procedure

The transmitter carrier output levels (E-Field) from the EUT are measured in a semi-anechoic chamber. The EUT is placed on a non-conductive stand of 80cm high, and at a measurement distance of 3m from the receiving antenna. The center of the receiving loop antenna is 1.0 meter above the ground. The E-field is measured with a shielded loop antenna connected to a measurement receiver. Detected E-field was maximized by rotating the EUT through 360° and adjusting the receiving antenna polarizations. The maximization processes were repeated with the EUT positioned respectively in its three orthogonal axes. The measurements were performed with the peak detector and if required, the quasi-peak detector.

7.4 Deviation From Test Standard

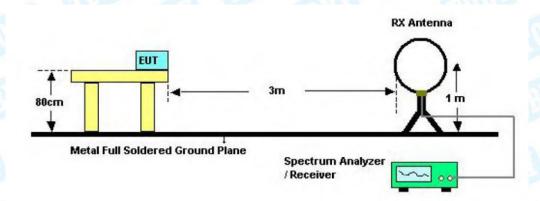
No deviation

7.5 EUT Operating Condition

The measurement of EUT is carried out under the transmit state of NFC.

7.6 Test Data

Please refer to the Attachment C.


Page: 18 of 30

8. Occupied Bandwidth Test

8.1 Test Standard and Limit

8.1.1 Test Standard FCC Part 15.215 (c)

8.2 Test Setup

8.3 Test Procedure

The EUT is turned ON and connected to measurement instrument; the center frequency of the spectrum analyzer is set to the fundamental frequency. The captured power is measured and recorded; the measurement is repeated until all frequencies required were complete.

- 1. RBW used in the range of 1% to 5% of the anticipated emission bandwidth
- 2. Set the video bandwidth (VBW) ≥ 3 x RBW.
- 3. Detector = Peak.
- 4. Trace mode = Max Hold.
- 5. Sweep = Auto couple.
- 6. Allow the trace to stabilize.
- 7. OBW 99% function of spectrum analyzer used

8.4 Deviation From Test Standard

No deviation

8.5 EUT Operating Condition

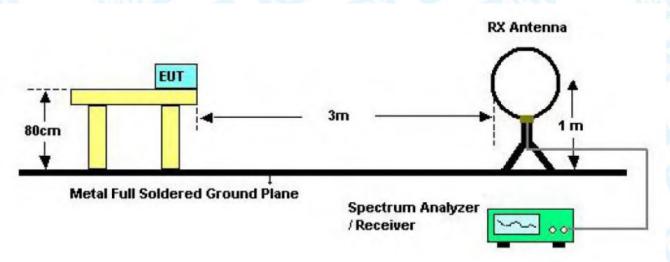
The measurement of EUT is carried out under the transmit state of NFC.

8.6 Test Data

Please refer to the Attachment D.

Page: 19 of 30

9. Fundamental Frequency Tolerance


9.1 Test Standard and Limit

9.1.1 Test Standard FCC Part 15.225 (e)

9.1.2 Test Limit

The frequency tolerance of the carrier signal shall be maintained within +/- 0.01% of the operating frequency.

9.2 Test Setup

9.3 Test Procedure

The transmitter output signal was picked up by coil antenna connected to the frequency counter. The center frequency was measured with 30Hz RBW and 1kHz span. During the test, the EUT was placed in a thermal chamber until thermal balance and lasting appropriate time.

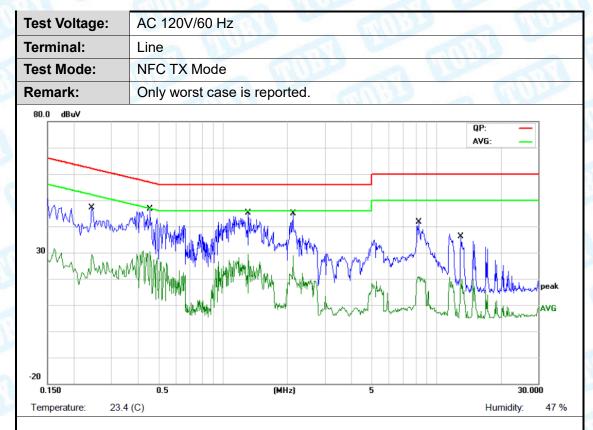
9.4 Deviation From Test Standard

No deviation

9.5 EUT Operating Condition

The EUT was set to continuously transmitting in the max power during the test.

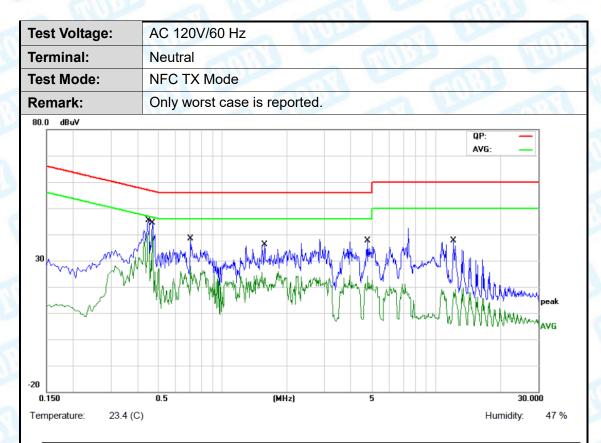
9.6 Test Data


Please refer to the Attachment E.

Page: 20 of 30

Attachment A-- Conducted Emission Test Data

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1		0.2420	9.50	9.90	19.40	62.03	-42.63	QP
2		0.2420	-1.10	9.90	8.80	52.03	-43.23	AVG
3	*	0.4540	22.01	9.69	31.70	56.80	-25.10	QP
4		0.4540	4.29	9.69	13.98	46.80	-32.82	AVG
5		1.3140	10.78	9.80	20.58	56.00	-35.42	QP
6		1.3140	-2.49	9.80	7.31	46.00	-38.69	AVG
7		2.1260	8.84	9.71	18.55	56.00	-37.45	QP
8		2.1260	-3.08	9.71	6.63	46.00	-39.37	AVG
9		8.2580	11.49	9.95	21.44	60.00	-38.56	QP
10		8.2580	-2.99	9.95	6.96	50.00	-43.04	AVG
11		13.0100	1.05	9.88	10.93	60.00	-49.07	QP
12		13.0100	-4.91	9.88	4.97	50.00	-45.03	AVG


Remark:

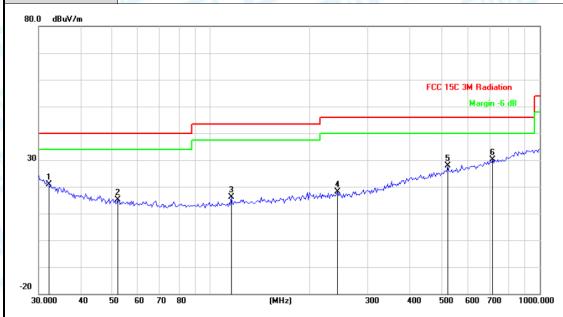
- 1. Corr. Factor (dB) = LISN Factor (dB) + Cable Loss (dB)
- 2. Margin (dB) =QuasiPeak/Average (dBuV)-Limit (dBuV)

Page: 21 of 30

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector
1	*	0.4500	21.38	9.70	31.08	56.88	-25.80	QP
2		0.4500	9.87	9.70	19.57	46.88	-27.31	AVG
3		0.4698	16.29	9.65	25.94	56.52	-30.58	QP
4		0.4698	5.92	9.65	15.57	46.52	-30.95	AVG
5		0.7098	13.81	10.17	23.98	56.00	-32.02	QP
6		0.7098	3.48	10.17	13.65	46.00	-32.35	AVG
7		1.5740	8.15	9.74	17.89	56.00	-38.11	QP
8		1.5740	-0.52	9.74	9.22	46.00	-36.78	AVG
9		4.7738	6.53	9.82	16.35	56.00	-39.65	QP
10		4.7738	-1.39	9.82	8.43	46.00	-37.57	AVG
11		12.0419	2.83	9.95	12.78	60.00	-47.22	QP
12		12.0419	-5.04	9.95	4.91	50.00	-45.09	AVG

Remark

- 1. Corr. Factor (dB) = LISN Factor (dB) + Cable Loss (dB)
- 2. Margin (dB) =QuasiPeak/Average (dBuV)-Limit (dBuV)



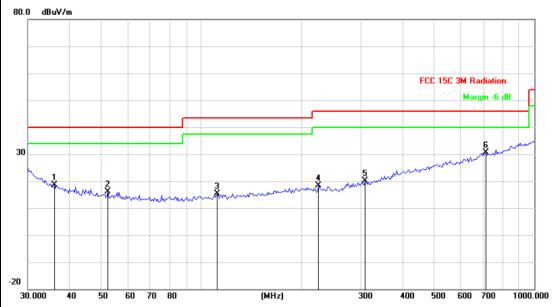
Page: 22 of 30

Attachment B-- Radiated Emission Test Data

30MHz~1GHz

Temperature:	24.3℃	Relative Humidity:	45%
Test Voltage:	DC 6V		A PROPERTY
Ant. Pol.	Horizontal	William -	a W
Test Mode:	NFC TX Mode		
Remark:	Only worst case is reported	ed.	

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		32.1795	31.64	-10.84	20.80	40.00	-19.20	peak
2		52.2079	32.92	-17.72	15.20	40.00	-24.80	peak
3		115.3205	33.75	-17.71	16.04	43.50	-27.46	peak
4		242.5253	33.27	-15.17	18.10	46.00	-27.90	peak
5		524.5541	34.75	-6.87	27.88	46.00	-18.12	peak
6	*	719.1995	33.06	-2.88	30.18	46.00	-15.82	peak

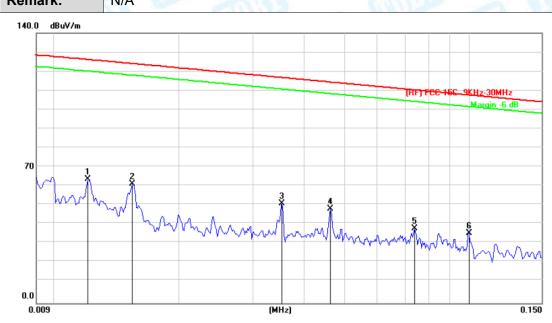

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. QuasiPeak (dB μ V/m)= Corr. (dB/m)+ Read Level (dB μ V) 3. Margin (dB) = QuasiPeak (dB μ V/m)-Limit QPK(dB μ V/m)

Page: 23 of 30

Temperature:	24.3℃	Relative Humidity:	45%			
Test Voltage:	DC 6V	and the second				
Ant. Pol.	Vertical					
Test Mode:	NFC TX Mode					
Remark:	Only worst case is reporte	ed.				

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		36.0007	32.44	-13.80	18.64	40.00	-21.36	peak
2		52.2079	33.97	-17.72	16.25	40.00	-23.75	peak
3		111.3468	33.45	-18.11	15.34	43.50	-28.16	peak
4		224.5193	33.74	-15.36	18.38	46.00	-27.62	peak
5		309.9977	33.82	-13.60	20.22	46.00	-25.78	peak
6	*	714.1734	33.52	-2.93	30.59	46.00	-15.41	peak

- Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = QuasiPeak (dBμV/m)-Limit QPK(dBμV/m)



24 of 30 Page:

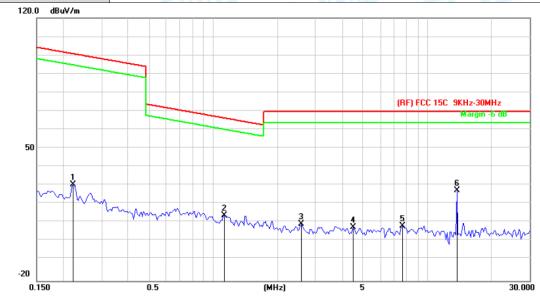
Attachment C--Electric Field Strength of Fundamental and **Outside the Allocated bands**

(1) Electric Field Strength of Fundamental

Temperature:	23.7℃	Relative Humidity:	46%
Test Voltage:	DC 6V		
Ant. Pol.	Ant. 0°		6000
Test Mode:	NFC TX Mode	The same of	
Remark:	N/A	The same	

No.	. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	0.0120	74.55	-10.30	64.25	126.30	-62.05	peak
2		0.0154	71.99	-10.29	61.70	124.13	-62.43	peak
3		0.0353	61.86	-10.24	51.62	116.90	-65.28	peak
4		0.0463	59.16	-10.22	48.94	114.54	-65.60	peak
5		0.0738	49.21	-10.48	38.73	110.48	-71.75	peak
6		0.1000	46.98	-10.60	36.38	107.84	-71.46	peak

Remark:

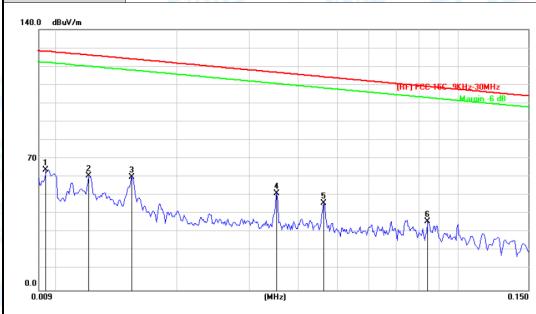

- Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = QuasiPeak (dB μ V/m)-Limit QPK(dB μ V/m)

Page: 25 of 30

ń	Temperature:	23.7℃	Relative Humidity:	46%
	Test Voltage:	DC 6V		A HULL
	Ant. Pol.	Ant. 0°		7:33
	Test Mode:	NFC TX Mode		
H	Remark:	N/A		

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		0.2220	41.92	-10.51	31.41	100.89	-69.48	peak
2		1.1233	25.90	-11.01	14.89	66.68	-51.79	peak
3		2.5671	21.27	-11.13	10.14	70.00	-59.86	peak
4		4.5015	19.82	-11.22	8.60	70.00	-61.40	peak
5		7.6464	20.60	-11.45	9.15	70.00	-60.85	peak
6	*	13.6951	40.48	-12.27	28.21	70.00	-41.79	peak

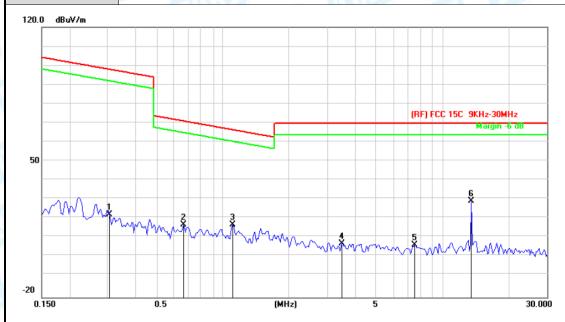
Remark:


- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 2. QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = QuasiPeak (dB μ V/m)-Limit QPK(dB μ V/m)

Page: 26 of 30

Temperature:	23.7℃	Relative Humidity:	46%
Test Voltage:	DC 6V		
Ant. Pol.	Ant. 90°		1133
Test Mode:	NFC TX Mode		
Remark:	N/A	Call District	THU!

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		0.0094	95.16	-30.70	64.46	128.43	-63.97	peak
2		0.0120	71.78	-10.30	61.48	126.30	-64.82	peak
3	*	0.0154	71.02	-10.29	60.73	124.13	-63.40	peak
4		0.0352	62.19	-10.24	51.95	116.93	-64.98	peak
5		0.0463	57.06	-10.22	46.84	114.54	-67.70	peak
6		0.0840	47.60	-10.51	37.09	109.36	-72.27	peak

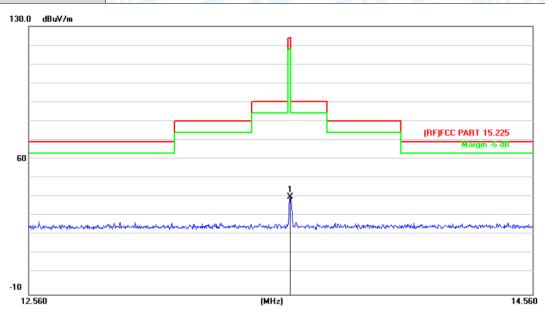

- Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = QuasiPeak (dB μ V/m)-Limit QPK(dB μ V/m)

Page: 27 of 30

Temperature:	23.7℃	Relative Humidity:	46%
Test Voltage:	DC 6V		A VILLE
Ant. Pol.	Ant. 90°		MBD -
Test Mode:	NFC TX Mode		100
Remark:	N/A		

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1		0.3050	33.47	-10.74	22.73	98.13	-75.40	peak
2		0.6611	28.37	-10.90	17.47	71.36	-53.89	peak
3		1.1112	28.49	-11.01	17.48	66.78	-49.30	peak
4		3.4906	19.18	-11.18	8.00	70.00	-62.00	peak
5		7.4859	18.53	-11.44	7.09	70.00	-62.91	peak
6	*	13.5509	42.11	-12.26	29.85	70.00	-40.15	peak

- Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = QuasiPeak (dB μ V/m)-Limit QPK(dB μ V/m)



Page: 28 of 30

(2) Test Fundamental and Outside the Allocated bands

No	o. Mk.	Freq.	Reading Level		Measure- ment	Limit	Over	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector
1	*	13.5620	52.95	-11.87	41.08	124.00	-82.92	peak

Remark:

- Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
 QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
- 3. Margin (dB) = QuasiPeak (dB μ V/m)-Limit QPK(dB μ V/m)

Page: 29 of 30

Attachment D-- Bandwidth Test Data

			<u> </u>					
Temperature:	23.4℃	TO T	Relati	ve Humi	dity:	49%		AAA
Test Voltage:	DC 6V							
Test Mode:	NFC TX N	/lode	60	MARK		3,177		
Channel Fre	quency(MHz)		-20dE	Bandwid	th(KHz)	99%	Bandwid	lth(KHz)
13	5.56			3.278			4.240)
		<u>, </u>	13.56	6 MHz				
Keysight Spectrum Analyz				asuas vuri				
RL RF Center Freq 13.5	50 Ω AC 60000 MHz		Center	SENSE:INT Freq: 13.560	000 MHz	ALIGN AUTO	Radio Std	M Apr 25, 202 I: None
		Gain:Low		ree Run : 10 dB	Avg Hole	d:>10/10	Radio Dev	vice: BTS
	#IF	Gain:Low	#/\ttel	. 10 ub			Radio De	vice. D i 3
45 antalio Bof	20 00 dBm							
15 dB/div Ref : Log	20.00 dBm					$\overline{}$		
5.00						+		
-10.0								
-25.0						 		
-40.0								
-55.0								
-70.0								
-85.0								
-100	<u> </u>							
-115								
							<u> </u>	
Center 13.56 MH: #Res BW 1 kHz	Z		#	VBW 3 kH	z			an 10 kH ep 6.2 m
Occupied Ba	andwidth			Total F	ower	-48.9	dBm	
		240 kl	Hz					
Transmit Freq	Error	78	Hz	% of O	BW Pow	er 99	9.00 %	
x dB Bandwid	th	3.278	kHz	x dB		-20.	00 dB	

Page: 30 of 30

Attachment E--Fundamental Frequency Tolerance

T		Measured		Lineit	
Temperature	Power Supply(V)	Frequency	Drift	Limit	Result
(℃)		(MHz)	%	%	
50		13.5601741	0.00128392	0.01	PASS
40		13.5601865	0.00137537	0.01	PASS
30		13.5601885	0.00139012	0.01	PASS
20	DC 6V	13.5601869	0.00137832	0.01	PASS
10	DC 6V	13.5601896	0.00139823	0.01	PASS
0		13.5601912	0.00141003	0.01	PASS
-10		13.5601836	0.00135398	0.01	PASS
-20		13.5601877	0.00138422	0.01	PASS
	Frequency	Stability Vers	us Temperati	ıre	
Temperature		Measured	Frequency	Limit	
(°C)	Power Supply(V)	Frequency	Drift	Lilling	Result
(0)		(MHz)	%	%	
	DC 4.50	13.5601856	0.00136873	0.01	PASS
20	DC 6.00	13.5601881	0.00138717	0.01	PASS
	DC 6.50	13.5601832	0.00135103	0.01	PASS

----END OF REPORT-----

