

# **RF Test Report**

# For

| Applicant Name:<br>Address:<br>EUT Name:<br>Brand Name:<br>Model Number:<br>Serial Model Number: | Shenzhen Ucalcul Technology Co., Ltd<br>401, Building A, Jiewei Industrial City Phase III, Shangmugu,<br>Pinghu Street, Longgang District, Shenzhen<br>AEROPAD<br>N/A<br>UNP200<br>UNP100, UNP207, UNP222, UA14P, UA14L, UA14R<br>Issued By |
|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Company Name:<br>Address:                                                                        | <b>BTF Testing Lab (Shenzhen) Co., Ltd.</b><br>F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park,<br>Tantou Community, Songgang Street, Bao'an District, Shenzhen,<br>China                                                    |
| Report Number:<br>Test Standards:                                                                | BTF240319R00204<br>47 CFR Part 15E                                                                                                                                                                                                          |

Test Conclusion: FCC ID: Test Date: Date of Issue: Pass 2BDJ4-UNP200 2024-03-20 to 2024-04-10 2024-04-12

Prepared By:

Date:

Approved By:

Date:

Chris Liu / Project Engine Control LAB

Ryan.CJ / EMC Manager 2024-04-12

Note: All the test results in this report only related to the testing samples. Which can be duplicated completely for the legal use with approval of applicant; it shall not be reproduced except in full without the written approval of BTF Testing Lab (Shenzhen) Co., Ltd., All the objections should be raised within thirty days from the date of issue. To validate the report, you can contact us.

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd. Page 1 of 167



### Test Report Number: BTF240319R00204

| Revision History |            |                   |  |
|------------------|------------|-------------------|--|
| Version          | Issue Date | Revisions Content |  |
| R_V0             | 2024-04-12 | Original          |  |
|                  |            |                   |  |
|                  |            |                   |  |

Note: Once the revision has been made, then previous versions reports are invalid.

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 2 of 167BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China



# Table of Contents

| 1 | INTR       | RODUCTION                                                                | 5       |
|---|------------|--------------------------------------------------------------------------|---------|
|   | 1.1        | Identification of Testing Laboratory                                     |         |
|   | 1.2        | Identification of the Responsible Testing Location                       |         |
|   | 1.3        | Announcement                                                             |         |
| 2 | PRO        | DUCT INFORMATION                                                         |         |
|   | 2.1        | Application Information                                                  |         |
|   | 2.2        | Manufacturer Information                                                 |         |
|   | 2.3<br>2.4 | Factory Information<br>General Description of Equipment under Test (EUT) | ٥٥<br>6 |
|   | 2.5        | Technical Information                                                    |         |
| 3 | SUM        | IMARY OF TEST RESULTS                                                    |         |
|   | 3.1        | Test Standards                                                           | 7       |
|   | 3.2        | Uncertainty of Test                                                      | 7       |
|   | 3.3        | Summary of Test Result                                                   | 7       |
| 4 | TEST       | T CONFIGURATION                                                          | 8       |
|   | 4.1        | Test Equipment List                                                      |         |
|   | 4.2        | Test Auxiliary Equipment                                                 |         |
|   | 4.3        | Test Modes                                                               |         |
| 5 |            | LUATION RESULTS (EVALUATION)                                             |         |
|   | 5.1        | Antenna requirement                                                      |         |
| 6 | RAD        | NO SPECTRUM MATTER TEST RESULTS (RF)                                     |         |
|   | 6.1        | Conducted Emission at AC power line                                      |         |
|   |            | 6.1.1 E.U.T. Operation:                                                  |         |
|   |            | 6.1.2 Test Setup Diagram:                                                |         |
|   | 6.2        | 6.1.3 Test Data: Duty Cycle                                              |         |
|   | 0.2        | 6.2.1 E.U.T. Operation:                                                  |         |
|   |            | 6.2.2 Test Data:                                                         |         |
|   | 6.3        | Maximum conducted output power                                           |         |
|   |            | 6.3.1 E.U.T. Operation:                                                  |         |
|   |            | 6.3.2 Test Data:                                                         |         |
|   | 6.4        | Power spectral density                                                   | 21      |
|   |            | 6.4.1 E.U.T. Operation:                                                  |         |
|   |            | 6.4.2 Test Data:                                                         |         |
|   | 6.5        | Emission bandwidth and occupied bandwidth                                |         |
|   |            | 6.5.1 E.U.T. Operation:<br>6.5.2 Test Data:                              |         |
|   | 6.6        | Band edge emissions (Radiated)                                           |         |
|   | 0.0        | 6.6.1 E.U.T. Operation:                                                  |         |
|   |            | 6.6.2 Test Setup Diagram:                                                |         |
|   |            | 6.6.3 Test Data:                                                         | 28      |
|   | 6.7        | Undesirable emission limits (below 1GHz)                                 | 30      |
|   |            | 6.7.1 E.U.T. Operation:                                                  |         |
|   |            | 6.7.2 Test Setup Diagram:                                                |         |
|   | 6 9        | 6.7.3 Test Data:<br>Undesirable emission limits (above 1GHz)             |         |
|   | 6.8        | 6.8.1 E.U.T. Operation:                                                  |         |
|   |            |                                                                          |         |

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 3 of 167BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China



## Test Report Number: BTF240319R00204

|     | 6.8.2 Test Data:                        | 37 |
|-----|-----------------------------------------|----|
| 7   | TEST SETUP PHOTOS                       | 39 |
| 8   | EUT CONSTRUCTIONAL DETAILS (EUT PHOTOS) | 41 |
| APP | PENDIX                                  | 42 |

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 4 of 167BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China



#### Introduction 1

#### 1.1 Identification of Testing Laboratory

| Company Name:                                                                                                                                | BTF Testing Lab (Shenzhen) Co., Ltd. |  |
|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--|
| Address: F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China |                                      |  |
| Phone Number:                                                                                                                                | +86-0755-23146130                    |  |
| Fax Number:                                                                                                                                  | +86-0755-23146130                    |  |

# 1.2 Identification of the Responsible Testing Location

| Company Name:            | BTF Testing Lab (Shenzhen) Co., Ltd.                                                                                                |  |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--|
| Address:                 | F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China |  |
| Phone Number:            | +86-0755-23146130                                                                                                                   |  |
| Fax Number:              | +86-0755-23146130                                                                                                                   |  |
| FCC Registration Number: | 518915                                                                                                                              |  |
| Designation Number:      | CN1330                                                                                                                              |  |

# **1.3 Announcement**

(1) The test report reference to the report template version v0.

(2) The test report is invalid if not marked with the signatures of the persons responsible for preparing, reviewing and approving the test report.

(3) The test report is invalid if there is any evidence and/or falsification.

(4) This document may not be altered or revised in any way unless done so by BTF and all revisions are duly noted in the revisions section.

(5) Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.

(6) The laboratory is only responsible for the data released by the laboratory, except for the part provided by the applicant.

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd. F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China



#### 2 **Product Information**

#### **Application Information** 2.1

| Company Name:                                                                                                        | Shenzhen Ucalcul Technology Co., Ltd |  |
|----------------------------------------------------------------------------------------------------------------------|--------------------------------------|--|
| Address:         401, Building A, Jiewei Industrial City Phase III, Shangmugu, Pinghu<br>Longgang District, Shenzhen |                                      |  |
| 0.0 Menufectures Information                                                                                         |                                      |  |

# 2.2 Manufacturer Information

| Company Name: | Shenzhen Ucalcul Technology Co., Ltd                                                                     |  |
|---------------|----------------------------------------------------------------------------------------------------------|--|
| Address:      | 401, Building A, Jiewei Industrial City Phase III, Shangmugu, Pinghu Street, Longgang District, Shenzhen |  |

#### **Factory Information** 2.3

| Company Name: | Shenzhen Ucalcul Technology Co., Ltd                                                                     |  |
|---------------|----------------------------------------------------------------------------------------------------------|--|
| Address:      | 401, Building A, Jiewei Industrial City Phase III, Shangmugu, Pinghu Street, Longgang District, Shenzhen |  |

#### General Description of Equipment under Test (EUT) 2.4

| EUT Name:                                  | AEROPAD                                                       |
|--------------------------------------------|---------------------------------------------------------------|
| Test Model Number:                         | UNP200                                                        |
| Series Model Number:                       | UNP100, UNP207, UNP222, UA14P, UA14L, UA14R                   |
| Description of Model name differentiation: | Only the model name is different, everything else is the same |
| Hardware Version:                          | N/A                                                           |
| Software Version:                          | N/A                                                           |

# 2.5 Technical Information

| DC 7.6V from battery or DC12V from Adapter with AC 120V/60Hz                  |  |
|-------------------------------------------------------------------------------|--|
| Model:RJT-AS120300<br>Input:100-240v~50/60Hz 1.0A<br>Output:12.0V==3.0A 36.0W |  |
| U-NII Band 1: 5.18~5.24 GHz                                                   |  |
| U-NII Band 3: 5.745~5.825 GHz                                                 |  |
| U-NII Band 1: 5.15~5.25 GHz<br>U-NII Band 3: 5.725~5.85 GHz                   |  |
| 802.11a: 20 MHz                                                               |  |
| 802.11n: 20 MHz, 40 MHz                                                       |  |
| 802.11ac: 20 MHz, 40 MHz, 80 MHz                                              |  |
| PIFA Antenna MIMO:2*1                                                         |  |
| ANT1:2.78dBi ANT2:1.96dBi                                                     |  |
|                                                                               |  |

#: The antenna gain provided by the applicant, and the laboratory will not be responsible for the accumulated calculation results which covers the information provided by the applicant.

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.



# 3 Summary of Test Results

# 3.1 Test Standards

The tests were performed according to following standards:

47 CFR Part 15E: Unlicensed National Information Infrastructure Devices

# 3.2 Uncertainty of Test

| Item                                     | Measurement Uncertainty |
|------------------------------------------|-------------------------|
| Conducted Emission (150 kHz-30 MHz)      | ±2.64dB                 |
| Occupied Bandwidth                       | ±69kHz                  |
| Transmitter Power, Conducted             | ±0.87dB                 |
| Power Spectral Density                   | ±0.69dB                 |
| Conducted Spurious Emissions             | ±0.95dB                 |
| Radiated Spurious Emissions (above 1GHz) | 1-6GHz: ±3.94dB         |
|                                          | 6-18GHz: ±4.16dB        |
| Radiated Spurious Emissions (30M - 1GHz) | ±4.12dB                 |

The following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

# 3.3 Summary of Test Result

| Item                                                    | Standard        | Requirement                                                                                                                                                                             | Result |
|---------------------------------------------------------|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| Antenna requirement                                     | 47 CFR Part 15E | Part 15.203                                                                                                                                                                             | Pass   |
| Conducted Emission at AC power line                     | 47 CFR Part 15E | 47 CFR Part 15.207(a)                                                                                                                                                                   | Pass   |
| Maximum conducted output power                          | 47 CFR Part 15E | 47 CFR Part 15.407(a)(1)(i)<br>47 CFR Part 15.407(a)(1)(ii)<br>47 CFR Part 15.407(a)(1)(iii)<br>47 CFR Part 15.407(a)(1)(iv)<br>47 CFR Part 15.407(a)(2)<br>47 CFR Part 15.407(a)(3)(i) | Pass   |
| Power spectral density                                  | 47 CFR Part 15E | 47 CFR Part 15.407(a)(1)(i)<br>47 CFR Part 15.407(a)(1)(ii)<br>47 CFR Part 15.407(a)(1)(iii)<br>47 CFR Part 15.407(a)(1)(iv)<br>47 CFR Part 15.407(a)(2)<br>47 CFR Part 15.407(a)(3)(i) | Pass   |
| Emission bandwidth and occupied bandwidth               | 47 CFR Part 15E | U-NII 1, U-NII 2A, U-NII 2C:<br>No limits, only for report use.<br>47 CFR Part 15.407(e)                                                                                                | Pass   |
| Channel Availability Check Time                         | 47 CFR Part 15E | 47 CFR Part 15.407(h)(2)(ii)                                                                                                                                                            | Pass   |
| U-NII Detection Bandwidth                               | 47 CFR Part 15E | 47 CFR Part 15.407(h)(2)                                                                                                                                                                | Pass   |
| Statistical Performance Check                           | 47 CFR Part 15E | KDB 935210 D02, Clause 5.1<br>Table 2                                                                                                                                                   | Pass   |
| Channel Move Time, Channel<br>Closing Transmission Time | 47 CFR Part 15E | 47 CFR Part 15.407(h)(2)(iii)                                                                                                                                                           | Pass   |
| Non-Occupancy Period Test                               | 47 CFR Part 15E | 47 CFR Part 15.407(h)(2)(iv)                                                                                                                                                            | Pass   |
| DFS Detection Thresholds                                | 47 CFR Part 15E | KDB 905462 D02, Clause 5.2<br>Table 3                                                                                                                                                   | Pass   |
| Band edge emissions (Radiated)                          | 47 CFR Part 15E | 47 CFR Part 15.407(b)(1)<br>47 CFR Part 15.407(b)(2)<br>47 CFR Part 15.407(b)(4)<br>47 CFR Part 15.407(b)(10)                                                                           | Pass   |

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.

Page 7 of 167



## Test Report Number: BTF240319R00204

| Undesirable emission limits (below 1GHz)    | 47 CFR Part 15E | 47 CFR Part 15.407(b)(9)                                                                                      | Pass |
|---------------------------------------------|-----------------|---------------------------------------------------------------------------------------------------------------|------|
| Undesirable emission limits (above<br>1GHz) | 47 CFR Part 15E | 47 CFR Part 15.407(b)(1)<br>47 CFR Part 15.407(b)(2)<br>47 CFR Part 15.407(b)(4)<br>47 CFR Part 15.407(b)(10) | Pass |

#### **Test Configuration** 4

#### **Test Equipment List** 4.1

| Conducted Emission at AC power line |                   |             |              |            |              |  |  |
|-------------------------------------|-------------------|-------------|--------------|------------|--------------|--|--|
| Equipment                           | Manufacturer      | Model No    | Inventory No | Cal Date   | Cal Due Date |  |  |
| Pulse Limiter                       | SCHWARZBECK       | VTSD 9561-F | 00953        | 2023-11-16 | 2024-11-15   |  |  |
| Coaxial Switcher                    | SCHWARZBECK       | CX210       | CX210        | 2023-11-16 | 2024-11-15   |  |  |
| V-LISN                              | SCHWARZBECK       | NSLK 8127   | 01073        | 2023-11-16 | 2024-11-15   |  |  |
| LISN                                | AFJ               | LS16/110VAC | 16010020076  | 2023-11-16 | 2024-11-15   |  |  |
| EMI Receiver                        | ROHDE&SCHWA<br>RZ | ESCI3       | 101422       | 2023-11-16 | 2024-11-15   |  |  |

| Duty Cycle                                               |                                                             |           |              |            |              |
|----------------------------------------------------------|-------------------------------------------------------------|-----------|--------------|------------|--------------|
| Equipment                                                | Manufacturer                                                | Model No  | Inventory No | Cal Date   | Cal Due Date |
| RFTest software                                          | /                                                           | V1.00     | /            | /          | /            |
| RF Control Unit                                          | Techy                                                       | TR1029-1  | /            | 2023-11-16 | 2024-11-15   |
| RF Sensor Unit                                           | Techy                                                       | TR1029-2  | /            | 2023-11-16 | 2024-11-15   |
| Programmable<br>constant temperature<br>and humidity box | ZZCKONG                                                     | ZZ-K02A   | 20210928007  | 2023-11-16 | 2024-11-15   |
| Adjustable Direct<br>Current Regulated<br>Power Supply   | Dongguan<br>Tongmen<br>Electronic<br>Technology Co.,<br>LTD | etm-6050c | 20211026123  | 2023-11-16 | 2024-11-15   |
| WIDEBAND RADIO<br>COMMNUNICATION<br>TESTER               | Rohde & Schwarz                                             | CMW500    | 161997       | 2023-11-16 | 2024-11-15   |
| MXA Signal Analyzer                                      | KEYSIGHT                                                    | N9020A    | MY50410020   | 2023-11-16 | 2024-11-15   |

| Maximum conducted output power                           |                                                             |           |              |            |              |  |
|----------------------------------------------------------|-------------------------------------------------------------|-----------|--------------|------------|--------------|--|
| Equipment                                                | Manufacturer                                                | Model No  | Inventory No | Cal Date   | Cal Due Date |  |
| RFTest software                                          | /                                                           | V1.00     | /            | /          | /            |  |
| RF Control Unit                                          | Techy                                                       | TR1029-1  | /            | 2023-11-16 | 2024-11-15   |  |
| RF Sensor Unit                                           | Techy                                                       | TR1029-2  | /            | 2023-11-16 | 2024-11-15   |  |
| Programmable<br>constant temperature<br>and humidity box | ZZCKONG                                                     | ZZ-K02A   | 20210928007  | 2023-11-16 | 2024-11-15   |  |
| Adjustable Direct<br>Current Regulated<br>Power Supply   | Dongguan<br>Tongmen<br>Electronic<br>Technology Co.,<br>LTD | etm-6050c | 20211026123  | 2023-11-16 | 2024-11-15   |  |
| WIDEBAND RADIO<br>COMMNUNICATION                         | Rohde & Schwarz                                             | CMW500    | 161997       | 2023-11-16 | 2024-11-15   |  |

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 8 of 16BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Page 8 of 167



| MXA Signal Analyzer         KEYSIGHT         N9020A         MY50410020         2023-11-16         2024-11-15 | TESTER              |        |            |            |            |
|--------------------------------------------------------------------------------------------------------------|---------------------|--------|------------|------------|------------|
|                                                                                                              | MXA Signal Analyzer | N9020A | MY50410020 | 2023-11-16 | 2024 11 16 |

| Power spectral density                                   |                                                             |           |              |            |              |  |
|----------------------------------------------------------|-------------------------------------------------------------|-----------|--------------|------------|--------------|--|
| Equipment                                                | Manufacturer                                                | Model No  | Inventory No | Cal Date   | Cal Due Date |  |
| RFTest software                                          | /                                                           | V1.00     | /            | /          | /            |  |
| RF Control Unit                                          | Techy                                                       | TR1029-1  | /            | 2023-11-16 | 2024-11-15   |  |
| RF Sensor Unit                                           | Techy                                                       | TR1029-2  | /            | 2023-11-16 | 2024-11-15   |  |
| Programmable<br>constant temperature<br>and humidity box | ZZCKONG                                                     | ZZ-K02A   | 20210928007  | 2023-11-16 | 2024-11-15   |  |
| Adjustable Direct<br>Current Regulated<br>Power Supply   | Dongguan<br>Tongmen<br>Electronic<br>Technology Co.,<br>LTD | etm-6050c | 20211026123  | 2023-11-16 | 2024-11-15   |  |
| WIDEBAND RADIO<br>COMMNUNICATION<br>TESTER               | Rohde & Schwarz                                             | CMW500    | 161997       | 2023-11-16 | 2024-11-15   |  |
| MXA Signal Analyzer                                      | KEYSIGHT                                                    | N9020A    | MY50410020   | 2023-11-16 | 2024-11-15   |  |

| Emission bandwidth and occupied bandwidth                |                                                             |           |              |            |              |  |
|----------------------------------------------------------|-------------------------------------------------------------|-----------|--------------|------------|--------------|--|
| Equipment                                                | Manufacturer                                                | Model No  | Inventory No | Cal Date   | Cal Due Date |  |
| RFTest software                                          | /                                                           | V1.00     | /            | /          | /            |  |
| RF Control Unit                                          | Techy                                                       | TR1029-1  | /            | 2023-11-16 | 2024-11-15   |  |
| RF Sensor Unit                                           | Techy                                                       | TR1029-2  | /            | 2023-11-16 | 2024-11-15   |  |
| Programmable<br>constant temperature<br>and humidity box | ZZCKONG                                                     | ZZ-K02A   | 20210928007  | 2023-11-16 | 2024-11-15   |  |
| Adjustable Direct<br>Current Regulated<br>Power Supply   | Dongguan<br>Tongmen<br>Electronic<br>Technology Co.,<br>LTD | etm-6050c | 20211026123  | 2023-11-16 | 2024-11-15   |  |
| WIDEBAND RADIO<br>COMMNUNICATION<br>TESTER               | Rohde & Schwarz                                             | CMW500    | 161997       | 2023-11-16 | 2024-11-15   |  |
| MXA Signal Analyzer                                      | KEYSIGHT                                                    | N9020A    | MY50410020   | 2023-11-16 | 2024-11-15   |  |

| Channel Availability Check Time                          |              |           |              |            |              |  |
|----------------------------------------------------------|--------------|-----------|--------------|------------|--------------|--|
| Equipment                                                | Manufacturer | Model No  | Inventory No | Cal Date   | Cal Due Date |  |
| RFTest software                                          | /            | V1.00     | /            | /          | /            |  |
| RF Control Unit                                          | Techy        | TR1029-1  | /            | 2023-11-16 | 2024-11-15   |  |
| RF Sensor Unit                                           | Techy        | TR1029-2  | /            | 2023-11-16 | 2024-11-15   |  |
| Programmable<br>constant temperature<br>and humidity box | ZZCKONG      | ZZ-K02A   | 20210928007  | 2023-11-16 | 2024-11-15   |  |
| Adjustable Direct                                        | Dongguan     | etm-6050c | 20211026123  | 2023-11-16 | 2024-11-15   |  |

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 9 of 16BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China



## Test Report Number: BTF240319R00204

| Current Regulated   | Tongmen         |        |            |            |            |
|---------------------|-----------------|--------|------------|------------|------------|
| Power Supply        | Electronic      |        |            |            |            |
|                     | Technology Co., |        |            |            |            |
|                     | LTD             |        |            |            |            |
| WIDEBAND RADIO      |                 |        |            | 2023-11-16 | 2024-11-15 |
| COMMNUNICATION      | Rohde & Schwarz | CMW500 | 161997     |            |            |
| TESTER              |                 |        |            |            |            |
| MXA Signal Analyzer | KEYSIGHT        | N9020A | MY50410020 | 2023-11-16 | 2024-11-15 |

| U-NII Detection Bandwidth                                |                                                             |           |              |            |              |  |
|----------------------------------------------------------|-------------------------------------------------------------|-----------|--------------|------------|--------------|--|
| Equipment                                                | Manufacturer                                                | Model No  | Inventory No | Cal Date   | Cal Due Date |  |
| RFTest software                                          | /                                                           | V1.00     | /            | /          | /            |  |
| RF Control Unit                                          | Techy                                                       | TR1029-1  | /            | 2023-11-16 | 2024-11-15   |  |
| RF Sensor Unit                                           | Techy                                                       | TR1029-2  | /            | 2023-11-16 | 2024-11-15   |  |
| Programmable<br>constant temperature<br>and humidity box | ZZCKONG                                                     | ZZ-K02A   | 20210928007  | 2023-11-16 | 2024-11-15   |  |
| Adjustable Direct<br>Current Regulated<br>Power Supply   | Dongguan<br>Tongmen<br>Electronic<br>Technology Co.,<br>LTD | etm-6050c | 20211026123  | 2023-11-16 | 2024-11-15   |  |
| WIDEBAND RADIO<br>COMMNUNICATION<br>TESTER               | Rohde & Schwarz                                             | CMW500    | 161997       | 2023-11-16 | 2024-11-15   |  |
| MXA Signal Analyzer                                      | KEYSIGHT                                                    | N9020A    | MY50410020   | 2023-11-16 | 2024-11-15   |  |

| Statistical Performance Check                            |                                                             |           |              |            |              |  |
|----------------------------------------------------------|-------------------------------------------------------------|-----------|--------------|------------|--------------|--|
| Equipment                                                | Manufacturer                                                | Model No  | Inventory No | Cal Date   | Cal Due Date |  |
| RFTest software                                          | /                                                           | V1.00     | /            | /          | /            |  |
| RF Control Unit                                          | Techy                                                       | TR1029-1  | /            | 2023-11-16 | 2024-11-15   |  |
| RF Sensor Unit                                           | Techy                                                       | TR1029-2  | /            | 2023-11-16 | 2024-11-15   |  |
| Programmable<br>constant temperature<br>and humidity box | ZZCKONG                                                     | ZZ-K02A   | 20210928007  | 2023-11-16 | 2024-11-15   |  |
| Adjustable Direct<br>Current Regulated<br>Power Supply   | Dongguan<br>Tongmen<br>Electronic<br>Technology Co.,<br>LTD | etm-6050c | 20211026123  | 2023-11-16 | 2024-11-15   |  |
| WIDEBAND RADIO<br>COMMNUNICATION<br>TESTER               | Rohde & Schwarz                                             | CMW500    | 161997       | 2023-11-16 | 2024-11-15   |  |
| MXA Signal Analyzer                                      | KEYSIGHT                                                    | N9020A    | MY50410020   | 2023-11-16 | 2024-11-15   |  |

| Channel Move Time, C              | Channel Closing T | ransmission Time |              |            |              |
|-----------------------------------|-------------------|------------------|--------------|------------|--------------|
| Equipment                         | Manufacturer      | Model No         | Inventory No | Cal Date   | Cal Due Date |
| RFTest software                   | /                 | V1.00            | /            | /          | /            |
| RF Control Unit                   | Techy             | TR1029-1         | /            | 2023-11-16 | 2024-11-15   |
| RF Sensor Unit                    | Techy             | TR1029-2         | /            | 2023-11-16 | 2024-11-15   |
| Programmable constant temperature | ZZCKONG           | ZZ-K02A          | 20210928007  | 2023-11-16 | 2024-11-15   |

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 10 of 16BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Page 10 of 167



| and humidity box                                       |                                                             |           |             |            |            |
|--------------------------------------------------------|-------------------------------------------------------------|-----------|-------------|------------|------------|
| Adjustable Direct<br>Current Regulated<br>Power Supply | Dongguan<br>Tongmen<br>Electronic<br>Technology Co.,<br>LTD | etm-6050c | 20211026123 | 2023-11-16 | 2024-11-15 |
| WIDEBAND RADIO<br>COMMNUNICATION<br>TESTER             | Rohde & Schwarz                                             | CMW500    | 161997      | 2023-11-16 | 2024-11-15 |
| MXA Signal Analyzer                                    | KEYSIGHT                                                    | N9020A    | MY50410020  | 2023-11-16 | 2024-11-15 |

| Non-Occupancy Period Test                                |                                                             |           |              |            |              |  |
|----------------------------------------------------------|-------------------------------------------------------------|-----------|--------------|------------|--------------|--|
| Equipment                                                | Manufacturer                                                | Model No  | Inventory No | Cal Date   | Cal Due Date |  |
| RFTest software                                          | /                                                           | V1.00     | /            | /          | /            |  |
| RF Control Unit                                          | Techy                                                       | TR1029-1  | /            | 2023-11-16 | 2024-11-15   |  |
| RF Sensor Unit                                           | Techy                                                       | TR1029-2  | /            | 2023-11-16 | 2024-11-15   |  |
| Programmable<br>constant temperature<br>and humidity box | ZZCKONG                                                     | ZZ-K02A   | 20210928007  | 2023-11-16 | 2024-11-15   |  |
| Adjustable Direct<br>Current Regulated<br>Power Supply   | Dongguan<br>Tongmen<br>Electronic<br>Technology Co.,<br>LTD | etm-6050c | 20211026123  | 2023-11-16 | 2024-11-15   |  |
| WIDEBAND RADIO<br>COMMNUNICATION<br>TESTER               | Rohde & Schwarz                                             | CMW500    | 161997       | 2023-11-16 | 2024-11-15   |  |
| MXA Signal Analyzer                                      | KEYSIGHT                                                    | N9020A    | MY50410020   | 2023-11-16 | 2024-11-15   |  |

| DFS Detection Thresholds                                 |                                                             |           |              |            |              |
|----------------------------------------------------------|-------------------------------------------------------------|-----------|--------------|------------|--------------|
| Equipment                                                | Manufacturer                                                | Model No  | Inventory No | Cal Date   | Cal Due Date |
| RFTest software                                          | /                                                           | V1.00     | /            | /          | /            |
| RF Control Unit                                          | Techy                                                       | TR1029-1  | /            | 2023-11-16 | 2024-11-15   |
| RF Sensor Unit                                           | Techy                                                       | TR1029-2  | /            | 2023-11-16 | 2024-11-15   |
| Programmable<br>constant temperature<br>and humidity box | ZZCKONG                                                     | ZZ-K02A   | 20210928007  | 2023-11-16 | 2024-11-15   |
| Adjustable Direct<br>Current Regulated<br>Power Supply   | Dongguan<br>Tongmen<br>Electronic<br>Technology Co.,<br>LTD | etm-6050c | 20211026123  | 2023-11-16 | 2024-11-15   |
| WIDEBAND RADIO<br>COMMNUNICATION<br>TESTER               | Rohde & Schwarz                                             | CMW500    | 161997       | 2023-11-16 | 2024-11-15   |
| MXA Signal Analyzer                                      | KEYSIGHT                                                    | N9020A    | MY50410020   | 2023-11-16 | 2024-11-15   |

| Band edge emissions (Radiated) |              |            |              |            |              |  |
|--------------------------------|--------------|------------|--------------|------------|--------------|--|
| Equipment                      | Manufacturer | Model No   | Inventory No | Cal Date   | Cal Due Date |  |
| Coaxial cable Multiflex<br>141 | Schwarzbeck  | N/SMA 0.5m | 517386       | 2023-03-24 | 2024-03-23   |  |
| Preamplifier                   | SCHWARZBECK  | BBV9744    | 00246        | 2023-11-16 | 2023-11-23   |  |

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 11 of 16BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Page 11 of 167



| RE Cable                    | REBES Talent      | UF1-SMASMAM-1<br>0m | 21101566 | 2023-11-16 | 2024-11-15 |
|-----------------------------|-------------------|---------------------|----------|------------|------------|
| RE Cable                    | REBES Talent      | UF2-NMNM-10m        | 21101570 | 2023-11-16 | 2024-11-15 |
| RE Cable                    | REBES Talent      | UF1-SMASMAM-1<br>m  | 21101568 | 2023-11-16 | 2024-11-15 |
| RE Cable                    | REBES Talent      | UF2-NMNM-1m         | 21101576 | 2023-11-16 | 2024-11-15 |
| RE Cable                    | REBES Talent      | UF2-NMNM-2.5m       | 21101573 | 2023-11-16 | 2024-11-15 |
| POSITIONAL<br>CONTROLLER    | SKET              | PCI-GPIB            | 1        | 1          | 2024-11-15 |
| Horn Antenna                | SCHWARZBECK       | BBHA9170            | 01157    | 2023-11-16 | 2024-11-15 |
| EMI TEST RECEIVER           | ROHDE&SCHWA<br>RZ | ESCI7               | 101032   | 2023-11-16 | 2024-11-15 |
| SIGNAL ANALYZER             | ROHDE&SCHWA<br>RZ | FSQ40               | 100010   | 2023-11-16 | 2024-11-15 |
| POSITIONAL<br>CONTROLLER    | SKET              | PCI-GPIB            | /        | /          | /          |
| Broadband<br>Preamplilifier | SCHWARZBECK       | BBV9718D            | 00008    | 2023-11-16 | 2024-11-15 |
| Horn Antenna                | SCHWARZBECK       | BBHA9120D           | 2597     | 2022-05-22 | 2024-05-21 |
| EZ_EMC                      | Frad              | FA-03A2 RE+         | /        | /          | /          |
| POSITIONAL<br>CONTROLLER    | SKET              | PCI-GPIB            | 1        | 1          | 1          |
| Log periodic antenna        | SCHWARZBECK       | VULB 9168           | 01328    | 2023-11-16 | 2024-11-15 |

| Undesirable emission limits (below 1GHz) |                   |                     |              |            |              |  |
|------------------------------------------|-------------------|---------------------|--------------|------------|--------------|--|
| Equipment                                | Manufacturer      | Model No            | Inventory No | Cal Date   | Cal Due Date |  |
| Coaxial cable Multiflex<br>141           | Schwarzbeck       | N/SMA 0.5m          | 517386       | 2023-03-24 | 2024-03-23   |  |
| Preamplifier                             | SCHWARZBECK       | BBV9744             | 00246        | 2023-11-16 | 2024-11-15   |  |
| RE Cable                                 | REBES Talent      | UF1-SMASMAM-1<br>0m | 21101566     | 2023-11-16 | 2024-11-15   |  |
| RE Cable                                 | REBES Talent      | UF2-NMNM-10m        | 21101570     | 2023-11-16 | 2024-11-15   |  |
| RE Cable                                 | REBES Talent      | UF1-SMASMAM-1<br>m  | 21101568     | 2023-11-16 | 2024-11-15   |  |
| RE Cable                                 | REBES Talent      | UF2-NMNM-1m         | 21101576     | 2023-11-16 | 2024-11-15   |  |
| RE Cable                                 | REBES Talent      | UF2-NMNM-2.5m       | 21101573     | 2023-11-16 | 2024-11-15   |  |
| POSITIONAL<br>CONTROLLER                 | SKET              | PCI-GPIB            | 1            | /          | /            |  |
| Horn Antenna                             | SCHWARZBECK       | BBHA9170            | 01157        | 2023-11-16 | 2024-11-15   |  |
| EMI TEST RECEIVER                        | ROHDE&SCHWA<br>RZ | ESCI7               | 101032       | 2023-11-16 | 2024-11-15   |  |
| SIGNAL ANALYZER                          | ROHDE&SCHWA<br>RZ | FSQ40               | 100010       | 2023-11-16 | 2024-11-15   |  |
| POSITIONAL<br>CONTROLLER                 | SKET              | PCI-GPIB            | /            | /          | /            |  |
| Broadband<br>Preamplilifier              | SCHWARZBECK       | BBV9718D            | 00008        | 2023-11-16 | 2024-11-15   |  |
| Horn Antenna                             | SCHWARZBECK       | BBHA9120D           | 2597         | 2022-05-22 | 2024-05-21   |  |
| EZ_EMC                                   | Frad              | FA-03A2 RE+         | /            | 1          | /            |  |
| POSITIONAL<br>CONTROLLER                 | SKET              | PCI-GPIB            | /            | 1          | 1            |  |

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 12 of 16BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China



| Log periodic antenna SCHWARZBECK VOLB 9166 01326 2021-11-26 2024-11-15 | Log periodic antenna | SCHWARZBECK | VULB 9168 | 01328 | 2021-11-28 | 2024-11-15 |
|------------------------------------------------------------------------|----------------------|-------------|-----------|-------|------------|------------|
|------------------------------------------------------------------------|----------------------|-------------|-----------|-------|------------|------------|

| Undesirable emission limits (above 1GHz) |                   |                     |              |            |              |  |
|------------------------------------------|-------------------|---------------------|--------------|------------|--------------|--|
| Equipment                                | Manufacturer      | Model No            | Inventory No | Cal Date   | Cal Due Date |  |
| Coaxial cable Multiflex 141              | Schwarzbeck       | N/SMA 0.5m          | 517386       | 2023-11-16 | 2024-11-15   |  |
| Preamplifier                             | SCHWARZBECK       | BBV9744             | 00246        | 2023-11-16 | 2024-11-15   |  |
| RE Cable                                 | REBES Talent      | UF1-SMASMAM-1<br>0m | 21101566     | 2023-11-16 | 2024-11-15   |  |
| RE Cable                                 | REBES Talent      | UF2-NMNM-10m        | 21101570     | 2023-11-16 | 2024-11-15   |  |
| RE Cable                                 | REBES Talent      | UF1-SMASMAM-1<br>m  | 21101568     | 2023-11-16 | 2024-11-15   |  |
| RE Cable                                 | REBES Talent      | UF2-NMNM-1m         | 21101576     | 2023-11-16 | 2024-11-15   |  |
| RE Cable                                 | REBES Talent      | UF2-NMNM-2.5m       | 21101573     | 2023-11-16 | 2024-11-15   |  |
| POSITIONAL<br>CONTROLLER                 | SKET              | PCI-GPIB            | 1            | 1          | /            |  |
| Horn Antenna                             | SCHWARZBECK       | BBHA9170            | 01157        | 2023-11-16 | 2024-11-15   |  |
| EMI TEST RECEIVER                        | ROHDE&SCHWA<br>RZ | ESCI7               | 101032       | 2023-11-16 | 2024-11-15   |  |
| SIGNAL ANALYZER                          | ROHDE&SCHWA<br>RZ | FSQ40               | 100010       | 2023-11-16 | 2024-11-15   |  |
| POSITIONAL<br>CONTROLLER                 | SKET              | PCI-GPIB            | /            | /          | /            |  |
| Broadband<br>Preamplilifier              | SCHWARZBECK       | BBV9718D            | 00008        | 2023-11-16 | 2024-11-15   |  |
| Horn Antenna                             | SCHWARZBECK       | BBHA9120D           | 2597         | 2022-05-22 | 2024-05-21   |  |
| EZ_EMC                                   | Frad              | FA-03A2 RE+         | /            | /          | /            |  |
| POSITIONAL<br>CONTROLLER                 | SKET              | PCI-GPIB            | /            | 1          | 1            |  |
| Log periodic antenna                     | SCHWARZBECK       | VULB 9168           | 01328        | 2023-11-16 | 2024-11-15   |  |

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 13 of 16BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China



# 4.2 Test Auxiliary Equipment

The EUT was tested as an independent device.

# 4.3 Test Modes

| No. | Test Modes       | Description                                                                                                                                                                                                                                                                    |
|-----|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TM1 | 802.11a mode     | Keep the EUT connect to AC power line and works in continuously transmitting mode with 802.11a modulation type. All data rates has been tested and found the data rate @ 6Mbps is the worst case. Only the data of worst case is recorded in the report.                       |
| TM2 | 802.11n mode     | Keep the EUT connect to AC power line and works in continuously<br>transmitting mode with 802.11n modulation type. All bandwidth and data<br>rates has been tested and found the data rate @ MCS0 is the worst case.<br>Only the data of worst case is recorded in the report. |
| ТМЗ | 802.11ac mode    | Keep the EUT connect to AC power line and works in continuously<br>transmitting mode with 802.11ac modulation type. Only the data of worst<br>case is recorded in the report.                                                                                                  |
| TM4 | Normal Operating | Keep the EUT works in normal operating mode and connect to<br>companion device                                                                                                                                                                                                 |

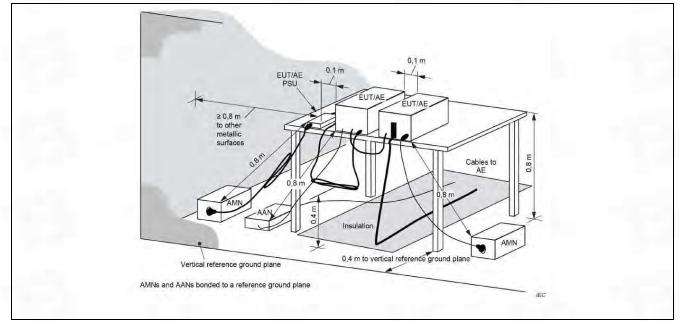


# 5 Evaluation Results (Evaluation)

# 5.1 Antenna requirement

|                   | An intentional radiator shall be designed to ensure that no antenna other than that  |
|-------------------|--------------------------------------------------------------------------------------|
|                   | furnished by the responsible party shall be used with the device. The use of a       |
| Test Requirement: | permanently attached antenna or of an antenna that uses a unique coupling to the     |
|                   | intentional radiator shall be considered sufficient to comply with the provisions of |
|                   | this section.                                                                        |

# 6 Radio Spectrum Matter Test Results (RF)


# 6.1 Conducted Emission at AC power line

| Test Requirement: | 47 CFR Part 15.207(a)              |                                                                                                                                    |           |  |  |
|-------------------|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-----------|--|--|
| Test Method:      |                                    | Refer to ANSI C63.10-2013 section 6.2, standard test method for ac power-line conducted emissions from unlicensed wireless devices |           |  |  |
|                   | Frequency of emission (MHz)        | Conducted limit (dl                                                                                                                | BμV)      |  |  |
|                   |                                    | Quasi-peak                                                                                                                         | Average   |  |  |
| Toot Limit:       | 0.15-0.5                           | 66 to 56*                                                                                                                          | 56 to 46* |  |  |
| Test Limit:       | 0.5-5                              | 56                                                                                                                                 | 46        |  |  |
|                   | 5-30                               | 60                                                                                                                                 | 50        |  |  |
|                   | *Decreases with the logarithm of t | *Decreases with the logarithm of the frequency.                                                                                    |           |  |  |

# 6.1.1 E.U.T. Operation:

| Operating Environment: |           |  |  |
|------------------------|-----------|--|--|
| Temperature:           | 25.5 °C   |  |  |
| Humidity:              | 50.6 %    |  |  |
| Atmospheric Pressure:  | 1010 mbar |  |  |

# 6.1.2 Test Setup Diagram:

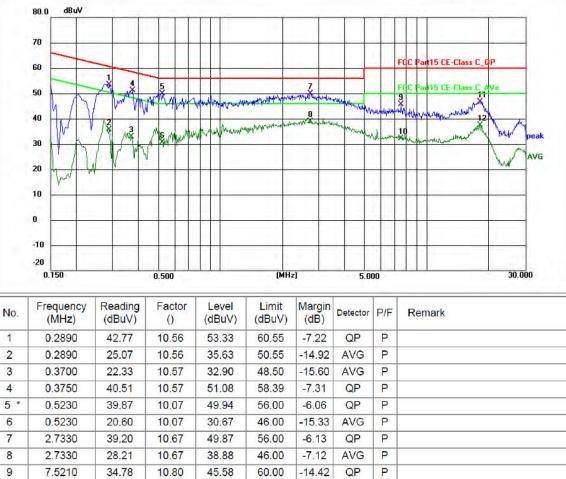


Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd. Page 15 of 167



# 6.1.3 Test Data:




dBu∀ 80.0 70 FCC t15 CE-Class C G 60 5 50 8 40 5 30 war Adamsharper 20 AVG 10 0 -10 -20 0.150 0.500 (MHz) 5.000 30.000 Reading Frequency Factor Level Limit Margin P/F No. Detector Remark (MHz) (dBuV) (dBuV) (dBuV) (dB) () 10.56 0.2740 30.82 41.38 51.00 -9.62 P AVG 1 2 0.2760 44.78 10.56 55.34 60.94 -5.60 QP P 3 0.4810 27.75 10.09 37.84 46.32 -8.48 AVG P 4 0.4830 42.38 10.09 52.47 56.29 -3.82 QP Ρ 5 0.6580 39.86 10.00 49.86 56.00 -6.14 QP P 6 0.6630 21.76 10.00 31.76 46.00 -14.24 AVG Ρ 7 19.58 9.86 29.44 46.00 -16.56 P 0.8300 AVG 8 0.8340 36.09 9.85 45.94 56.00 -10.06 QP P 9 2.8730 30.93 10.68 41.61 56.00 -14.39 P OP 2.8730 10.68 -20.43 10 14.89 25.57 46.00 AVG Ρ 11 18.4880 34.18 11.02 45.20 60.00 -14.80 QP P 18.5960 12 20.51 11.02 -18.47 31.53 50.00 AVG P

Note:Reading=Receiver reading Factor=Antenna factor+Cable loss Level=Reading+Factor Limit=Limit stated in standard Margin=Measurement-Limits

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.



TM1 / Line: Neutral / Band 1/Mode:802.11a



N Note:Reading=Receiver reading Factor=Antenna factor+Cable loss Level=Reading+Factor Limit=Limit stated in standard Margin=Measurement-Limits

7.5210

18.2220

18.2220

21.43

35.78

26.34

10.80

10.97

10.97

32.23

46.75

37.31

50.00

60.00

50.00

-17.77

-13.25

-12.69

AVG

QP

AVG

Ρ

P

P

10

11

12

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.



# 6.2 Duty Cycle

| Test Requirement: | All measurements are to be performed with the EUT transmitting at 100% duty cycle at its maximum power control level; however, if 100% duty cycle cannot be achieved, measurements of duty cycle, x, and maximum-power transmission duration, T, are required for each tested mode of operation.                                                                                                                                                                                             |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test Method:      | ANSI C63.10-2013 section 12.2 (b)                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Test Limit:       | No limits, only for report use.                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Procedure:        | <ul> <li>i) Set the center frequency of the instrument to the center frequency of the transmission.</li> <li>ii) Set RBW &gt;= EBW if possible; otherwise, set RBW to the largest available value.</li> <li>iii) Set VBW &gt;= RBW.</li> <li>iv) Set detector = peak.</li> <li>v) The zero-span measurement method shall not be used unless both RBW and VBW are &gt; 50/T, where T is defined in item a1) of 12.2, and the number of sweep points across duration T exceeds 100.</li> </ul> |

#### 6.2.1 E.U.T. Operation:

| Operating Environment: |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|------------------------|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Temperature:           | 25.5 °C   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Humidity:              | 50.6 %    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Atmospheric Pressure:  | 1010 mbar | and the second se |  |

## 6.2.2 Test Data:

Please Refer to Appendix for Details.



# 6.3 Maximum conducted output power

|                   | 47 CFR Part 15.407(a)(1)(i)                                                          |
|-------------------|--------------------------------------------------------------------------------------|
|                   | 47 CFR Part 15.407(a)(1)(ii)                                                         |
| Tast Danis        | 47 CFR Part 15.407(a)(1)(iii)                                                        |
| Test Requirement: | 47 CFR Part 15.407(a)(1)(iv)                                                         |
|                   | 47 CFR Part 15.407(a)(2)                                                             |
|                   | 47 CFR Part 15.407(a)(3)(i)                                                          |
| Test Method:      | ANSI C63.10-2013, section 12.3                                                       |
|                   | For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum         |
|                   | conducted output power over the frequency band of operation shall not exceed 1       |
|                   |                                                                                      |
|                   | W provided the maximum antenna gain does not exceed 6 dBi.                           |
|                   | If transmitting antennas of directional gain greater than 6 dBi are used, the        |
|                   | maximum conducted output power shall be reduced by the amount in dB that the         |
|                   | directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any           |
|                   | elevation angle above 30 degrees as measured from the horizon must not exceed        |
|                   | 125 mW (21 dBm).                                                                     |
|                   |                                                                                      |
|                   | For an indoor access point operating in the band 5.15-5.25 GHz, the maximum          |
|                   | conducted output power over the frequency band of operation shall not exceed 1       |
|                   | W provided the maximum antenna gain does not exceed 6 dBi.                           |
|                   | If transmitting antennas of directional gain greater than 6 dBi are used, the        |
|                   | maximum conducted output power shall be reduced by the amount in dB that the         |
|                   | directional gain of the antenna exceeds 6 dBi.                                       |
|                   |                                                                                      |
|                   | For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the      |
|                   | maximum conducted output power over the frequency band of operation shall not        |
|                   | exceed 1 W.                                                                          |
|                   | Fixed point-to-point U-NII devices may employ antennas with directional gain up to   |
|                   | 23 dBi without any corresponding reduction in the maximum conducted output           |
|                   | power.                                                                               |
| Test Limit:       | For fixed point-to-point transmitters that employ a directional antenna gain greater |
|                   | than 23 dBi, a 1 dB reduction in maximum conducted output power is required for      |
|                   | each 1 dB of antenna gain in excess of 23 dBi.                                       |
|                   | Fixed, point-to-point operations exclude the use of point-to-multipoint systems,     |
|                   | omnidirectional applications, and multiple collocated transmitters transmitting the  |
|                   | same information. The operator of the U-NII device, or if the equipment is           |
|                   | professionally installed, the installer, is responsible for ensuring that systems    |
|                   | employing high gain directional antennas are used exclusively for fixed,             |
|                   | point-to-point operations.                                                           |
|                   |                                                                                      |
|                   | For client devices in the 5.15-5.25 GHz band, the maximum conducted output           |
|                   | power over the frequency band of operation shall not exceed 250 mW provided the      |
|                   | maximum antenna gain does not exceed 6 dBi.                                          |
|                   | If transmitting antennas of directional gain greater than 6 dBi are used, the        |
|                   | maximum conducted output power shall be reduced by the amount in dB that the         |
|                   | directional gain of the antenna exceeds 6 dBi.                                       |
|                   |                                                                                      |
|                   | For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output         |
|                   | power over the frequency bands of operation shall not exceed the lesser of 250       |
|                   | mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz.       |
|                   | If transmitting antennas of directional gain greater than 6 dBi are used, the        |
|                   | maximum conducted output power shall be reduced by the amount in dB that the         |
|                   | directional gain of the antenna exceeds 6 dBi.                                       |
|                   |                                                                                      |
|                   |                                                                                      |

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 19 of 16BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China



| Procedure:       If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point U-NII devices or Fixed, point-to-point U-NII devices, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.         Method SA-1       a) Set span to encompass the entire 26 dB EBW or 99% OBW of the signal.         b) Set RBW = 1 MHz.       c) Set VBW >= 3 MHz.         c) Set VBW >= 3 MHz.       c) Number of points in sweep >= [2 × span / RBW]. (This gives bin-to-bin spacing <= RBW / 2, so         that narrowband signals are not lost between frequency bins.)       e) Sweep time = auto.         f) Detector = RMS (i.e., power averaging), if available. Otherwise, use sample detector mode.       g) if transmit duty cycle < 98%, use a video trigger with the trigger level set to enable triggering only on full power pulses. The transmitter shall operate at maximum power control level, then the trigger shall be set to "free run."         h) Trace average at least 100 traces in power averaging (rms) mode.       i) Compute power by integrating the spectrum across the 26 dB EBW or 99% OBW of the signal using the instrument's band power measurement function, with band limits set equal to the         EBW or OBW band edges. If the instrument does not have a band po                                                                                                                                                                                                                                                                                          |                    |                                                                           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------------------------------------------------------------------|
| If transmitting antennas of directional gain greater than 6 dBi are used, the maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.         However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.         Method SA-1       a) Set SPM = 1 MHz.         c) Set VBW >= 3 MHz.       d) Number of points in sweep >= [2 × span / RBW]. (This gives bin-to-bin spacing <= RBW / 2, so that narrowband signals are not lost between frequency bins.)         e) Sweep time = auto.       f) Detector = RMS (i.e., power averaging), if available. Otherwise, use sample detector mode.         g) If transmit duty cycle < 98%, use a video trigger with the trigger level set to enable triggering only on full power pulses. The transmitter shall operate at maximum power control level for the         entire duration of every sweep. If the EUT transmits continuously (i.e., with no OFF intervals) or the signal using the signal using the signal using the signal using the isstrument's band power measurement function, with band limits set equal to the         EBW or 0BW band edges. If the instrument does not have a band power function, then sum the spectrum. <tr< th=""><th></th><th>For the band 5.725-5.850 GHz, the maximum conducted output power over the</th></tr<>                                                                                                                                                                |                    | For the band 5.725-5.850 GHz, the maximum conducted output power over the |
| Procedure:          maximum conducted output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.         However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.         Method SA-1       a) Set span to encompass the entire 26 dB EBW or 99% OBW of the signal.         b) Set RBW = 1 MHz.       c) Set VBW >= 3 MHz.         d) Number of points in sweep >= [2 × span / RBW]. (This gives bin-to-bin spacing <= RBW /2, so that narrowband signals are not lost between frequency bins.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    |                                                                           |
| Procedure:          directional gain of the antenna exceeds 6 dBi.         However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.         Method SA-1       a) Set span to encompass the entire 26 dB EBW or 99% OBW of the signal.         b) Set RBW = 1 MHz.       c) Set VBW >= 3 MHz.         d) Number of points in sweep >= [2 × span / RBW]. (This gives bin-to-bin spacing <= RBW / 2, so                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                    |                                                                           |
| <ul> <li>However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.</li> <li>Method SA-1</li> <li>a) Set span to encompass the entire 26 dB EBW or 99% OBW of the signal.</li> <li>b) Set RBW = 1 MHz.</li> <li>c) Set VBW &gt;= 3 MHz.</li> <li>d) Number of points in sweep &gt;= [2 × span / RBW]. (This gives bin-to-bin spacing &lt;= RBW / 2, so</li> <li>that narrowband signals are not lost between frequency bins.)</li> <li>e) Sweep time = auto.</li> <li>f) Detector = RMS (i.e., power averaging), if available. Otherwise, use sample detector mode.</li> <li>g) If transmit duty cycle &lt; 98%, use a video trigger with the trigger level set to enable triggering</li> <li>only on full power pulses. The transmitter shall operate at maximum power control level for the</li> <li>entire duration of every sweep. If the EUT transmits continuously (i.e., with no OFF intervals) or</li> <li>at duty cycle &gt;= 98%, and if each transmission is entirely at the maximum power control level,</li> <li>then the trigger shall be set to "free run."</li> <li>h) Trace average at least 100 traces in power averaging (rms) mode.</li> <li>i) Compute power by integrating the spectrum across the 26 dB EBW or 99% OBW of the signal using the instrument's band power measurement function, with band limits set equal to the</li> <li>EBW or 0BW and edges. If the instrument does not have a band power function, then sum the spectrum.</li> </ul>                                                          |                    |                                                                           |
| Procedure: transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-miltipoint systems, ornidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations. Method SA-1 <ul> <li>a) Set span to encompass the entire 26 dB EBW or 99% OBW of the signal.</li> <li>b) Set RBW = 1 MHz.</li> <li>c) Set VBW &gt;= 3 MHz.</li> <li>d) Number of points in sweep &gt;= [2 × span / RBW]. (This gives bin-to-bin spacing &lt;= RBW / 2, so</li> <li>that narrowband signals are not lost between frequency bins.)</li> <li>e) Sweep time = auto.</li> <li>f) Detector = RMS (i.e., power averaging), if available. Otherwise, use sample detector mode.</li> <li>g) If transmit duty cycle &lt; 98%, use a video trigger with the trigger level set to enable triggering</li> <li>only on full power pulses. The transmitter shall operate at maximum power control level for the</li> <li>entire duration of every sweep. If the EUT transmits continuously (i.e., with no OFF intervals) or</li> <li>at duty cycle &gt;= 98%, and if each transmission is entirely at the maximum power control level, then the trigger shall be set to "free run."</li> <li>h) Trace average at least 100 traces in power averaging (rms) mode.</li> <li>i) Compute power by integrating the spectrum across the 26 dB EBW or 99% OBW of the signal using the instrument's band power measurement function, with band limits set equal to the</li> <li>EBW or OBW band edges. If the instrument does not have a band power function, then sum the spectrum.</li> <li>b) Trace average at least 100 traces in power averaging across the 26 dB EBW or 99% OBW of the signal using the instrument's band power measu</li></ul> |                    |                                                                           |
| Procedure:          corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.         Method SA-1       a) Set span to encompass the entire 26 dB EBW or 99% OBW of the signal.         b) Set RBW = 1 MHz.       c) Set VBW >= 3 MHz.         d) Number of points in sweep >= [2 × span / RBW]. (This gives bin-to-bin spacing <= RBW / 2, so that narrowband signals are not lost between frequency bins.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |                                                                           |
| Procedure:          operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.         Method SA-1       a) Set span to encompass the entire 26 dB EBW or 99% OBW of the signal.         b) Set RBW = 1 MHz.       c) Set VBW >= 3 MHz.         d) Number of points in sweep >= [2 × span / RBW]. (This gives bin-to-bin spacing <= RBW / 2, so                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |                                                                           |
| applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.         Method SA-1       a) Set span to encompass the entire 26 dB EBW or 99% OBW of the signal. b) Set RBW = 1 MHz.         c) Set VBW >= 3 MHz.       d) Number of points in sweep >= [2 × span / RBW]. (This gives bin-to-bin spacing <= RBW / 2, so                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    |                                                                           |
| Procedure:       information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.         Method SA-1       a) Set span to encompass the entire 26 dB EBW or 99% OBW of the signal.         b) Set RBW = 1 MHz.       c) Set VBW >= 3 MHz.         d) Number of points in sweep >= [2 × span / RBW]. (This gives bin-to-bin spacing <= RBW / 2, so                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    |                                                                           |
| Procedure:          Installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.         Method SA-1         a) Set span to encompass the entire 26 dB EBW or 99% OBW of the signal.         b) Set RBW = 1 MHz.         c) Set VBW >= 3 MHz.         d) Number of points in sweep >= [2 × span / RBW]. (This gives bin-to-bin spacing <= RBW / 2, so                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |                                                                           |
| directional antennas are used exclusively for fixed, point-to-point operations.         Method SA-1         a) Set span to encompass the entire 26 dB EBW or 99% OBW of the signal.         b) Set RBW = 1 MHz.         c) Set VBW >= 3 MHz.         d) Number of points in sweep >= [2 × span / RBW]. (This gives bin-to-bin spacing <= RBW / 2, so                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |                                                                           |
| Method SA-1         a) Set span to encompass the entire 26 dB EBW or 99% OBW of the signal.         b) Set RBW = 1 MHz.         c) Set VBW >= 3 MHz.         d) Number of points in sweep >= [2 × span / RBW]. (This gives bin-to-bin spacing <= RBW / 2, so                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    |                                                                           |
| <ul> <li>a) Set span to encompass the entire 26 dB EBW or 99% OBW of the signal.</li> <li>b) Set RBW = 1 MHz.</li> <li>c) Set VBW &gt;= 3 MHz.</li> <li>d) Number of points in sweep &gt;= [2 × span / RBW]. (This gives bin-to-bin spacing &lt;= RBW / 2, so</li> <li>that narrowband signals are not lost between frequency bins.)</li> <li>e) Sweep time = auto.</li> <li>f) Detector = RMS (i.e., power averaging), if available. Otherwise, use sample detector mode.</li> <li>g) If transmit duty cycle &lt; 98%, use a video trigger with the trigger level set to enable triggering only on full power pulses. The transmitter shall operate at maximum power control level for the entire duration of every sweep. If the EUT transmits continuously (i.e., with no OFF intervals) or at duty cycle &gt;= 98%, and if each transmission is entirely at the maximum power control level, then the trigger shall be set to "free run."</li> <li>h) Trace average at least 100 traces in power averaging (rms) mode.</li> <li>i) Compute power by integrating the spectrum across the 26 dB EBW or 99% OBW of the signal using the instrument's band power measurement function, with band limits set equal to the EBW or OBW band edges. If the instrument does not have a band power function, then sum the spectrum levels (in power units) at 1 MHz intervals extending across the 26 dB EBW or 99% OBW of the spectrum.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    |                                                                           |
| <ul> <li>b) Set RBW = 1 MHz.</li> <li>c) Set VBW &gt;= 3 MHz.</li> <li>d) Number of points in sweep &gt;= [2 × span / RBW]. (This gives bin-to-bin spacing &lt;= RBW / 2, so</li> <li>that narrowband signals are not lost between frequency bins.)</li> <li>e) Sweep time = auto.</li> <li>f) Detector = RMS (i.e., power averaging), if available. Otherwise, use sample detector mode.</li> <li>g) If transmit duty cycle &lt; 98%, use a video trigger with the trigger level set to enable triggering only on full power pulses. The transmitter shall operate at maximum power control level for the</li> <li>entire duration of every sweep. If the EUT transmits continuously (i.e., with no OFF intervals) or at duty cycle &gt;= 98%, and if each transmission is entirely at the maximum power control level, then the trigger shall be set to "free run."</li> <li>h) Trace average at least 100 traces in power averaging (rms) mode.</li> <li>i) Compute power by integrating the spectrum across the 26 dB EBW or 99% OBW of the signal using the instrument's band power measurement function, with band limits set equal to the</li> <li>EBW or OBW band edges. If the instrument does not have a band power function, then sum the spectrum levels (in power units) at 1 MHz intervals extending across the 26 dB EBW or 99% OBW of the spectrum.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                    |                                                                           |
| <ul> <li>c) Set VBW &gt;= 3 MHz.</li> <li>d) Number of points in sweep &gt;= [2 × span / RBW]. (This gives bin-to-bin spacing &lt;= RBW / 2, so</li> <li>that narrowband signals are not lost between frequency bins.)</li> <li>e) Sweep time = auto.</li> <li>f) Detector = RMS (i.e., power averaging), if available. Otherwise, use sample detector mode.</li> <li>g) If transmit duty cycle &lt; 98%, use a video trigger with the trigger level set to enable triggering only on full power pulses. The transmitter shall operate at maximum power control level for the entire duration of every sweep. If the EUT transmits continuously (i.e., with no OFF intervals) or at duty cycle &gt;= 98%, and if each transmission is entirely at the maximum power control level, then the trigger shall be set to "free run." h) Trace average at least 100 traces in power averaging (rms) mode.</li> <li>i) Compute power by integrating the spectrum across the 26 dB EBW or 99% OBW of the signal using the instrument's band power measurement function, with band limits set equal to the EBW or OBW band edges. If the instrument does not have a band power function, then sum the spectrum levels (in power units) at 1 MHz intervals extending across the 26 dB EBW or 99% OBW of the spectrum.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    |                                                                           |
| <ul> <li>d) Number of points in sweep &gt;= [2 × span / RBW]. (This gives bin-to-bin spacing &lt;= RBW / 2, so that narrowband signals are not lost between frequency bins.)</li> <li>e) Sweep time = auto.</li> <li>f) Detector = RMS (i.e., power averaging), if available. Otherwise, use sample detector mode.</li> <li>g) If transmit duty cycle &lt; 98%, use a video trigger with the trigger level set to enable triggering only on full power pulses. The transmitter shall operate at maximum power control level for the entire duration of every sweep. If the EUT transmits continuously (i.e., with no OFF intervals) or at duty cycle &gt;= 98%, and if each transmission is entirely at the maximum power control level, then the trigger shall be set to "free run."</li> <li>h) Trace average at least 100 traces in power averaging (rms) mode.</li> <li>i) Compute power by integrating the spectrum across the 26 dB EBW or 99% OBW of the signal using the instrument's band power measurement function, with band limits set equal to the EBW or OBW band edges. If the instrument does not have a band power function, then sum the spectrum levels (in power units) at 1 MHz intervals extending across the 26 dB EBW or 99% OBW of the spectrum.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |                                                                           |
| <ul> <li>&lt;= RBW / 2, so<br/>that narrowband signals are not lost between frequency bins.)</li> <li>e) Sweep time = auto.</li> <li>f) Detector = RMS (i.e., power averaging), if available. Otherwise, use sample detector mode.</li> <li>g) If transmit duty cycle &lt; 98%, use a video trigger with the trigger level set to enable triggering<br/>only on full power pulses. The transmitter shall operate at maximum power control level for the<br/>entire duration of every sweep. If the EUT transmits continuously (i.e., with no OFF intervals) or<br/>at duty cycle &gt;= 98%, and if each transmission is entirely at the maximum power control level,<br/>then the trigger shall be set to "free run."<br/>h) Trace average at least 100 traces in power averaging (rms) mode.</li> <li>i) Compute power by integrating the spectrum across the 26 dB EBW or 99% OBW of the signal<br/>using the instrument's band power measurement function, with band limits set<br/>equal to the<br/>EBW or OBW band edges. If the instrument does not have a band power function,<br/>then sum the<br/>spectrum levels (in power units) at 1 MHz intervals extending across the 26 dB<br/>EBW or 99%<br/>OBW of the spectrum.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    |                                                                           |
| <ul> <li>that narrowband signals are not lost between frequency bins.)</li> <li>e) Sweep time = auto.</li> <li>f) Detector = RMS (i.e., power averaging), if available. Otherwise, use sample detector mode.</li> <li>g) If transmit duty cycle &lt; 98%, use a video trigger with the trigger level set to enable triggering only on full power pulses. The transmitter shall operate at maximum power control level for the entire duration of every sweep. If the EUT transmits continuously (i.e., with no OFF intervals) or at duty cycle &gt;= 98%, and if each transmission is entirely at the maximum power control level, then the trigger shall be set to "free run."</li> <li>h) Trace average at least 100 traces in power averaging (rms) mode.</li> <li>i) Compute power by integrating the spectrum across the 26 dB EBW or 99% OBW of the signal using the instrument's band power measurement function, with band limits set equal to the EBW or OBW band edges. If the instrument does not have a band power function, then sum the spectrum levels (in power units) at 1 MHz intervals extending across the 26 dB EBW or 99% OBW of the spectrum.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |                                                                           |
| <ul> <li>e) Sweep time = auto.</li> <li>f) Detector = RMS (i.e., power averaging), if available. Otherwise, use sample detector mode.</li> <li>g) If transmit duty cycle &lt; 98%, use a video trigger with the trigger level set to enable triggering only on full power pulses. The transmitter shall operate at maximum power control level for the</li> <li>entire duration of every sweep. If the EUT transmits continuously (i.e., with no OFF intervals) or at duty cycle &gt;= 98%, and if each transmission is entirely at the maximum power control level, then the trigger shall be set to "free run."</li> <li>h) Trace average at least 100 traces in power averaging (rms) mode.</li> <li>i) Compute power by integrating the spectrum across the 26 dB EBW or 99% OBW of the signal using the instrument's band power measurement function, with band limits set equal to the EBW or OBW band edges. If the instrument does not have a band power function, then sum the spectrum levels (in power units) at 1 MHz intervals extending across the 26 dB EBW or 99% OBW of the spectrum.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |                                                                           |
| f) Detector = RMS (i.e., power averaging), if available. Otherwise, use sample<br>detector mode.<br>g) If transmit duty cycle < 98%, use a video trigger with the trigger level set to<br>enable triggering<br>only on full power pulses. The transmitter shall operate at maximum power control<br>level for the<br>entire duration of every sweep. If the EUT transmits continuously (i.e., with no OFF<br>intervals) or<br>at duty cycle >= 98%, and if each transmission is entirely at the maximum power<br>control level,<br>then the trigger shall be set to "free run."<br>h) Trace average at least 100 traces in power averaging (rms) mode.<br>i) Compute power by integrating the spectrum across the 26 dB EBW or 99% OBW<br>of the signal<br>using the instrument's band power measurement function, with band limits set<br>equal to the<br>EBW or OBW band edges. If the instrument does not have a band power function,<br>then sum the<br>spectrum levels (in power units) at 1 MHz intervals extending across the 26 dB<br>EBW or 99%<br>OBW of the spectrum.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                    |                                                                           |
| detector mode.       g) If transmit duty cycle < 98%, use a video trigger with the trigger level set to enable triggering                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |                                                                           |
| <ul> <li>g) If transmit duty cycle &lt; 98%, use a video trigger with the trigger level set to enable triggering only on full power pulses. The transmitter shall operate at maximum power control level for the entire duration of every sweep. If the EUT transmits continuously (i.e., with no OFF intervals) or at duty cycle &gt;= 98%, and if each transmission is entirely at the maximum power control level, then the trigger shall be set to "free run."</li> <li>h) Trace average at least 100 traces in power averaging (rms) mode.</li> <li>i) Compute power by integrating the spectrum across the 26 dB EBW or 99% OBW of the signal using the instrument's band power measurement function, with band limits set equal to the EBW or OBW band edges. If the instrument does not have a band power function, then sum the spectrum levels (in power units) at 1 MHz intervals extending across the 26 dB EBW or 99% OBW of the spectrum.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                    |                                                                           |
| Procedure:<br>Procedure:<br>Procedure:<br>entire duration of every sweep. If the EUT transmits continuously (i.e., with no OFF<br>intervals) or<br>at duty cycle >= 98%, and if each transmission is entirely at the maximum power<br>control level,<br>then the trigger shall be set to "free run."<br>h) Trace average at least 100 traces in power averaging (rms) mode.<br>i) Compute power by integrating the spectrum across the 26 dB EBW or 99% OBW<br>of the signal<br>using the instrument's band power measurement function, with band limits set<br>equal to the<br>EBW or OBW band edges. If the instrument does not have a band power function,<br>then sum the<br>spectrum levels (in power units) at 1 MHz intervals extending across the 26 dB<br>EBW or 99%<br>OBW of the spectrum.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |                                                                           |
| only on full power pulses. The transmitter shall operate at maximum power control level for the         Procedure:         entire duration of every sweep. If the EUT transmits continuously (i.e., with no OFF intervals) or         at duty cycle >= 98%, and if each transmission is entirely at the maximum power control level,         then the trigger shall be set to "free run."         h) Trace average at least 100 traces in power averaging (rms) mode.         i) Compute power by integrating the spectrum across the 26 dB EBW or 99% OBW of the signal         using the instrument's band power measurement function, with band limits set equal to the         EBW or OBW band edges. If the instrument does not have a band power function, then sum the         spectrum levels (in power units) at 1 MHz intervals extending across the 26 dB EBW or 99%         OBW of the spectrum.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                    |                                                                           |
| Procedure:       level for the<br>entire duration of every sweep. If the EUT transmits continuously (i.e., with no OFF<br>intervals) or<br>at duty cycle >= 98%, and if each transmission is entirely at the maximum power<br>control level,<br>then the trigger shall be set to "free run."<br>h) Trace average at least 100 traces in power averaging (rms) mode.<br>i) Compute power by integrating the spectrum across the 26 dB EBW or 99% OBW<br>of the signal<br>using the instrument's band power measurement function, with band limits set<br>equal to the<br>EBW or OBW band edges. If the instrument does not have a band power function,<br>then sum the<br>spectrum levels (in power units) at 1 MHz intervals extending across the 26 dB<br>EBW or 99%<br>OBW of the spectrum.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    |                                                                           |
| Procedure:<br>entire duration of every sweep. If the EUT transmits continuously (i.e., with no OFF<br>intervals) or<br>at duty cycle >= 98%, and if each transmission is entirely at the maximum power<br>control level,<br>then the trigger shall be set to "free run."<br>h) Trace average at least 100 traces in power averaging (rms) mode.<br>i) Compute power by integrating the spectrum across the 26 dB EBW or 99% OBW<br>of the signal<br>using the instrument's band power measurement function, with band limits set<br>equal to the<br>EBW or OBW band edges. If the instrument does not have a band power function,<br>then sum the<br>spectrum levels (in power units) at 1 MHz intervals extending across the 26 dB<br>EBW or 99%<br>OBW of the spectrum.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                    |                                                                           |
| intervals) or<br>at duty cycle >= 98%, and if each transmission is entirely at the maximum power<br>control level,<br>then the trigger shall be set to "free run."<br>h) Trace average at least 100 traces in power averaging (rms) mode.<br>i) Compute power by integrating the spectrum across the 26 dB EBW or 99% OBW<br>of the signal<br>using the instrument's band power measurement function, with band limits set<br>equal to the<br>EBW or OBW band edges. If the instrument does not have a band power function,<br>then sum the<br>spectrum levels (in power units) at 1 MHz intervals extending across the 26 dB<br>EBW or 99%<br>OBW of the spectrum.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Dragodurou         |                                                                           |
| at duty cycle >= 98%, and if each transmission is entirely at the maximum power<br>control level,<br>then the trigger shall be set to "free run."<br>h) Trace average at least 100 traces in power averaging (rms) mode.<br>i) Compute power by integrating the spectrum across the 26 dB EBW or 99% OBW<br>of the signal<br>using the instrument's band power measurement function, with band limits set<br>equal to the<br>EBW or OBW band edges. If the instrument does not have a band power function,<br>then sum the<br>spectrum levels (in power units) at 1 MHz intervals extending across the 26 dB<br>EBW or 99%<br>OBW of the spectrum.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Procedure.         |                                                                           |
| control level,<br>then the trigger shall be set to "free run."<br>h) Trace average at least 100 traces in power averaging (rms) mode.<br>i) Compute power by integrating the spectrum across the 26 dB EBW or 99% OBW<br>of the signal<br>using the instrument's band power measurement function, with band limits set<br>equal to the<br>EBW or OBW band edges. If the instrument does not have a band power function,<br>then sum the<br>spectrum levels (in power units) at 1 MHz intervals extending across the 26 dB<br>EBW or 99%<br>OBW of the spectrum.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |                                                                           |
| <ul> <li>then the trigger shall be set to "free run."</li> <li>h) Trace average at least 100 traces in power averaging (rms) mode.</li> <li>i) Compute power by integrating the spectrum across the 26 dB EBW or 99% OBW of the signal using the instrument's band power measurement function, with band limits set equal to the</li> <li>EBW or OBW band edges. If the instrument does not have a band power function, then sum the</li> <li>spectrum levels (in power units) at 1 MHz intervals extending across the 26 dB EBW or 99% OBW of the spectrum.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                    |                                                                           |
| <ul> <li>h) Trace average at least 100 traces in power averaging (rms) mode.</li> <li>i) Compute power by integrating the spectrum across the 26 dB EBW or 99% OBW of the signal using the instrument's band power measurement function, with band limits set equal to the</li> <li>EBW or OBW band edges. If the instrument does not have a band power function, then sum the spectrum levels (in power units) at 1 MHz intervals extending across the 26 dB EBW or 99% OBW of the spectrum.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                    | ,                                                                         |
| <ul> <li>i) Compute power by integrating the spectrum across the 26 dB EBW or 99% OBW of the signal using the instrument's band power measurement function, with band limits set equal to the EBW or OBW band edges. If the instrument does not have a band power function, then sum the spectrum levels (in power units) at 1 MHz intervals extending across the 26 dB EBW or 99% OBW of the spectrum.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                    |                                                                           |
| of the signal<br>using the instrument's band power measurement function, with band limits set<br>equal to the<br>EBW or OBW band edges. If the instrument does not have a band power function,<br>then sum the<br>spectrum levels (in power units) at 1 MHz intervals extending across the 26 dB<br>EBW or 99%<br>OBW of the spectrum.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                    |                                                                           |
| using the instrument's band power measurement function, with band limits set<br>equal to the<br>EBW or OBW band edges. If the instrument does not have a band power function,<br>then sum the<br>spectrum levels (in power units) at 1 MHz intervals extending across the 26 dB<br>EBW or 99%<br>OBW of the spectrum.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |                                                                           |
| equal to the<br>EBW or OBW band edges. If the instrument does not have a band power function,<br>then sum the<br>spectrum levels (in power units) at 1 MHz intervals extending across the 26 dB<br>EBW or 99%<br>OBW of the spectrum.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    | •                                                                         |
| EBW or OBW band edges. If the instrument does not have a band power function,<br>then sum the<br>spectrum levels (in power units) at 1 MHz intervals extending across the 26 dB<br>EBW or 99%<br>OBW of the spectrum.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    |                                                                           |
| then sum the<br>spectrum levels (in power units) at 1 MHz intervals extending across the 26 dB<br>EBW or 99%<br>OBW of the spectrum.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |                                                                           |
| spectrum levels (in power units) at 1 MHz intervals extending across the 26 dB<br>EBW or 99%<br>OBW of the spectrum.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |                                                                           |
| EBW or 99%<br>OBW of the spectrum.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                    |                                                                           |
| OBW of the spectrum.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 631 FUT Operation: |                                                                           |

#### 6.3.1 E.U.T. Operation:

| Operating Environment: |           |  |
|------------------------|-----------|--|
| Temperature:           | 25.5 °C   |  |
| Humidity:              | 50.6 %    |  |
| Atmospheric Pressure:  | 1010 mbar |  |

#### 6.3.2 Test Data:

Please Refer to Appendix for Details.



# 6.4 Power spectral density

| 0.4 TOwer Speetral |                                                                                                                                                                     |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                    | 47 CFR Part 15.407(a)(1)(i)                                                                                                                                         |
|                    | 47 CFR Part 15.407(a)(1)(ii)                                                                                                                                        |
| Test Requirement:  | 47 CFR Part 15.407(a)(1)(iii)                                                                                                                                       |
| ·                  | 47 CFR Part 15.407(a)(1)(iv)                                                                                                                                        |
|                    | 47 CFR Part 15.407(a)(2)<br>47 CFR Part 15.407(a)(3)(i)                                                                                                             |
| Test Method:       | ANSI C63.10-2013, section 12.5                                                                                                                                      |
|                    | For an outdoor access point operating in the band 5.15-5.25 GHz, the maximum                                                                                        |
|                    | power spectral density shall not exceed 17 dBm in any 1 megahertz band.                                                                                             |
|                    | If transmitting antennas of directional gain greater than 6 dBi are used, the                                                                                       |
|                    | maximum power spectral density shall be reduced by the amount in dB that the                                                                                        |
|                    | directional gain of the antenna exceeds 6 dBi.                                                                                                                      |
|                    | For an indoor access point operating in the band 5.15-5.25 GHz, the maximum                                                                                         |
|                    | power spectral density shall not exceed 17 dBm in any 1 megahertz band.                                                                                             |
|                    | If transmitting antennas of directional gain greater than 6 dBi are used, the                                                                                       |
|                    | maximum power spectral density shall be reduced by the amount in dB that the                                                                                        |
|                    | directional gain of the antenna exceeds 6 dBi.                                                                                                                      |
|                    | For fixed point-to-point access points operating in the band 5.15-5.25 GHz, the                                                                                     |
|                    | maximum power spectral density shall not exceed 17 dBm in any 1 megahertz                                                                                           |
|                    | band.                                                                                                                                                               |
|                    | Fixed point-to-point U-NII devices may employ antennas with directional gain up to                                                                                  |
|                    | 23 dBi without any corresponding reduction in the maximum power spectral density. For fixed point-to-point transmitters that employ a directional antenna gain      |
|                    | greater than 23 dBi, a 1 dB reduction in maximum power spectral density is                                                                                          |
|                    | required for each 1 dB of antenna gain in excess of 23 dBi.                                                                                                         |
|                    | Fixed, point-to-point operations exclude the use of point-to-multipoint systems,                                                                                    |
|                    | omnidirectional applications, and multiple collocated transmitters transmitting the                                                                                 |
| Test Limit:        | same information. The operator of the U-NII device, or if the equipment is                                                                                          |
|                    | professionally installed, the installer, is responsible for ensuring that systems                                                                                   |
|                    | employing high gain directional antennas are used exclusively for fixed,                                                                                            |
|                    | point-to-point operations.                                                                                                                                          |
|                    | For client devices in the 5.15-5.25 GHz band, the maximum power spectral density                                                                                    |
|                    | shall not exceed 11 dBm in any 1 megahertz band.                                                                                                                    |
|                    | If transmitting antennas of directional gain greater than 6 dBi are used, the                                                                                       |
|                    | maximum power spectral density shall be reduced by the amount in dB that the                                                                                        |
|                    | directional gain of the antenna exceeds 6 dBi.                                                                                                                      |
|                    | For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum power spectral                                                                                          |
|                    | density shall not exceed 11 dBm in any 1 megahertz band.                                                                                                            |
|                    | If transmitting antennas of directional gain greater than 6 dBi are used, the                                                                                       |
|                    | maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.                                         |
|                    | an couonal gain of the antenna exceeds 0 dbl.                                                                                                                       |
|                    | For the band 5.725-5.850 GHz, the maximum power spectral density shall not                                                                                          |
|                    | exceed 30 dBm in any 500-kHz band.                                                                                                                                  |
|                    | If transmitting antennas of directional gain greater than 6 dBi are used, the                                                                                       |
|                    | maximum power spectral density shall be reduced by the amount in dB that the                                                                                        |
|                    | directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional |
|                    | gain greater than 6 dBi without any corresponding reduction in transmitter                                                                                          |
|                    | gain greater than o doi without any corresponding reduction in transmitter                                                                                          |

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 21 of 16BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Page 21 of 167



|            | conducted power.                                                                    |
|------------|-------------------------------------------------------------------------------------|
|            | Fixed, point-to-point operations exclude the use of point-to-multipoint systems,    |
|            | omnidirectional applications, and multiple collocated transmitters transmitting the |
|            | same information. The operator of the U-NII device, or if the equipment is          |
|            | professionally installed, the installer, is responsible for ensuring that systems   |
|            | employing high gain directional antennas are used exclusively for fixed,            |
|            | point-to-point operations.                                                          |
|            | a) Create an average power spectrum for the EUT operating mode being tested by      |
|            | following the                                                                       |
|            |                                                                                     |
|            | instructions in 12.3.2 for measuring maximum conducted output power using a         |
|            | spectrum                                                                            |
|            | analyzer or EMI receiver; that is, select the appropriate test method (SA-1, SA-2,  |
|            | SA-3, or their                                                                      |
|            | respective alternatives) and apply it up to, but not including, the step labeled,   |
|            | "Compute                                                                            |
|            | power" (This procedure is required even if the maximum conducted output             |
|            | power                                                                               |
|            | measurement was performed using the power meter method PM.)                         |
|            | b) Use the peak search function on the instrument to find the peak of the spectrum. |
|            | c) Make the following adjustments to the peak value of the spectrum, if applicable: |
|            |                                                                                     |
|            | 1) If method SA-2 or SA-2A was used, then add [10 log (1 / D)], where D is the duty |
|            | cycle, to the peak of the spectrum.                                                 |
|            | 2) If method SA-3A was used and the linear mode was used in step h) of 12.3.2.7,    |
|            | add                                                                                 |
| Procedure: | 1 dB to the final result to compensate for the difference between linear averaging  |
| Flocedule. | and                                                                                 |
|            | power averaging.                                                                    |
|            | d) The result is the PPSD.                                                          |
|            | e) The procedure in item a) through item c) requires the use of 1 MHz resolution    |
|            | bandwidth to                                                                        |
|            | satisfy the 1 MHz measurement bandwidth specified by some regulatory                |
|            | authorities. This                                                                   |
|            |                                                                                     |
|            | requirement also permits use of resolution bandwidths less than 1 MHz "provided     |
|            | that the                                                                            |
|            | measured power is integrated to show the total power over the measurement           |
|            | bandwidth" (i.e.,                                                                   |
|            | 1 MHz). If measurements are performed using a reduced resolution bandwidth and      |
|            | integrated                                                                          |
|            | over 1 MHz bandwidth, the following adjustments to the procedures apply:            |
|            | 1) Set RBW >= 1 / T, where T is defined in 12.2 a).                                 |
|            | 2) Set VBW >= $[3 \times RBW]$ .                                                    |
|            | 3) Care shall be taken such that the measurements are performed during a period     |
|            | of continuous transmission or are corrected upward for duty cycle.                  |
|            |                                                                                     |

# 6.4.1 E.U.T. Operation:

| Operating Environment: |           |
|------------------------|-----------|
| Temperature:           | 25.5 °C   |
| Humidity:              | 50.6 %    |
| Atmospheric Pressure:  | 1010 mbar |

### 6.4.2 Test Data:

Please Refer to Appendix for Details.

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 22 of 16BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China



# 6.5 Emission bandwidth and occupied bandwidth

| Test Requirement: | U-NII 1, U-NII 2A, U-NII 2C: No limits, only for report use.<br>U-NII 3, U-NII 4: 47 CFR Part 15.407(e)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test Method:      | ANSI C63.10-2013, section 6.9.3 & 12.4<br>KDB 789033 D02, Clause C.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Test Limit:       | U-NII 1, U-NII 2A, U-NII 2C: No limits, only for report use.<br>U-NII 3, U-NII 4: Within the 5.725-5.850 GHz and 5.850-5.895 GHz bands, the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                   | <ul> <li>minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz.</li> <li>Emission bandwidth: <ul> <li>a) Set RBW = approximately 1% of the emission bandwidth.</li> <li>b) Set the VBW &gt; RBW.</li> <li>c) Detector = peak.</li> <li>d) Trace mode = max hold.</li> <li>e) Measure the maximum width of the emission that is 26 dB down from the peak of the emission.</li> <li>Compare this with the RBW setting of the instrument. Readjust RBW and repeat measurement <ul> <li>as needed until the RBW/EBW ratio is approximately 1%.</li> </ul> </li> <li>Occupied bandwidth: <ul> <li>a) The instrument center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be between 1.5 times and 5.0 times the OBW.</li> </ul> </li> </ul></li></ul> |
| Procedure:        | <ul> <li>b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW,</li> <li>and VBW shall be approximately three times the RBW, unless otherwise specified by the</li> <li>applicable requirement.</li> <li>c) Set the reference level of the instrument as required, keeping the signal from exceeding the</li> <li>maximum input mixer level for linear operation. In general, the peak of the spectral envelope</li> <li>shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2.</li> <li>d) Step a) through step c) might require iteration to adjust within the specified</li> </ul>                                                                                                                                                     |
|                   | range.<br>e) Video averaging is not permitted. Where practical, a sample detection and single<br>sweep mode<br>shall be used. Otherwise, peak detection and max hold mode (until the trace<br>stabilizes) shall be<br>used.<br>f) Use the 99% power bandwidth function of the instrument (if available) and repor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                   | <ul> <li>bandwidth.</li> <li>g) If the instrument does not have a 99% power bandwidth function, then the trace data points are</li> <li>recovered and directly summed in linear power terms. The recovered amplitude data points,</li> <li>beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached;</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                   | that frequency is recorded as the lower frequency. The process is repeated until 99.5% of the total is reached; that frequency is recorded as the upper frequency. The 99%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

Page 23 of 167 Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd. F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China



| power bandwidth is                                                                                    |
|-------------------------------------------------------------------------------------------------------|
| the difference between these two frequencies.                                                         |
| h) The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument          |
| display; the plot axes and the scale units per division shall be clearly labeled.<br>Tabular data may |
| be reported in addition to the plot(s).                                                               |
| 6 dB emission bandwidth:                                                                              |
| a) Set RBW = 100 kHz.                                                                                 |
| b) Set the video bandwidth (VBW) ≥ 3 >= RBW.                                                          |
| c) Detector = Peak.                                                                                   |
| d) Trace mode = max hold.                                                                             |
| e) Sweep = auto couple.                                                                               |
| f) Allow the trace to stabilize.                                                                      |
| g) Measure the maximum width of the emission that is constrained by the                               |
| frequencies associated with the two outermost amplitude points (upper and lower                       |
| frequencies) that are attenuated by 6 dB relative to the maximum level measured                       |
| in the fundamental emission.                                                                          |

# 6.5.1 E.U.T. Operation:

| Operating Environment: |           |
|------------------------|-----------|
| Temperature:           | 25.5 °C   |
| Humidity:              | 50.6 %    |
| Atmospheric Pressure:  | 1010 mbar |

### 6.5.2 Test Data:

Please Refer to Appendix for Details.



# 6.6 Band edge emissions (Radiated)

|                   | 47 CFR Part 15.407(b)                                                                                                                                                        | (1)                                                                                                                                 |                                                                             |                                                                             |  |  |  |  |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------|--|--|--|--|
|                   | 47 CFR Part 15.407(b)(2)                                                                                                                                                     |                                                                                                                                     |                                                                             |                                                                             |  |  |  |  |
| Test Requirement: | 47 CFR Part 15.407(b)(2)<br>47 CFR Part 15.407(b)(4)                                                                                                                         |                                                                                                                                     |                                                                             |                                                                             |  |  |  |  |
|                   | . ,                                                                                                                                                                          | . ,                                                                                                                                 |                                                                             |                                                                             |  |  |  |  |
| T ( M. II I       | 47 CFR Part 15.407(b)                                                                                                                                                        |                                                                                                                                     | 7.0                                                                         |                                                                             |  |  |  |  |
| Test Method:      | ANSI C63.10-2013, section 12.7.4, 12.7.5, 12.7.6<br>For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the                                       |                                                                                                                                     |                                                                             |                                                                             |  |  |  |  |
|                   | For transmitters operation 5.15-5.35 GHz band sh                                                                                                                             | nall not exceed an e.i.r.                                                                                                           | p. of −27 dBm/N                                                             | IHz.                                                                        |  |  |  |  |
|                   | 5.15-5.35 GHz band sh                                                                                                                                                        | nall not exceed an e.i.r.                                                                                                           | p. of −27 dBm/№                                                             | 1Hz.                                                                        |  |  |  |  |
|                   | For transmitters operat                                                                                                                                                      |                                                                                                                                     |                                                                             |                                                                             |  |  |  |  |
|                   | All emissions shall be I                                                                                                                                                     |                                                                                                                                     |                                                                             |                                                                             |  |  |  |  |
|                   | or below the band edge                                                                                                                                                       |                                                                                                                                     |                                                                             |                                                                             |  |  |  |  |
|                   | below the band edge, a                                                                                                                                                       |                                                                                                                                     |                                                                             |                                                                             |  |  |  |  |
|                   | linearly to a level of 15.                                                                                                                                                   | .6 dBm/MHz at 5 MHz a                                                                                                               | above or below t                                                            | he band edge, and                                                           |  |  |  |  |
|                   | from 5 MHz above or b                                                                                                                                                        | elow the band edge inc                                                                                                              | creasing linearly                                                           | to a level of 27                                                            |  |  |  |  |
|                   | dBm/MHz at the band of                                                                                                                                                       | edge.                                                                                                                               |                                                                             |                                                                             |  |  |  |  |
|                   | MHz                                                                                                                                                                          | MHz                                                                                                                                 | MHz                                                                         | GHz                                                                         |  |  |  |  |
|                   | 0.090-0.110                                                                                                                                                                  | 16.42-16.423                                                                                                                        | 399.9-410                                                                   | 4.5-5.15                                                                    |  |  |  |  |
|                   | <sup>1</sup> 0.495-0.505                                                                                                                                                     | 16.69475-16.69525                                                                                                                   |                                                                             | 5.35-5.46                                                                   |  |  |  |  |
|                   | 2.1735-2.1905                                                                                                                                                                | 16.80425-16.80475                                                                                                                   | 960-1240                                                                    | 7.25-7.75                                                                   |  |  |  |  |
|                   | 4.125-4.128                                                                                                                                                                  | 25.5-25.67                                                                                                                          | 1300-1427                                                                   |                                                                             |  |  |  |  |
|                   | 4.17725-4.17775                                                                                                                                                              | 37.5-38.25                                                                                                                          | 1435-1626.5                                                                 | 9.0-9.2                                                                     |  |  |  |  |
|                   |                                                                                                                                                                              |                                                                                                                                     |                                                                             |                                                                             |  |  |  |  |
|                   | 4.20725-4.20775                                                                                                                                                              | 73-74.6                                                                                                                             | 1645.5-1646.<br>5                                                           | 9.3-9.5                                                                     |  |  |  |  |
|                   | 6.215-6.218                                                                                                                                                                  | 74.8-75.2                                                                                                                           | 1660-1710                                                                   | 10.6-12.7                                                                   |  |  |  |  |
|                   | 6.26775-6.26825                                                                                                                                                              | 108-121.94                                                                                                                          | 1718.8-1722.                                                                | 13.25-13.4                                                                  |  |  |  |  |
| Test Limit:       | 0.04475.0.04005                                                                                                                                                              | 100,100                                                                                                                             | 2                                                                           |                                                                             |  |  |  |  |
|                   | 6.31175-6.31225                                                                                                                                                              | 123-138                                                                                                                             | 2200-2300                                                                   | 14.47-14.5                                                                  |  |  |  |  |
|                   | 8.291-8.294                                                                                                                                                                  | 149.9-150.05                                                                                                                        | 2310-2390                                                                   | 15.35-16.2                                                                  |  |  |  |  |
|                   | 8.362-8.366                                                                                                                                                                  | 156.52475-156.525<br>25                                                                                                             | 2483.5-2500                                                                 | 17.7-21.4                                                                   |  |  |  |  |
|                   | 8.37625-8.38675                                                                                                                                                              | 156.7-156.9                                                                                                                         | 2690-2900                                                                   | 22.01-23.12                                                                 |  |  |  |  |
|                   | 8.41425-8.41475                                                                                                                                                              | 162.0125-167.17                                                                                                                     | 3260-3267                                                                   | 23.6-24.0                                                                   |  |  |  |  |
|                   | 12.29-12.293                                                                                                                                                                 | 167.72-173.2                                                                                                                        | 3332-3339                                                                   | 31.2-31.8                                                                   |  |  |  |  |
|                   | 12.51975-12.52025                                                                                                                                                            | 240-285                                                                                                                             |                                                                             | 36.43-36.5                                                                  |  |  |  |  |
|                   |                                                                                                                                                                              |                                                                                                                                     | 3345.8-3358                                                                 |                                                                             |  |  |  |  |
|                   | 12.57675-12.57725<br>13.36-13.41                                                                                                                                             | 322-335.4                                                                                                                           | 3600-4400                                                                   | ( <sup>2</sup> )                                                            |  |  |  |  |
|                   | <sup>1</sup> Until February 1, 1999                                                                                                                                          | ), this restricted band s                                                                                                           | hall be 0.490-0.5                                                           | 510 MHz.                                                                    |  |  |  |  |
|                   | <sup>2</sup> Above 38.6                                                                                                                                                      |                                                                                                                                     |                                                                             |                                                                             |  |  |  |  |
|                   | The field strength of en<br>exceed the limits show<br>MHz, compliance with<br>measurement instrume<br>1000 MHz, compliance<br>based on the average<br>15.35apply to these me | n in § 15.209. At freque<br>the limits in § 15.209sh<br>entation employing a Cl<br>with the emission limit<br>value of the measured | encies equal to c<br>all be demonstra<br>SPR quasi-peak<br>s in § 15.209sha | or less than 1000<br>ated using<br>a detector. Above<br>all be demonstrated |  |  |  |  |
|                   | Except as provided els                                                                                                                                                       | ewhere in this subpart,                                                                                                             | the emissions fi                                                            | rom an intentional                                                          |  |  |  |  |

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 25 of 16BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Page 25 of 167



|            | radiator shall not exceed t                                                                                                                                                                                                                                                                                                                                                                                                                                                      | he field strength levels sp                                                                                                                                                                                                                                                                                                                                                                                                                                             | ecified in the following table:                                                                                                                                                                                                                                                                                                                       |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            | Frequency (MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Field strength                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Measurement                                                                                                                                                                                                                                                                                                                                           |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (microvolts/meter)                                                                                                                                                                                                                                                                                                                                                                                                                                                      | distance                                                                                                                                                                                                                                                                                                                                              |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (Iniciovolis/Ineter)                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                       |
|            | 0.000.0.100                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (meters)                                                                                                                                                                                                                                                                                                                                              |
|            | 0.009-0.490                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2400/F(kHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 300                                                                                                                                                                                                                                                                                                                                                   |
|            | 0.490-1.705                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 24000/F(kHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 30                                                                                                                                                                                                                                                                                                                                                    |
|            | 1.705-30.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 30                                                                                                                                                                                                                                                                                                                                                    |
|            | 30-88                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 100 **                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3                                                                                                                                                                                                                                                                                                                                                     |
|            | 88-216                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 150 **                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3                                                                                                                                                                                                                                                                                                                                                     |
|            | 216-960                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 200 **                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3                                                                                                                                                                                                                                                                                                                                                     |
|            | Above 960                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3                                                                                                                                                                                                                                                                                                                                                     |
|            | Above 1GHz:                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3                                                                                                                                                                                                                                                                                                                                                     |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | IT was also all on the ten                                                                                                                                                                                                                                                                                                                                                                                                                                              | of a materia a table 4.5 meters                                                                                                                                                                                                                                                                                                                       |
| Procedure: | above the ground at a 3 m<br>degrees to determine the<br>b. The EUT was set 3 met<br>was mounted on the top o<br>c. The antenna height is v<br>determine the maximum v<br>polarizations of the antenn<br>d. For each suspected em<br>the antenna was tuned to<br>of below 30MHz, the anten<br>was turned from 0 degrees<br>e. The test-receiver syster<br>Bandwidth with Maximum<br>f. If the emission level of th<br>specified, then testing cour<br>reported. Otherwise the em | neter fully-anechoic chamb<br>position of the highest rad<br>ers away from the interfer<br>f a variable-height antenn<br>aried from one meter to for<br>alue of the field strength.<br>The are set to make the me<br>ission, the EUT was arran<br>heights from 1 meter to 4<br>and was tuned to heights<br>to 360 degrees to find the<br>m was set to Peak Detect<br>Hold Mode.<br>The EUT in peak mode was<br>ld be stopped and the pean<br>missions that did not have | rence-receiving antenna, which<br>a tower.<br>bur meters above the ground to<br>Both horizontal and vertical<br>asurement.<br>nged to its worst case and then<br>meters (for the test frequency<br>1 meter) and the rotatable table<br>ne maximum reading.<br>Function and Specified<br>as 10dB lower than the limit<br>ak values of the EUT would be |
|            | g. Test the EUT in the low<br>h. The radiation measuren                                                                                                                                                                                                                                                                                                                                                                                                                          | nents are performed in X,<br>und the X axis positioning                                                                                                                                                                                                                                                                                                                                                                                                                 | which it is the worst case.                                                                                                                                                                                                                                                                                                                           |
|            | 1. Level= Read Level+ Ca                                                                                                                                                                                                                                                                                                                                                                                                                                                         | hle Loss+ Antenna Factor                                                                                                                                                                                                                                                                                                                                                                                                                                                | - Preamp Factor                                                                                                                                                                                                                                                                                                                                       |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ve 18GHz was very low. The                                                                                                                                                                                                                                                                                                                            |
|            | points marked on above p                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                       |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                       |
|            | testing, so only above poir                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                       |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | or which are attenuated m                                                                                                                                                                                                                                                                                                                                                                                                                                               | ore than 20dB below the limit                                                                                                                                                                                                                                                                                                                         |
|            | need not be reported.                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                       |
|            | 3. As shown in this section                                                                                                                                                                                                                                                                                                                                                                                                                                                      | , for frequencies above 1                                                                                                                                                                                                                                                                                                                                                                                                                                               | GHz, the field strength limits                                                                                                                                                                                                                                                                                                                        |
|            | are based on average limi                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ts. However, the peak field                                                                                                                                                                                                                                                                                                                                                                                                                                             | d strength of any emission shall                                                                                                                                                                                                                                                                                                                      |
|            | not exceed the maximum                                                                                                                                                                                                                                                                                                                                                                                                                                                           | permitted average limits s                                                                                                                                                                                                                                                                                                                                                                                                                                              | pecified above by more than 20                                                                                                                                                                                                                                                                                                                        |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | sions whose peak level is lower                                                                                                                                                                                                                                                                                                                       |
|            | than the average limit, onl                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                       |
|            | 4. The disturbance above                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                       |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | he above harmonics had been                                                                                                                                                                                                                                                                                                                           |
|            | displayed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                       |
|            | alopiayoa.                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                       |

## 6.6.1 E.U.T. Operation:

| Operating Environment: |         |
|------------------------|---------|
| Temperature:           | 25.5 °C |
| Humidity:              | 50.6 %  |

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 26 of 16BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Page 26 of 167



0,4 m

0,8 m

1EC

# Atmospheric Pressure: 1010 mbar 6.6.2 Test Setup Diagram: 0,1 m 0,1 m EUT/AE EUT/AE PSU EUT/AE

To power supply

To AE

Insulation

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 27 of 16BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China Page 27 of 167



# 6.6.3 Test Data:

Note: All mode are tested, and the report only shows the worst mode data of 802.11n(40)

|                                                                                                                                                                                              |                                            | UNI                                       | I-1 802.11n(40                                      | )_5190MHz_                                        | _Horizontal                                              |                                    |                  |          |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-------------------------------------------|-----------------------------------------------------|---------------------------------------------------|----------------------------------------------------------|------------------------------------|------------------|----------|--|
| No.         Frequency<br>(MHz)         Reading<br>(dBuV)         Factor<br>(dB/m)         Level<br>(dBuV/m)         Limit<br>(dBuV/m)         Margin<br>(dBuV/m)         Detector         P/ |                                            |                                           |                                                     |                                                   |                                                          |                                    |                  |          |  |
| 1                                                                                                                                                                                            | 5097.674                                   | 45.35                                     | 5.28                                                | 50.63                                             | 68.20                                                    | -17.57                             | peak             | Р        |  |
| 2                                                                                                                                                                                            | 5150.000                                   | 46.29                                     | 5.33                                                | 51.62                                             | 68.20                                                    | -16.58                             | peak             | Ρ        |  |
|                                                                                                                                                                                              |                                            | UN                                        | III-1 802.11n(4                                     | 0) _5190MH                                        | z_Vertical                                               |                                    |                  |          |  |
| No.                                                                                                                                                                                          | Frequency<br>(MHz)                         | Reading<br>(dBuV)                         | Factor<br>(dB/m)                                    | Level<br>(dBuV/m)                                 | Limit<br>(dBuV/m)                                        | Margin<br>(dB)                     | Detector         | P/F      |  |
| 1                                                                                                                                                                                            | 5072.674                                   | 44.10                                     | 5.35                                                | 49.45                                             | 68.20                                                    | -18.75                             | peak             | Р        |  |
| 2                                                                                                                                                                                            | 5150.000                                   | 46.77                                     | 5.33                                                | 52.10                                             | 68.20                                                    | -16.10                             | peak             | Ρ        |  |
|                                                                                                                                                                                              |                                            | UNI                                       | l-1 802.11n(40                                      | )_5230MHz                                         | _Horizontal                                              |                                    |                  |          |  |
| No. Frequency Reading Factor Level Limit Margin Detector                                                                                                                                     |                                            |                                           |                                                     |                                                   |                                                          |                                    |                  |          |  |
| INO.                                                                                                                                                                                         | (MHz)                                      | (dBuV)                                    | (dB/m)                                              | (dBuV/m)                                          | (dBuV/m)                                                 | Margin<br>(dB)                     | Detector         | P/F      |  |
| No.                                                                                                                                                                                          |                                            | Ŭ                                         |                                                     |                                                   |                                                          | -                                  | Detector<br>peak | P/F<br>P |  |
|                                                                                                                                                                                              | (MHz)                                      | (dBuV)                                    | (dB/m)                                              | (dBuV/m)                                          | (dBuV/m)                                                 | (dB)                               |                  |          |  |
| 1                                                                                                                                                                                            | (MHz)<br>5350.000                          | (dBuV)<br>45.24<br>46.60                  | (dB/m)<br>5.45                                      | (dBuV/m)<br>50.69<br>52.12                        | (dBuV/m)<br>68.20<br>68.20                               | (dB)<br>-17.51                     | peak             | Р        |  |
| 1                                                                                                                                                                                            | (MHz)<br>5350.000                          | (dBuV)<br>45.24<br>46.60                  | (dB/m)<br>5.45<br>5.52                              | (dBuV/m)<br>50.69<br>52.12                        | (dBuV/m)<br>68.20<br>68.20                               | (dB)<br>-17.51                     | peak             | Р        |  |
| 1 2                                                                                                                                                                                          | (MHz)<br>5350.000<br>5460.000<br>Frequency | (dBuV)<br>45.24<br>46.60<br>UR<br>Reading | (dB/m)<br>5.45<br>5.52<br>NII-1 802.11n(4<br>Factor | (dBuV/m)<br>50.69<br>52.12<br>40)_5230MH<br>Level | (dBuV/m)<br>68.20<br>68.20<br><b>z_Vertical</b><br>Limit | (dB)<br>-17.51<br>-16.08<br>Margin | peak<br>peak     | P        |  |

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 28 of 16BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China



| UNII-3 802.11n(40) _5750MHz_Horizontal |  |           |         |        |          |          |        |          |     |  |
|----------------------------------------|--|-----------|---------|--------|----------|----------|--------|----------|-----|--|
| No                                     |  | Frequency | Reading | Factor | Level    | Limit    | Margin | Detector | P/F |  |
| INO                                    |  | (MHz)     | (dBuV)  | (dB/m) | (dBuV/m) | (dBuV/m) | (dB)   | Delector | F/F |  |
| 1                                      |  | 5650.000  | 44.63   | 5.63   | 50.26    | 68.20    | -17.94 | peak     | Р   |  |
| 2                                      |  | 5700.000  | 45.09   | 5.70   | 50.79    | 105.20   | -54.41 | peak     | Р   |  |
| 3                                      |  | 5720.000  | 45.83   | 5.66   | 51.49    | 110.80   | -59.31 | peak     | Р   |  |

# UNII-3 802.11n(40) \_5750MHz\_Vertical

| No. | Frequency<br>(MHz) | Reading<br>(dBuV) | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector | P/F |
|-----|--------------------|-------------------|------------------|-------------------|-------------------|----------------|----------|-----|
| 1   | 5350.000           | 43.89             | 5.63             | 49.52             | 68.20             | -18.68         | peak     | Р   |
| 2   | 5460.000           | 45.15             | 5.70             | 50.85             | 105.20            | -54.35         | peak     | Р   |
| 3   | 5460.000           | 45.75             | 5.66             | 51.41             | 110.80            | -59.39         | peak     | Р   |

# UNII-3802.11n(40) \_5795MHz\_Horizontal

| No. | Frequency<br>(MHz) | Reading<br>(dBuV) | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector | P/F |
|-----|--------------------|-------------------|------------------|-------------------|-------------------|----------------|----------|-----|
| 1   | 5855.000           | 46.65             | 5.73             | 52.38             | 110.80            | -58.42         | peak     | Ρ   |
| 2   | 5875.000           | <b>4</b> 5.89     | 5.74             | 51.63             | 105.20            | -53.57         | peak     | Р   |
| 3   | 5925.000           | 45.34             | 5.66             | 51.00             | 68.20             | -17.20         | peak     | Р   |

#### UNII-3 802.11n(40)\_5795MHz\_ Vertical

| No | Frequency<br>(MHz) | Reading<br>(dBuV) | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector | P/F |
|----|--------------------|-------------------|------------------|-------------------|-------------------|----------------|----------|-----|
| 1  | 5725.000           | 46.93             | 5.73             | 52.66             | 110.80            | -58.14         | peak     | Р   |
| 2  | 5730.000           | 46.78             | 5.74             | 52.52             | 105.20            | -52.68         | peak     | Р   |
| 3  | 5730.000           | 45.85             | 5.66             | 51.51             | 68.20             | -16.69         | peak     | Р   |

Note:Reading=Receiver reading Factor=Antenna factor+Cable loss Level=Reading+Factor Limit=Limit stated in standard Margin=Measurement-Limits

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd. Page 29 of 167



#### Undesirable emission limits (below 1GHz) 6.7

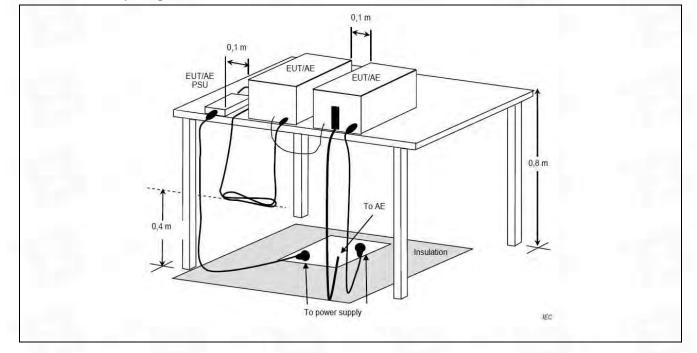
| Test Requirement: | 47 CFR Part 15.407(b)(9)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Test Method:      | ANSI C63.10-2013, section 12.7.4, 12.7.5, 12.7.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
|                   | limits set forth in § 15.209<br>Except as provided elsew<br>radiator shall not exceed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | here in this subpart, the en<br>the field strength levels spe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nissions from an intentional<br>crified in the following table:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
| Test Limit:       | Frequency (MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Field strength<br>(microvolts/meter)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Measurement<br>distance<br>(meters)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
|                   | 0.009-0.490<br>0.490-1.705                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2400/F(kHz)<br>24000/F(kHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 300<br>30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
|                   | 1.705-30.0<br>30-88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 30<br>100 **                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 30<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
|                   | 88-216<br>216-960<br>Above 960                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 150 **<br>200 **<br>500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3<br>3<br>3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |
| Procedure:        | above the ground at a 3 m<br>degrees to determine the<br>b. The EUT was set 3 or 7<br>which was mounted on th<br>c. The antenna height is w<br>determine the maximum w<br>polarizations of the anten<br>d. For each suspected en<br>the antenna was tuned to<br>of below 30MHz, the anter<br>was turned from 0 degree<br>e. The test-receiver syste<br>Bandwidth with Maximum<br>f. If the emission level of t<br>specified, then testing cou<br>reported. Otherwise the e<br>re-tested one by one usin<br>data sheet.<br>g. Test the EUT in the low<br>h. The radiation measured<br>Transmitting mode, and fo<br>i. Repeat above procedur<br>Remark:<br>1. Level= Read Level+ Ca<br>2. Scan from 9kHz to 30M<br>points marked on above poi<br>emissions from the radiat<br>need not be reported.<br>3. The disturbance below | neter semi-anechoic chamb<br>position of the highest radia<br>10 meters away from the in-<br>e top of a variable-height a<br>varied from one meter to fou-<br>value of the field strength. E<br>na are set to make the mea-<br>nission, the EUT was arrang<br>heights from 1 meter to 4 r<br>nna was tuned to heights 1<br>es to 360 degrees to find the<br>m was set to Peak Detect F<br>hold Mode.<br>the EUT in peak mode was<br>all be stopped and the pea-<br>missions that did not have<br>g quasi-peak method as sp<br>vest channel, the middle cha-<br>ments are performed in X, N<br>ound the X axis positioning<br>es until all frequencies mea-<br>able Loss+ Antenna Factor-<br>Mz, the disturbance below<br>blots are the highest emission<br>nts had been displayed. The<br>or which are attenuated mo- | terference-receiving antenna,<br>ntenna tower.<br>ur meters above the ground to<br>Both horizontal and vertical<br>asurement.<br>ged to its worst case and then<br>neters (for the test frequency<br>meter) and the rotatable table<br>e maximum reading.<br>Function and Specified<br>10dB lower than the limit<br>k values of the EUT would be<br>10dB margin would be<br>becified and then reported in a<br>annel, the Highest channel.<br>Y, Z axis positioning for<br>which it is the worst case.<br>asured was complete.<br>• Preamp Factor<br>30MHz was very low. The<br>ons could be found when<br>he amplitude of spurious<br>ore than 20dB below the limit<br>e harmonics were the highest |  |  |  |  |

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 30 of 16BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Page 30 of 167



| a. For above 1GHz, the EUT was placed on the top of a rotating table 1.5 meters<br>above the ground at a 3 meter fully-anechoic chamber. The table was rotated 360<br>degrees to determine the position of the highest radiation.                                                                                                                                                                                                |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.                                                                                                                                                                                                                                                                                       |
| c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical                                                                                                                                                                                                                                                                |
| polarizations of the antenna are set to make the measurement.                                                                                                                                                                                                                                                                                                                                                                    |
| <ul> <li>d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.</li> <li>e. The test-receiver system was set to Peak Detect Function and Specified</li> </ul> |
| Bandwidth with Maximum Hold Mode.                                                                                                                                                                                                                                                                                                                                                                                                |
| f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak or average method as specified and then reported                                                                                                        |
| in a data sheet.                                                                                                                                                                                                                                                                                                                                                                                                                 |
| <ul> <li>g. Test the EUT in the lowest channel, the middle channel, the Highest channel.</li> <li>h. The radiation measurements are performed in X, Y, Z axis positioning for<br/>Transmitting mode, and found the X axis positioning which it is the worst case.</li> <li>i. Repeat above procedures until all frequencies measured was complete.</li> <li>Remark:</li> </ul>                                                   |
| 1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor                                                                                                                                                                                                                                                                                                                                                                  |
| 2. Scan from 18GHz to 40GHz, the disturbance above 18GHz was very low. The                                                                                                                                                                                                                                                                                                                                                       |
| points marked on above plots are the highest emissions could be found when testing, so only above points had been displayed. The amplitude of spurious                                                                                                                                                                                                                                                                           |
| emissions from the radiator which are attenuated more than 20dB below the limit                                                                                                                                                                                                                                                                                                                                                  |
| need not be reported.                                                                                                                                                                                                                                                                                                                                                                                                            |
| 3. As shown in this section, for frequencies above 1GHz, the field strength limits                                                                                                                                                                                                                                                                                                                                               |
| are based on average limits. However, the peak field strength of any emission shall                                                                                                                                                                                                                                                                                                                                              |
| not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For the emissions whose peak level is lower                                                                                                                                                                                                                                                                |
| than the average limit, only the peak measurement is shown in the report.                                                                                                                                                                                                                                                                                                                                                        |
| 4. The disturbance above 18GHz were very low and the harmonics were the highest point could be found when testing, so only the above harmonics had been                                                                                                                                                                                                                                                                          |
| displayed.                                                                                                                                                                                                                                                                                                                                                                                                                       |


# 6.7.1 E.U.T. Operation:

| Operating Environment: |           |
|------------------------|-----------|
| Temperature:           | 25.5 °C   |
| Humidity:              | 50.6 %    |
| Atmospheric Pressure:  | 1010 mbar |

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 31 of 16BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China



## 6.7.2 Test Setup Diagram:

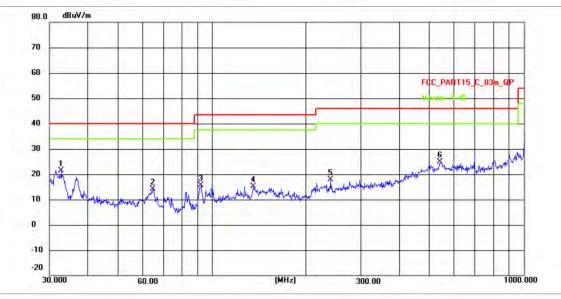


Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 32 of 167BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China



# 6.7.3 Test Data:

TM1 / Polarization: Horizontal / Band 1/Mode:802.11a


dBuV/m 80.0 70 60 FCC\_PART15\_ C 03 50 40 30 8 20 10 0 -10 -20 30.000 (MHz) 1000.000 60.00 300.00

| No. | Frequency<br>(MHz) | Reading<br>(dBuV) | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector | P/F |
|-----|--------------------|-------------------|------------------|-------------------|-------------------|----------------|----------|-----|
| 1   | 37.0896            | 34.35             | -18.44           | 15.91             | 40.00             | -24.09         | QP       | P   |
| 2   | 58.2030            | 28.04             | -18.20           | 9.84              | 40.00             | -30.16         | QP       | Р   |
| 3   | 91.8161            | 42.54             | -29.58           | 12.96             | 43.50             | -30.54         | QP       | Р   |
| 4   | 164.3300           | 41.94             | -27.65           | 14.29             | 43.50             | -29.21         | QP       | Р   |
| 5   | 264.2820           | 41.83             | -25.73           | 16.10             | 46.00             | -29.90         | QP       | Р   |
| 6 * | 545,1825           | 46.75             | -21.61           | 25.14             | 46.00             | -20,86         | QP       | Р   |
| -   |                    | 1 7 7 7 T         |                  |                   |                   |                |          |     |

Note:Reading=Receiver reading Factor=Antenna factor+Cable loss Level=Reading+Factor Limit=Limit stated in standard Margin=Measurement-Limits

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd. Page 33 of 167





TM1 / Polarization: Vertical / Band 1/Mode:802.11a

| No. | Frequency<br>(MHz) | Reading<br>(dBuV) | Factor<br>(dB/m) | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector | P/F |
|-----|--------------------|-------------------|------------------|-------------------|-------------------|----------------|----------|-----|
| 1 * | 32.8635            | 42.16             | -20.68           | 21.48             | 40.00             | -18.52         | QP       | Р   |
| 2   | 64.5460            | 34.13             | -20.08           | 14.05             | 40.00             | -25.95         | QP       | P   |
| 3   | 92.1386            | 45.23             | -29.52           | 15.71             | 43.50             | -27.79         | QP       | Р   |
| 4   | 135.7440           | 43.07             | -27.91           | 15.16             | 43,50             | -28.34         | QP       | P   |
| 5   | 239.9873           | 43.92             | -25.94           | 17.98             | 46.00             | -28.02         | QP       | P   |
| 6   | 541,3721           | 46.41             | -21.57           | 24.84             | 46.00             | -21.16         | QP       | Р   |

Note:Reading=Receiver reading Factor=Antenna factor+Cable loss

Level=Reading+Factor

Limit=Limit stated in standard Margin=Measurement-Limits

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.



# 6.8 Undesirable emission limits (above 1GHz)

|                   | 47 CFR Part 15.407(b)                                                                                                                                                                                                             |                                                                                                                 |                          |                     |  |  |  |  |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------|---------------------|--|--|--|--|
| Test Requirement: | 47 CFR Part 15.407(b)(2)                                                                                                                                                                                                          |                                                                                                                 |                          |                     |  |  |  |  |
| lest Requirement. | 47 CFR Part 15.407(b)(4)                                                                                                                                                                                                          |                                                                                                                 |                          |                     |  |  |  |  |
|                   | 47 CFR Part 15.407(b)(10)                                                                                                                                                                                                         |                                                                                                                 |                          |                     |  |  |  |  |
| Test Method:      | ANSI C63.10-2013, se                                                                                                                                                                                                              |                                                                                                                 |                          |                     |  |  |  |  |
|                   | For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the                                                                                                                                                |                                                                                                                 |                          |                     |  |  |  |  |
|                   | 5.15-5.35 GHz band shall not exceed an e.i.r.p. of −27 dBm/MHz.                                                                                                                                                                   |                                                                                                                 |                          |                     |  |  |  |  |
|                   | For transmitters operating in the 5.25-5.35 GHz band: All emissions outside                                                                                                                                                       |                                                                                                                 |                          |                     |  |  |  |  |
|                   |                                                                                                                                                                                                                                   | nall not exceed an e.i.r.                                                                                       |                          |                     |  |  |  |  |
|                   | For transmitters operating solely in the 5.725-5.850 GHz band:<br>All emissions shall be limited to a level of −27 dBm/MHz at 75 MHz or more above<br>or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or |                                                                                                                 |                          |                     |  |  |  |  |
|                   |                                                                                                                                                                                                                                   |                                                                                                                 |                          |                     |  |  |  |  |
|                   |                                                                                                                                                                                                                                   |                                                                                                                 |                          |                     |  |  |  |  |
|                   |                                                                                                                                                                                                                                   |                                                                                                                 |                          |                     |  |  |  |  |
|                   | below the band edge,                                                                                                                                                                                                              |                                                                                                                 |                          |                     |  |  |  |  |
|                   | linearly to a level of 15                                                                                                                                                                                                         |                                                                                                                 |                          |                     |  |  |  |  |
|                   | from 5 MHz above or below the band edge increasing linearly to a level of 27                                                                                                                                                      |                                                                                                                 |                          |                     |  |  |  |  |
|                   | dBm/MHz at the band                                                                                                                                                                                                               | edge.                                                                                                           |                          |                     |  |  |  |  |
|                   | MHz                                                                                                                                                                                                                               | MHz                                                                                                             | MHz                      | GHz                 |  |  |  |  |
|                   | 0.090-0.110                                                                                                                                                                                                                       | 16.42-16.423                                                                                                    | 399.9-410                | 4.5-5.15            |  |  |  |  |
|                   | <sup>1</sup> 0.495-0.505                                                                                                                                                                                                          | 16.69475-16.69525                                                                                               |                          | 5.35-5.46           |  |  |  |  |
|                   | 2.1735-2.1905                                                                                                                                                                                                                     | 16.80425-16.80475                                                                                               | 960-1240                 | 7.25-7.75           |  |  |  |  |
|                   | 4.125-4.128                                                                                                                                                                                                                       | 25.5-25.67                                                                                                      | 1300-1427                | 8.025-8.5           |  |  |  |  |
|                   | 4.17725-4.17775                                                                                                                                                                                                                   | 37.5-38.25                                                                                                      | 1435-1626.5              | 9.0-9.2             |  |  |  |  |
|                   | 4.20725-4.20775                                                                                                                                                                                                                   | 73-74.6                                                                                                         | 1645.5-1646.             | 9.3-9.5             |  |  |  |  |
|                   |                                                                                                                                                                                                                                   |                                                                                                                 | 5                        |                     |  |  |  |  |
|                   | 6.215-6.218                                                                                                                                                                                                                       | 74.8-75.2                                                                                                       | 1660-1710                | 10.6-12.7           |  |  |  |  |
|                   | 6.26775-6.26825                                                                                                                                                                                                                   | 108-121.94                                                                                                      | 1718.8-1722.             | 13.25-13.4          |  |  |  |  |
|                   |                                                                                                                                                                                                                                   |                                                                                                                 | 2                        |                     |  |  |  |  |
|                   | 6.31175-6.31225                                                                                                                                                                                                                   | 123-138                                                                                                         | 2200-2300                | 14.47-14.5          |  |  |  |  |
| Test Limit:       | 8.291-8.294                                                                                                                                                                                                                       | 149.9-150.05                                                                                                    | 2310-2390                | 15.35-16.2          |  |  |  |  |
|                   | 8.362-8.366                                                                                                                                                                                                                       | 156.52475-156.525                                                                                               | 2483.5-2500              | 17.7-21.4           |  |  |  |  |
|                   | 0.002-0.000                                                                                                                                                                                                                       | 25                                                                                                              | 2400.0-2000              | 17.7-21.4           |  |  |  |  |
|                   | 8.37625-8.38675                                                                                                                                                                                                                   | 156.7-156.9                                                                                                     | 2690-2900                | 22.01-23.12         |  |  |  |  |
|                   | 8.41425-8.41475                                                                                                                                                                                                                   | 162.0125-167.17                                                                                                 | 3260-3267                | 23.6-24.0           |  |  |  |  |
|                   | 12.29-12.293                                                                                                                                                                                                                      | 167.72-173.2                                                                                                    |                          | 31.2-31.8           |  |  |  |  |
|                   | 12.51975-12.52025                                                                                                                                                                                                                 |                                                                                                                 | 3332-3339<br>3345.8-3358 |                     |  |  |  |  |
|                   |                                                                                                                                                                                                                                   |                                                                                                                 |                          | 36.43-36.5          |  |  |  |  |
|                   | 12.57675-12.57725                                                                                                                                                                                                                 | 322-335.4                                                                                                       | 3600-4400                | ( <sup>2</sup> )    |  |  |  |  |
|                   | 13.36-13.41                                                                                                                                                                                                                       |                                                                                                                 |                          |                     |  |  |  |  |
|                   | <sup>1</sup> Until February 1, 1000                                                                                                                                                                                               | ), this restricted band s                                                                                       | hall he 0 490-0 4        | 510 MHz             |  |  |  |  |
|                   | <sup>2</sup> Above 38.6                                                                                                                                                                                                           |                                                                                                                 |                          |                     |  |  |  |  |
|                   | Above 50.0                                                                                                                                                                                                                        |                                                                                                                 |                          |                     |  |  |  |  |
|                   | The field strength of er                                                                                                                                                                                                          | missions appearing with                                                                                         | in these frequer         | nov hands shall not |  |  |  |  |
|                   |                                                                                                                                                                                                                                   |                                                                                                                 |                          |                     |  |  |  |  |
|                   |                                                                                                                                                                                                                                   | n in § 15.209. At freque                                                                                        |                          |                     |  |  |  |  |
|                   |                                                                                                                                                                                                                                   | the limits in § 15.209sh                                                                                        |                          |                     |  |  |  |  |
|                   |                                                                                                                                                                                                                                   | entation employing a CI                                                                                         |                          |                     |  |  |  |  |
|                   |                                                                                                                                                                                                                                   | e with the emission limit                                                                                       |                          |                     |  |  |  |  |
|                   |                                                                                                                                                                                                                                   | value of the measured                                                                                           | emissions. The           | provisions in §     |  |  |  |  |
|                   | 15.35apply to these m                                                                                                                                                                                                             | easurements.                                                                                                    |                          |                     |  |  |  |  |
|                   | Event on provided ele                                                                                                                                                                                                             | For and an analytical algorithm in this and a set of the |                          |                     |  |  |  |  |
|                   | Except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:                                                             |                                                                                                                 |                          |                     |  |  |  |  |
|                   |                                                                                                                                                                                                                                   |                                                                                                                 |                          |                     |  |  |  |  |
|                   | Frequency (MHz)                                                                                                                                                                                                                   | Field strength                                                                                                  |                          | Measurement         |  |  |  |  |

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd. F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

## Test Report Number: BTF240319R00204



| Image: constraint of the second sec   |                                                                                                                                                                                                                                                                                                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Procedure:0.009-0.4902400/F(kHz)3000.490-1.70524000/F(kHz)301.705-30.0303030-88100 **388-216150 **3216-960200 **3Above 9605003Above 1GHz:a. For above 1GHz, the EUT was placed on the top of a rotating table 1above the ground at a 3 meter fully-anechoic chamber. The table was rodegrees to determine the position of the highest radiation.b. The EUT was set 3 meters away from the interference-receiving antewas mounted on the top of a variable-height antenna tower.c. The antenna height is varied from one meter to four meters above thedetermine the maximum value of the field strength. Both horizontal andpolarizations of the antenna are set to make the measurement.d. For each suspected emission, the EUT was arranged to its worst casthe antenna was tuned to heights from 1 meter to 4 meters (for the testof below 30MHz, the antenna was tuned to heights 1 meter) and the rotwas turned from 0 degrees to 360 degrees to flad the maximum readinge. The test-receiver system was set to Peak Detect Function and SpeciBandwidth with Maximum Hold Mode.f. If the emission level of the EUT in peak mode was 10dB lower than thspecified, then testing could be stopped and the peak values of the EUTreported. Otherwise the emissions that did not have 10dB margin wouldre-tested one by one using peak or average method as specified and thein a data sheet.g. Test the EUT in the lowest channel, the midle channel, the Highest of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                  |
| Procedure:       0.490-1.705       24000/F(kHz)       30         1.705-30.0       30       30       30         30-88       100 **       3         88-216       150 **       3         216-960       200 **       3         Above 960       500       3         Above 1GHz:       a. For above 1GHz, the EUT was placed on the top of a rotating table 1         above the ground at a 3 meter fully-anechoic chamber. The table was rodegrees to determine the position of the highest radiation.         b. The EUT was set 3 meters away from the interference-receiving anter was mounted on the top of a variable-height antenna tower.         c. The antenna height is varied from one meter to four meters above the determine the maximum value of the field strength. Both horizontal and polarizations of the antenna are set to make the measurement.         d. For each suspected emission, the EUT was arranged to its worst cas the antenna was tuned to heights from 1 meter to 4 meters (for the test of below 30MHz, the antenna was tuned to heights 1 meter) and the rot was turned from 0 degrees to 360 degrees to find the maximum reading e. The test-receiver system was set to Peak Detect Function and Speci         Bandwidth with Maximum Hold Mode.       f. If the emission level of the EUT in peak mode was 10dB lower than th specified, then testing could be stopped and the peak values of the EUT reported. Otherwise the emissions that did not have 10dB margin would re-tested one by one using peak or average method as specified and the in a data sheet.         g. Test t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                  |
| Procedure:1.705-30.03030301.705-30.03030303030-88100**388-216150**3216-960200**3Above 9605003Above 1GHz:a. For above 1GHz, the EUT was placed on the top of a rotating table 1above the ground at a 3 meter fully-anechoic chamber. The table was ro<br>degrees to determine the position of the highest radiation.b. The EUT was set 3 meters away from the interference-receiving anter<br>was mounted on the top of a variable-height antenna tower.<br>c. The antenna height is varied from one meter to four meters above the<br>determine the maximum value of the field strength. Both horizontal and<br>polarizations of the antenna are set to make the measurement.d. For each suspected emission, the EUT was arranged to its worst cas<br>the antenna was tuned to heights from 1 meter to 4 meters (for the test<br>of below 30MHz, the antenna was tuned to heights 1 meter) and the rot<br>was turned from 0 degrees to 360 degrees to find the maximum reading<br>e. The test-receiver system was set to Peak Detect Function and Speci<br>Bandwidth with Maximum Hold Mode.f. If the emission level of the EUT in peak mode was 10dB lower than th<br>specified, then testing could be stopped and the peak values of the EUT<br>reported. Otherwise the emissions that did not have 10dB margin would<br>re-tested one by one using peak or average method as specified and the<br>in a data sheet.<br>g. Test the EUT in the lowest channel, the middle channel, the Highest o<br>h. The radiation measurements are performed in X, Y, Z axis positioning<br>Transmitting mode, and found the X axis positioning which it is the wors<br>i. Repeat above procedures until all frequencies measured was completed the set apo                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                  |
| 30-88       100 **       3         88-216       150 **       3         216-960       200 **       3         Above 960       500       3         Above 1GHz:       a. For above 1GHz, the EUT was placed on the top of a rotating table 1 above the ground at a 3 meter fully-anechoic chamber. The table was rodegrees to determine the position of the highest radiation.         b. The EUT was set 3 meters away from the interference-receiving anter was mounted on the top of a variable-height antenna tower.         c. The antenna height is varied from one meter to four meters above the determine the maximum value of the field strength. Both horizontal and polarizations of the antenna are set to make the measurement.         d. For each suspected emission, the EUT was arranged to its worst cas the antenna was tuned to heights 1 meter) and the rot was turned from 0 degrees to 360 degrees to find the maximum reading e. The test-receiver system was set to Peak Detect Function and Speci Bandwidth with Maximum Hold Mode.         f. If the emission level of the EUT in peak mode was 10dB lower than the specified, then testing could be stopped and the peak values of the EUT reported. Otherwise the emissions that did not have 10dB margin would re-tested one by one using peak or average method as specified and the in a data sheet.         g. Test the EUT in the lowest channel, the middle channel, the Highest of h. The radiation measurements are performed in X, Y, Z axis positioning Transmitting mode, and found the X axis positioning which it is the wors i. Repeat above procedures until all frequencies measured was completed and the peak above procedures until all frequencies measured was comple                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                  |
| Procedure:       88-216       150 **       3         216-960       200 **       3         Above 960       500       3         Above 1GHz:       a. For above 1GHz, the EUT was placed on the top of a rotating table 1 above the ground at a 3 meter fully-anechoic chamber. The table was to degrees to determine the position of the highest radiation.         b. The EUT was set 3 meters away from the interference-receiving anter was mounted on the top of a variable-height antenna tower.         c. The antenna height is varied from one meter to four meters above the determine the maximum value of the field strength. Both horizontal and polarizations of the antenna are set to make the measurement.         d. For each suspected emission, the EUT was arranged to its worst cas the antenna was tuned to heights from 1 meter to 4 meters (for the test of below 30MHz, the antenna was stuned to heights 1 meter) and the rot was turned from 0 degrees to 360 degrees to find the maximum reading e. The test-receiver system was set to Peak Detect Function and Speci Bandwidth with Maximum Hold Mode.         f. If the emission level of the EUT in peak mode was 10dB lower than th specified, then testing could be stopped and the peak values of the EUT reported. Otherwise the emissions that did not have 10dB margin would re-tested one by one using peak or average method as specified and the in a data sheet.         g. Test the EUT in the lowest channel, the middle channel, the Highest of h. The radiation measurements are performed in X, Y, Z axis positioning Transmitting mode, and found the X axis positioning which it is the wors i. Repeat above procedures until all frequencies measured was comple                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                  |
| Procedure:       216-960       200 **       3         Above 960       500       3         Above 1GHz:       a. For above 1GHz, the EUT was placed on the top of a rotating table 1 above the ground at a 3 meter fully-anechoic chamber. The table was rodegrees to determine the position of the highest radiation.         b. The EUT was set 3 meters away from the interference-receiving anter was mounted on the top of a variable-height antenna tower.       c. The antenna height is varied from one meter to four meters above the determine the maximum value of the field strength. Both horizontal and polarizations of the antenna are set to make the measurement.         d. For each suspected emission, the EUT was arranged to its worst cas the antenna was tuned to heights from 1 meter to 4 meters (for the test of below 30MHz, the antenna was tuned to heights 1 meter) and the rots was turned from 0 degrees to 360 degrees to find the maximum reading e. The test-receiver system was set to Peak Detect Function and Speci Bandwidth with Maximum Hold Mode.         f. If the emission level of the EUT in peak mode was 10dB lower than th specified, then testing could be stopped and the peak values of the EUT reported. Otherwise the emissions that did not have 10dB margin would re-tested one by one using peak or average method as specified and the in a data sheet.         g. Test the EUT in the lowest channel, the middle channel, the Highest on h. The radiation measurements are performed in X, Y, Z axis positioning Transmitting mode, and found the X axis positioning which it is the wors i. Repeat above procedures until all frequencies measured was completed was someted was completed to the set was completed to be above procedures until all frequencies measured was completed to the set was c                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                  |
| Above 9605003Above 1GHz:<br>a. For above 1GHz, the EUT was placed on the top of a rotating table 1<br>above the ground at a 3 meter fully-anechoic chamber. The table was ro<br>degrees to determine the position of the highest radiation.<br>b. The EUT was set 3 meters away from the interference-receiving anter<br>was mounted on the top of a variable-height antenna tower.<br>c. The antenna height is varied from one meter to four meters above the<br>determine the maximum value of the field strength. Both horizontal and<br>polarizations of the antenna are set to make the measurement.<br>d. For each suspected emission, the EUT was arranged to its worst cas<br>the antenna was tuned to heights from 1 meter to 4 meters (for the test<br>of below 30MHz, the antenna was tuned to heights 1 meter) and the rot<br>was turned from 0 degrees to 360 degrees to find the maximum reading<br>e. The test-receiver system was set to Peak Detect Function and Speci<br>Bandwidth with Maximum Hold Mode.<br>f. If the emission level of the EUT in peak mode was 10dB lower than th<br>specified, then testing could be stopped and the peak values of the EUT<br>reported. Otherwise the emissions that did not have 10dB margin would<br>re-tested one by one using peak or average method as specified and the<br>in a data sheet.<br>g. Test the EUT in the lowest channel, the middle channel, the Highest of<br>h. The radiation measurements are performed in X, Y, Z axis positioning<br>Transmitting mode, and found the X axis positioning which it is the wors<br>i. Repeat above procedures until all frequencies measured was completed and the output of the state on the assist of bound the X axis positioning which it is the wors<br>i. Repeat above procedures until all frequencies measured was completed and the output of the state on the state one by one curve on the state one by an euler of the X axis positioning which it is the wors<br>i. Repeat above procedures until all frequencies meas                                                                |                                                                                                                                                                                                                                                                                                  |
| <ul> <li>Procedure:</li> <li>Above 1GHz:         <ul> <li>a. For above 1GHz, the EUT was placed on the top of a rotating table 1 above the ground at a 3 meter fully-anechoic chamber. The table was redegrees to determine the position of the highest radiation.</li> <li>b. The EUT was set 3 meters away from the interference-receiving anter was mounted on the top of a variable-height antenna tower.</li> <li>c. The antenna height is varied from one meter to four meters above the determine the maximum value of the field strength. Both horizontal and polarizations of the antenna are set to make the measurement.</li> <li>d. For each suspected emission, the EUT was arranged to its worst cas the antenna was tuned to heights from 1 meter to 4 meters (for the test of below 30MHz, the antenna was tuned to heights 1 meter) and the rott was turned from 0 degrees to 360 degrees to find the maximum reading e. The test-receiver system was set to Peak Detect Function and Specified, then testing could be stopped and the peak values of the EUT reported. Otherwise the emissions that did not have 10dB margin would re-tested one by one using peak or average method as specified and the in a data sheet.</li> <li>g. Test the EUT in the lowest channel, the middle channel, the Highest on h. The radiation measurements are performed in X, Y, Z axis positioning Transmitting mode, and found the X axis positioning which it is the wors i. Repeat above procedures until all frequencies measured was completed and the reduction of the EUT in the lowest channel, the middle channel, the two set is in the specified and the in a data sheet.</li> </ul> </li></ul>                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                  |
| <ul> <li>Procedure:</li> <li>a. For above 1GHz, the EUT was placed on the top of a rotating table 1 above the ground at a 3 meter fully-anechoic chamber. The table was redegrees to determine the position of the highest radiation.</li> <li>b. The EUT was set 3 meters away from the interference-receiving anterwas mounted on the top of a variable-height antenna tower.</li> <li>c. The antenna height is varied from one meter to four meters above the determine the maximum value of the field strength. Both horizontal and polarizations of the antenna are set to make the measurement.</li> <li>d. For each suspected emission, the EUT was arranged to its worst cas the antenna was tuned to heights from 1 meter to 4 meters (for the test of below 30MHz, the antenna was tuned to heights 1 meter) and the rota was turned from 0 degrees to 360 degrees to find the maximum reading e. The test-receiver system was set to Peak Detect Function and Specified, then testing could be stopped and the peak values of the EUT reported. Otherwise the emissions that did not have 10dB margin would re-tested one by one using peak or average method as specified and the in a data sheet.</li> <li>g. Test the EUT in the lowest channel, the middle channel, the Highest of h. The radiation measurements are performed in X, Y, Z axis positioning Transmitting mode, and found the X axis positioning which it is the wors i. Repeat above procedures until all frequencies measured was completed and the reduction and specified and the fully set of the equation areasurements are performed in X, Y, Z axis positioning the set of the equation are set of the set of the equation measurements are performed in X, Y, Z axis positioning transmitting mode, and found the X axis positioning which it is the wors i. Repeat above procedures until all frequencies measured was completed and the procedures areasured was completed an</li></ul> |                                                                                                                                                                                                                                                                                                  |
| <ul> <li>1. Level= Read Level+ Cable Loss+ Antenna Factor- Preamp Factor</li> <li>2. Scan from 18GHz to 40GHz, the disturbance above 18GHz was very points marked on above plots are the highest emissions could be found testing, so only above points had been displayed. The amplitude of spu emissions from the radiator which are attenuated more than 20dB below need not be reported.</li> <li>3. As shown in this section, for frequencies above 1GHz, the field streng are based on average limits. However, the peak field strength of any eminot exceed the maximum permitted average limits specified above by m dB under any condition of modulation. For the emissions whose peak let than the average limit, only the peak measurement is shown in the report.</li> <li>4. The disturbance above 18GHz were very low and the harmonics wer highest point could be found when testing, so only the above harmonics.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | otated 360<br>nna, which<br>e ground to<br>vertical<br>e and then<br>frequency<br>atable table<br>be<br>e limit<br>would be<br>be<br>en reported<br>channel.<br>for<br>t case.<br>e.<br>low. The<br>when<br>rious<br>v the limit<br>sission shall<br>ore than 20<br>vel is lower<br>rt.<br>e the |

#### 6.8.1 E.U.T. Operation:

| Operating Environment: |           |
|------------------------|-----------|
| Temperature:           | 25.5 °C   |
| Humidity:              | 50.6 %    |
| Atmospheric Pressure:  | 1010 mbar |

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 36 of 16BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Page 36 of 167



#### 6.8.2 Test Data:

Note: All mode are tested, and the report only shows the worst mode data of 802.11a

|          |                    | U                 | NII-1_802           | .11a_5180MHz      | _Horizontal       |                |          |     |
|----------|--------------------|-------------------|---------------------|-------------------|-------------------|----------------|----------|-----|
| No.      | Frequency<br>(MHz) | Reading<br>(dBuV) | Factor<br>(dB/m)    | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector | P/F |
| 1        | 10380.000          | 66.70             | -24.40              | 42.30             | 74.00             | -31.70         | peak     | Р   |
| 2        | 15570.000          | 68.56             | -21.44              | 47.12             | 74.00             | -26.88         | peak     | Р   |
|          | •                  | U                 | NII-1_802           | .11a _5180MH:     | z_Vertical        |                |          |     |
| No.      | Frequency<br>(MHz) | Reading<br>(dBuV) | Factor<br>(dB/m)    | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector | P/F |
| 1        | 10380.000          | 67.57             | -21.50              | 46.07             | 74.00             | -27.93         | peak     | Ρ   |
| 2        | 15570.000          | 68.22             | -24.45              | 43.77             | 74.00             | -30.23         | peak     | Ρ   |
|          |                    | UN                | III-1 <u>802</u> .1 | 1a_5200MHz_       | Horizontal        |                | -        |     |
| No.      | Frequency<br>(MHz) | Reading<br>(dBuV) | Factor<br>(dB/m)    | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector | P/F |
| 1        | 10400.000          | 67.10             | -24.47              | 42.63             | 74.00             | -31.37         | peak     | Ρ   |
| 2        | 15600.000          | 68.96             | -21.51              | 47.45             | 74.00             | -26.55         | peak     | Ρ   |
|          |                    | U                 | NII-1_802           | .11a _5200MH      | z_Vertical        |                |          |     |
| No.      | Frequency<br>(MHz) | Reading<br>(dBuV) | Factor<br>(dB/m)    | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector | P/F |
| 1        | 10560.000          | 68.07             | -24.47              | 43.60             | 74.00             | -30.40         | peak     | Р   |
| 2        | 15840.000          | 68.72             | -21.51              | 47.21             | 74.00             | -26.79         | peak     | Р   |
|          |                    | UN                | III-1_802.1         | 1a _5240MHz       | Horizontal        |                |          |     |
| No.      | Frequency<br>(MHz) | Reading<br>(dBuV) | Factor<br>(dB/m)    | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector | P/F |
| 1        | 10460.000          | 67.49             | -24.40              | 43.09             | 74.00             | -30.91         | peak     | Р   |
| 2        | 15690.000          | 69.35             | -21.42              | 47.93             | 74.00             | -26.07         | peak     | Р   |
|          |                    | U                 | INII-1_802          | .11a _5240MH      | z_Vertical        |                |          |     |
| <u> </u> | Frequency          | Reading           | Factor<br>(dB/m)    | Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Detector | P/F |
| No.      | (MHz)              | (dBuV)            | (ub/iii)            | (424)             | (                 |                |          |     |
| No.      | (MHz)<br>10460.000 | (dBuV)<br>68.40   | -24.40              | 44.00             | 74.00             | -30.00         | peak     | Р   |

Total or partial reproduction of this document without permission of the Laboratory is not allowed.

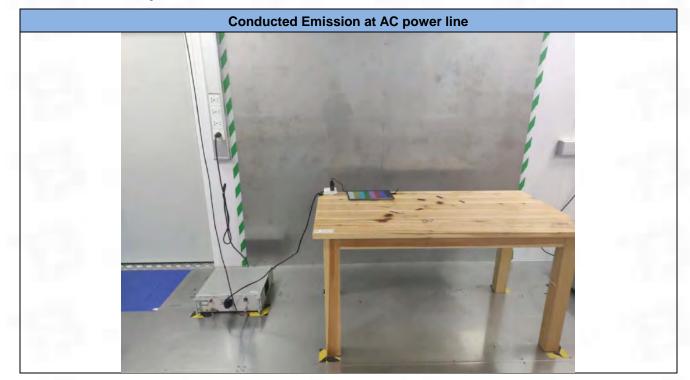
BTF Testing Lab (Shenzhen) Co., Ltd. F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

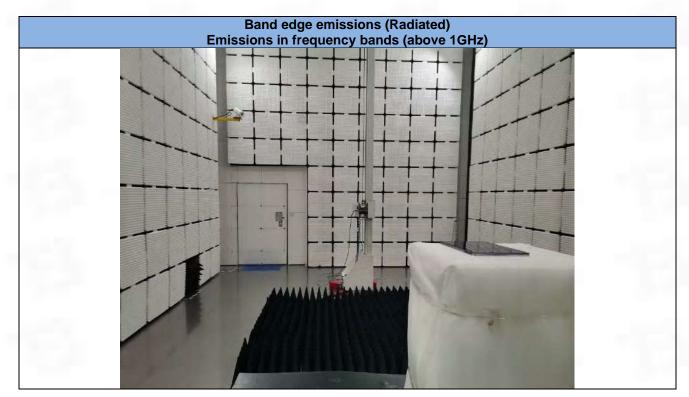


| UNII-3_802.11a _5745MHz_Horizontal |           |         |        |          |          |        |          |     |  |  |
|------------------------------------|-----------|---------|--------|----------|----------|--------|----------|-----|--|--|
| Na                                 | Frequency | Reading | Factor | Level    | Limit    | Margin | Detector | DIE |  |  |
| No.                                | (MHz)     | (dBuV)  | (dB/m) | (dBuV/m) | (dBuV/m) | (dB)   | Detector | P/F |  |  |
| 1                                  | 11510.000 | 66.38   | -23.01 | 43.37    | 74.00    | -30.63 | peak     | Р   |  |  |
| 2                                  | 17265.000 | 66.40   | -17.30 | 49.10    | 74.00    | -24.90 | peak     | Р   |  |  |

|                                             |                    |                 | UNII-3_80           | 2.11a _5745M⊦ | Iz_Vertical |        |           |       |  |  |
|---------------------------------------------|--------------------|-----------------|---------------------|---------------|-------------|--------|-----------|-------|--|--|
|                                             | Frequency          | Reading         | Factor              | Level         | Limit       | Margin | Detector  | DIE   |  |  |
| No.                                         | (MHz)              | (dBuV)          | (dB/m)              | (dBuV/m)      | (dBuV/m)    | (dB)   | Detector  | P/F   |  |  |
| 1                                           | 11510.000          | 65.96           | -23.07              | 42.89         | 74.00       | -31.11 | peak      | Ρ     |  |  |
| 2                                           | 17265.000          | 68.05           | -17.36              | 50.69         | 74.00       | -23.31 | peak      | Ρ     |  |  |
|                                             |                    | UN              | 111-3 802.1         | 1a 5785MHz    | Horizontal  |        |           |       |  |  |
| Frequency Reading Factor Level Limit Margin |                    |                 |                     |               |             |        |           |       |  |  |
| No.                                         | (MHz)              | (dBuV)          | (dB/m)              | (dBuV/m)      | (dBuV/m)    | (dB)   | Detector  | P/F   |  |  |
| 1                                           | 11570.000          | 66.78           | -22.95              | 43.83         | 74.00       | -30.17 | peak      | P     |  |  |
| 2                                           | 17355.000          | 66.80           | -16.89              | 49.91         | 74.00       | -24.09 | peak      | P     |  |  |
|                                             |                    |                 |                     | .11a 5785MH:  |             |        |           |       |  |  |
| I                                           | 1                  | 1               |                     |               |             |        |           | 1     |  |  |
| No.                                         | Frequency          | Reading         | Factor              | Level         | Limit       | Margin | Detector  | P/F   |  |  |
| 110.                                        | (MHz)              | (dBuV)          | (dB/m)              | (dBuV/m)      | (dBuV/m)    | (dB)   | Dettector | • • • |  |  |
| 1                                           | 11570.000          | 67.38           | -22.95              | 44.43         | 74.00       | -29.57 | peak      | Р     |  |  |
| 2                                           | 17355.000          | 69.47           | -16.89              | 52.58         | 74.00       | -21.42 | peak      | Ρ     |  |  |
|                                             |                    | UN              | <b>III-3_802</b> .1 | 1a _5825MHz   | Horizontal  |        |           |       |  |  |
|                                             | Frequency          | Reading         | Factor              | Level         | Limit       | Margin |           |       |  |  |
| No.                                         | (MHz)              | (dBuV)          | (dB/m)              | (dBuV/m)      | (dBuV/m)    | (dB)   | Detector  | P/F   |  |  |
| 1                                           | 11590.000          | 67.37           | -22.69              | 44.68         | 74.00       | -29.32 | peak      | Р     |  |  |
| 2                                           | 17385.000          | 67.39           | -16.30              | 51.09         | 74.00       | -22.91 | peak      | Р     |  |  |
|                                             | •                  | U               | INII-3_802          | .11a _5825MH: | z_Vertical  |        |           |       |  |  |
|                                             | Frequency          | Reading         | Factor              | Level         | Limit       | Margin |           |       |  |  |
|                                             |                    | -               |                     | (dBuV/m)      | (dBuV/m)    | (dB)   | Detector  | P/F   |  |  |
| No.                                         | (MHz)              | (dBuV)          | (dB/m)              | (ubuv/III)    | (ubu v/iii) |        |           |       |  |  |
| No.                                         | (MHz)<br>11590.000 | (dBuV)<br>67.86 | (dB/m)<br>-22.69    | 45.17         | 74.00       | -28.83 | peak      | Р     |  |  |

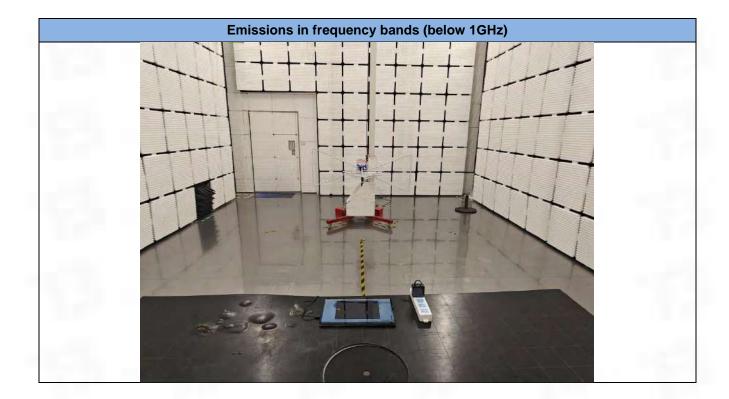
#### Note:Reading=Receiver reading


Factor=Antenna factor+Cable loss Level=Reading+Factor Limit=Limit stated in standard Margin=Measurement-Limits


Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd. F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Page 38 of 167




### 7 Test Setup Photos





Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 39 of 167BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China





Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 40 of 167BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China



Test Report Number: BTF240319R00204

# 8 EUT Constructional Details (EUT Photos)

Please refer to the test report No. BTF240319R00201

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 41 of 167BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China



Test Report Number: BTF240319R00204

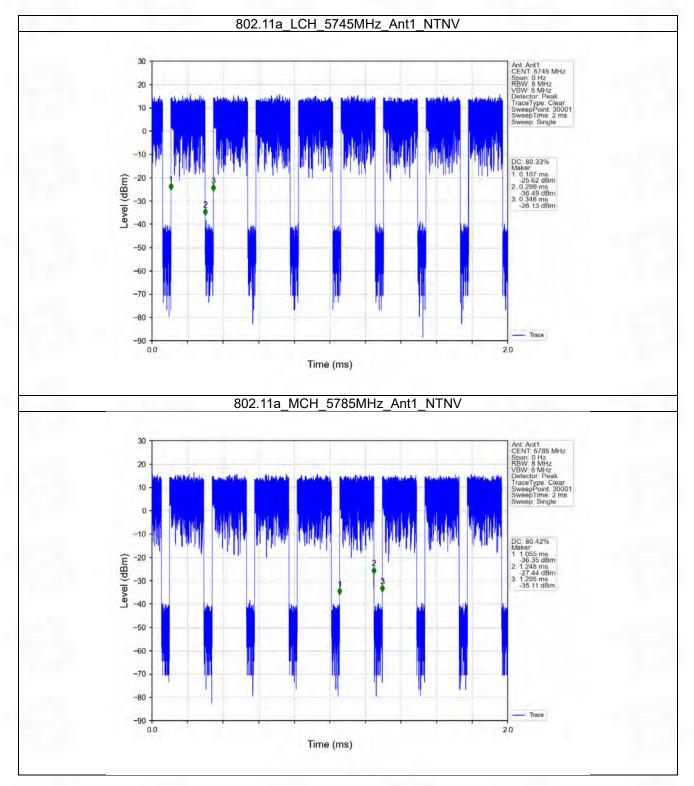
# Appendix

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 42 of 167BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China



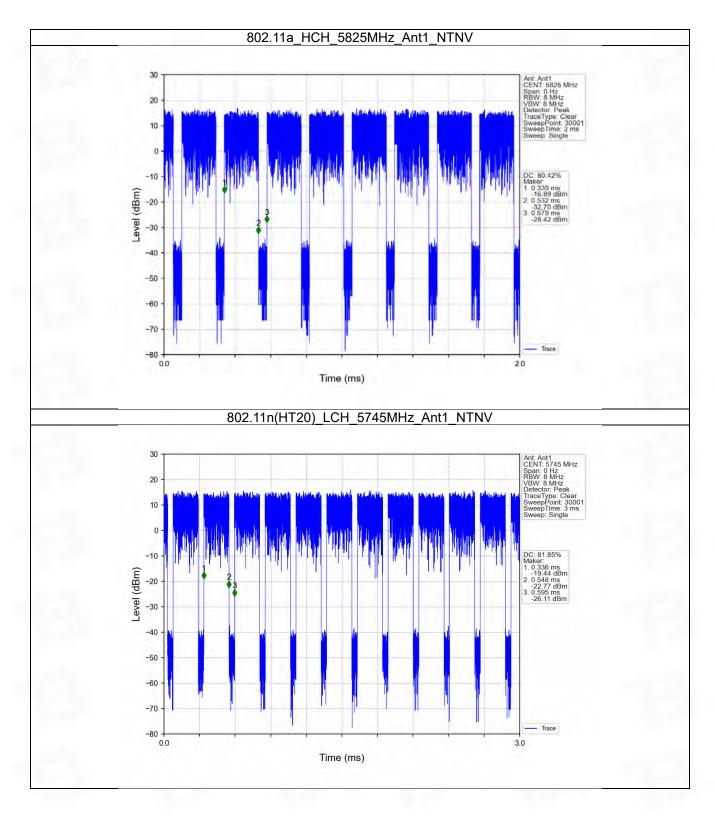
# 1. Duty Cycle

# 1.1 Ant1


#### 1.1.1 Test Result

|                     |       |           |       | /      | Ant1       |                        |               |
|---------------------|-------|-----------|-------|--------|------------|------------------------|---------------|
| Mode                | TX    | Frequency | T_on  | Period | Duty Cycle | Duty Cycle             | Max. DC       |
| Mode                | Туре  | (MHz)     | (ms)  | (ms)   | (%)        | Correction Factor (dB) | Variation (%) |
|                     |       | 5745      | 0.192 | 0.239  | 80.33      | 0.95                   | 0.06          |
| 802.11a             | SISO  | 5785      | 0.193 | 0.240  | 80.42      | 0.95                   | 0.48          |
|                     |       | 5825      | 0.193 | 0.240  | 80.42      | 0.95                   | 0.53          |
| 802.11n             |       | 5745      | 0.212 | 0.259  | 81.85      | 0.87                   | 0.08          |
| (HT20)              | MIMO  | 5785      | 0.213 | 0.259  | 82.24      | 0.85                   | 0.24          |
| (11120)             |       | 5825      | 0.212 | 0.259  | 81.85      | 0.87                   | 0.04          |
| 802.11a             | SISO  | 5180      | 2.089 | 2.136  | 97.80      | 0.10                   | 0.07          |
| 802.11n             |       | 5755      | 0.200 | 0.247  | 80.97      | 0.92                   | 0.05          |
| (HT40)              | MIMO  | 5795      | 0.200 | 0.247  | 80.97      | 0.92                   | 0.18          |
| 902 110             | SISO  | 5200      | 2.088 | 2.136  | 97.75      | 0.10                   | 0.07          |
| 802.11a             |       | 5240      | 2.088 | 2.136  | 97.75      | 0.10                   | 0.07          |
| 000 11-             | MIMO  | 5180      | 4.015 | 4.064  | 98.79      | 0.05                   | 0.07          |
| 802.11n<br>(HT20)   |       | 5200      | 4.016 | 4.062  | 98.87      | 0.05                   | 0.04          |
|                     |       | 5240      | 4.016 | 4.063  | 98.84      | 0.05                   | 0.04          |
| 802.11n             | MIMO  | 5190      | 3.992 | 4.039  | 98.84      | 0.05                   | 0.03          |
| (HT40)              |       | 5230      | 3.991 | 4.039  | 98.81      | 0.05                   | 0.03          |
|                     |       | 5745      | 0.192 | 0.239  | 80.33      | 0.95                   | 0.08          |
| 000 11              |       | 5785      | 0.192 | 0.240  | 80.00      | 0.97                   | 0.58          |
| 802.11ac            | MIMO  | 5825      | 0.204 | 0.252  | 80.95      | 0.92                   | 0.52          |
| (VHT20)             |       | 5180      | 4.004 | 4.052  | 98.82      | 0.05                   | 0.07          |
|                     |       | 5200      | 4.004 | 4.050  | 98.86      | 0.05                   | 0.04          |
| 802.11ac<br>(VHT40) | MIMO  | 5755      | 0.201 | 0.248  | 81.05      | 0.91                   | 0.20          |
| 802.11ac<br>(VHT20) | ΜΙΜΟ  | 5240      | 4.004 | 4.051  | 98.84      | 0.05                   | 0.03          |
|                     |       | 5795      | 0.201 | 0.247  | 81.38      | 0.90                   | 0.20          |
| 802.11ac            | MIMO  | 5190      | 3.980 | 4.027  | 98.83      | 0.05                   | 0.03          |
| (VHT40)             |       | 5230      | 3.980 | 4.027  | 98.83      | 0.05                   | 0.04          |
| 802.11ac            | МІМО  | 5775      | 0.176 | 0.223  | 78.92      | 1.03                   | 0.09          |
| (VHT80)             | UNINO | 5210      | 3.976 | 4.024  | 98.81      | 0.05                   | 0.03          |

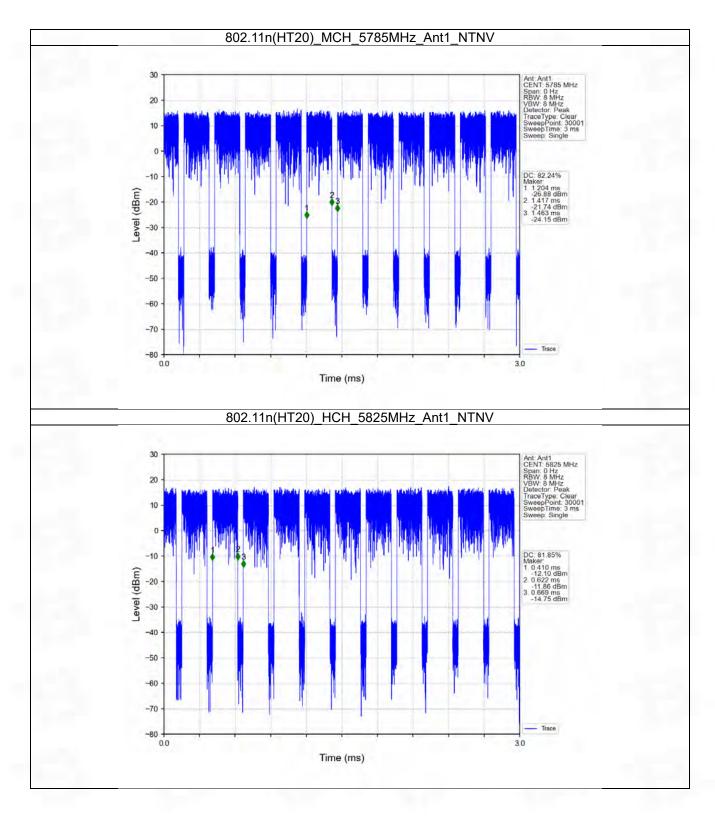
Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 43 of 16BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China




#### 1.1.2 Test Graph

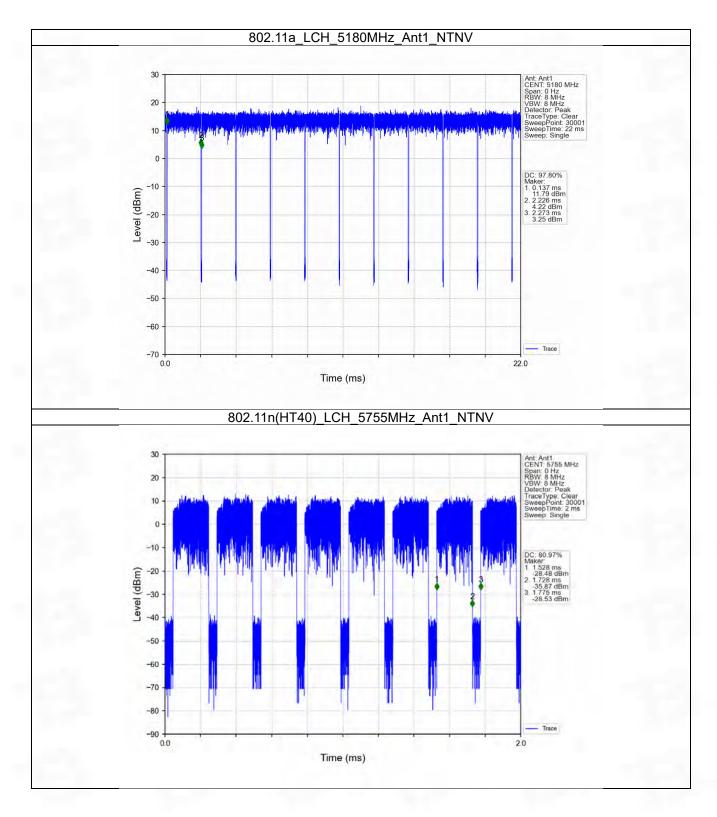


Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd. F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China



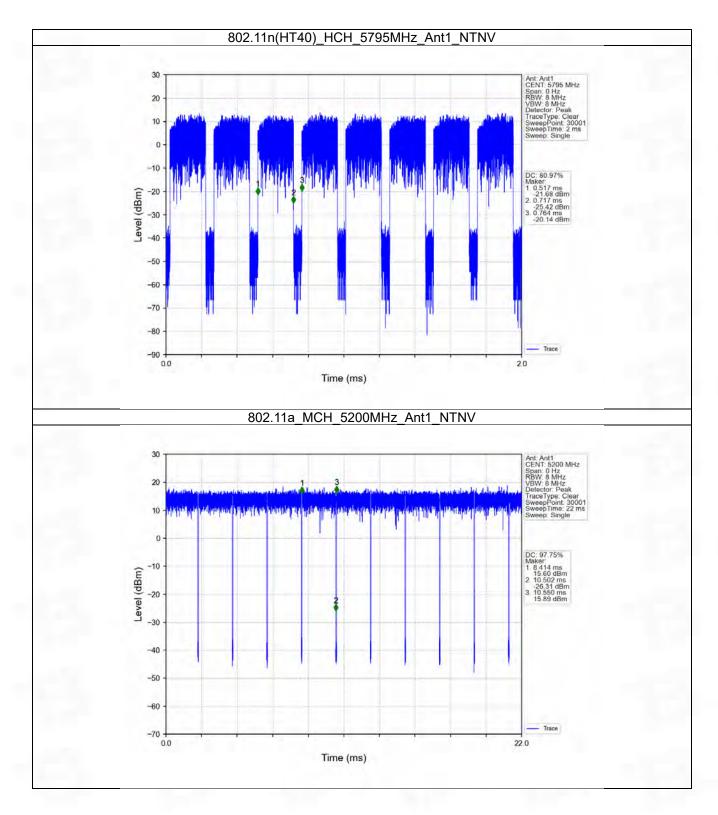



Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 45 of 16BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China


Page 45 of 167

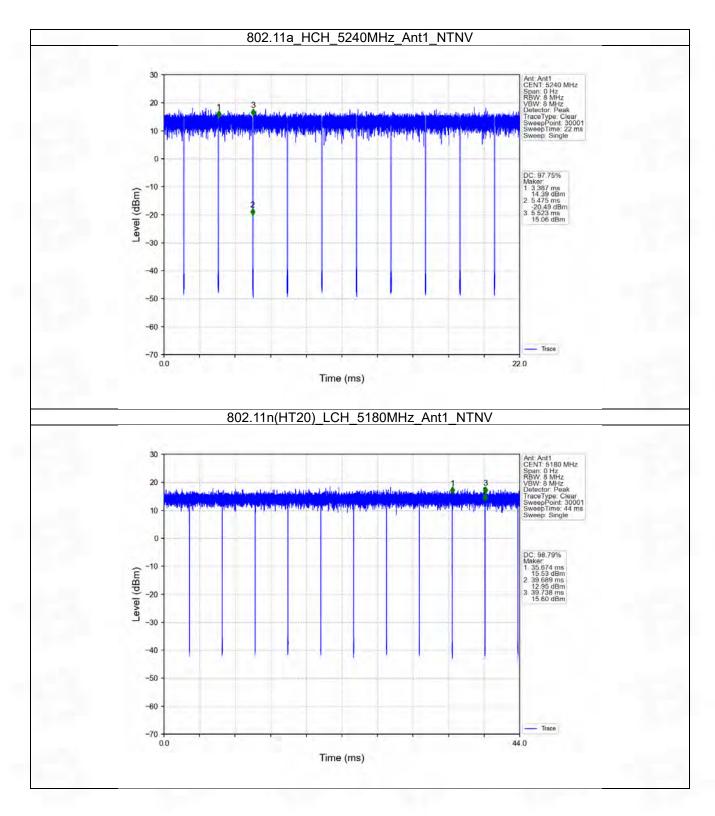





Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 46 of 16BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China



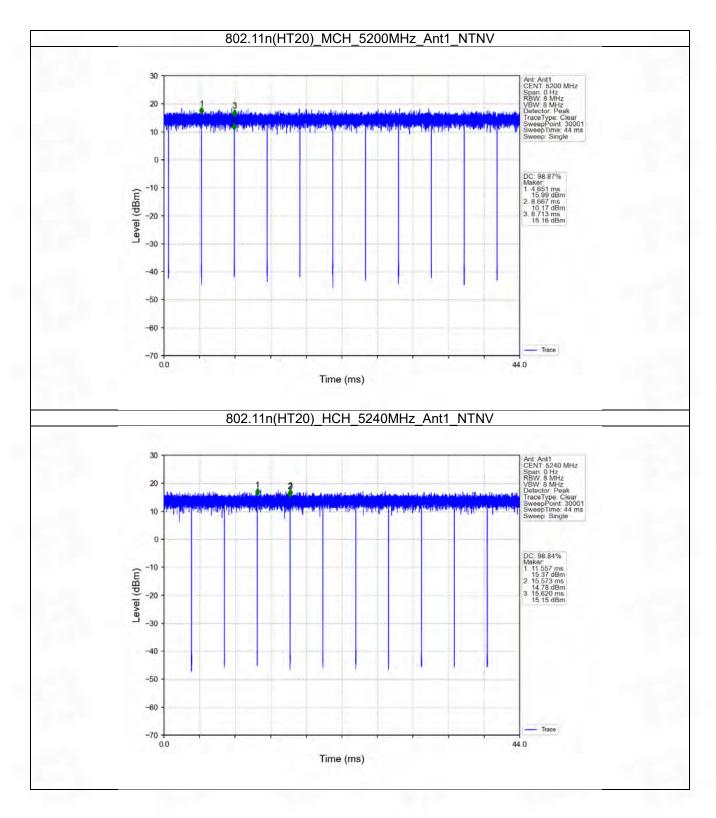



Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 47 of 16BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China





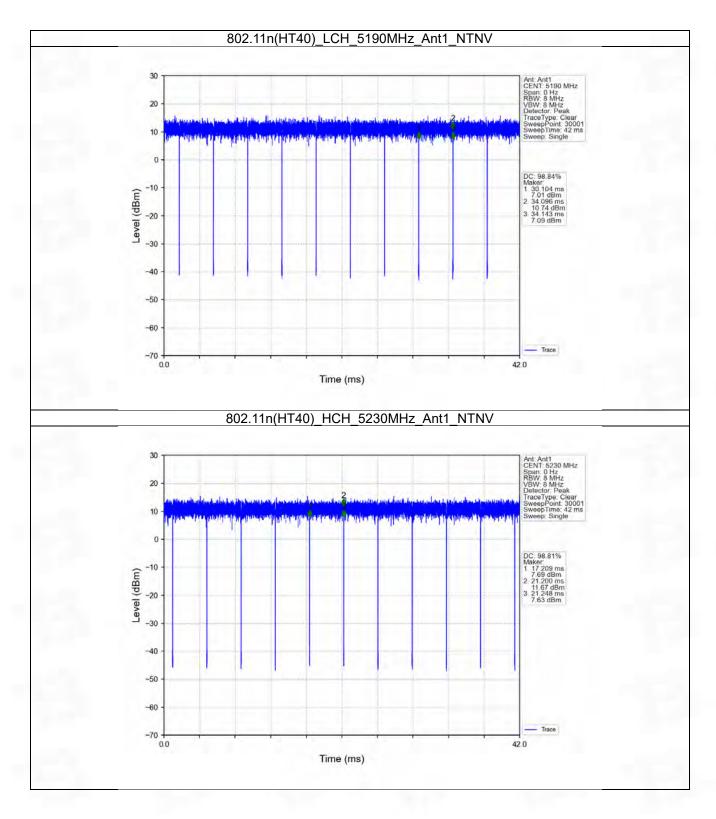
Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 48 of 16BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China





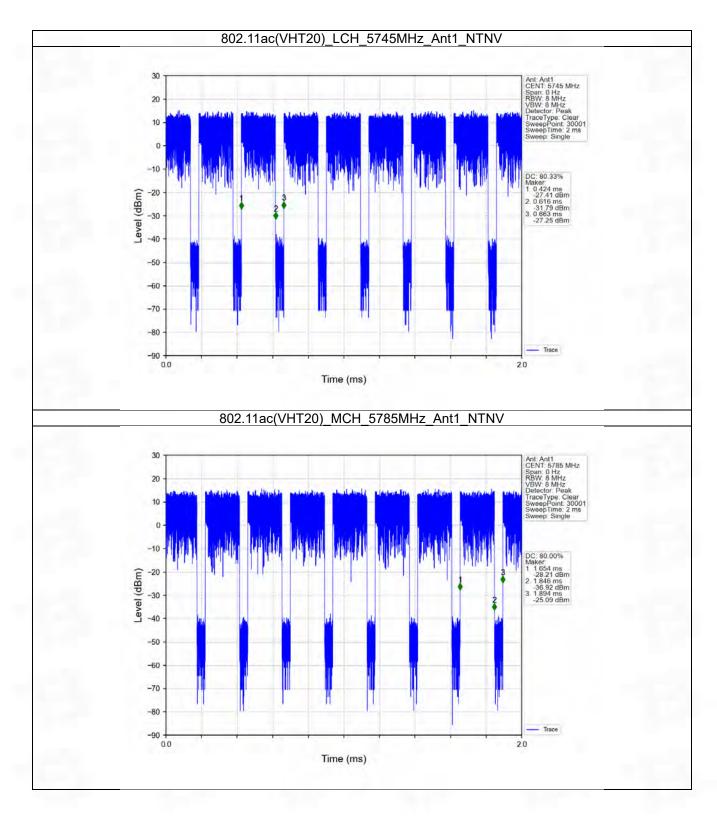

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 49 of 16BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Page 49 of 167



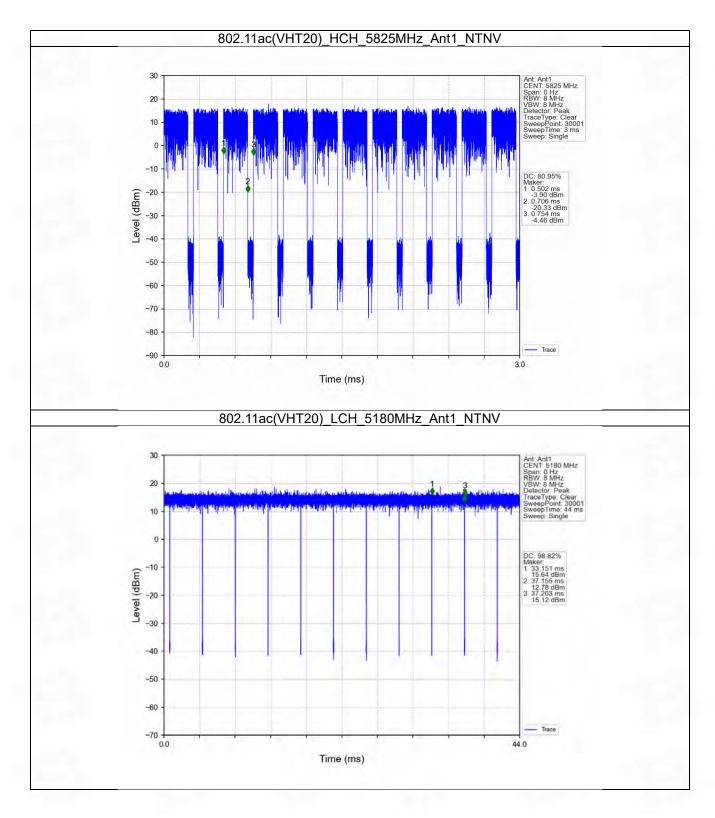



Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 50 of 16BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China


Page 50 of 167



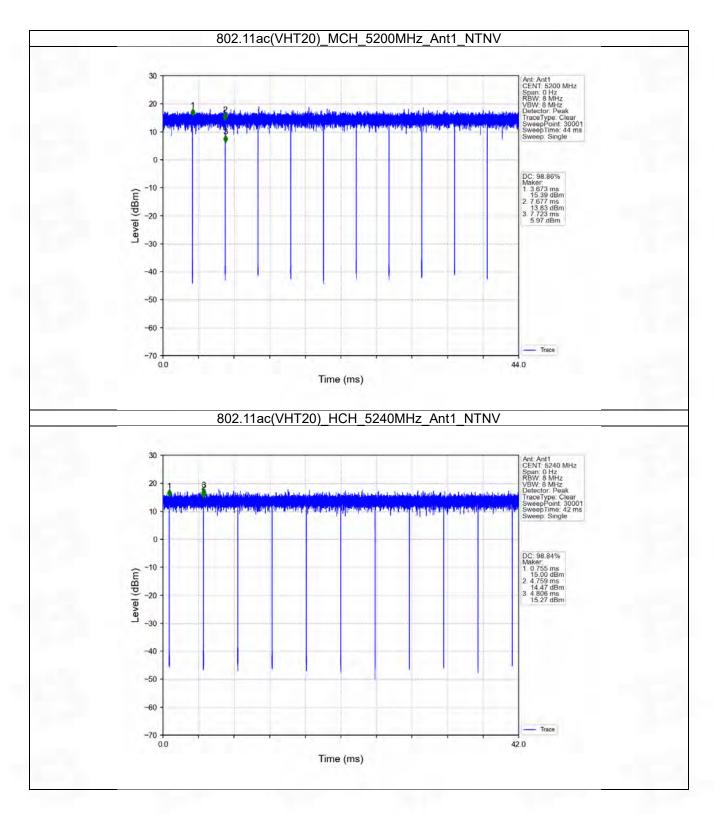



Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 51 of 16BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China



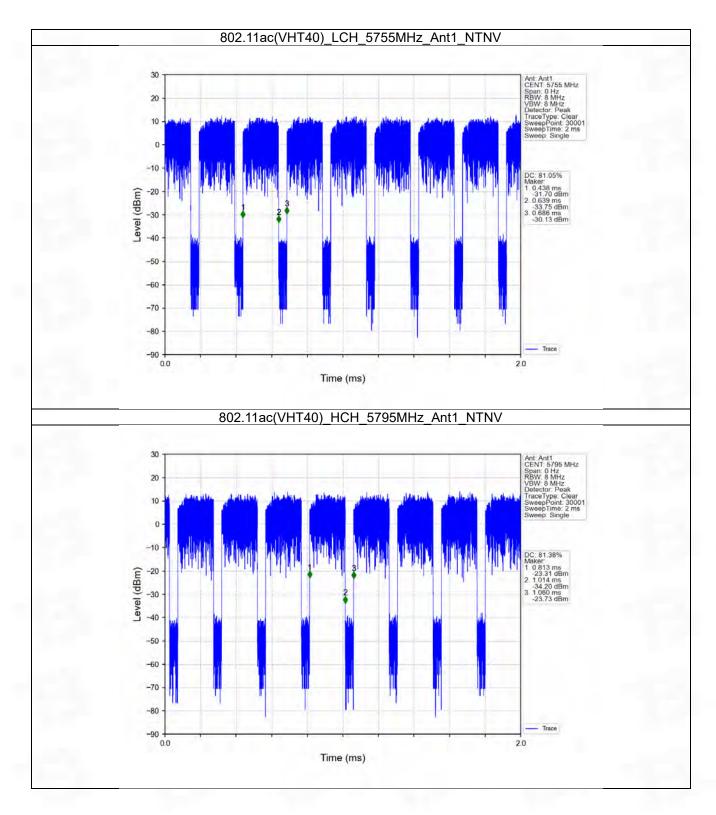


Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 52 of 16BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China





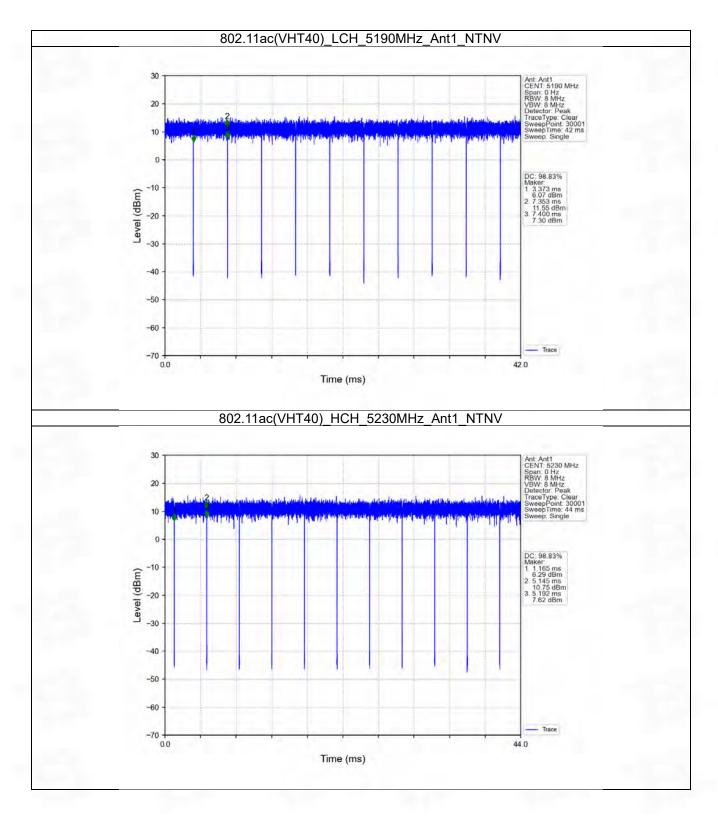

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.


F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China





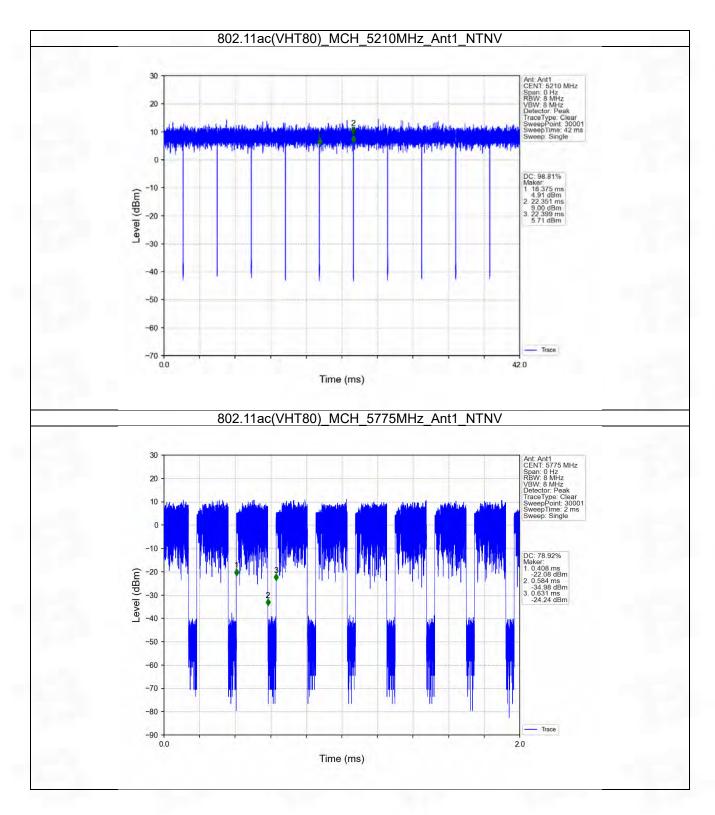
Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 54 of 16BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China






Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 55 of 16BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Page 55 of 167






Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 56 of 16BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Page 56 of 167



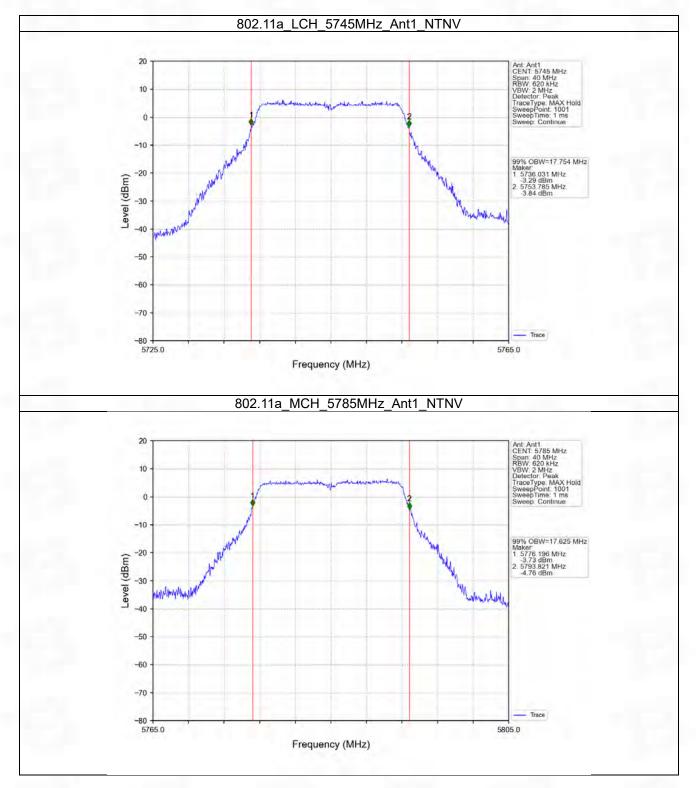


Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 57 of 16BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China



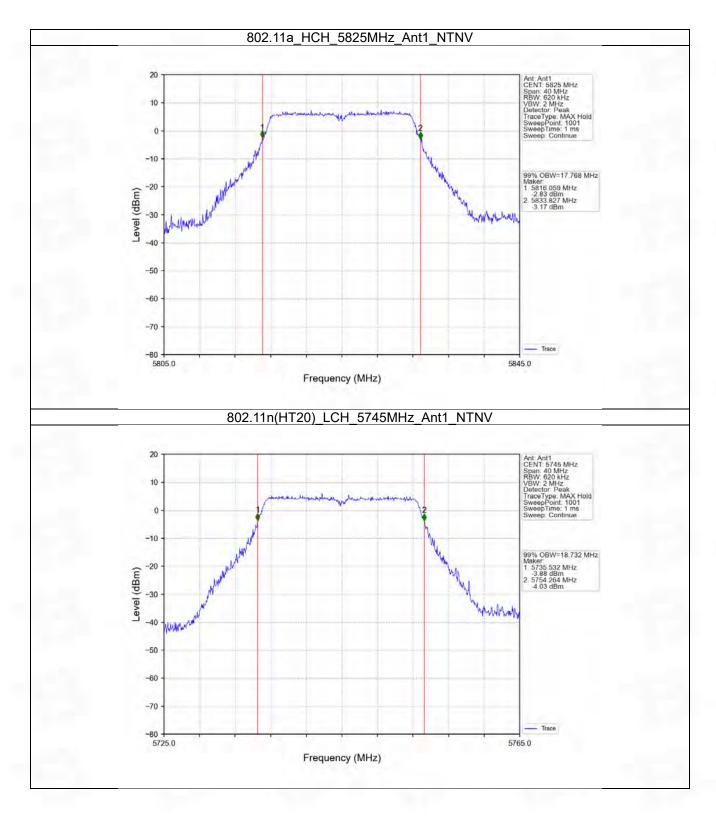
## 2. Bandwidth

#### 2.1 OBW


#### 2.1.1 Test Result

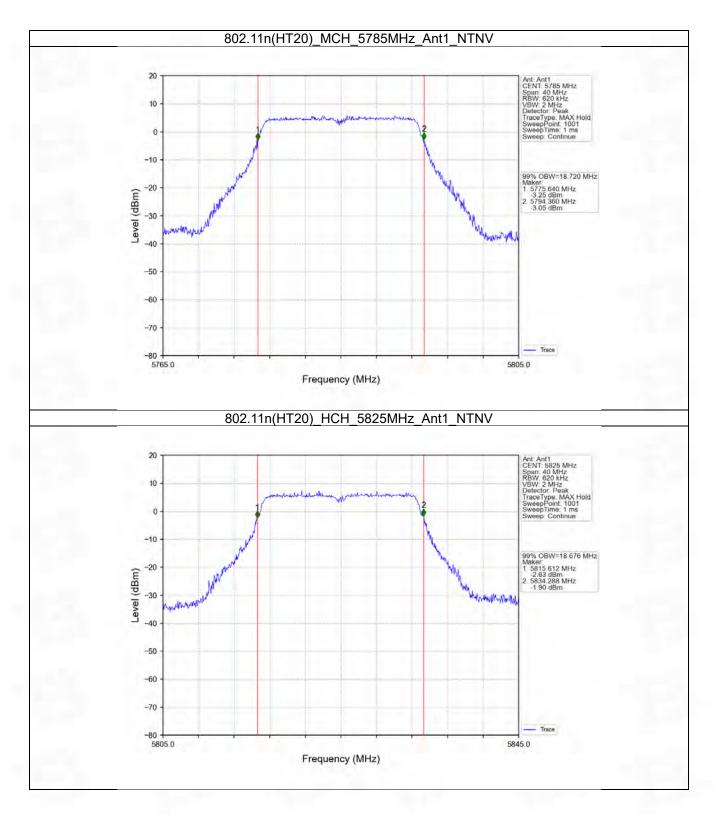
| Mode              | TX   | Frequency | ANT | 99% Occupied Bar | Vardiat |         |
|-------------------|------|-----------|-----|------------------|---------|---------|
|                   | Туре | (MHz)     |     | Result           | Limit   | Verdict |
|                   |      | 5745      | 1   | 17.754           | 1       | Pass    |
| 802.11a           | SISO | 5785      | 1   | 17.625           | /       | Pass    |
|                   |      | 5825      | 1   | 17.768           | /       | Pass    |
| 000.44            |      | 5745      | 1   | 18.732           | /       | Pass    |
| 802.11n           | MIMO | 5785      | 1   | 18.720           | /       | Pass    |
| (HT20)            |      | 5825      | 1   | 18.676           | /       | Pass    |
| 802.11a           | SISO | 5180      | 1   | 17.432           | /       | Pass    |
| 802.11n           | MIMO | 5755      | 1   | 37.062           | /       | Pass    |
| (HT40)            |      | 5795      | 1   | 36.985           | /       | Pass    |
| 000 11 -          | SISO | 5200      | 1   | 17.353           | /       | Pass    |
| 802.11a           |      | 5240      | 1   | 17.507           | /       | Pass    |
| 000 44            | МІМО | 5180      | 1   | 18.403           | /       | Pass    |
| 802.11n<br>(HT20) |      | 5200      | 1   | 18.314           | /       | Pass    |
|                   |      | 5240      | 1   | 18.450           | /       | Pass    |
| 802.11n           | MIMO | 5190      | 1   | 36.245           | /       | Pass    |
| (HT40)            |      | 5230      | 1   | 36.256           | /       | Pass    |
|                   | МІМО | 5745      | 1   | 17.800           | /       | Pass    |
|                   |      | 5785      | 1   | 17.626           | /       | Pass    |
| 802.11ac          |      | 5825      | 1   | 18.674           | /       | Pass    |
| (VHT20)           |      | 5180      | 1   | 18.410           | /       | Pass    |
| , ,               |      | 5200      | 1   | 18.412           | /       | Pass    |
|                   |      | 5240      | 1   | 18.426           | /       | Pass    |
| 802.11ac          | МІМО | 5755      | 1   | 36.962           | /       | Pass    |
|                   |      | 5795      | 1   | 36.939           | /       | Pass    |
| (VHT40)           |      | 5190      | 1   | 36.260           | /       | Pass    |
| . ,               |      | 5230      | 1   | 36.203           | /       | Pass    |
| 802.11ac          |      | 5210      | 1   | 75.303           | /       | Pass    |
| (VHT80)           | MIMO | 5775      | 1   | 75.449           | 1       | Pass    |

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 58 of 16BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China



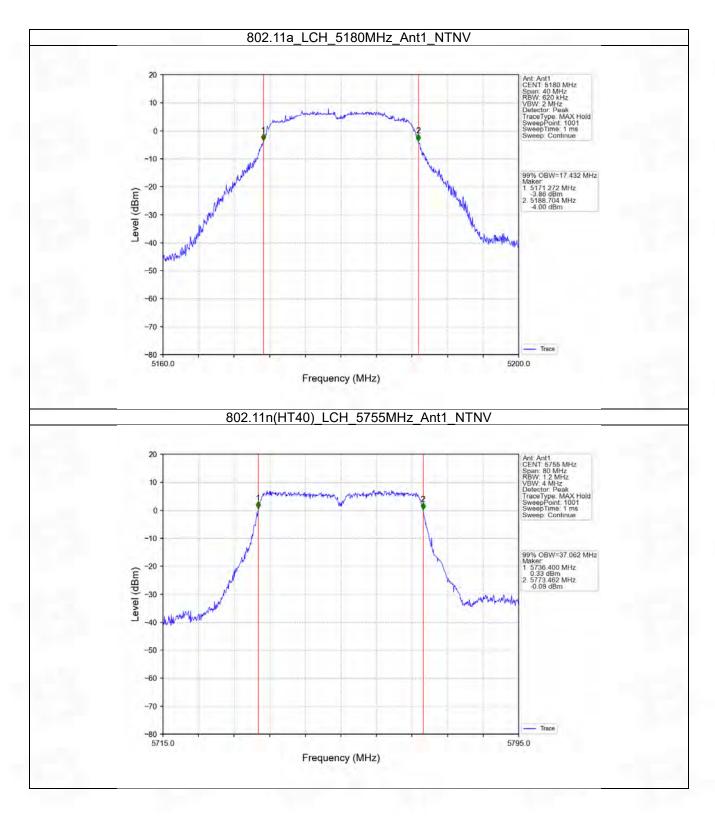

#### 2.1.2 Test Graph




Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd. F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China



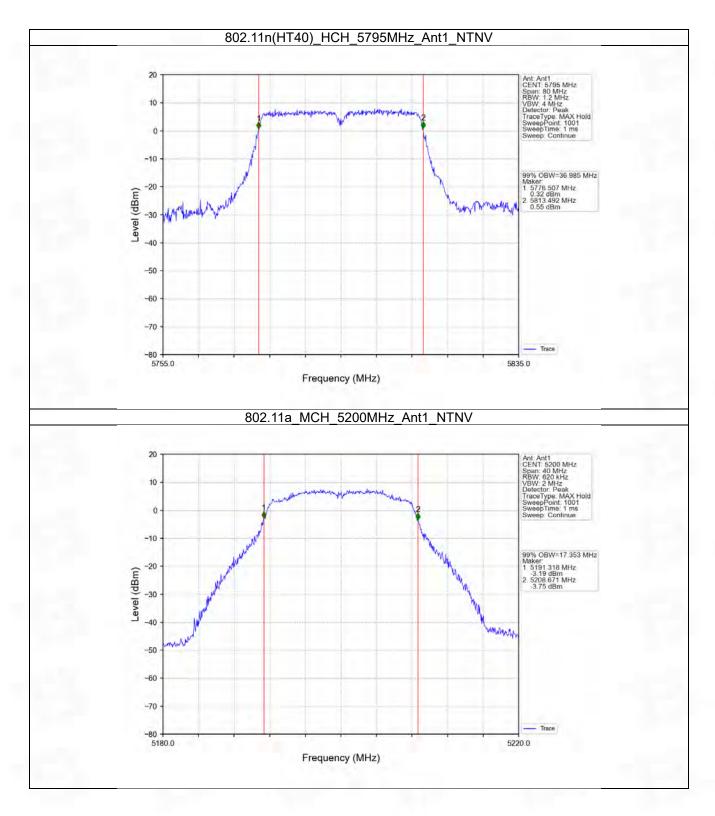



Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 60 of 16BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China



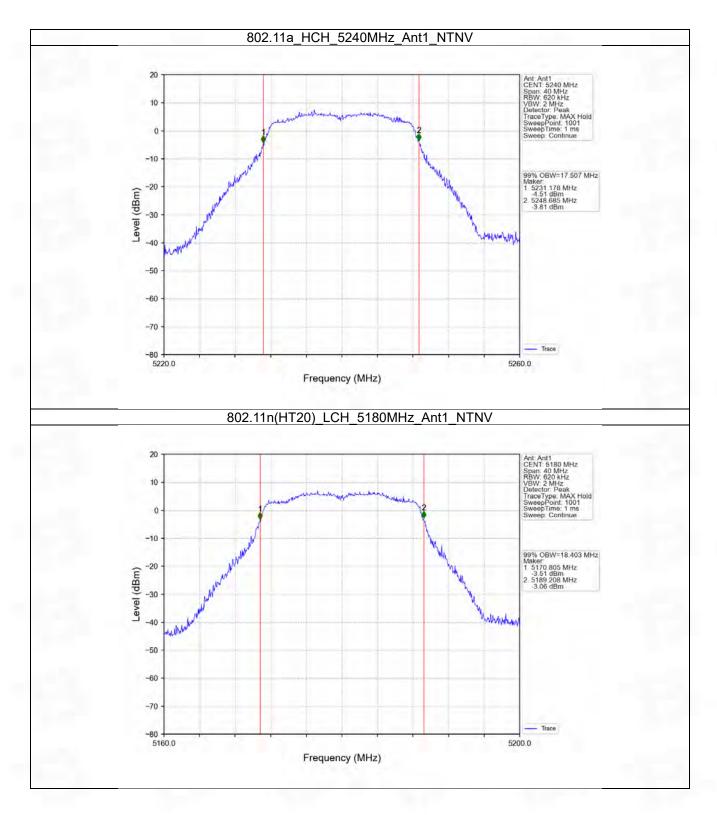


Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 61 of 16BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China





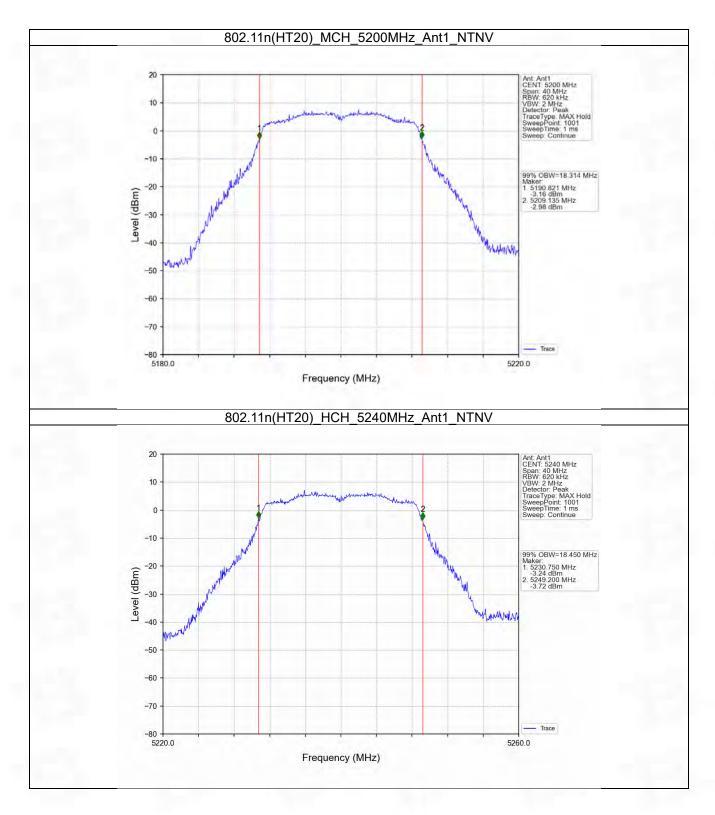

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 62 of 16BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China


Page 62 of 167





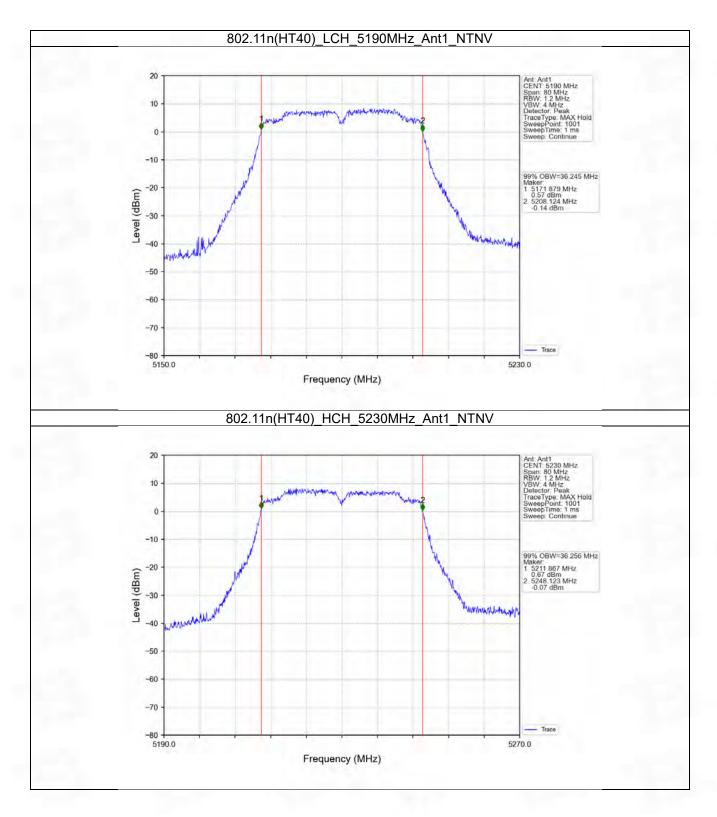
Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 63 of 16BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China





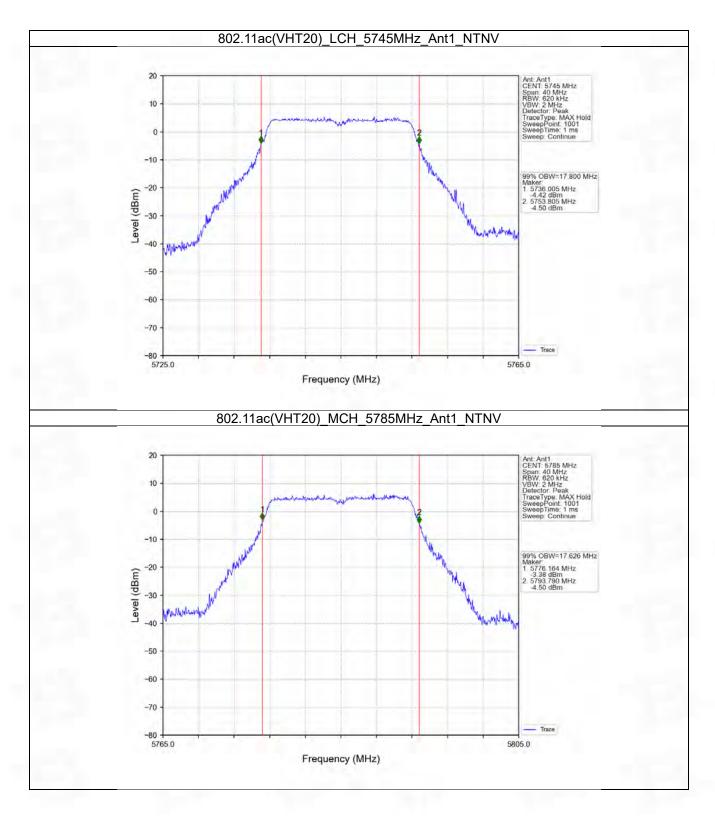

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 64 of 16BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Page 64 of 167





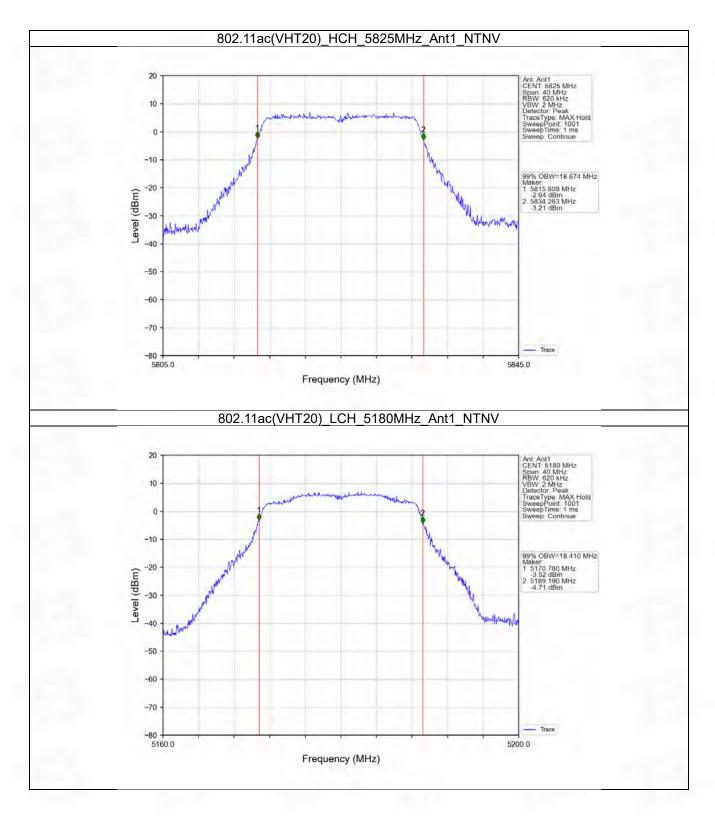

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 65 of 16BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China


Page 65 of 167



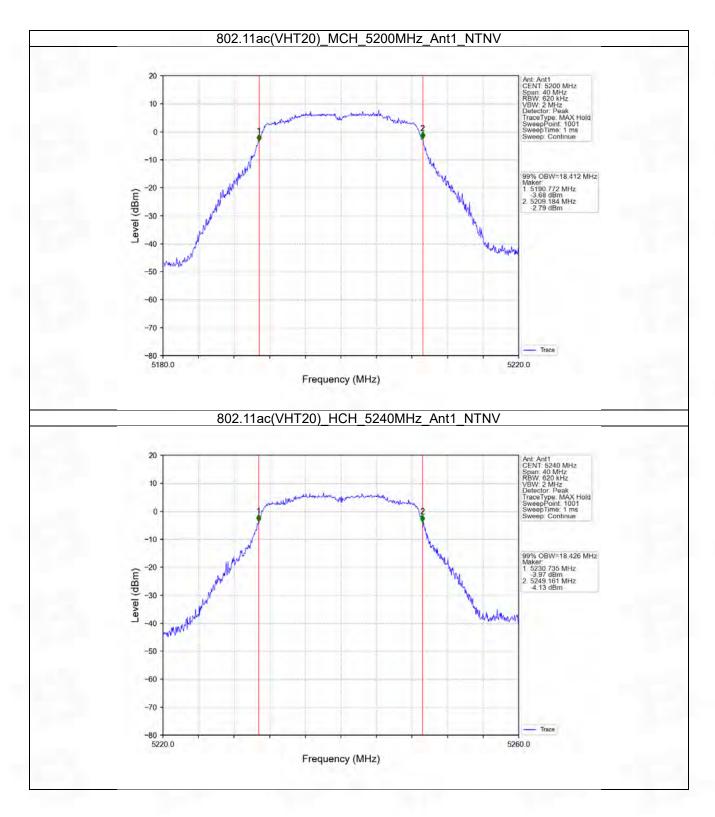


Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 66 of 16BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China



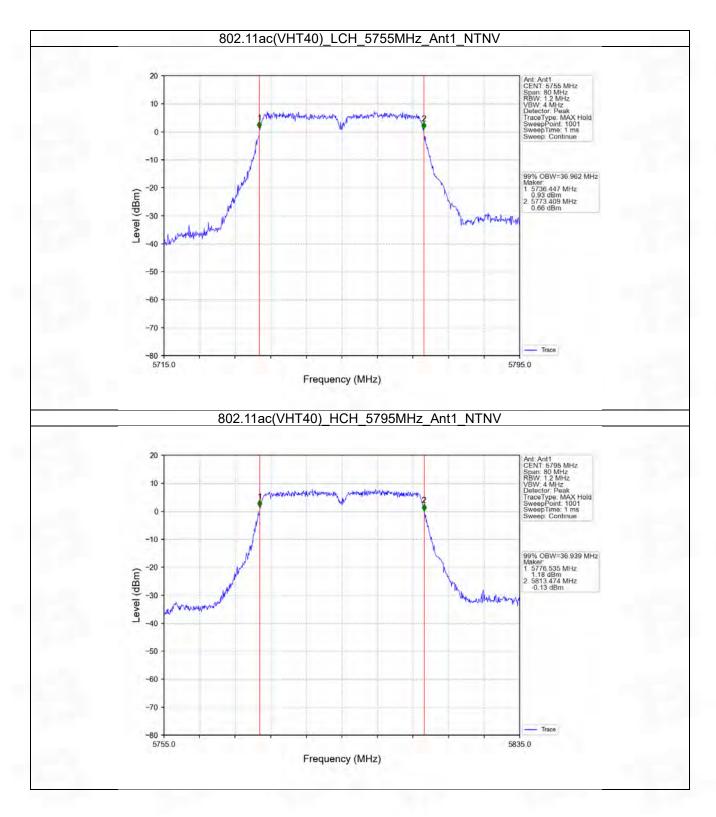



Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 67 of 16BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China


Page 67 of 167



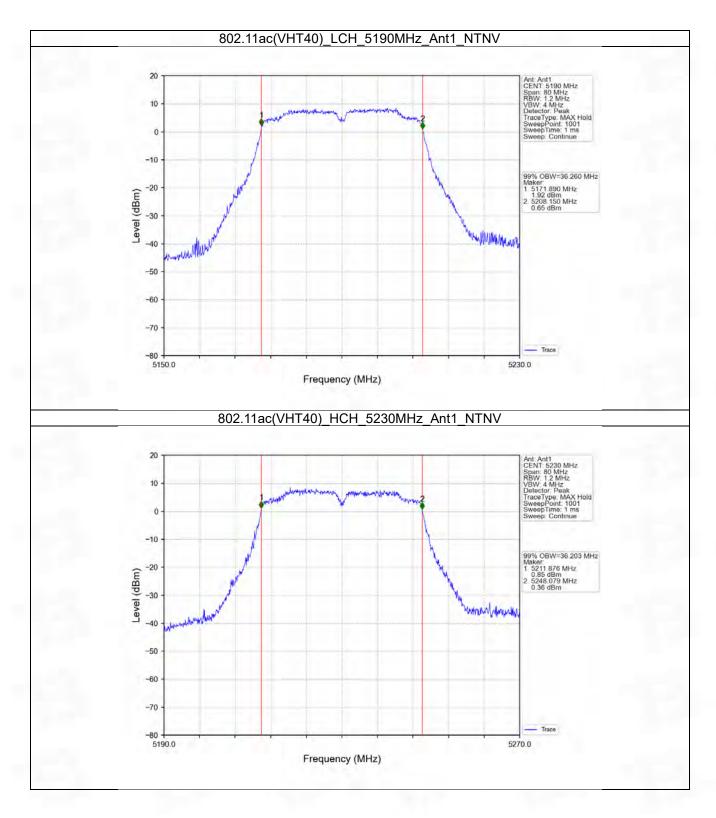



Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 68 of 16BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China



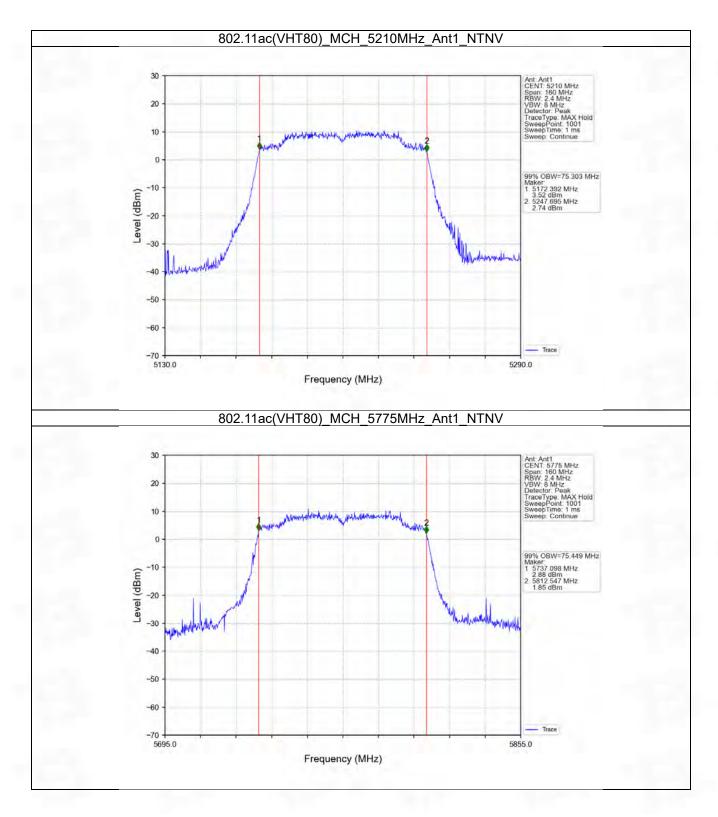


Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 69 of 16BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China






Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.


F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China





Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 71 of 16BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

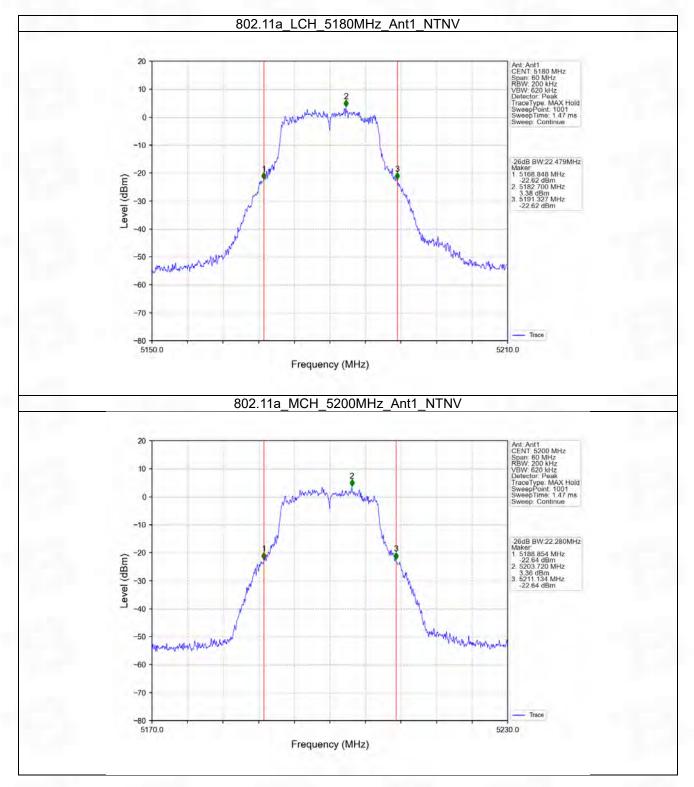




Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 72 of 16BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Page 72 of 167




# 2.2 26dB BW

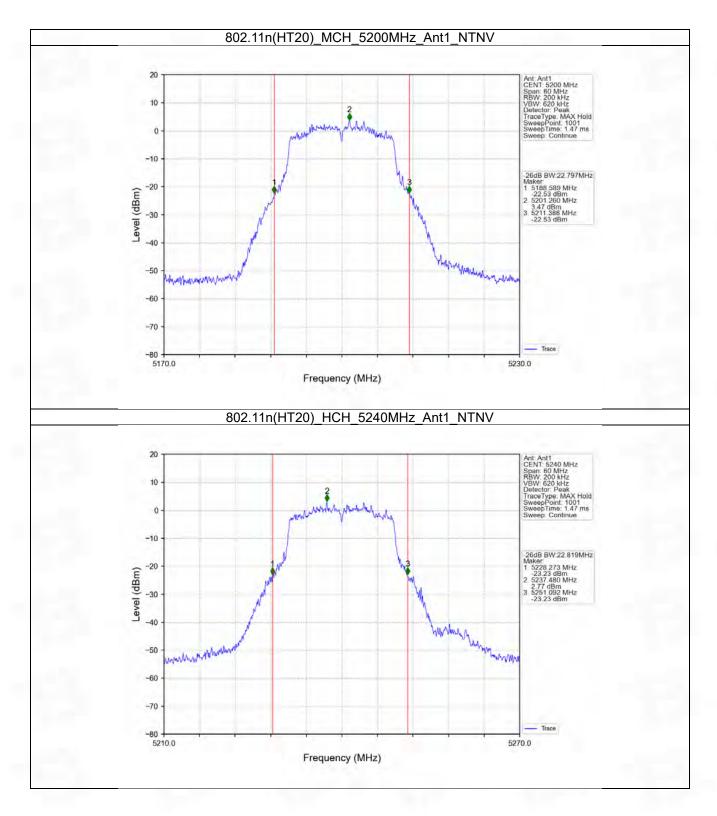
## 2.2.1 Test Result

| Mode                | TX   | Frequency<br>(MHz) | ANT | 26dB Bandwidth (MHz) |       | Vardiat |
|---------------------|------|--------------------|-----|----------------------|-------|---------|
| wode                | Туре |                    |     | Result               | Limit | Verdict |
| 802.11a             | SISO | 5180               | 1   | 22.479               | /     | Pass    |
|                     |      | 5200               | 1   | 22.280               | 1     | Pass    |
|                     |      | 5240               | 1   | 22.555               | /     | Pass    |
| 802.11n<br>(HT20)   | MIMO | 5180               | 1   | 23.356               | /     | Pass    |
|                     |      | 5200               | 1   | 22.797               | /     | Pass    |
|                     |      | 5240               | 1   | 22.819               | /     | Pass    |
| 802.11n<br>(HT40)   | MIMO | 5190               | 1   | 42.094               | 1     | Pass    |
|                     |      | 5230               | 1   | 42.719               | /     | Pass    |
| 802.11ac<br>(VHT20) | MIMO | 5180               | 1   | 23.253               | /     | Pass    |
|                     |      | 5200               | 1   | 23.234               | /     | Pass    |
|                     |      | 5240               | 1   | 23.065               | /     | Pass    |
| 802.11ac<br>(VHT40) | MIMO | 5190               | 1   | 43.123               | /     | Pass    |
|                     |      | 5230               | 1   | 42.854               | /     | Pass    |
| 802.11ac<br>(VHT80) | MIMO | 5210               | 1   | 85.135               | 1     | Pass    |

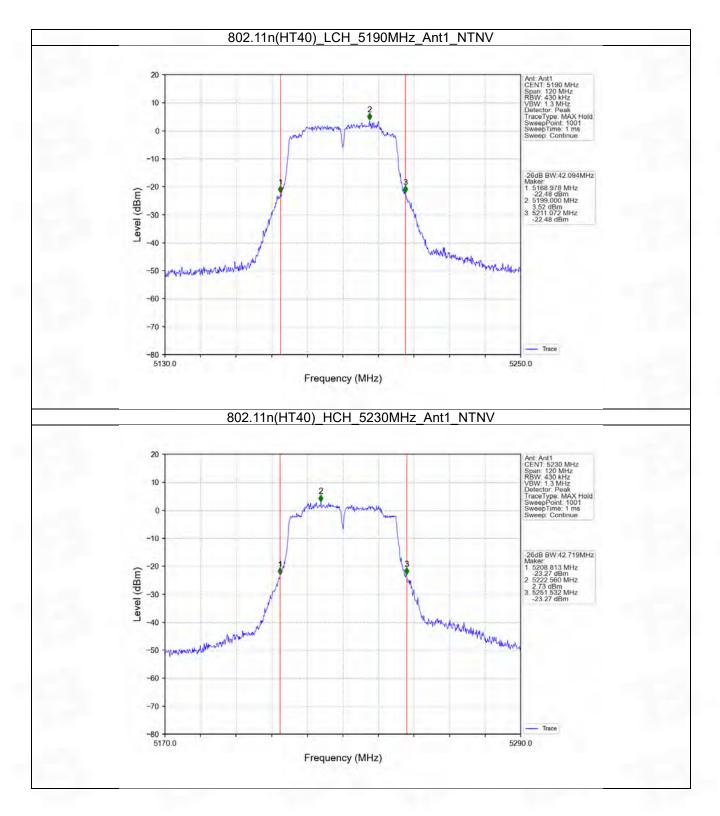


#### 2.2.2 Test Graph

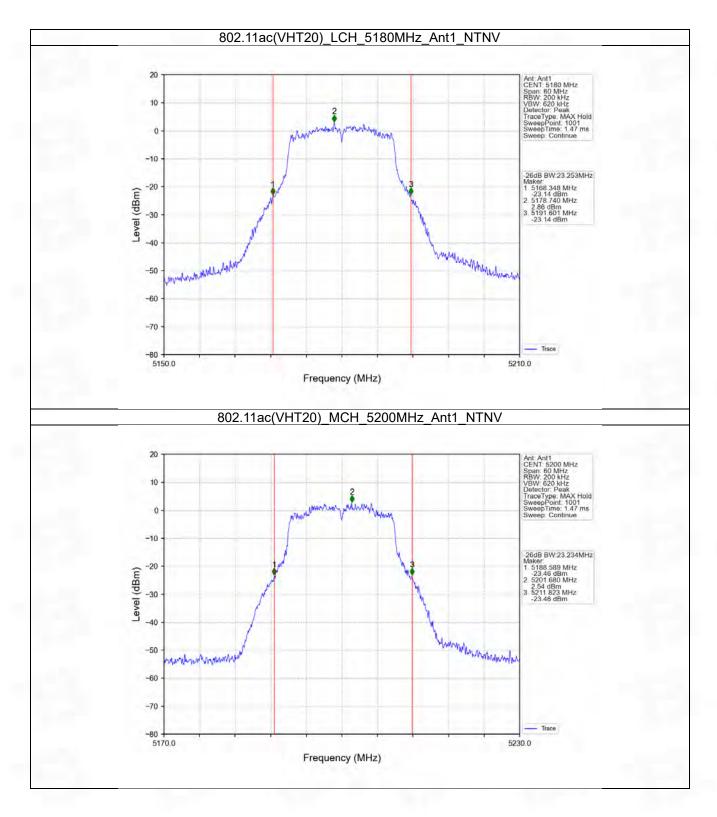



Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.

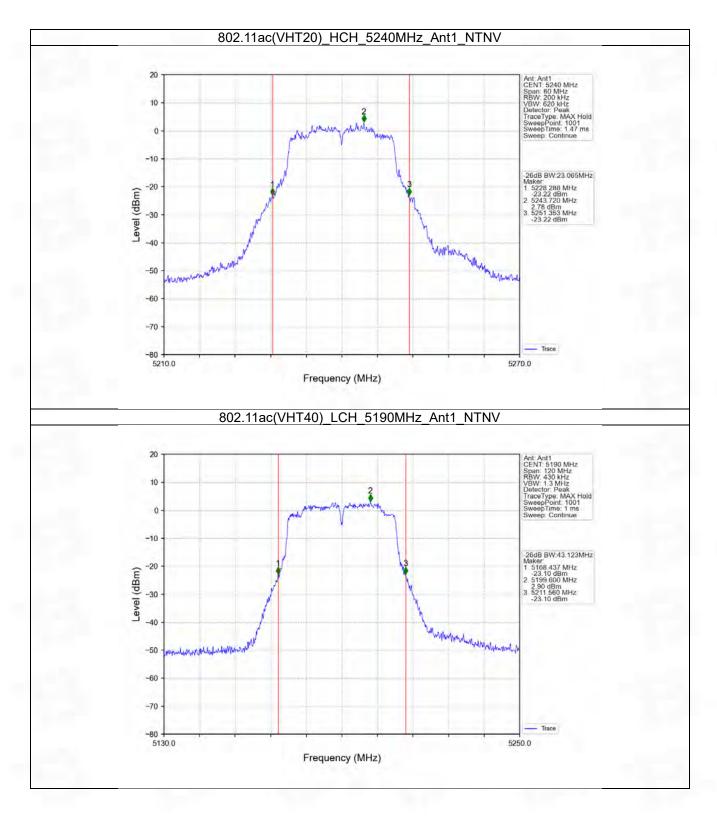





Page 75 of 167

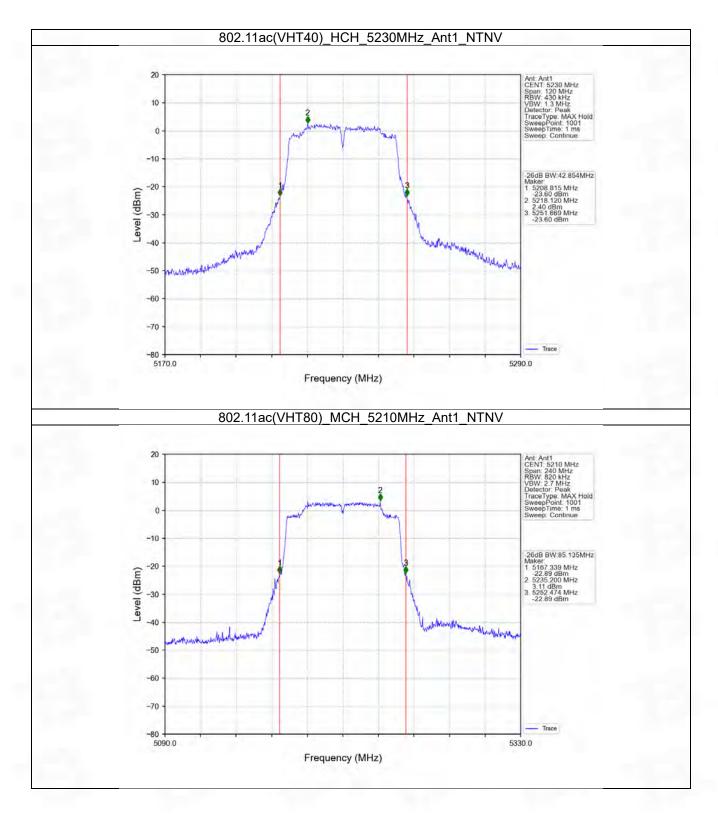












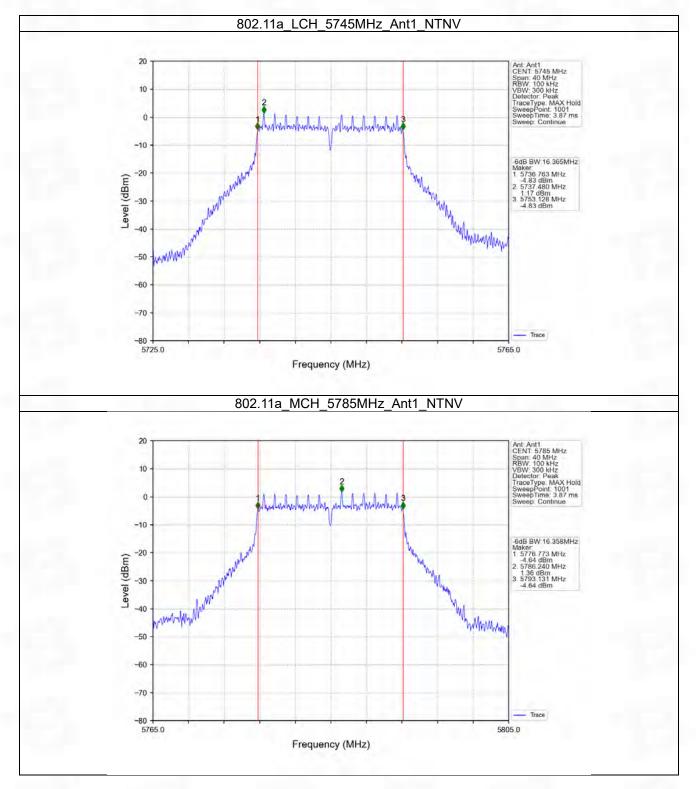

Page 79 of 167





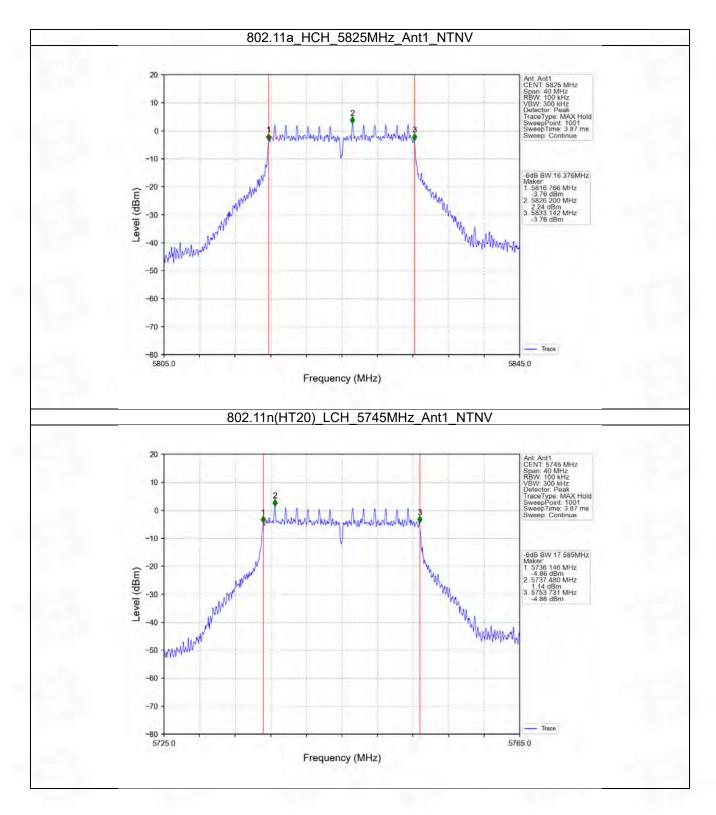
Page 80 of 167



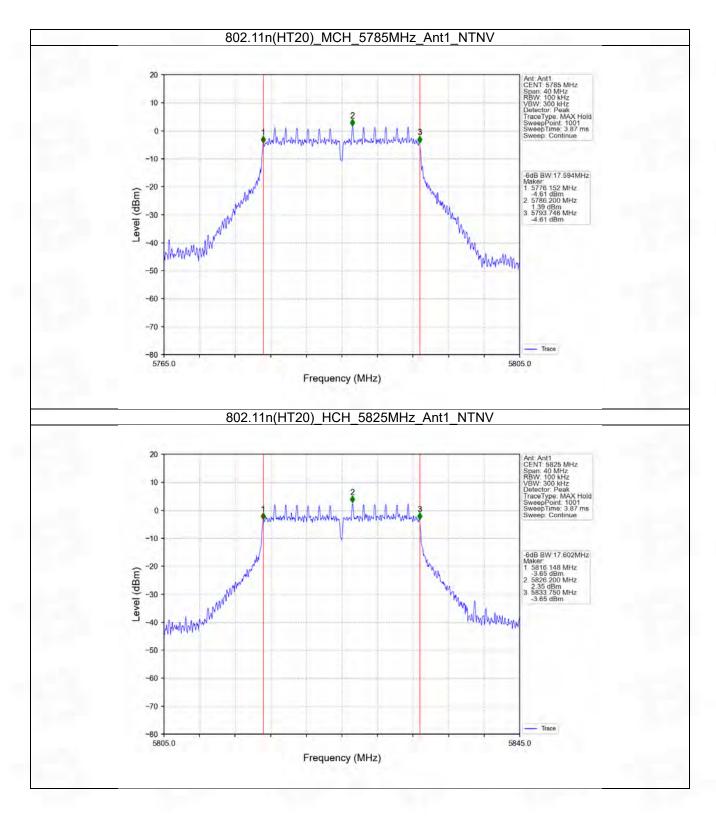

# 2.3 6dB BW

## 2.3.1 Test Result

| Mode                | TX   | Frequency |     | 6dB Bandwidth (MHz) |            | Verdict |
|---------------------|------|-----------|-----|---------------------|------------|---------|
| wode                | Туре | (MHz)     | ANT | Result              | sult Limit |         |
| 802.11a             |      | 5745      | 1   | 16.365              | >=0.5      | Pass    |
|                     | SISO | 5785      | 1   | 16.358              | >=0.5      | Pass    |
|                     |      | 5825      | 1   | 16.376              | >=0.5      | Pass    |
| 802.11n<br>(HT20)   | MIMO | 5745      | 1   | 17.585              | >=0.5      | Pass    |
|                     |      | 5785      | 1   | 17.594              | >=0.5      | Pass    |
|                     |      | 5825      | 1   | 17.602              | >=0.5      | Pass    |
| 802.11n<br>(HT40)   | MIMO | 5755      | 1   | 36.360              | >=0.5      | Pass    |
|                     |      | 5795      | 1   | 36.326              | >=0.5      | Pass    |
| 000 11              | MIMO | 5745      | 1   | 16.364              | >=0.5      | Pass    |
| 802.11ac<br>(VHT20) |      | 5785      | 1   | 16.363              | >=0.5      | Pass    |
|                     |      | 5825      | 1   | 17.600              | >=0.5      | Pass    |
| 802.11ac<br>(VHT40) | MIMO | 5755      | 1   | 36.362              | >=0.5      | Pass    |
|                     |      | 5795      | 1   | 36.328              | >=0.5      | Pass    |
| 802.11ac<br>(VHT80) | MIMO | 5775      | 1   | 75.124              | >=0.5      | Pass    |

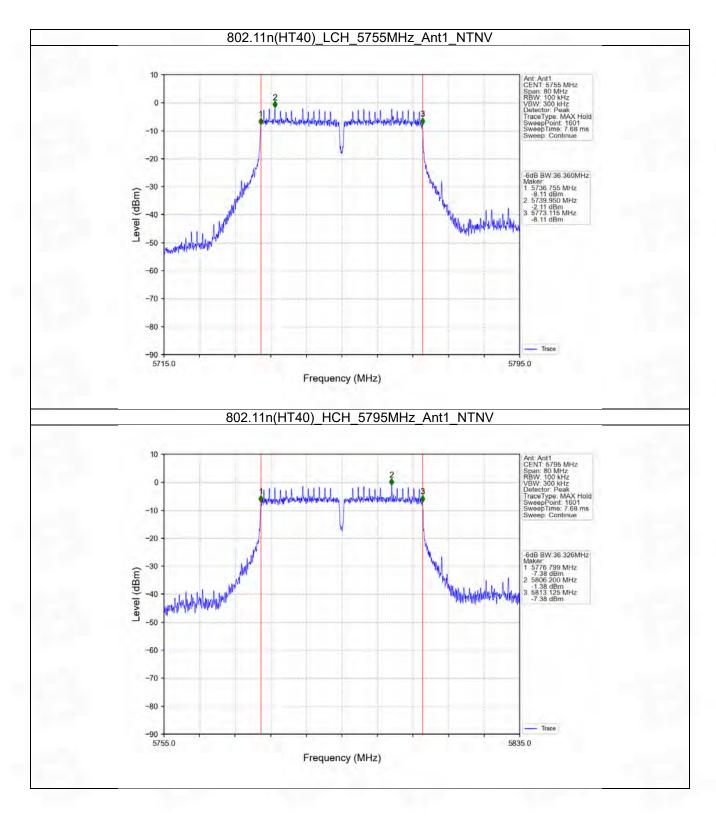



#### 2.3.2 Test Graph



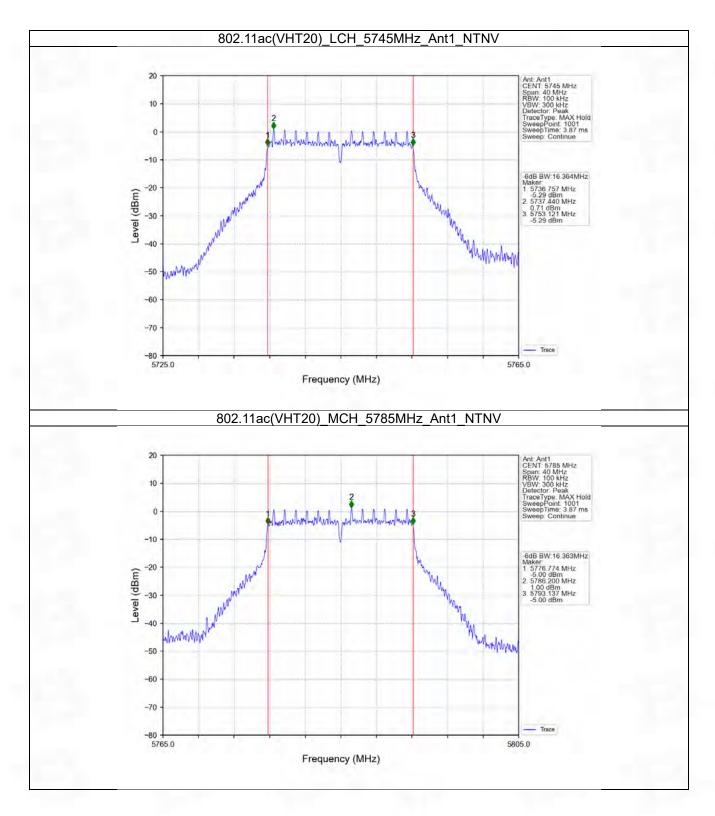

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.



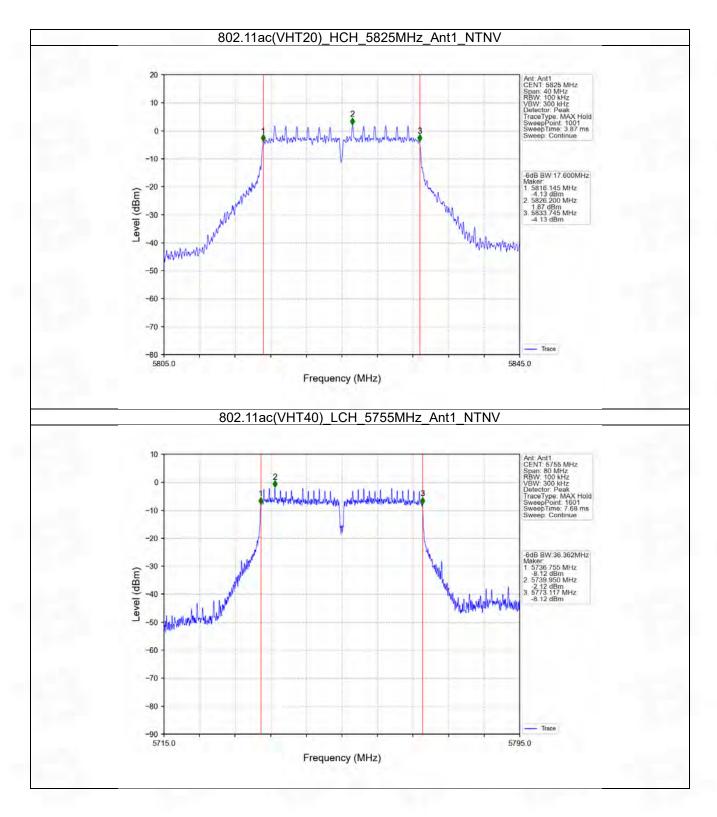




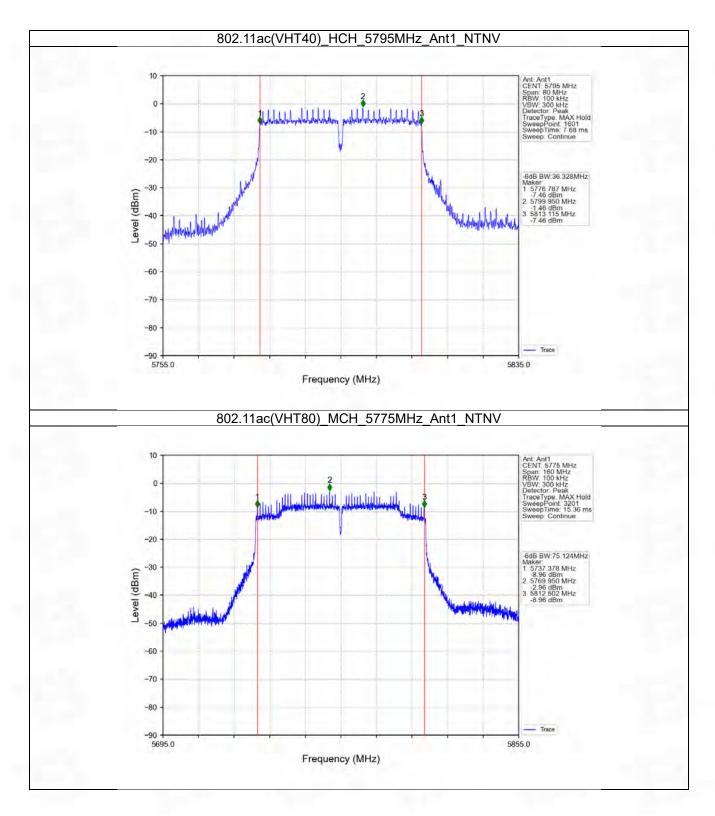




Page 84 of 167






Page 85 of 167







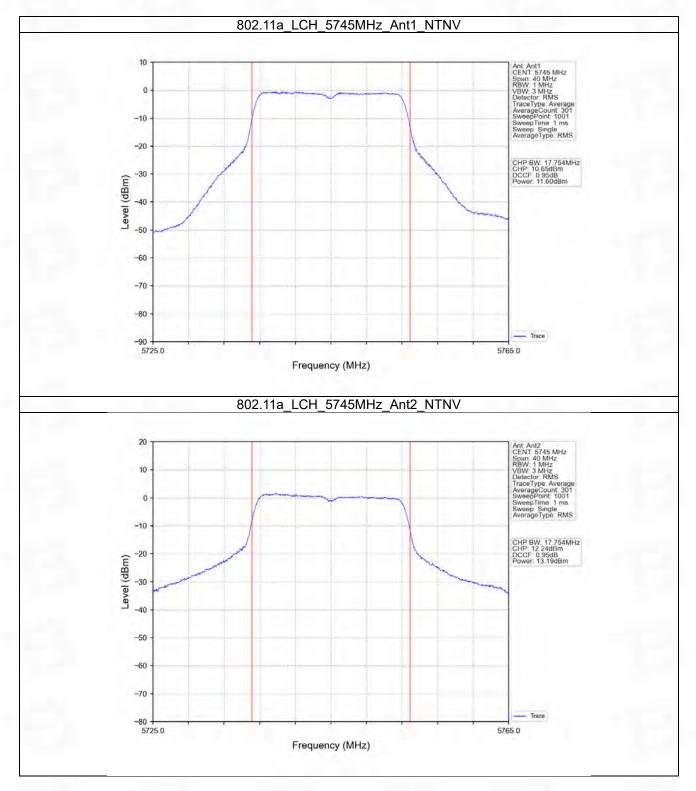






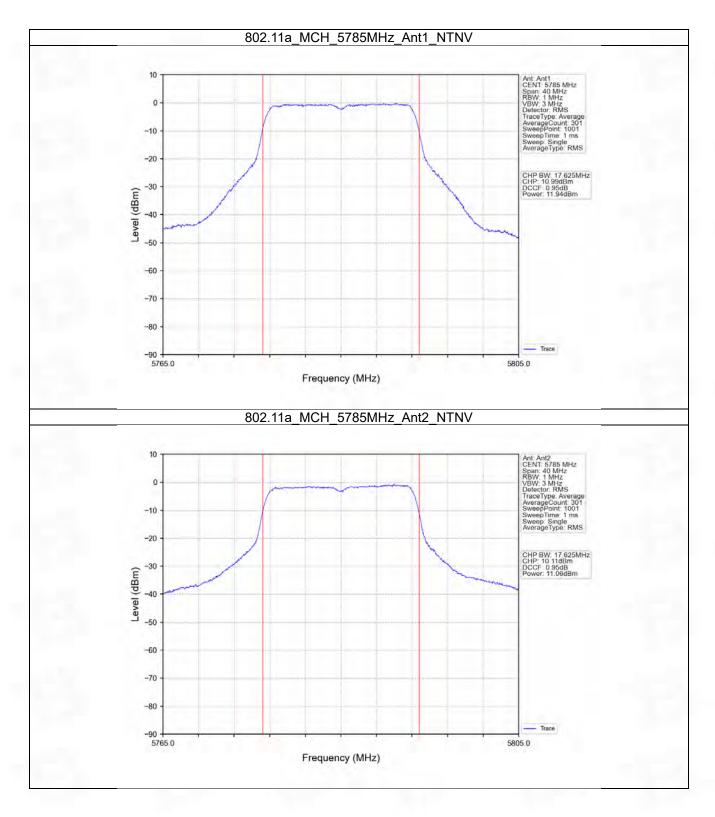



# 3. Maximum Conducted Output Power

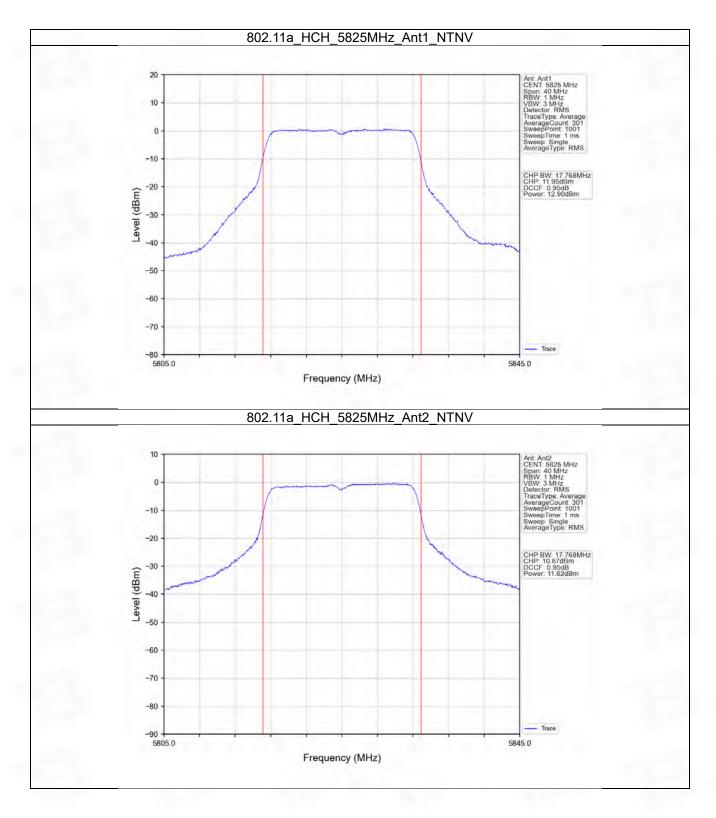

## 3.1 Power

#### 3.1.1 Test Result

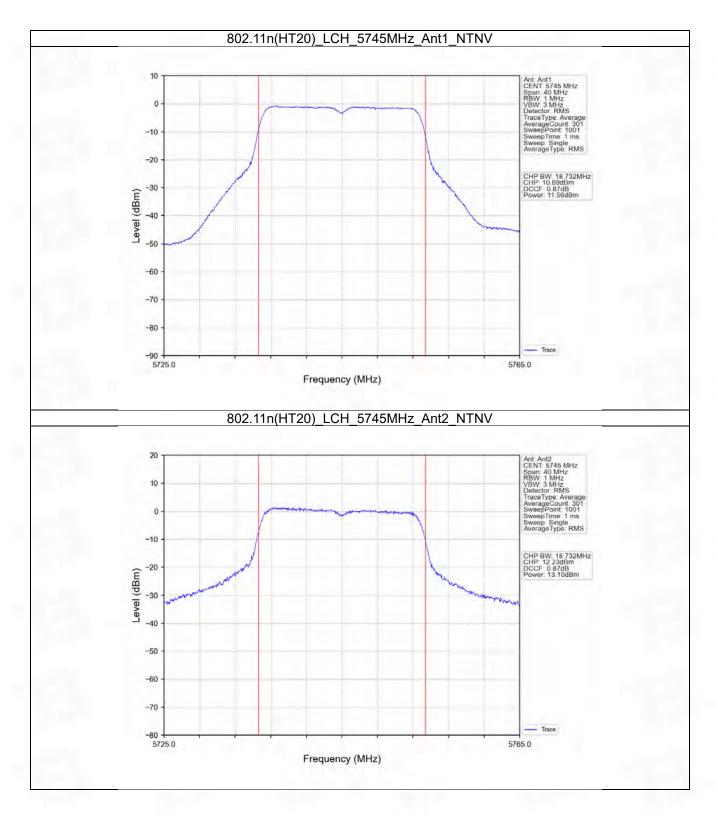
| Mode<br>802.11a<br>802.11n | Type<br>SISO | (MHz)<br>5745<br>5785 | ANT1<br>11.60  | ANT2  | MIMO  | Limit   | veruici |
|----------------------------|--------------|-----------------------|----------------|-------|-------|---------|---------|
| 802.11n                    | SISO         |                       | 11.60          |       |       |         | Verdict |
| 802.11n                    | SISO         | 5785                  |                | 13.19 | /     | <=30    | Pass    |
|                            |              |                       | 11.94          | 11.06 | /     | <=30    | Pass    |
|                            |              | 5825                  | 12.90          | 11.62 | /     | <=30    | Pass    |
|                            | MIMO         | 5745                  | 11.56          | 13.10 | 15.41 | <=30    | Pass    |
| (HT20)                     |              | 5785                  | 11.97          | 11.06 | 14.55 | <=30    | Pass    |
|                            |              | 5825                  | 12.98          | 11.56 | 15.34 | <=30    | Pass    |
| 802.11a                    | SISO         | 5180                  | 12.06          | 10.20 | 1     | <=23.98 | Pass    |
| 802.11n                    | MIMO         | 5755                  | 11.73          | 13.01 | 15.43 | <=30    | Pass    |
| (HT40)                     |              | 5795                  | 12.52          | 11.82 | 15.19 | <=30    | Pass    |
| 902 110                    | SISO         | 5200                  | 12.26          | 10.53 | /     | <=23.98 | Pass    |
| 802.11a                    |              | 5240                  | 11.67          | 9.62  | /     | <=23.98 | Pass    |
| 902 11p                    | MIMO         | 5180                  | 11.85          | 10.11 | 14.08 | <=23.98 | Pass    |
| 802.11n<br>(HT20)          |              | 5200                  | 12.10          | 10.38 | 14.33 | <=23.98 | Pass    |
|                            |              | 5240                  | 11.52          | 9.52  | 13.64 | <=23.98 | Pass    |
| 802.11n                    | MIMO         | 5190                  | 12.37          | 10.70 | 14.63 | <=23.98 | Pass    |
| (HT40)                     |              | 5230                  | 12.13          | 10.40 | 14.36 | <=23.98 | Pass    |
|                            | MIMO         | 5745                  | 11.23          | 13.50 | 15.52 | <=30    | Pass    |
|                            |              | 5785                  | 11.64          | 11.20 | 14.44 | <=30    | Pass    |
| 302.11ac                   |              | 5825                  | 12.58          | 11.79 | 15.21 | <=30    | Pass    |
| (VHT20)                    |              | 5180                  | 11.85          | 10.08 | 14.06 | <=23.98 | Pass    |
|                            |              | 5200                  | 12.11          | 10.37 | 14.34 | <=23.98 | Pass    |
|                            |              | 5240                  | 11.52          | 9.49  | 13.63 | <=23.98 | Pass    |
|                            | MIMO         | 5755                  | 11.68          | 13.34 | 15.60 | <=30    | Pass    |
| 802.11ac                   |              | 5795                  | 12.51          | 12.00 | 15.27 | <=30    | Pass    |
| (VHT40)                    |              | 5190                  | 12.37          | 10.72 | 14.63 | <=23.98 | Pass    |
|                            |              | 5230                  | 12.12          | 10.43 | 14.37 | <=23.98 | Pass    |
| 302.11ac                   |              | 5775                  | 12.60          | 12.31 | 15.47 | <=30    | Pass    |
| (VHT80)                    |              | 5210                  | 12.69          | 9.19  | 14.29 | <=23.98 | Pass    |
| ote1: Antenr               | na Gain: A   | nt1: 2.78dBi;         | Ant2: 1.96dBi; |       |       |         |         |



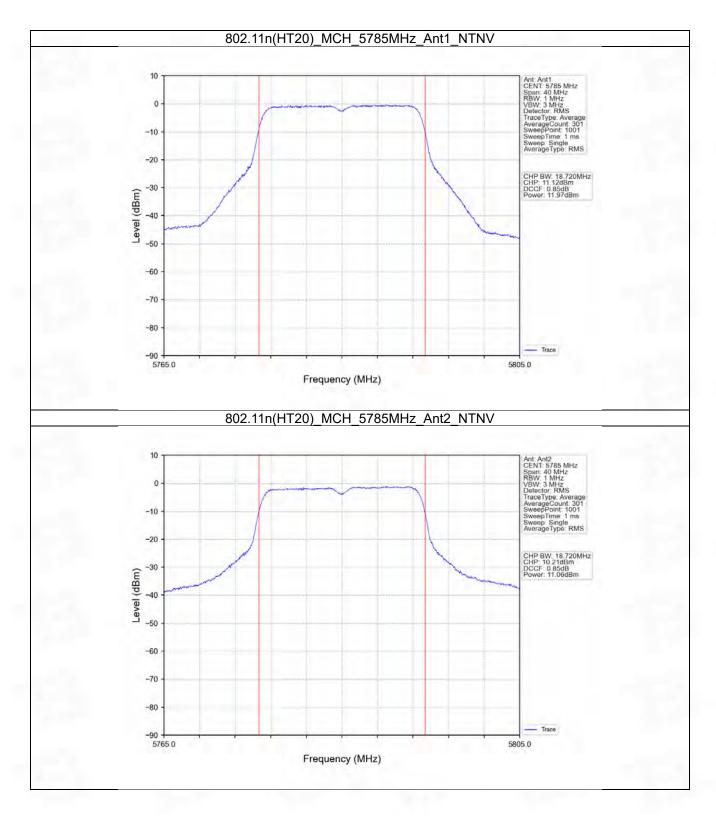

#### 3.1.2 Test Graph



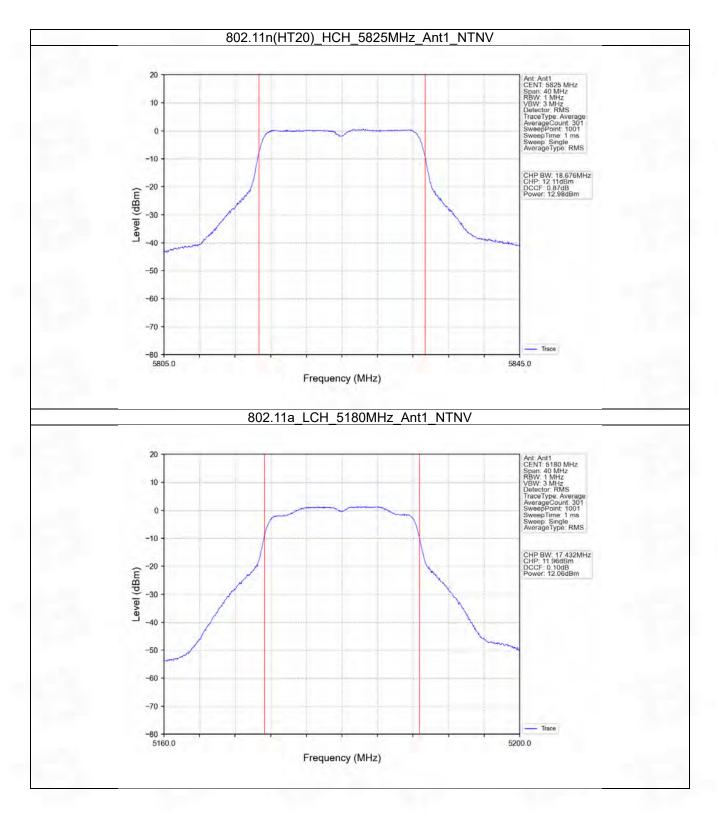

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.





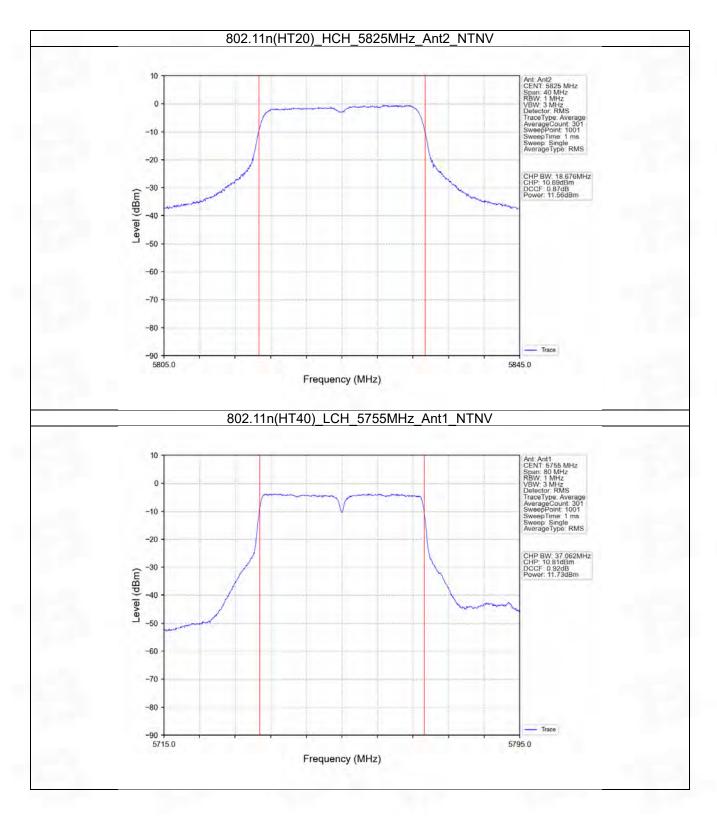





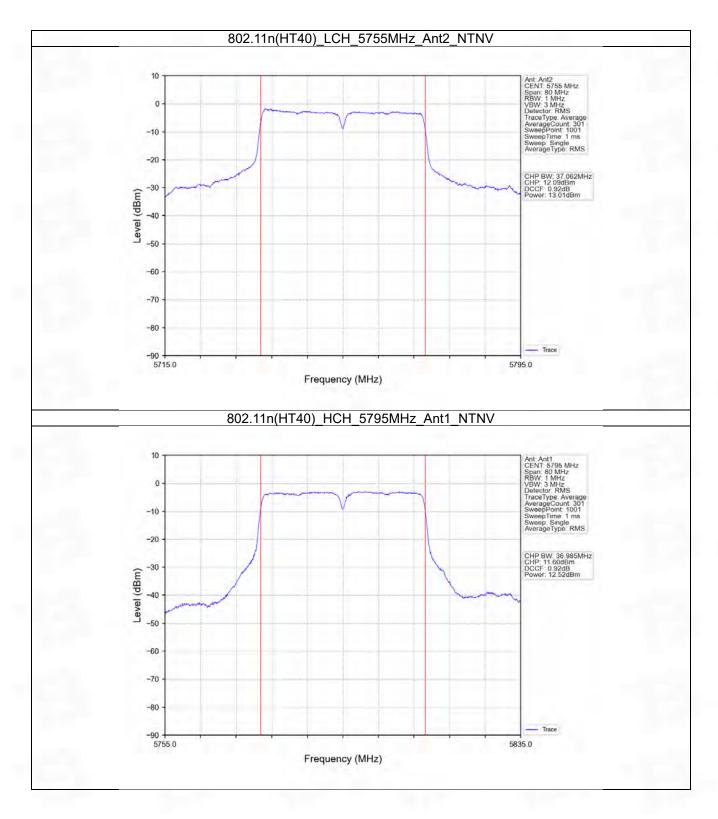







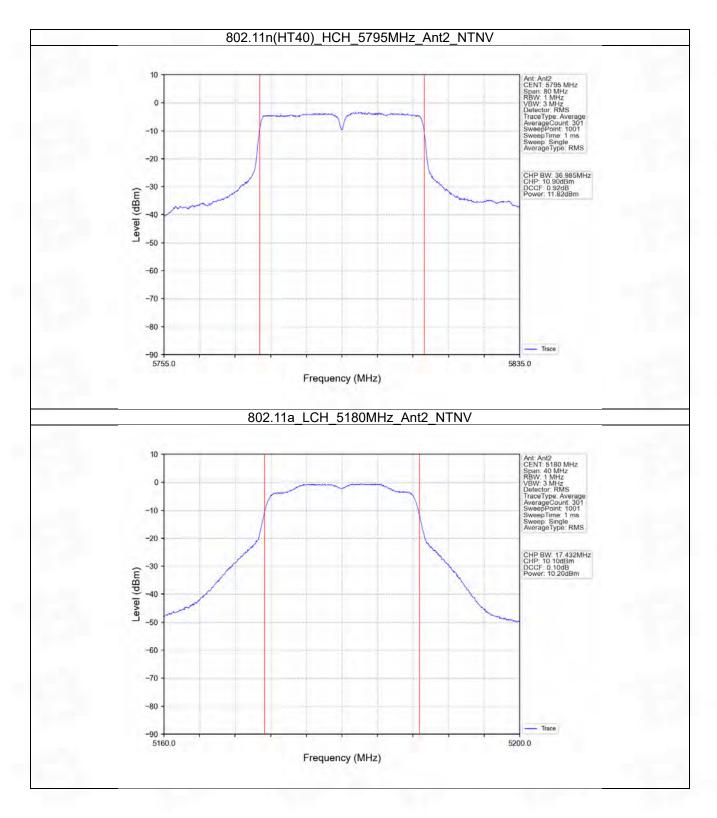





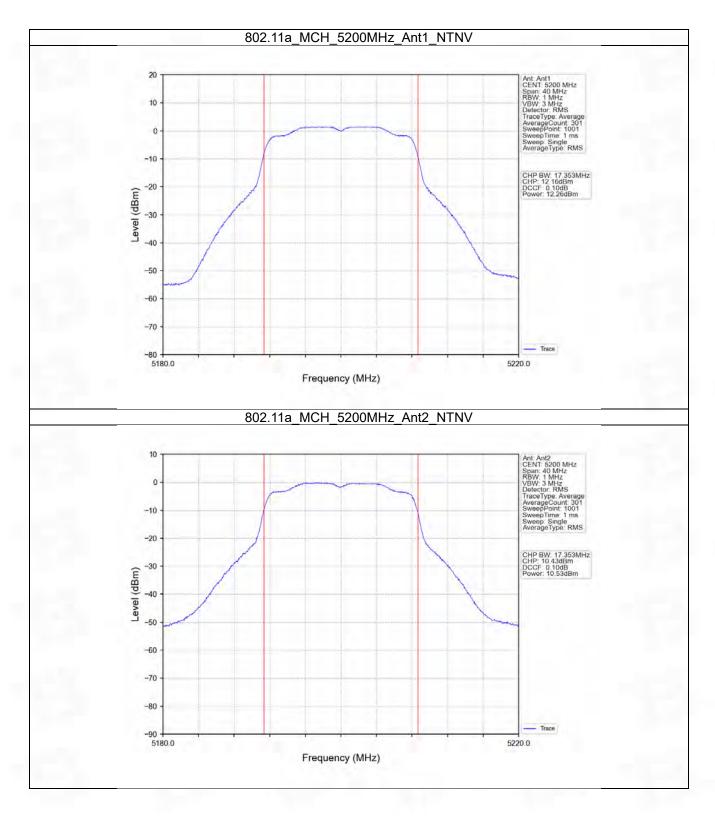

Page 95 of 167





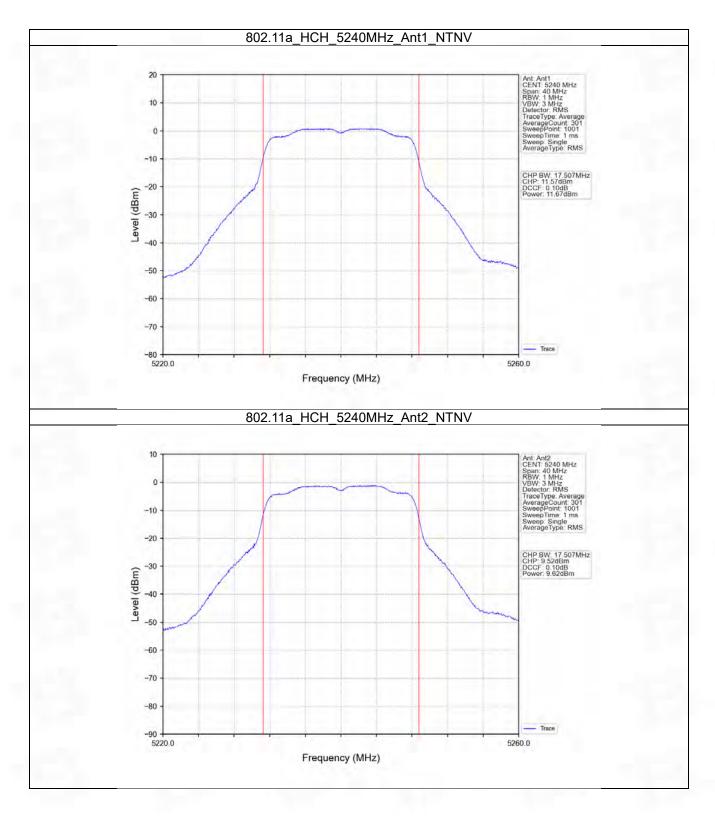






Page 97 of 167

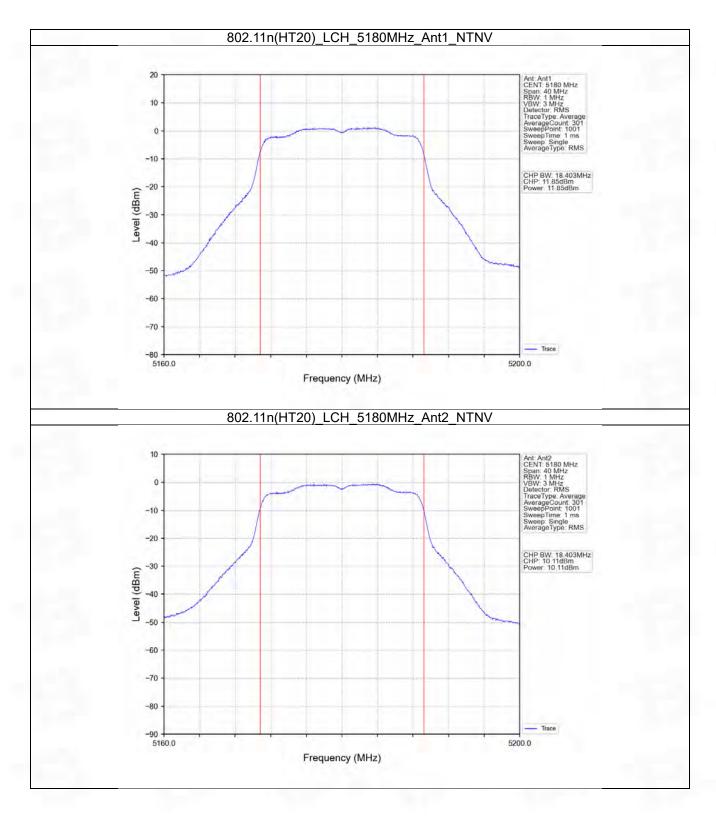





Page 98 of 167

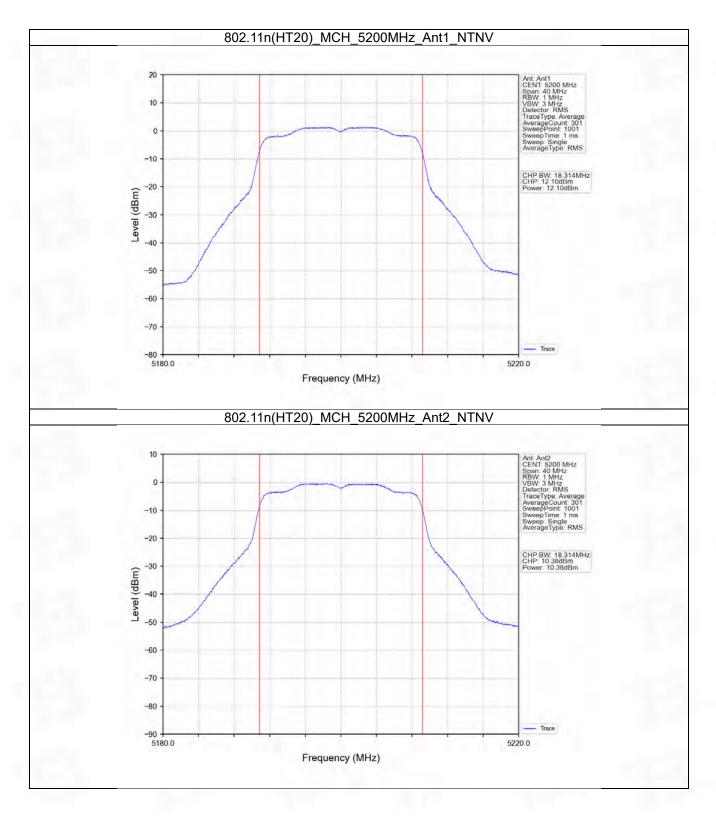





Page 99 of 167

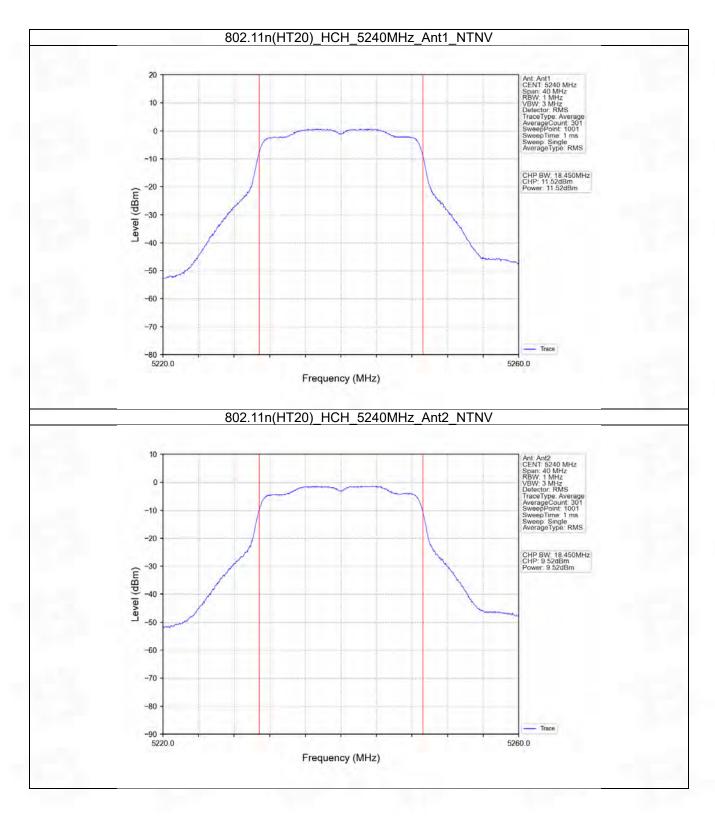




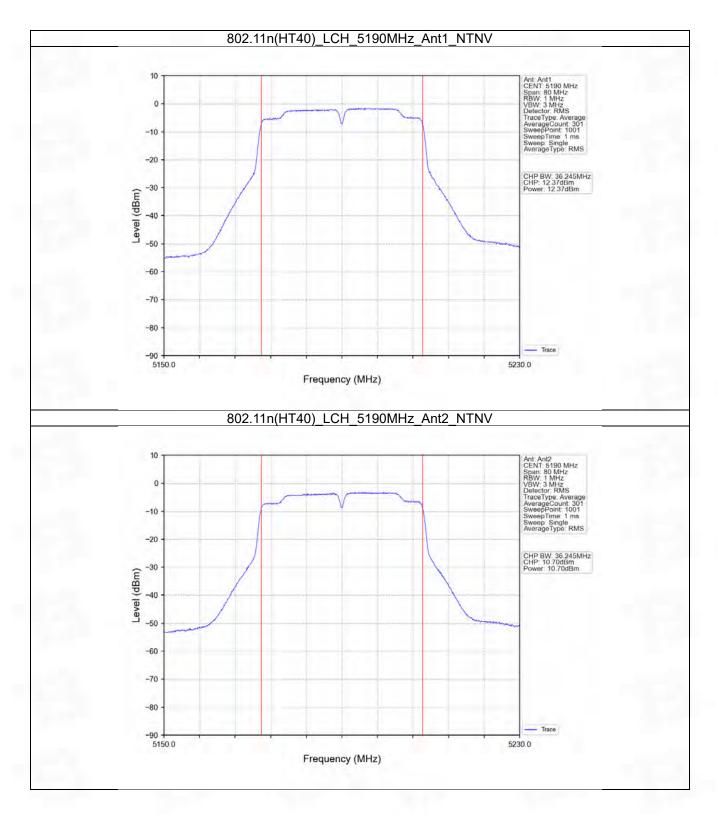

Page 100 of 167





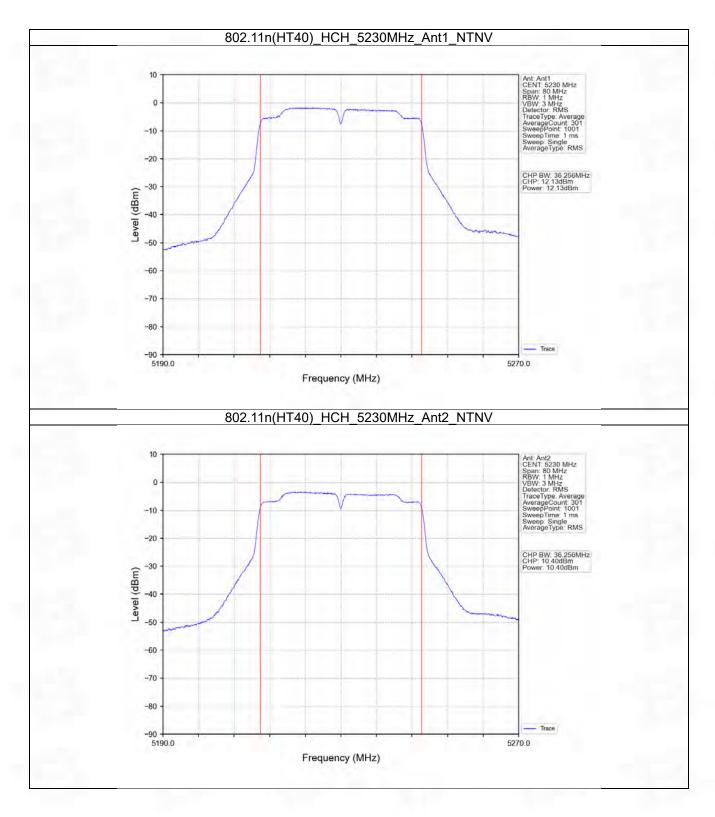

Page 101 of 167





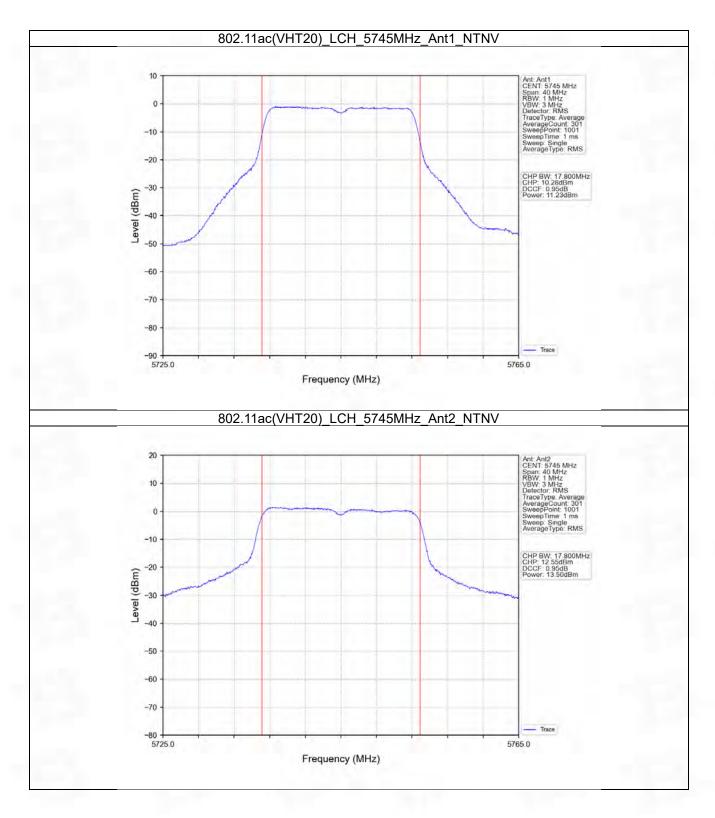

Page 102 of 167





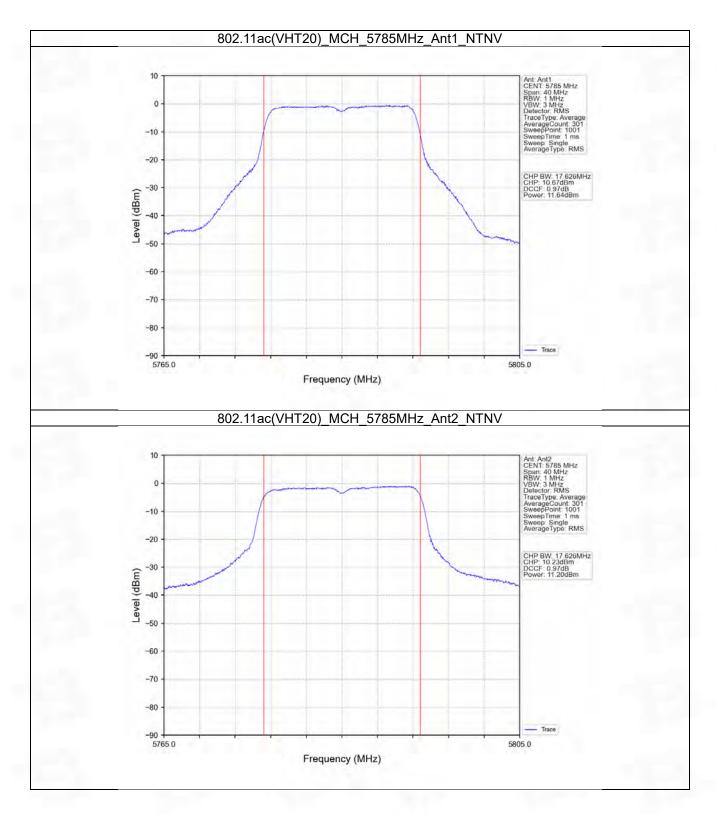




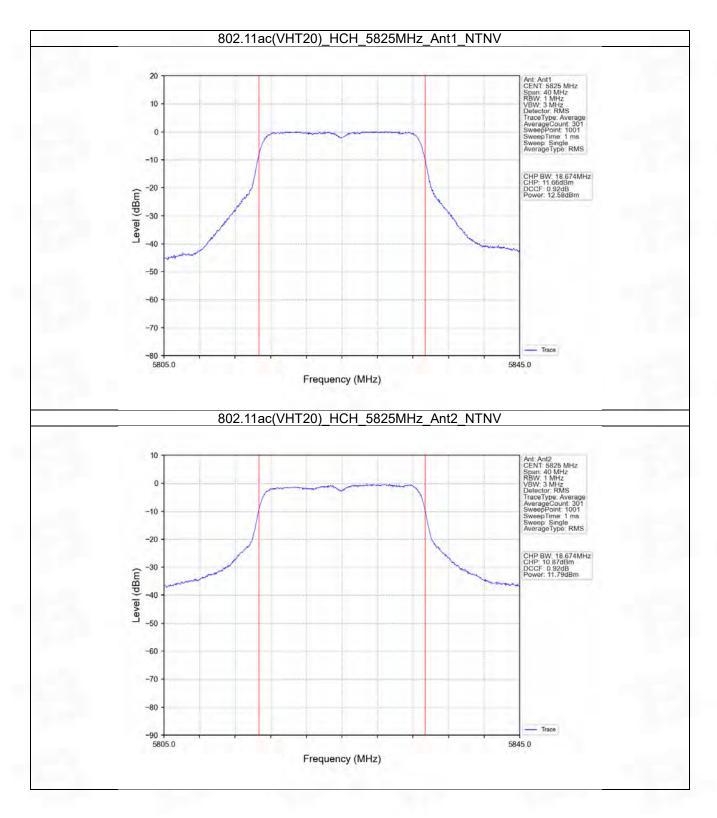


Page 104 of 167





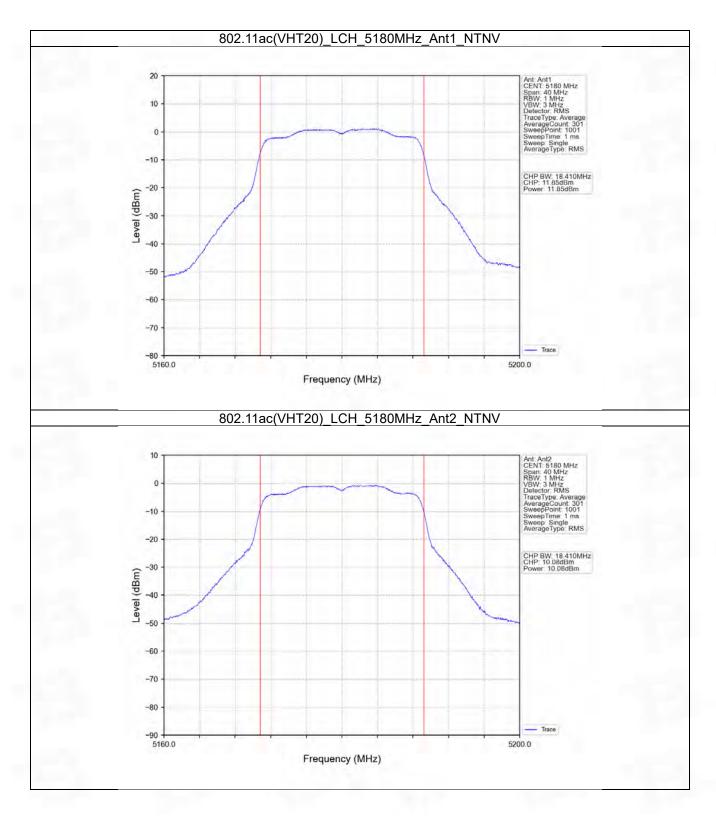

Page 105 of 167





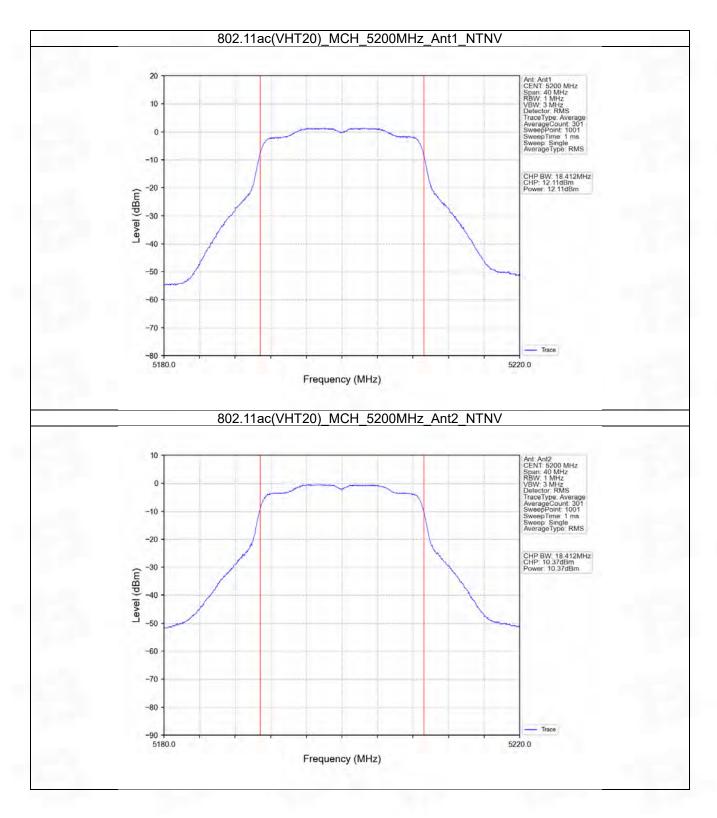

Page 106 of 167



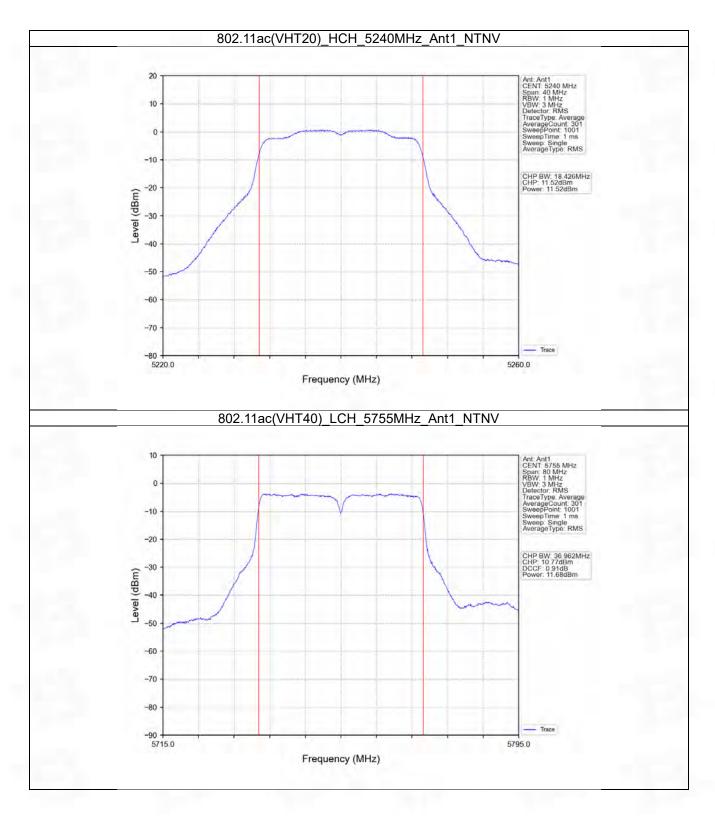




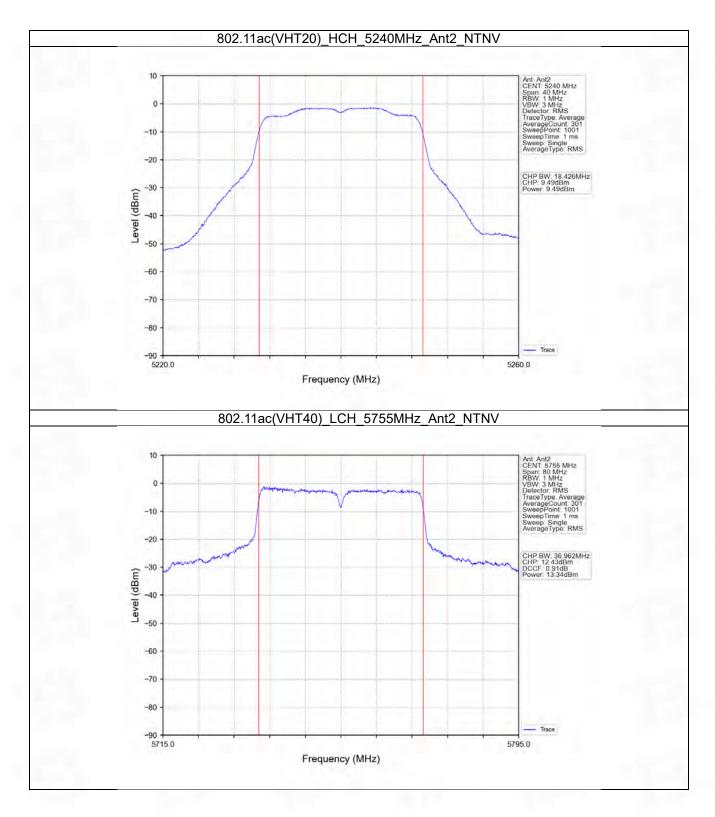




Page 108 of 167

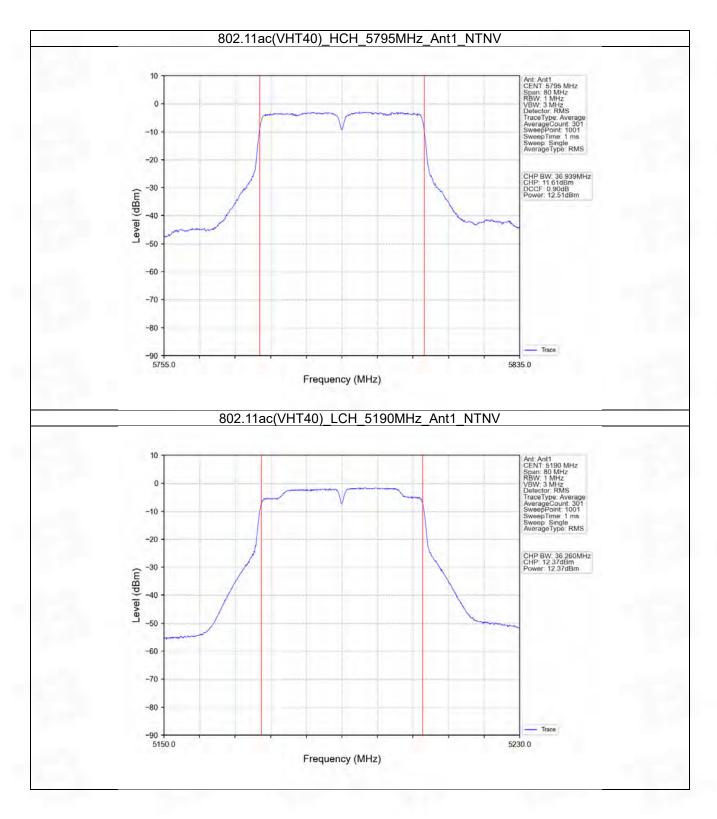




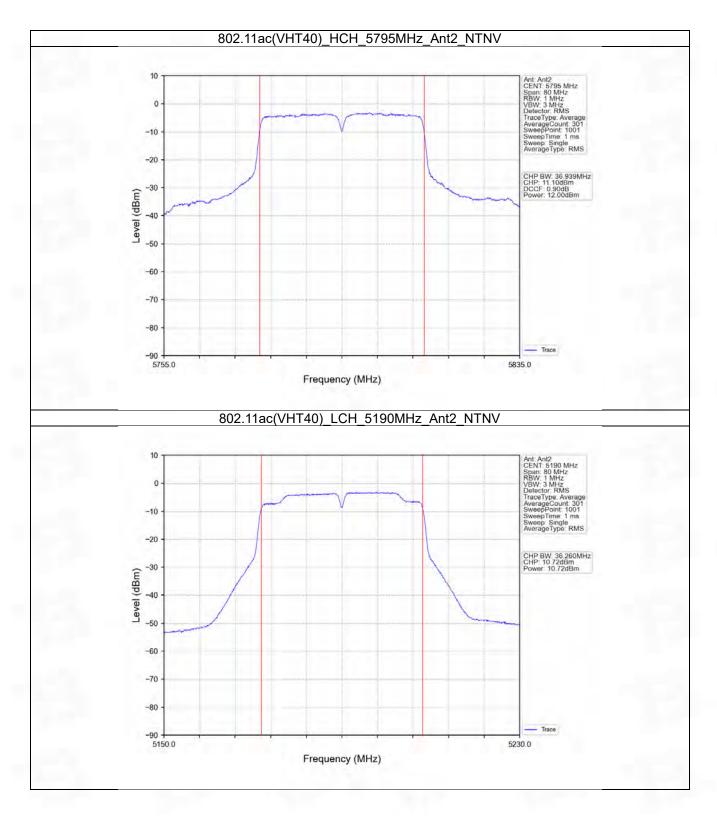

Page 109 of 167





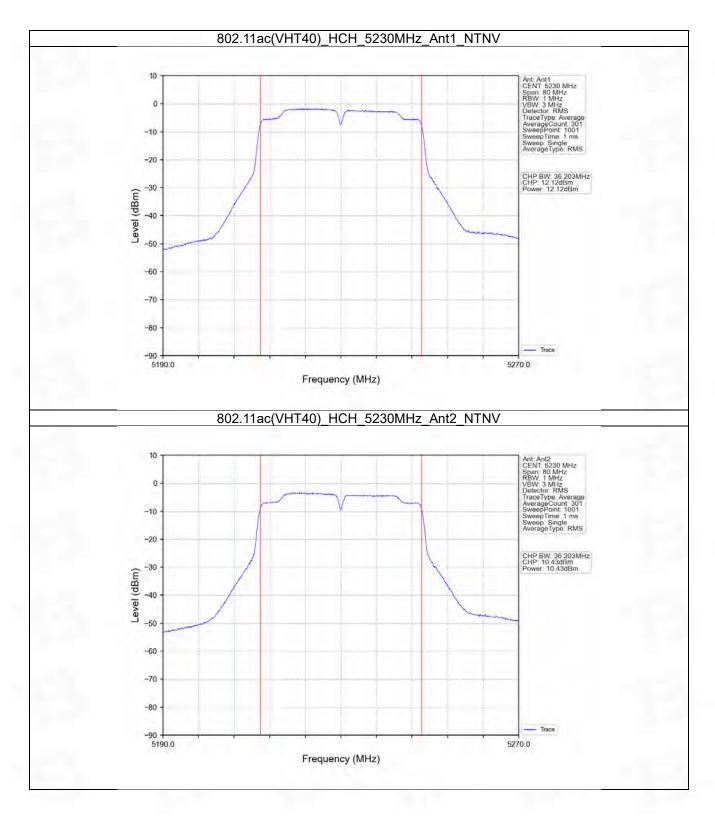





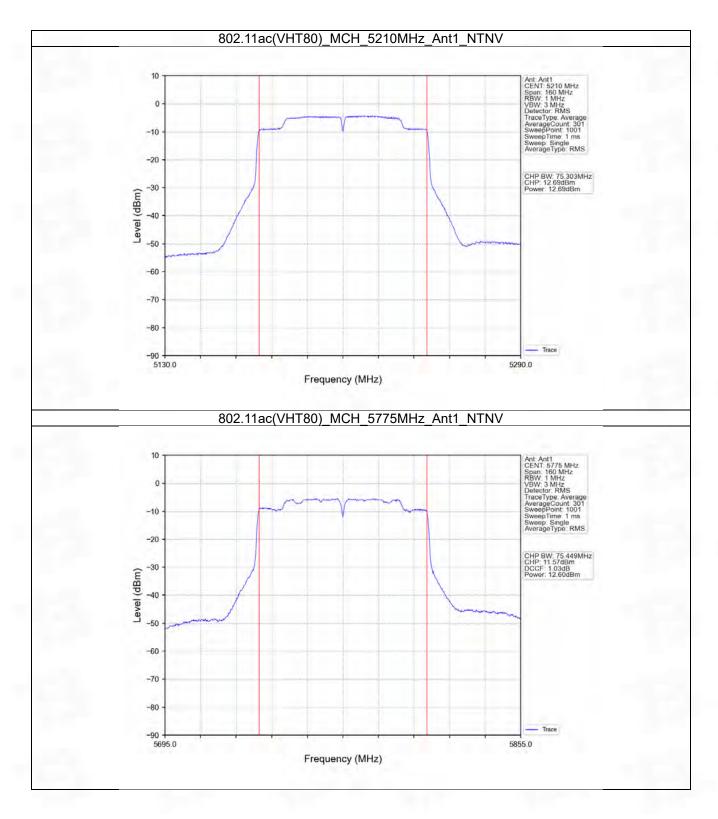




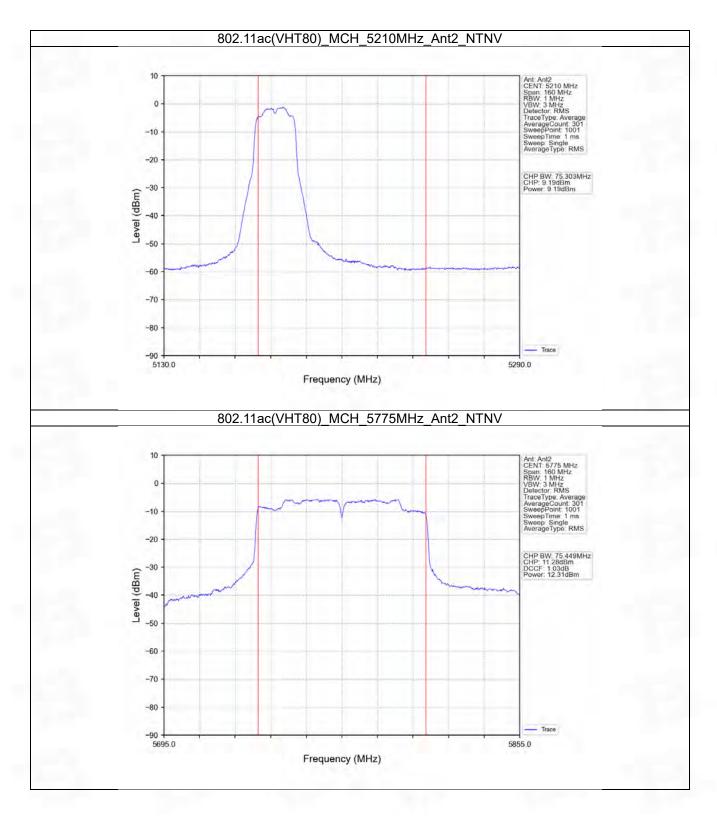






Page 114 of 167






Page 115 of 167





Page 116 of 167

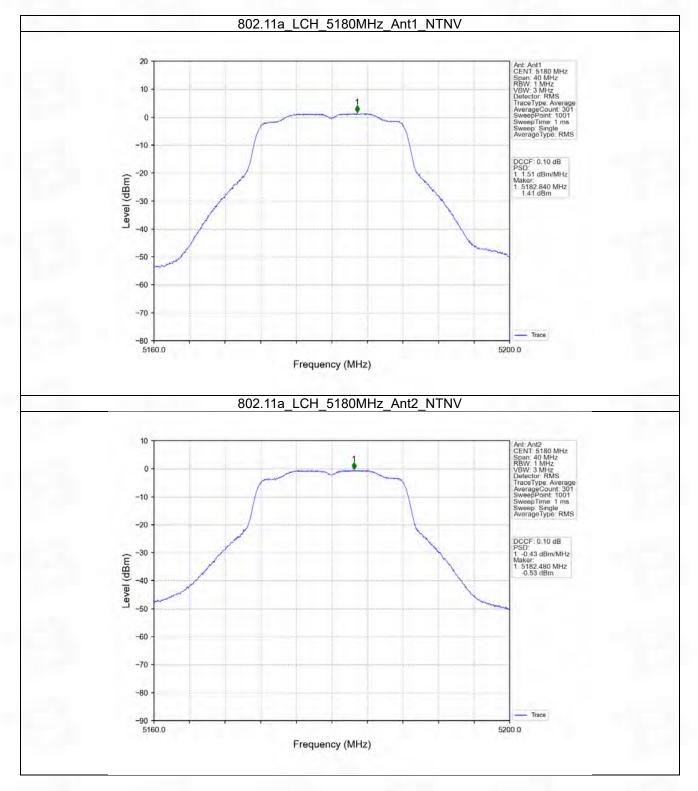




Page 117 of 167

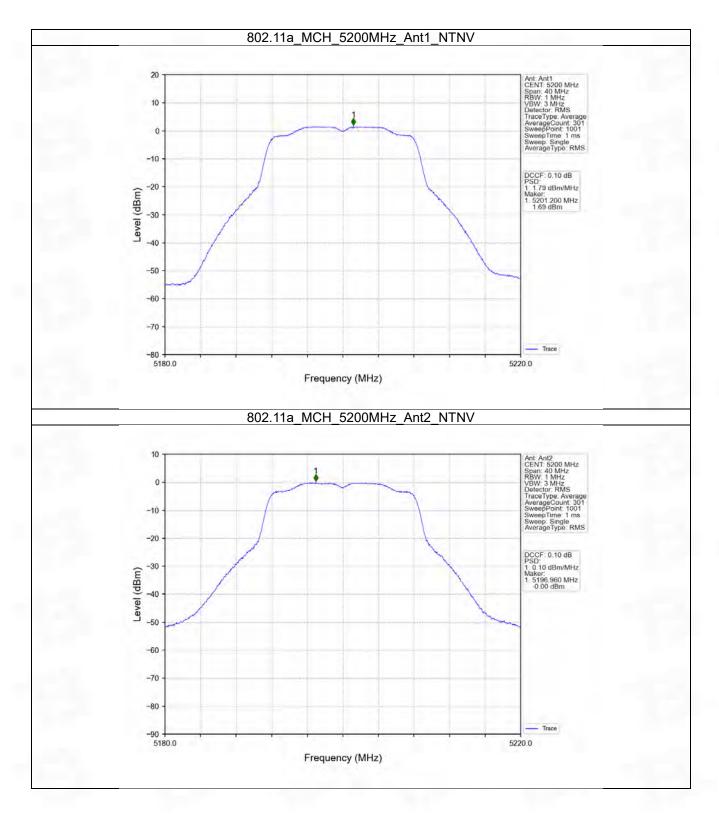


# 4. Maximum Power Spectral Density

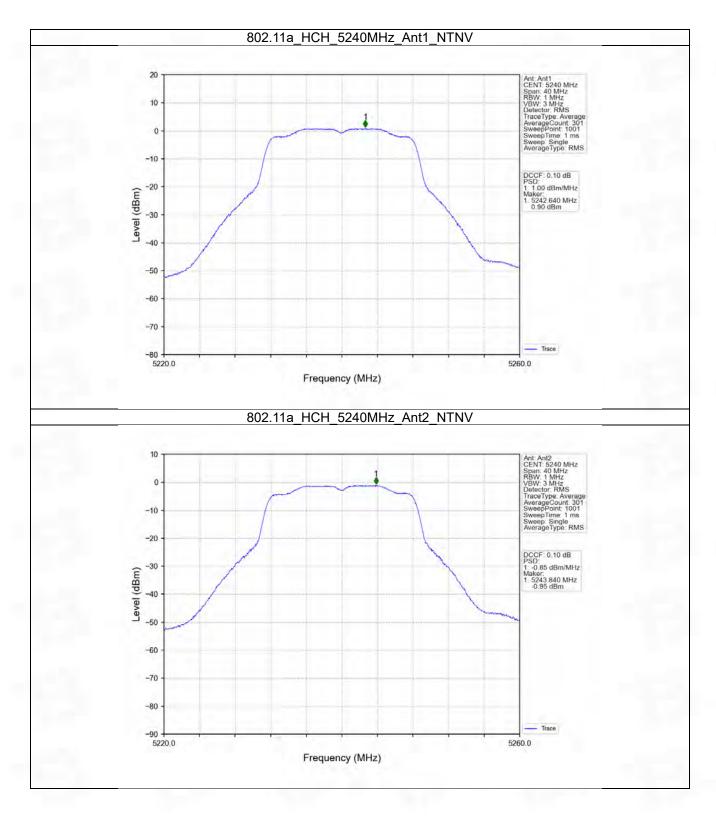

## 4.1 PSD

#### 4.1.1 Test Result

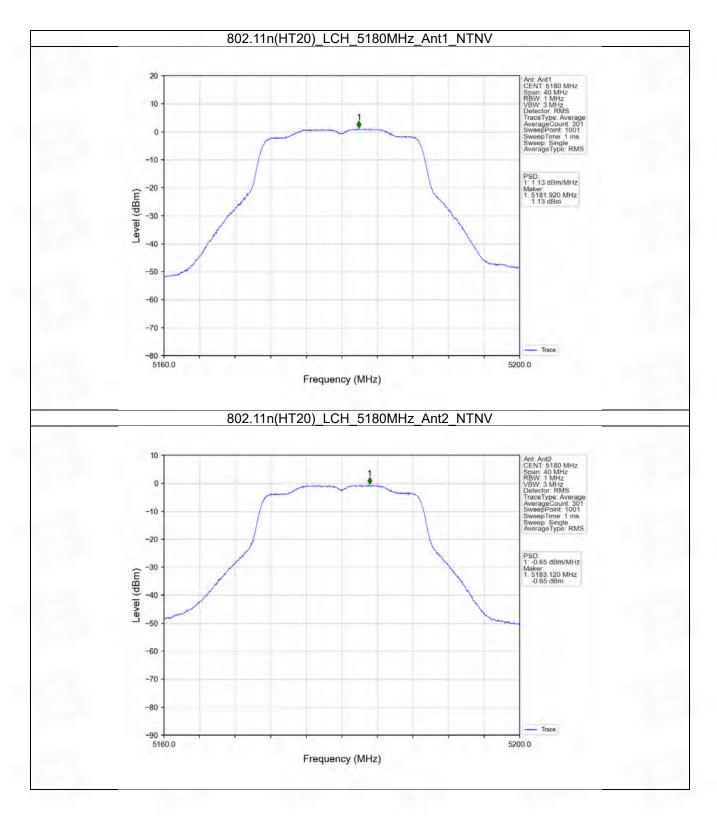
| Mode                | TX            | Frequency      | Maximum PSD (dBm/MHz) |       |       |       | Verdiet |
|---------------------|---------------|----------------|-----------------------|-------|-------|-------|---------|
|                     | Туре          | (MHz)          | ANT1                  | ANT2  | MIMO  | Limit | Verdict |
| 802.11a             | SISO          | 5180           | 1.51                  | -0.43 | /     | <=11  | Pass    |
|                     |               | 5200           | 1.79                  | 0.10  | /     | <=11  | Pass    |
|                     |               | 5240           | 1.00                  | -0.85 | /     | <=11  | Pass    |
| 802.11n<br>(HT20)   |               | 5180           | 1.13                  | -0.65 | 3.20  | <=11  | Pass    |
|                     | MIMO          | 5200           | 1.49                  | -0.30 | 3.60  | <=11  | Pass    |
|                     |               | 5240           | 0.72                  | -1.35 | 2.73  | <=11  | Pass    |
| 802.11n<br>(HT40)   | MIMO          | 5190           | -1.60                 | -3.23 | 0.60  | <=11  | Pass    |
|                     |               | 5230           | -1.73                 | -3.42 | 0.40  | <=11  | Pass    |
| 802.11ac<br>(VHT20) | МІМО          | 5180           | 1.09                  | -0.69 | 3.19  | <=11  | Pass    |
|                     |               | 5200           | 1.38                  | -0.39 | 3.57  | <=11  | Pass    |
|                     |               | 5240           | 0.69                  | -1.25 | 2.75  | <=11  | Pass    |
| 802.11ac<br>(VHT40) | МІМО          | 5190           | -1.55                 | -3.19 | 0.63  | <=11  | Pass    |
|                     |               | 5230           | -1.71                 | -3.40 | 0.42  | <=11  | Pass    |
| 802.11ac<br>(VHT80) | ΜΙΜΟ          | 5210           | -4.26                 | -1.25 | -0.32 | <=11  | Pass    |
| lote1: Antenn       | a Gain: Ant1: | 2.36dBi; Ant2: | 3.22dBi;              |       |       |       |         |




#### 4.1.2 Test Graph

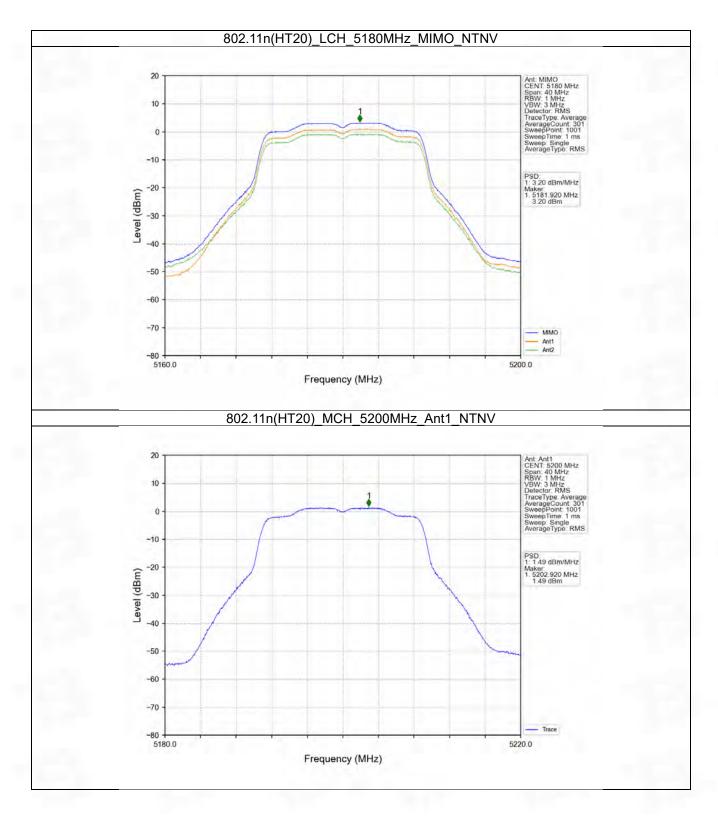



Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.



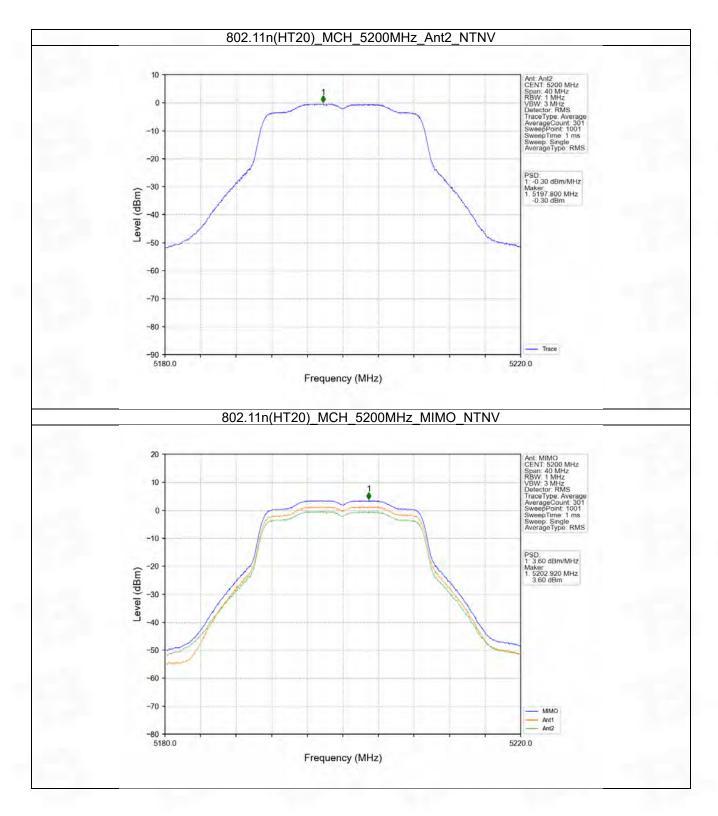




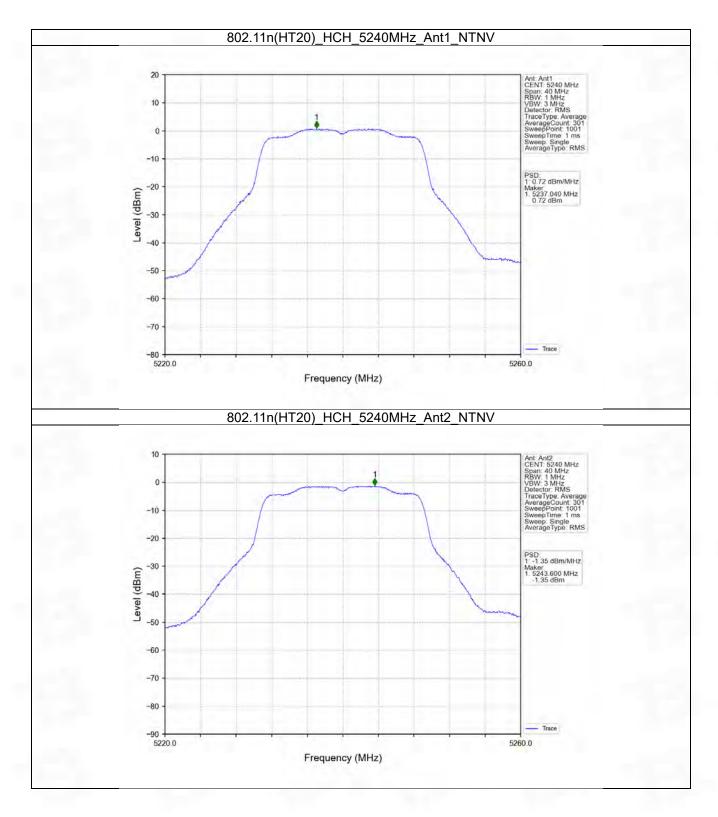





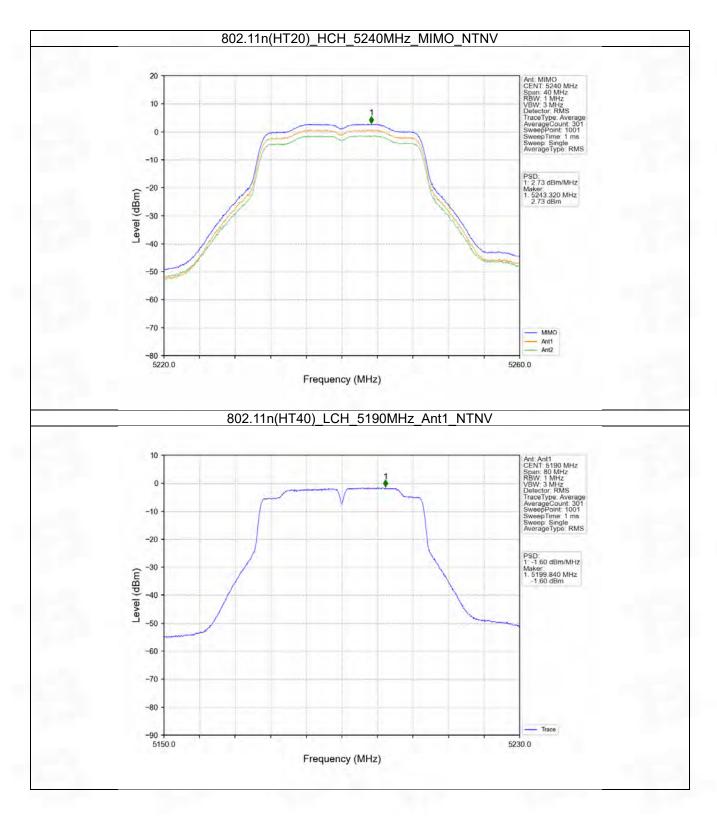




Page 122 of 167



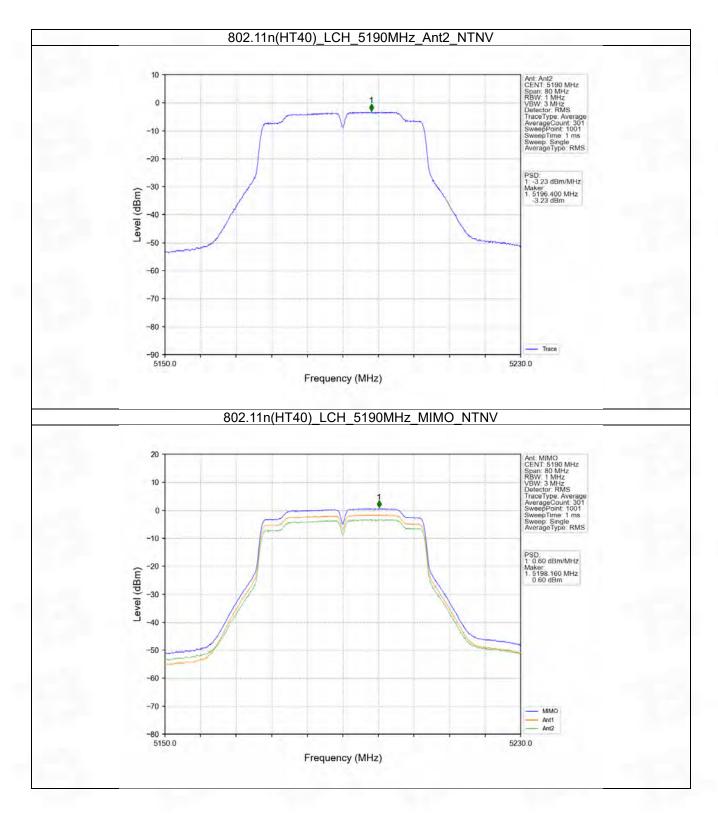



Page 123 of 167

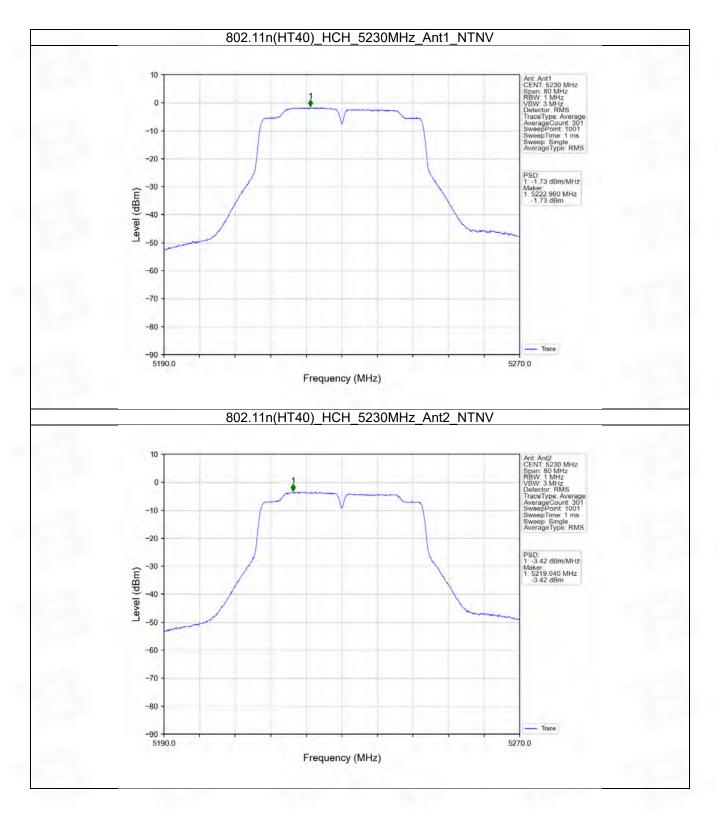






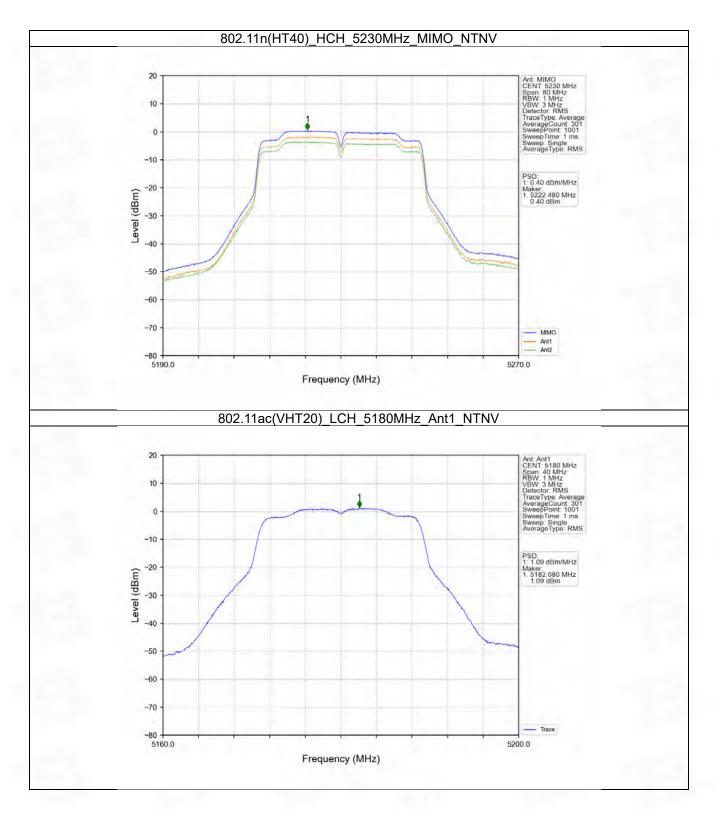





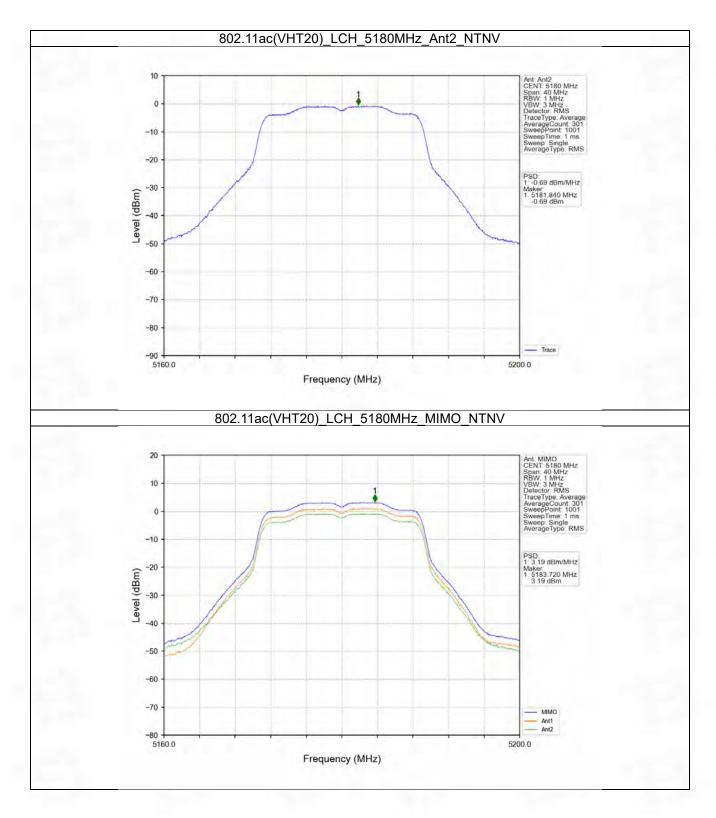

Page 126 of 167





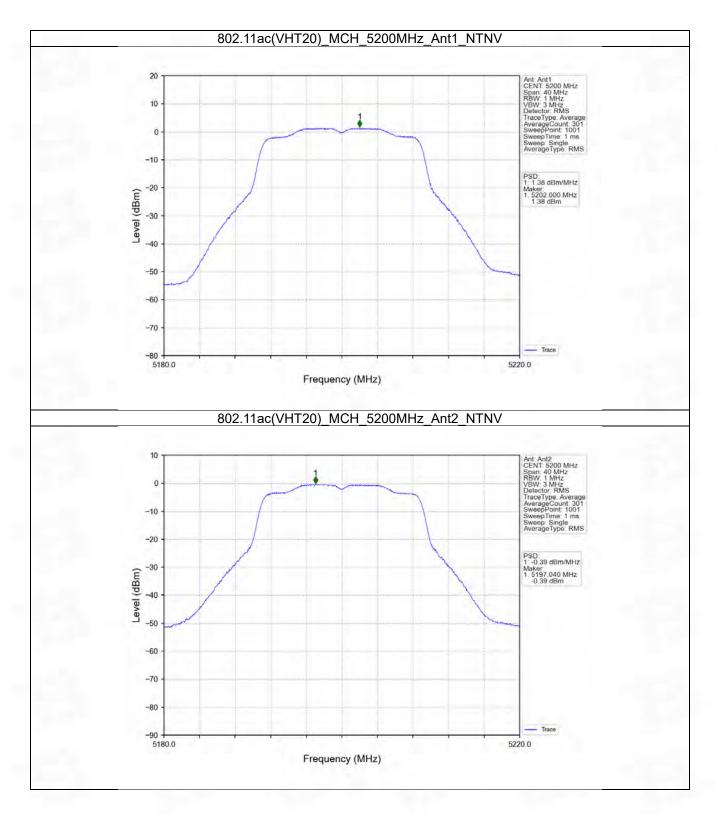




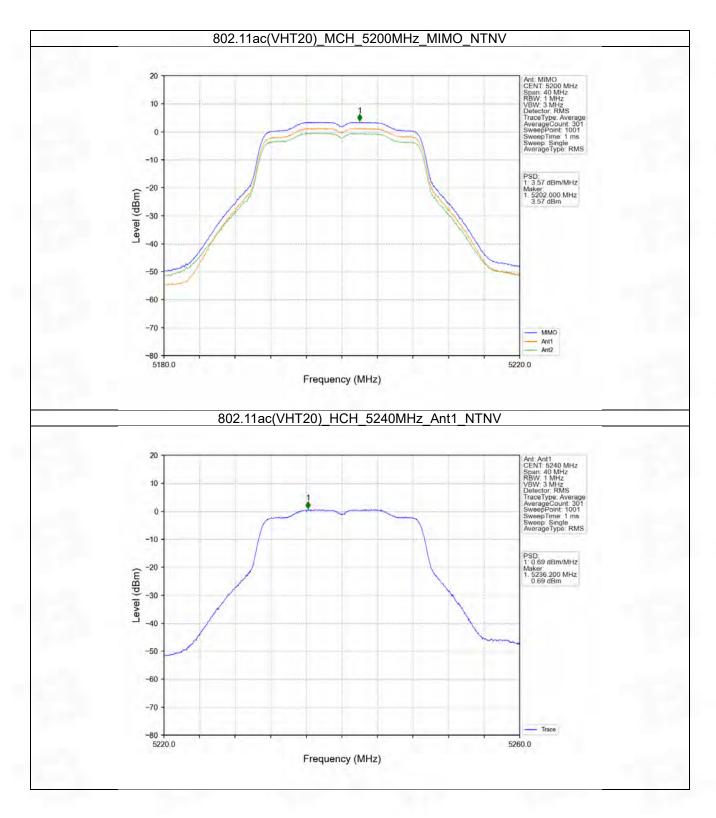


Page 128 of 167





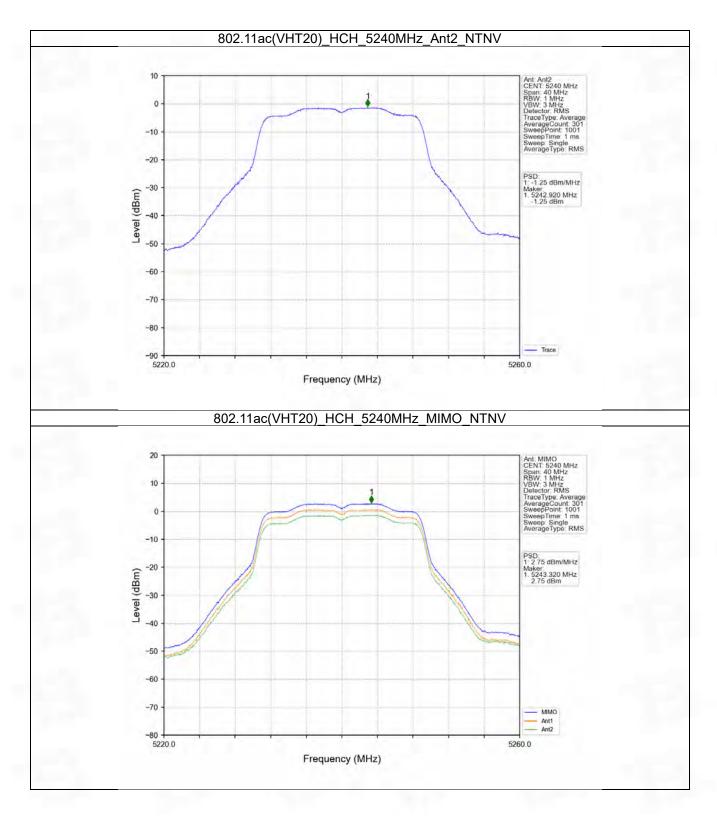

Page 129 of 167



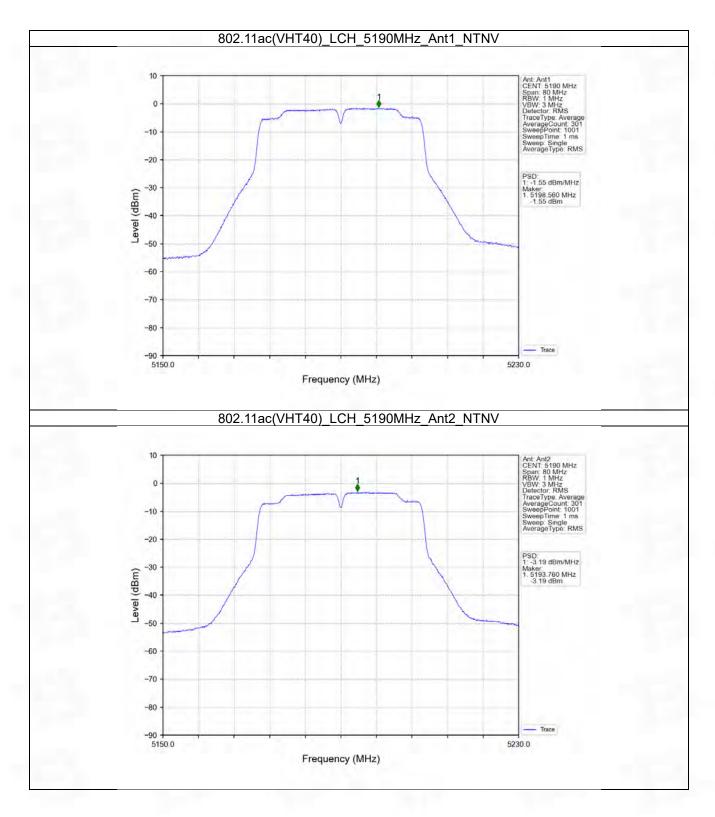



Page 130 of 167

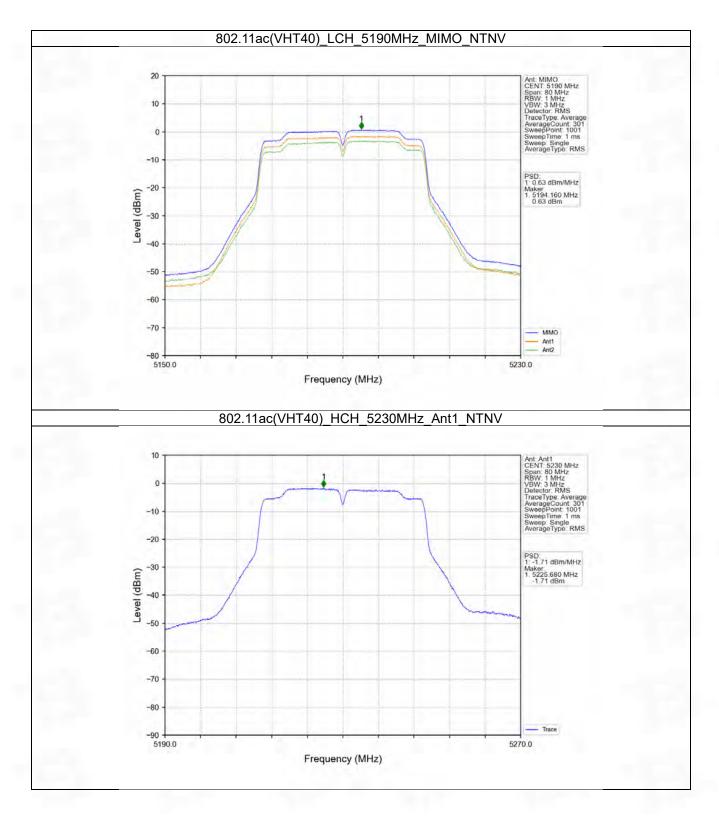






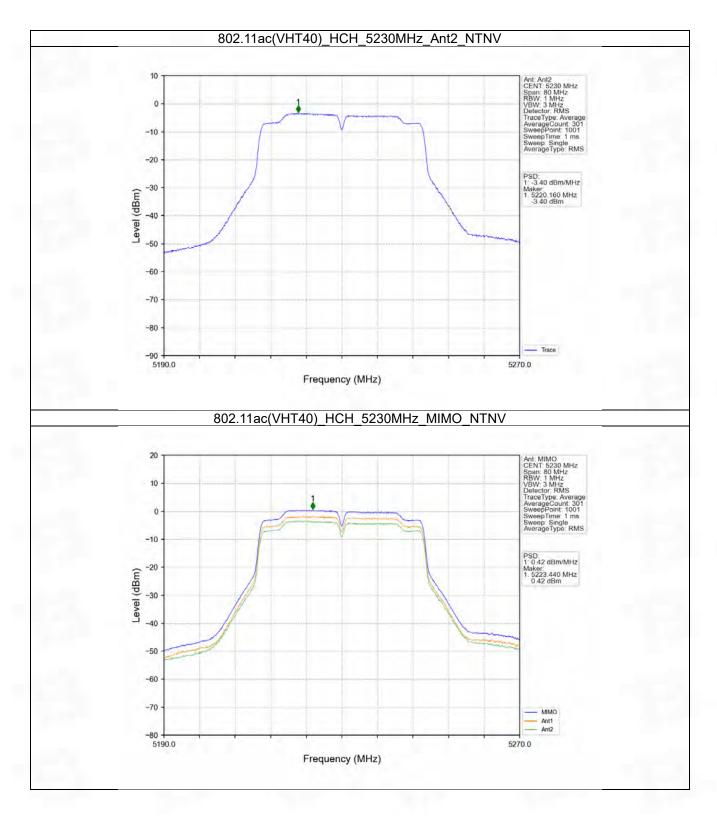




Page 132 of 167

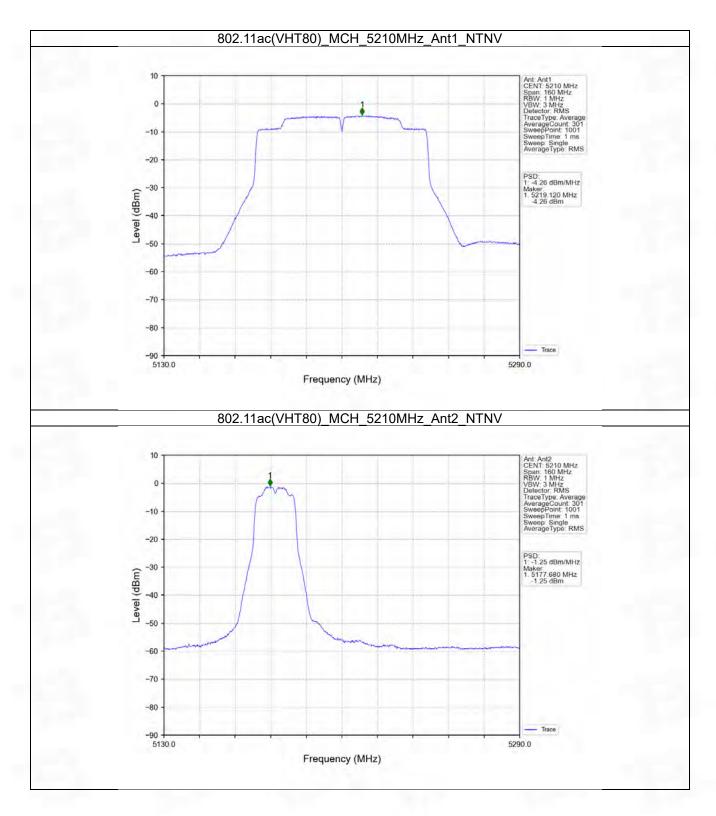




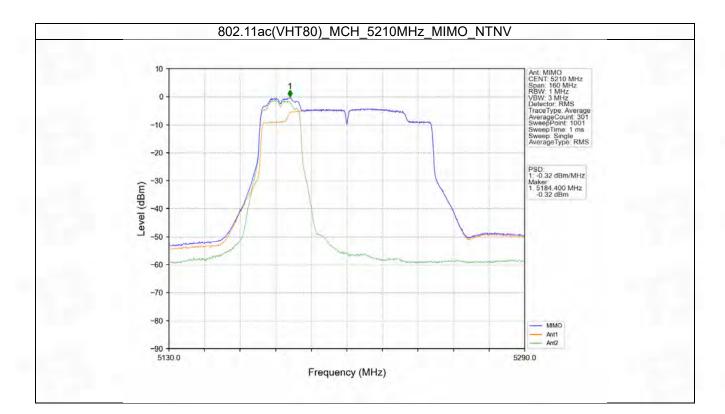





Page 135 of 167







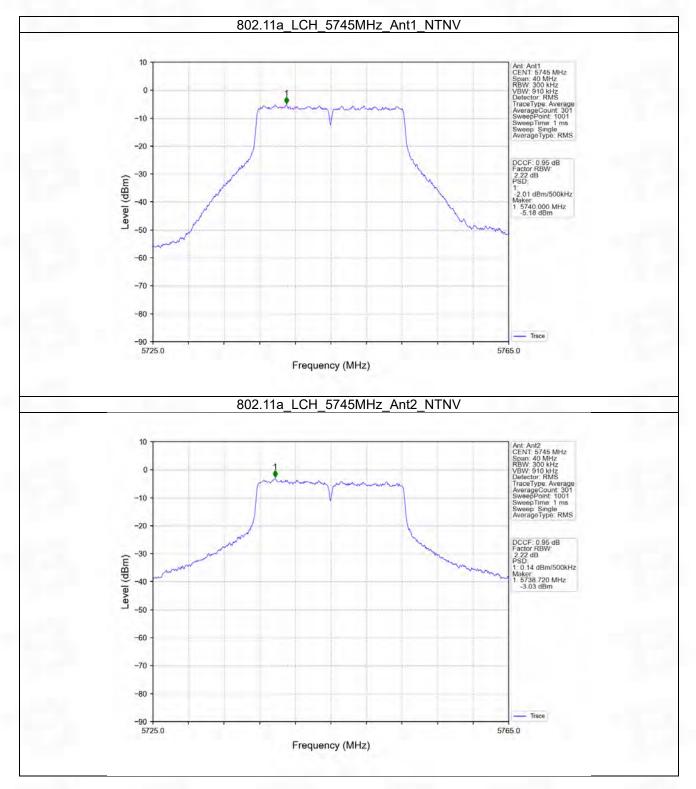






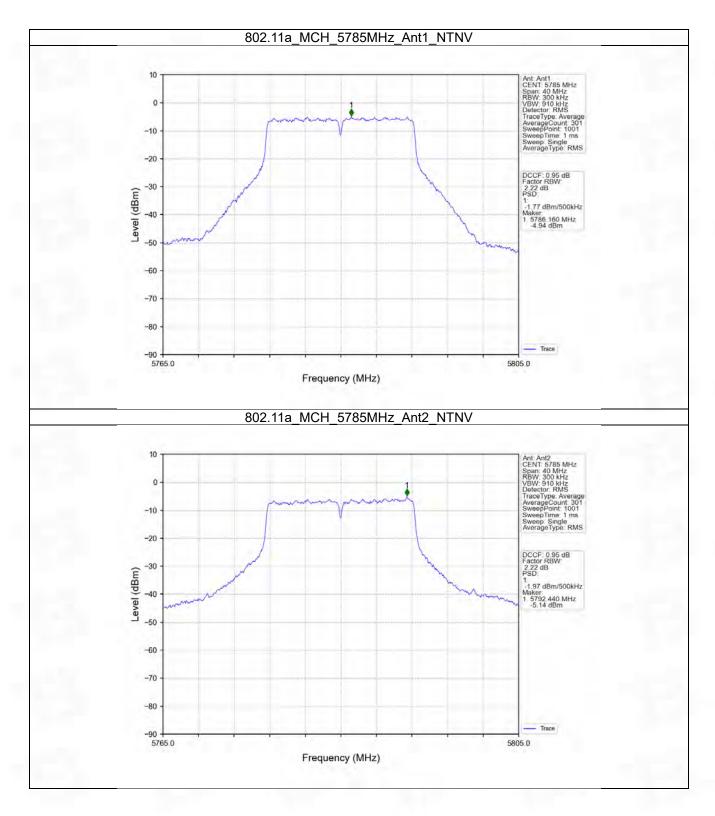



#### 4.2 PSD-Band3


### 4.2.1 Test Result

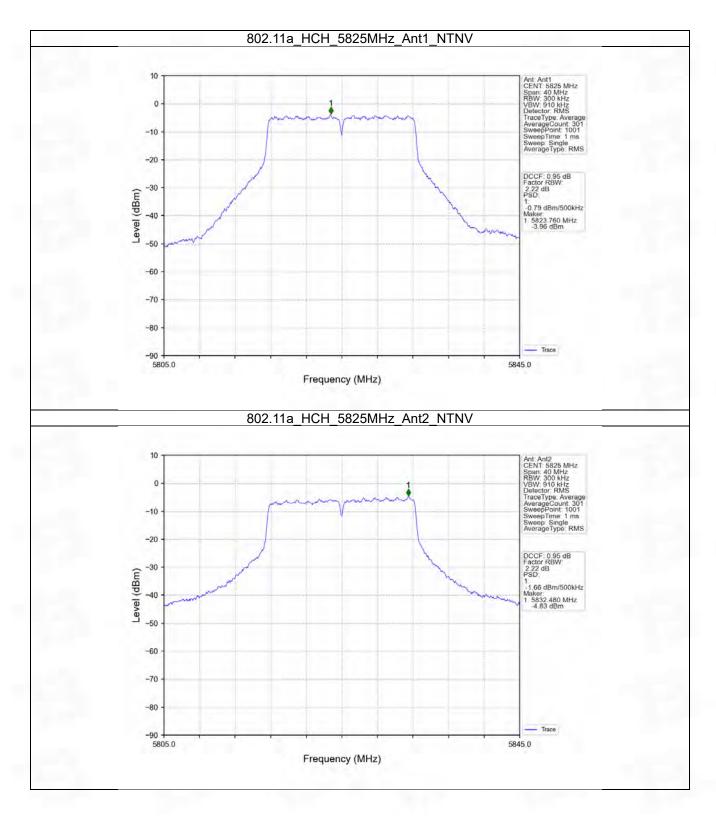
|                     | ту            | Fraguanay           | Maximum DSD (dBm/500kHz) |         |       |       |         |
|---------------------|---------------|---------------------|--------------------------|---------|-------|-------|---------|
| Mode                | TX            | Frequency           | Maximum PSD (dBm/500kHz) |         |       |       | Verdict |
|                     | Туре          | (MHz)               | ANT1                     | ANT2    | MIMO  | Limit | voraio  |
| 802.11a             | SISO          | 5745                | -2.01                    | 0.14    | /     | <=30  | Pass    |
|                     |               | 5785                | -1.77                    | -1.97   | /     | <=30  | Pass    |
|                     |               | 5825                | -0.79                    | -1.66   | /     | <=30  | Pass    |
| 802.11n<br>(HT20)   | МІМО          | 5745                | -2.36                    | -0.56   | 1.59  | <=30  | Pass    |
|                     |               | 5785                | -1.79                    | -2.36   | 0.81  | <=30  | Pass    |
|                     |               | 5825                | -0.93                    | -1.56   | 1.74  | <=30  | Pass    |
| 802.11n<br>(HT40)   | MIMO          | 5755                | -5.10                    | -3.30   | -1.20 | <=30  | Pass    |
|                     |               | 5795                | -4.45                    | -4.90   | -1.69 | <=30  | Pass    |
| 802.11ac<br>(VHT20) | МІМО          | 5745                | -2.48                    | 0.19    | 1.81  | <=30  | Pass    |
|                     |               | 5785                | -1.73                    | -2.21   | 0.88  | <=30  | Pass    |
|                     |               | 5825                | -1.16                    | -1.83   | 1.35  | <=30  | Pass    |
| 802.11ac<br>(VHT40) | MIMO          | 5755                | -5.17                    | -2.84   | -0.97 | <=30  | Pass    |
|                     |               | 5795                | -4.48                    | -4.57   | -1.66 | <=30  | Pass    |
| 802.11ac<br>(VHT80) | MIMO          | 5775                | -6.80                    | -6.89   | -3.98 | <=30  | Pass    |
| ote1: Antenr        | na Gain: Ant1 | : 2.78dBi; Ant2     | 2: 1.96dBi;              |         |       |       |         |
| ote2: Directi       | onal Gain: Un | correlated(Directio | nal Gain = Ant           | : Gain) |       |       |         |

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 139 of 167BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China



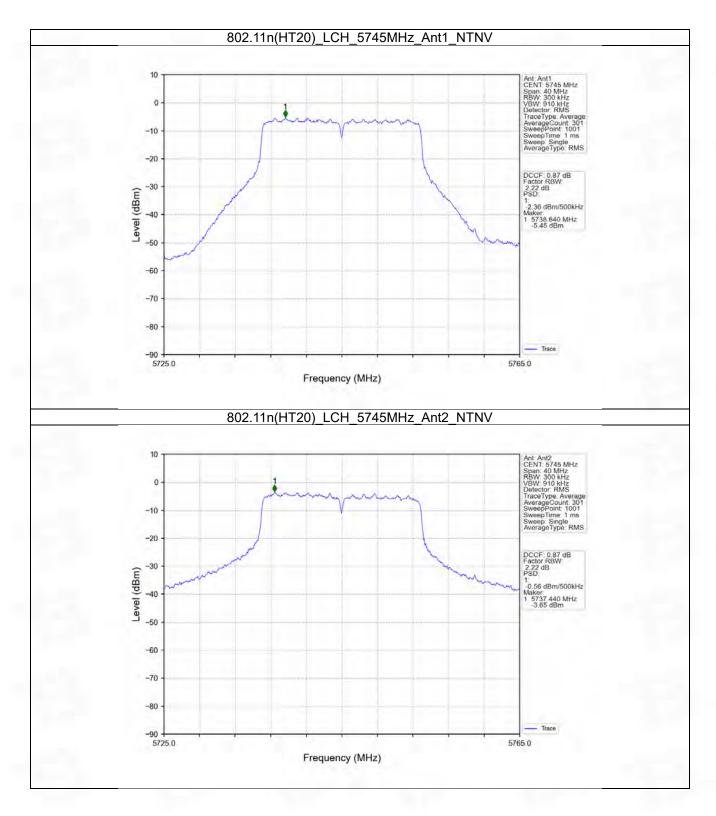

#### 4.2.2 Test Graph



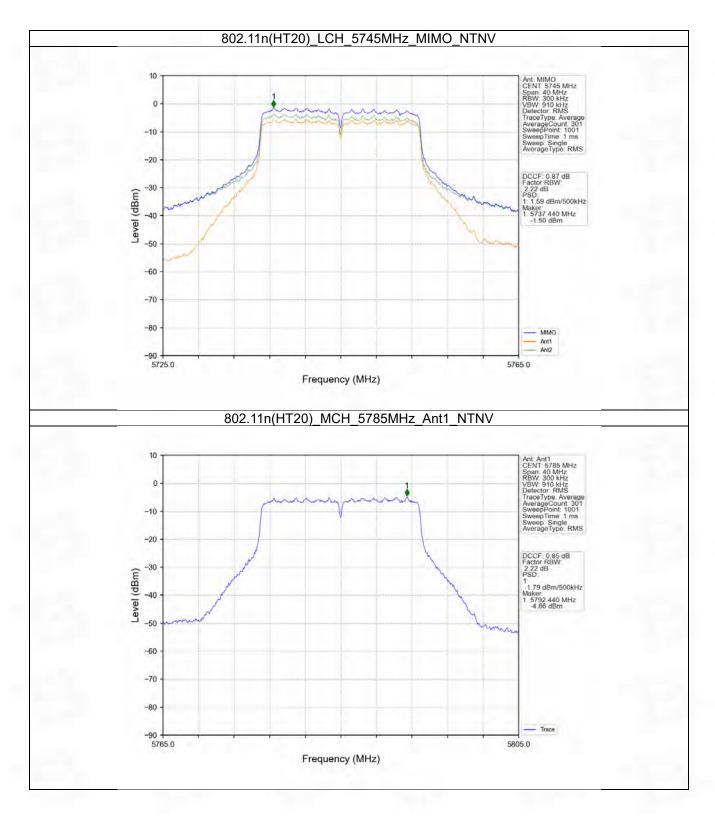

Total or partial reproduction of this document without permission of the Laboratory is not allowed. BTF Testing Lab (Shenzhen) Co., Ltd.



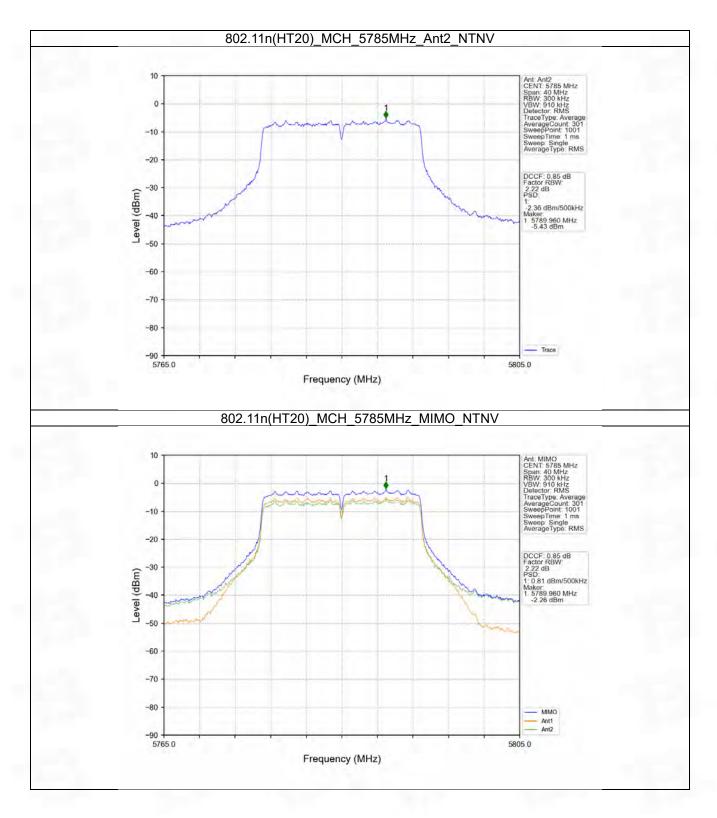



Page 141 of 167






Page 142 of 167



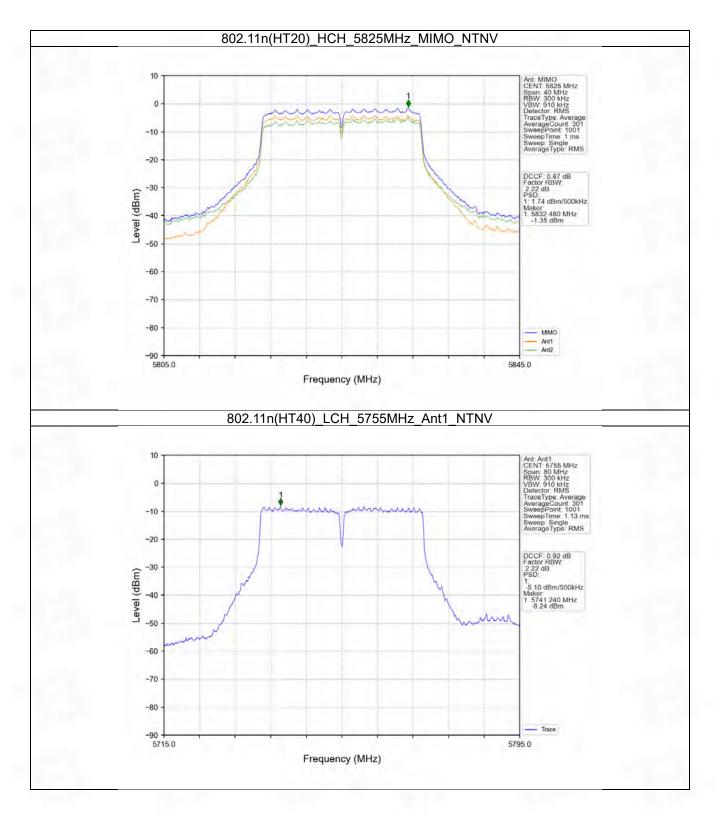






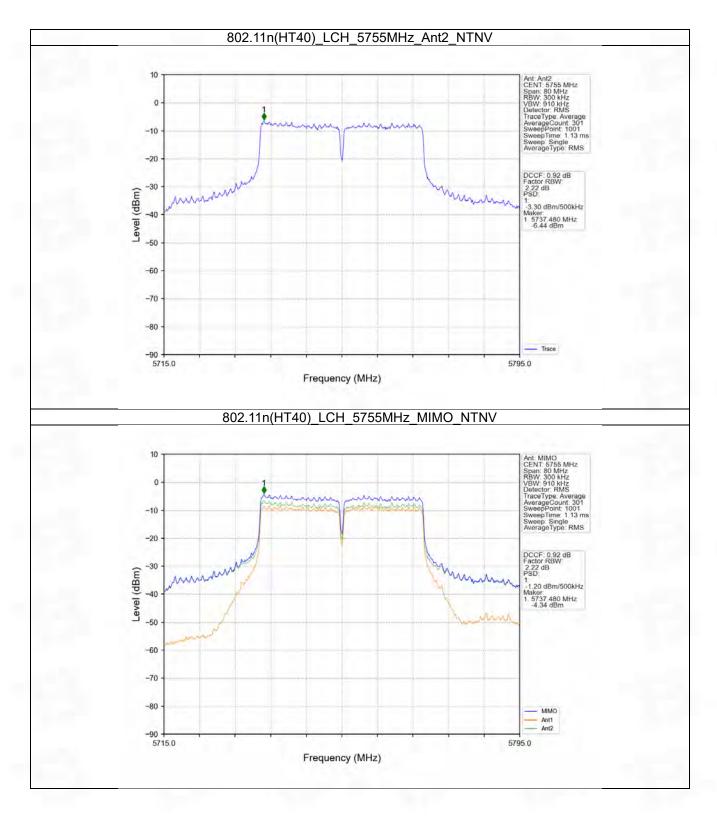






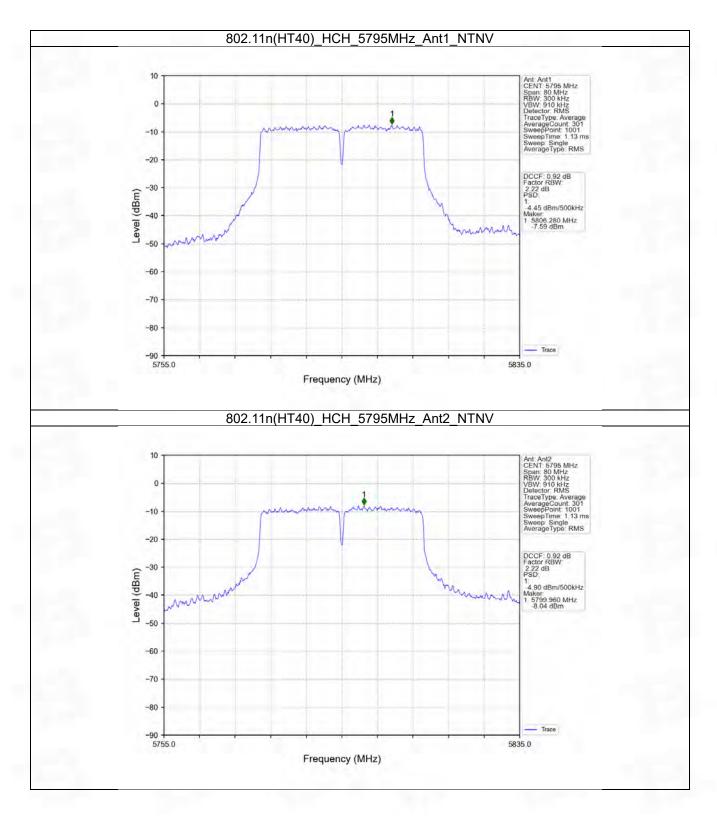






Page 146 of 167

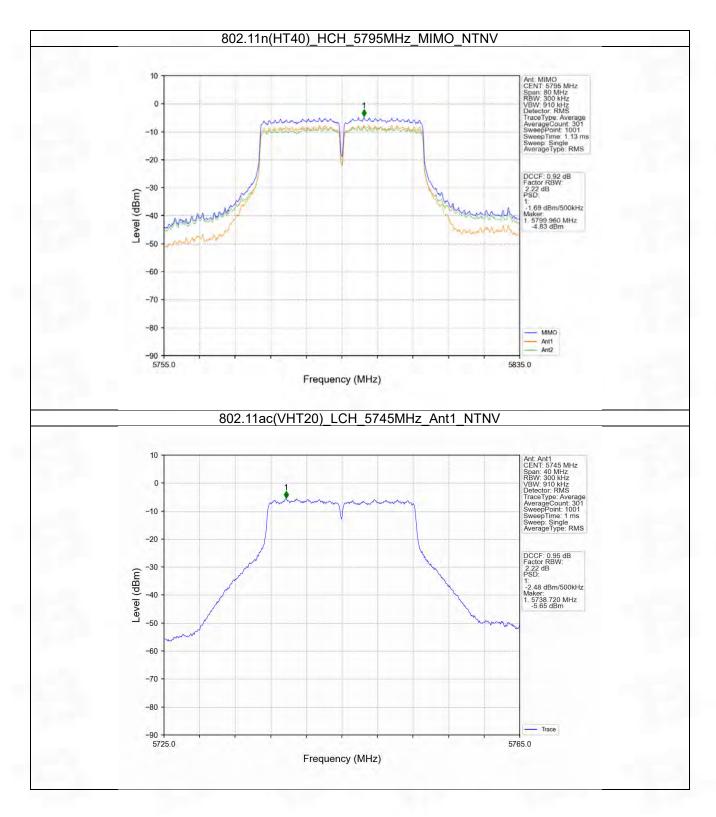





Page 147 of 167

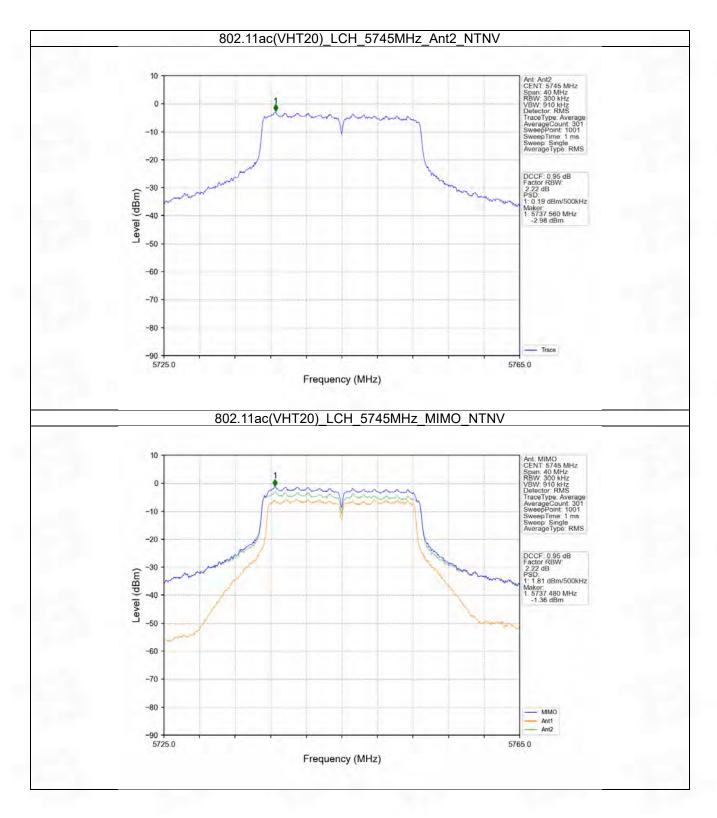





Page 148 of 167

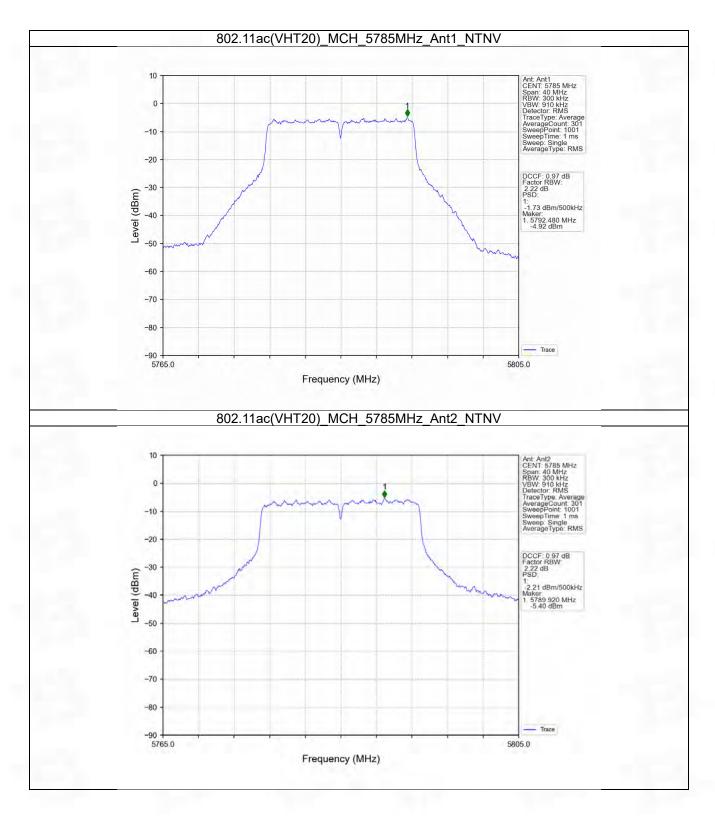




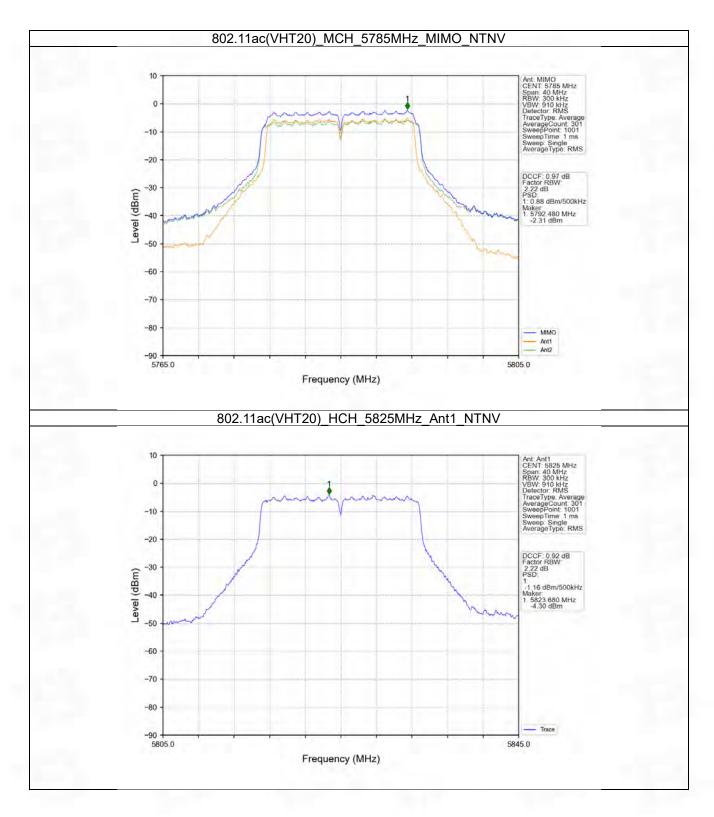

Page 149 of 167



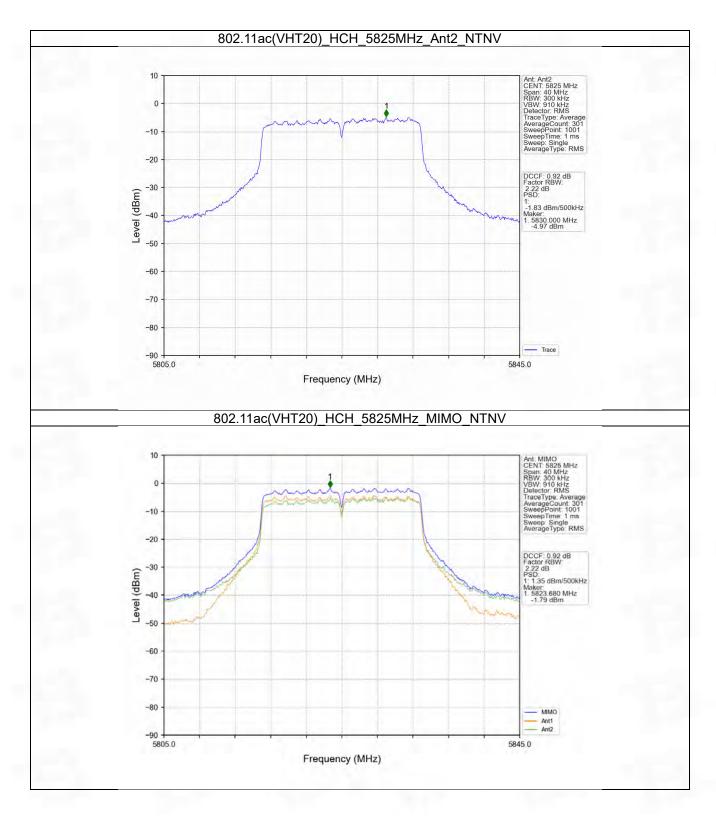



Page 150 of 167



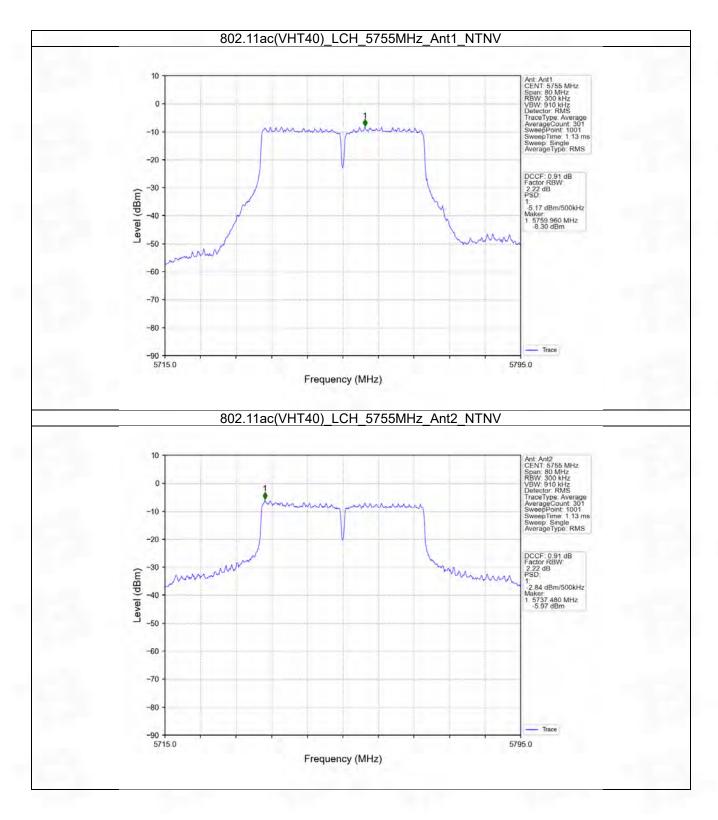



Page 151 of 167

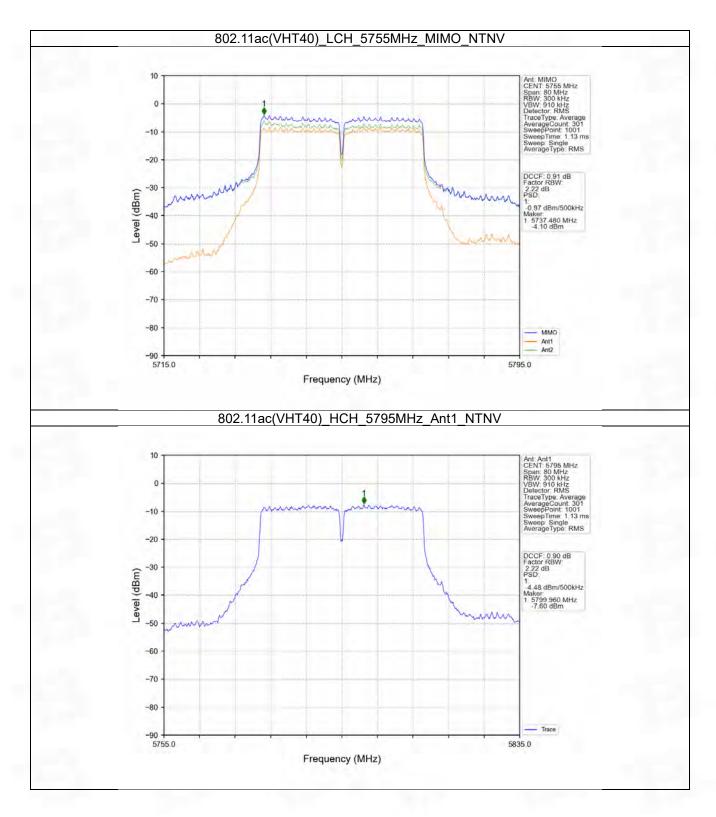






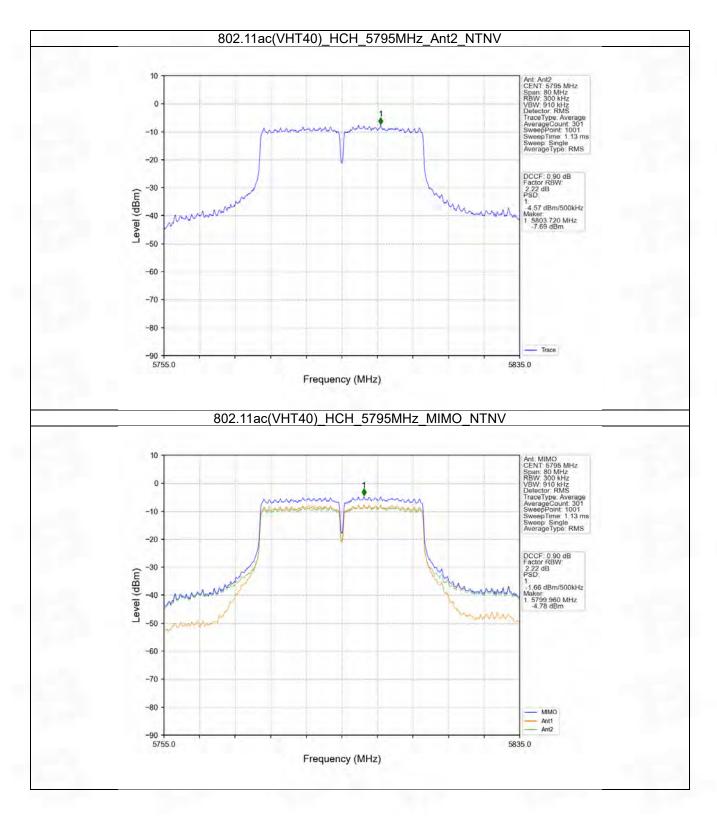





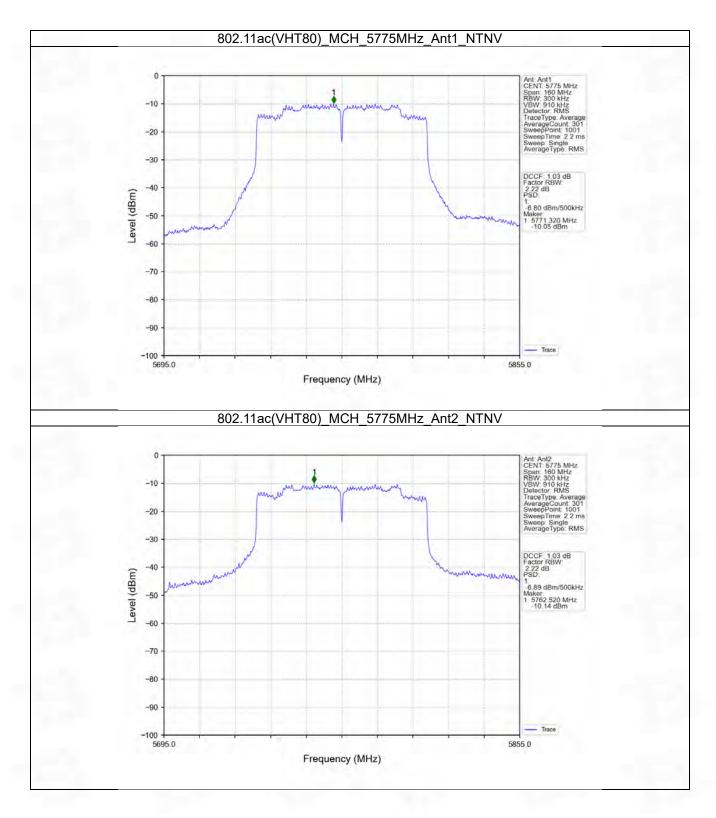

Page 154 of 167



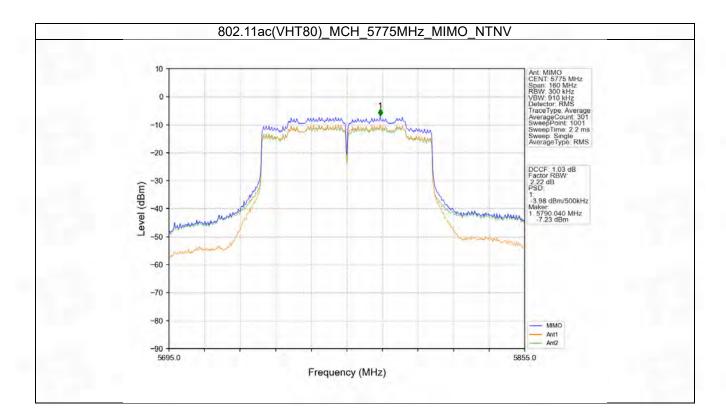








Page 156 of 167






Page 157 of 167









Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 159 of 167BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China



# 5. Frequency Stability

### 5.1 Ant1

### 5.1.1 Test Result

|         | ТХ   | Frequency            | Temperature | Ant1<br>Voltage | Measured Frequency | Limit        |         |
|---------|------|----------------------|-------------|-----------------|--------------------|--------------|---------|
| Mode    | Туре | (MHz)                | (°C)        | (VAČ)           | (MHz)              | (MHz)        | Verdict |
|         |      |                      |             | 102             | 5744.940           | 5725 to 5850 | Pass    |
|         |      |                      | 20          | 120             | 5745.000           | 5725 to 5850 | Pass    |
|         |      |                      |             | 138             | 5744.900           | 5725 to 5850 | Pass    |
|         |      |                      | -30         | 120             | 5744.900           | 5725 to 5850 | Pass    |
|         |      |                      | -20         | 120             | 5745.000           | 5725 to 5850 | Pass    |
|         |      | 5745                 | -10         | 120             | 5744.940           | 5725 to 5850 | Pass    |
|         |      |                      | 0           | 120             | 5744.940           | 5725 to 5850 | Pass    |
|         |      |                      | 10          | 120             | 5744.980           | 5725 to 5850 | Pass    |
|         |      |                      | 30          | 120             | 5744.960           | 5725 to 5850 | Pass    |
|         |      |                      | 40          | 120             | 5744.960           | 5725 to 5850 | Pass    |
|         |      |                      | 50          | 120             | 5744.980           | 5725 to 5850 | Pass    |
|         |      |                      |             | 102             | 5784.980           | 5725 to 5850 | Pass    |
|         |      |                      | 20          | 120             | 5784.960           | 5725 to 5850 | Pass    |
|         |      |                      |             | 138             | 5784.920           | 5725 to 5850 | Pass    |
|         |      |                      | -30         | 120             | 5784.980           | 5725 to 5850 | Pass    |
|         |      | O 5785               | -20         | 120             | 5785.020           | 5725 to 5850 | Pass    |
| 802.11a | SISO |                      | -10         | 120             | 5785.000           | 5725 to 5850 | Pass    |
|         | _    |                      | 0           | 120             | 5785.000           | 5725 to 5850 | Pass    |
|         |      |                      | 10          | 120             | 5785.000           | 5725 to 5850 | Pass    |
|         |      |                      | 30          | 120             | 5784.980           | 5725 to 5850 | Pass    |
|         |      |                      | 40          | 120             | 5784.960           | 5725 to 5850 | Pass    |
|         |      |                      | 50          | 120             | 5784.920           | 5725 to 5850 | Pass    |
|         |      |                      |             | 102             | 5824.960           | 5725 to 5850 | Pass    |
|         |      |                      | 20          | 120             | 5824.960           | 5725 to 5850 | Pass    |
|         |      |                      |             | 138             | 5824.940           | 5725 to 5850 | Pass    |
|         |      | 5825                 | -30         | 120             | 5825.000           | 5725 to 5850 | Pass    |
|         |      |                      | -20         | 120             | 5824.960           | 5725 to 5850 | Pass    |
|         |      |                      | -10         | 120             | 5824.960           | 5725 to 5850 | Pass    |
|         |      |                      | 0           | 120             | 5824.960           | 5725 to 5850 | Pass    |
|         |      |                      | 10          | 120             | 5824.980           | 5725 to 5850 | Pass    |
|         |      |                      | 30          | 120             | 5824.900           | 5725 to 5850 | Pass    |
|         |      |                      | 40          | 120             | 5824.980           | 5725 to 5850 | Pass    |
|         |      |                      | 50          | 120             | 5824.980           | 5725 to 5850 | Pass    |
|         |      |                      |             | 102             | 5744.980           | 5725 to 5850 | Pass    |
|         |      |                      | 20          | 120             | 5744.880           | 5725 to 5850 | Pass    |
|         |      |                      |             | 138             | 5744.980           | 5725 to 5850 | Pass    |
| 802.11n |      | <b>F7</b> 4 <b>F</b> | -30         | 120             | 5744.940           | 5725 to 5850 | Pass    |
| (HT20)  | MIMO | 5745                 | -20         | 120             | 5744.960           | 5725 to 5850 | Pass    |
| . ,     |      |                      | -10         | 120             | 5744.960           | 5725 to 5850 | Pass    |
|         |      |                      | 0           | 120             | 5744.960           | 5725 to 5850 | Pass    |
|         |      |                      | 10          | 120             | 5744.940           | 5725 to 5850 | Pass    |

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 160 of 16BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Page 160 of 167



|                    |      |         | 30  | 120 | 5744.880 | 5725 to 5850 | Pass |
|--------------------|------|---------|-----|-----|----------|--------------|------|
|                    |      | F       | 40  | 120 | 5744.920 | 5725 to 5850 | Pass |
|                    |      | -       | 50  | 120 | 5744.980 | 5725 to 5850 | Pass |
|                    |      |         |     | 102 | 5784.920 | 5725 to 5850 | Pass |
|                    |      |         | 20  | 120 | 5784.980 | 5725 to 5850 | Pass |
|                    |      | -       |     | 138 | 5784.960 | 5725 to 5850 | Pass |
|                    |      |         | -30 | 120 | 5784.980 | 5725 to 5850 | Pass |
|                    |      |         | -20 | 120 | 5784.940 | 5725 to 5850 | Pass |
|                    |      | 5785    | -10 | 120 | 5785.000 | 5725 to 5850 | Pass |
|                    |      | 0,00    | 0   | 120 | 5784.900 | 5725 to 5850 | Pass |
|                    |      |         | 10  | 120 | 5785.020 | 5725 to 5850 | Pass |
|                    |      | -       | 30  | 120 | 5784.980 | 5725 to 5850 | Pass |
|                    |      |         | 40  | 120 | 5784.920 | 5725 to 5850 | Pass |
|                    |      | -       | 50  | 120 | 5784.980 | 5725 to 5850 | Pass |
|                    | -    |         | 50  | 102 | 5824.940 | 5725 to 5850 | Pass |
|                    |      |         | 20  | 120 | 5824.920 | 5725 to 5850 | Pass |
|                    |      | 5825    | 20  | 138 | 5824.920 | 5725 to 5850 | Pass |
|                    |      | 5025    | -30 | 120 | 5825.020 | 5725 to 5850 | Pass |
|                    |      |         | -30 | 120 | 5824.960 | 5725 to 5850 | Pass |
| 802.11a            | SISO | 5180    | 20  | 120 | 5180.000 | 5150 to 5250 | Pass |
| 802.11a<br>802.11n | 3130 | 5160    | 20  | 102 | 5160.000 | 5150 10 5250 | rass |
| (HT20)             | MIMO | 5825    | -10 | 120 | 5824.940 | 5725 to 5850 | Pass |
| 802.11a            | SISO | 5180    | 20  | 120 | 5180.060 | 5150 to 5250 | Pass |
| 802.11n<br>(HT20)  | MIMO | 5825    | 0   | 120 | 5824.940 | 5725 to 5850 | Pass |
| 802.11a            | SISO | 5180    | 20  | 138 | 5180.060 | 5150 to 5250 | Pass |
| 802.11n<br>(HT20)  | MIMO | 5825    | 10  | 120 | 5824.880 | 5725 to 5850 | Pass |
| 802.11a            | SISO | 5180    | -30 | 120 | 5179.980 | 5150 to 5250 | Pass |
| 802.11n            |      |         | 30  | 120 | 5824.940 | 5725 to 5850 | Pass |
| (HT20)             | MIMO | MO 5825 | 40  | 120 | 5824.980 | 5725 to 5850 | Pass |
| (11120)            |      |         | 50  | 120 | 5824.960 | 5725 to 5850 | Pass |
|                    |      |         |     | 102 | 5755.000 | 5725 to 5850 | Pass |
|                    |      |         | 20  | 120 | 5755.000 | 5725 to 5850 | Pass |
|                    |      |         |     | 138 | 5754.960 | 5725 to 5850 | Pass |
|                    |      |         | -30 | 120 | 5754.960 | 5725 to 5850 | Pass |
|                    |      |         | -20 | 120 | 5755.000 | 5725 to 5850 | Pass |
|                    |      | 5755    | -10 | 120 | 5754.960 | 5725 to 5850 | Pass |
|                    |      |         | 0   | 120 | 5754.960 | 5725 to 5850 | Pass |
|                    |      |         | 10  | 120 | 5755.000 | 5725 to 5850 | Pass |
|                    |      |         | 30  | 120 | 5754.960 | 5725 to 5850 | Pass |
| 802.11n            |      |         | 40  | 120 | 5754.920 | 5725 to 5850 | Pass |
| (HT40)             | MIMO |         | 50  | 120 | 5754.960 | 5725 to 5850 | Pass |
| (,                 |      |         |     | 102 | 5795.040 | 5725 to 5850 | Pass |
|                    |      |         | 20  | 120 | 5795.000 | 5725 to 5850 | Pass |
|                    |      |         | 20  | 138 | 5794.960 | 5725 to 5850 | Pass |
|                    |      |         | -30 | 120 | 5795.000 | 5725 to 5850 | Pass |
|                    |      | 5795    | -20 | 120 | 5795.040 | 5725 to 5850 | Pass |
|                    |      | 0700    | -20 | 120 | 5794.960 | 5725 to 5850 | Pass |
|                    |      | ŀ       | 0   | 120 | 5795.000 | 5725 to 5850 | Pass |
|                    |      |         | 10  | 120 | 5794.960 | 5725 to 5850 | Pass |
|                    |      |         | 30  | 120 |          |              |      |
| 000 11-            | 0100 | 5100    |     |     | 5795.000 | 5725 to 5850 | Pass |
| 802.11a            | SISO | 5180    | -20 | 120 | 5179.920 | 5150 to 5250 | Pass |

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 161 of 16BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China



| 802.11n |      | 5705 | 40         | 120 | 5794.960 | 5725 to 5850                 | Pass |
|---------|------|------|------------|-----|----------|------------------------------|------|
| (HT40)  | MIMO | 5795 | 50         | 120 | 5795.000 | 5725 to 5850                 | Pass |
| /       |      |      | -10        | 120 | 5180.060 | 5150 to 5250                 | Pass |
|         |      |      | 0          | 120 | 5179.960 | 5150 to 5250                 | Pass |
|         |      |      | 10         | 120 | 5180.060 | 5150 to 5250                 | Pass |
|         |      | 5180 | 30         | 120 | 5179.960 | 5150 to 5250                 | Pass |
|         |      |      | 40         | 120 | 5180.020 | 5150 to 5250                 | Pass |
| 1.000   |      |      | 50         | 120 | 5180.000 | 5150 to 5250                 | Pass |
|         |      |      |            | 102 | 5200.040 | 5150 to 5250                 | Pass |
|         |      |      | 20         | 120 | 5199.960 | 5150 to 5250                 | Pass |
|         |      |      |            | 138 | 5200.020 | 5150 to 5250                 | Pass |
|         |      |      | -30        | 120 | 5200.000 | 5150 to 5250                 | Pass |
|         |      |      | -20        | 120 | 5199.980 | 5150 to 5250                 | Pass |
|         |      | 5200 | -10        | 120 | 5200.080 | 5150 to 5250                 | Pass |
|         |      | 0200 | 0          | 120 | 5199.960 | 5150 to 5250                 | Pass |
|         |      |      | 10         | 120 | 5199.960 | 5150 to 5250                 | Pass |
| 802.11a | SISO |      | 30         | 120 | 5199.960 | 5150 to 5250                 | Pass |
|         |      |      | 40         | 120 | 5199.940 | 5150 to 5250                 | Pass |
|         |      |      | 50         | 120 | 5199.960 | 5150 to 5250                 | Pass |
|         | -    |      | 00         | 102 | 5239.940 | 5150 to 5250                 | Pass |
|         |      |      | 20         | 120 | 5239.980 | 5150 to 5250                 | Pass |
|         |      |      | 20         | 138 | 5239.980 | 5150 to 5250                 | Pass |
|         |      | 5240 | -30        | 120 | 5239.960 | 5150 to 5250                 | Pass |
|         |      |      | -20        | 120 | 5239.900 | 5150 to 5250                 | Pass |
|         |      |      | -10        | 120 | 5239.960 | 5150 to 5250                 | Pass |
|         |      |      | 0          | 120 | 5239.940 | 5150 to 5250                 | Pass |
|         |      |      | 10         | 120 | 5239.940 | 5150 to 5250                 | Pass |
|         |      | -    | 30         | 120 | 5239.940 | 5150 to 5250                 | Pass |
|         |      |      | 40         | 120 | 5240.000 | 5150 to 5250                 | Pass |
|         |      |      | 50         | 120 | 5240.000 | 5150 to 5250                 | Pass |
|         |      |      | 50         | 102 | 5179.960 | 5150 to 5250                 | Pass |
|         |      |      | 20         | 120 | 5179.900 | 5150 to 5250                 | Pass |
|         |      |      | 20         | 138 | 5180.060 | 5150 to 5250                 | Pass |
|         |      |      | -30        | 120 | 5180.000 | 5150 to 5250                 | Pass |
|         |      |      | -30<br>-20 | 120 | 5180.000 | 5150 to 5250                 | Pass |
| 1       |      | 5180 | -20        | 120 | 5180.020 | 5150 to 5250                 | Pass |
|         |      | 5160 | -10        | 120 | 5179.960 | 5150 to 5250                 |      |
|         |      |      | 10         | 120 | 5180.000 |                              | Pass |
|         |      |      | 30         | 120 | 5179.980 | 5150 to 5250<br>5150 to 5250 | Pass |
|         |      |      | 40         | 120 | 5179.980 |                              | Pass |
|         |      |      | 50         | 120 |          | 5150 to 5250                 | Pass |
| 802.11n | мімо |      | 50         | 120 | 5179.980 | 5150 to 5250                 | Pass |
| (HT20)  |      |      | 20         |     | 5200.000 | 5150 to 5250                 | Pass |
| 1.0     |      |      | 20         | 120 | 5199.940 | 5150 to 5250                 | Pass |
|         |      |      | 20         | 138 | 5200.000 | 5150 to 5250                 | Pass |
|         |      | -    | -30        | 120 | 5200.060 | 5150 to 5250                 | Pass |
|         |      | 5000 | -20        | 120 | 5199.940 | 5150 to 5250                 | Pass |
|         |      | 5200 | -10        | 120 | 5200.000 | 5150 to 5250                 | Pass |
|         |      |      | 0          | 120 | 5199.980 | 5150 to 5250                 | Pass |
|         |      |      | 10         | 120 | 5199.960 | 5150 to 5250                 | Pass |
|         |      |      | 30         | 120 | 5199.960 | 5150 to 5250                 | Pass |
|         |      |      | 40         | 120 | 5200.040 | 5150 to 5250                 | Pass |
|         |      | 5040 | 50         | 120 | 5200.040 | 5150 to 5250                 | Pass |
|         |      | 5240 | 20         | 102 | 5239.900 | 5150 to 5250                 | Pass |

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 162 of 16BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Page 162 of 167



|          |        |      |     | 120 | 5240.000 | 5150 to 5250 | Pass |
|----------|--------|------|-----|-----|----------|--------------|------|
|          |        |      |     | 138 | 5239.960 | 5150 to 5250 | Pass |
|          |        |      | -30 | 120 | 5240.040 | 5150 to 5250 | Pass |
|          |        |      | -20 | 120 | 5239.980 | 5150 to 5250 | Pass |
|          |        |      | -10 | 120 | 5239.880 | 5150 to 5250 | Pass |
|          |        |      | 0   | 120 | 5239.900 | 5150 to 5250 | Pass |
|          |        |      | 10  | 120 | 5240.020 | 5150 to 5250 | Pass |
|          |        |      | 30  | 120 | 5239.960 | 5150 to 5250 | Pass |
|          |        |      | 40  | 120 | 5239.980 | 5150 to 5250 | Pass |
|          |        | -    | 50  | 120 | 5240.000 | 5150 to 5250 | Pass |
|          |        |      |     | 102 | 5190.000 | 5150 to 5250 | Pass |
|          |        |      | 20  | 120 | 5190.040 | 5150 to 5250 | Pass |
|          |        |      |     | 138 | 5190.000 | 5150 to 5250 | Pass |
|          |        | -    | -30 | 120 | 5190.000 | 5150 to 5250 | Pass |
|          |        | -    | -20 | 120 | 5190.000 | 5150 to 5250 | Pass |
|          |        | 5190 | -10 | 120 | 5190.000 | 5150 to 5250 | Pass |
|          |        |      | 0   | 120 | 5190.000 | 5150 to 5250 | Pass |
|          |        |      | 10  | 120 | 5190.000 | 5150 to 5250 | Pass |
|          |        |      | 30  | 120 | 5190.040 | 5150 to 5250 | Pass |
|          |        | -    | 40  | 120 | 5190.000 | 5150 to 5250 | Pass |
| 802.11n  |        | -    | 50  | 120 | 5190.000 | 5150 to 5250 | Pass |
| (HT40)   | MIMO - |      | 00  | 102 | 5230.000 | 5150 to 5250 | Pass |
| (11140)  |        | _    | 20  | 120 | 5230.000 | 5150 to 5250 | Pass |
|          |        |      | 20  | 138 | 5229.960 | 5150 to 5250 | Pass |
|          |        |      | -30 | 120 | 5230.000 | 5150 to 5250 | Pass |
|          |        |      | -30 | 120 | 5230.000 | 5150 to 5250 | Pass |
|          |        | 5230 | -20 | 120 | 5230.040 | 5150 to 5250 | Pass |
|          |        | 5230 | 0   | 120 | 5230.040 |              | Pass |
|          |        |      | 10  | 120 | 5230.000 | 5150 to 5250 | Pass |
|          |        |      |     | 120 |          | 5150 to 5250 |      |
|          |        |      | 30  |     | 5230.040 | 5150 to 5250 | Pass |
|          |        |      | 40  | 120 | 5230.000 | 5150 to 5250 | Pass |
| _        |        |      | 50  | 120 | 5230.000 | 5150 to 5250 | Pass |
|          |        |      | 00  | 102 | 5744.920 | 5725 to 5850 | Pass |
|          |        |      | 20  | 120 | 5744.940 | 5725 to 5850 | Pass |
|          |        |      | 00  | 138 | 5744.940 | 5725 to 5850 | Pass |
|          |        | _    | -30 | 120 | 5744.940 | 5725 to 5850 | Pass |
|          |        | 5745 | -20 | 120 | 5744.960 | 5725 to 5850 | Pass |
| 1.1      |        | 5745 | -10 | 120 | 5744.900 | 5725 to 5850 | Pass |
|          |        | -    | 0   | 120 | 5744.940 | 5725 to 5850 | Pass |
|          |        | F    | 10  | 120 | 5744.940 | 5725 to 5850 | Pass |
|          |        | L L  | 30  | 120 | 5744.920 | 5725 to 5850 | Pass |
| 802.11ac |        |      | 40  | 120 | 5744.980 | 5725 to 5850 | Pass |
| (VHT20)  | MIMO   |      | 50  | 120 | 5744.900 | 5725 to 5850 | Pass |
| (        |        |      |     | 102 | 5785.000 | 5725 to 5850 | Pass |
|          |        |      | 20  | 120 | 5784.980 | 5725 to 5850 | Pass |
|          |        |      |     | 138 | 5784.960 | 5725 to 5850 | Pass |
| 1.0      |        |      | -30 | 120 | 5784.960 | 5725 to 5850 | Pass |
|          |        | 5785 | -20 | 120 | 5784.940 | 5725 to 5850 | Pass |
|          |        | 5705 | -10 | 120 | 5785.020 | 5725 to 5850 | Pass |
|          |        | Γ    | 0   | 120 | 5784.980 | 5725 to 5850 | Pass |
|          |        |      | 10  | 120 | 5784.920 | 5725 to 5850 | Pass |
|          |        |      | 30  | 120 | 5785.000 | 5725 to 5850 | Pass |
|          |        |      | 40  | 120 | 5784.960 | 5725 to 5850 | Pass |

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 163 of 16BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Page 163 of 167



|                     |      |              | 50  | 120 | 5784.980 | 5725 to 5850 | Pass         |      |
|---------------------|------|--------------|-----|-----|----------|--------------|--------------|------|
|                     |      |              | 50  | 102 | 5824.940 | 5725 to 5850 | Pass         |      |
|                     |      | 5825         | 20  | 120 | 5824.920 | 5725 to 5850 | Pass         |      |
|                     |      |              | 20  | 138 | 5824.940 | 5725 to 5850 | Pass         |      |
|                     |      |              | -30 | 120 | 5824.940 | 5725 to 5850 | Pass         |      |
|                     |      |              | -30 | 120 | 5824.920 | 5725 to 5850 | Pass         |      |
|                     |      |              |     | 120 |          |              |              |      |
|                     |      |              | -10 |     | 5825.000 | 5725 to 5850 | Pass         |      |
|                     |      |              | 0   | 120 | 5824.960 | 5725 to 5850 | Pass         |      |
|                     |      |              | 10  | 120 | 5824.960 | 5725 to 5850 | Pass         |      |
|                     |      |              | 30  | 120 | 5824.960 | 5725 to 5850 | Pass         |      |
|                     |      | 100          | 40  | 120 | 5824.960 | 5725 to 5850 | Pass         |      |
|                     | -    |              | 50  | 120 | 5824.960 | 5725 to 5850 | Pass         |      |
|                     |      |              | 00  | 102 | 5180.000 | 5150 to 5250 | Pass         |      |
|                     |      |              | 20  | 120 | 5180.060 | 5150 to 5250 | Pass         |      |
|                     |      |              |     | 138 | 5180.000 | 5150 to 5250 | Pass         |      |
|                     |      |              | -30 | 120 | 5180.080 | 5150 to 5250 | Pass         |      |
|                     |      | <b>F</b> 100 | -20 | 120 | 5179.980 | 5150 to 5250 | Pass         |      |
|                     |      | 5180         | -10 | 120 | 5180.020 | 5150 to 5250 | Pass         |      |
|                     |      |              | 0   | 120 | 5179.900 | 5150 to 5250 | Pass         |      |
|                     |      |              | 10  | 120 | 5179.960 | 5150 to 5250 | Pass         |      |
|                     |      |              | 30  | 120 | 5179.980 | 5150 to 5250 | Pass         |      |
|                     |      |              | 40  | 120 | 5179.960 | 5150 to 5250 | Pass         |      |
|                     |      |              | 50  | 120 | 5179.900 | 5150 to 5250 | Pass         |      |
|                     |      | 5200         |     |     | 102      | 5199.980     | 5150 to 5250 | Pass |
|                     |      |              | 20  | 120 | 5199.940 | 5150 to 5250 | Pass         |      |
|                     |      |              |     | 138 | 5199.920 | 5150 to 5250 | Pass         |      |
|                     |      |              | -30 | 120 | 5199.980 | 5150 to 5250 | Pass         |      |
|                     |      |              | -20 | 120 | 5200.000 | 5150 to 5250 | Pass         |      |
|                     |      |              | -10 | 120 | 5199.960 | 5150 to 5250 | Pass         |      |
|                     |      |              | 0   | 120 | 5200.000 | 5150 to 5250 | Pass         |      |
|                     |      |              | 10  | 120 | 5199.900 | 5150 to 5250 | Pass         |      |
|                     |      |              | 30  | 120 | 5199.980 | 5150 to 5250 | Pass         |      |
|                     |      |              | 40  | 120 | 5200.000 | 5150 to 5250 | Pass         |      |
|                     |      |              | 50  | 120 | 5200.020 | 5150 to 5250 | Pass         |      |
|                     |      | 5240         | 20  | 102 | 5239.920 | 5150 to 5250 | Pass         |      |
| 802.11ac            |      | 57E5         | 20  | 102 | 5754.920 | 5725 to 5850 | Pass         |      |
| (VHT40)             | MIMO | 5755         | 20  | 120 | 5755.000 | 5725 to 5850 | Pass         |      |
| 802.11ac<br>(VHT20) | MIMO | 5240         | 20  | 120 | 5239.960 | 5150 to 5250 | Pass         |      |
| 802.11ac<br>(VHT40) | MIMO | 5755         | 20  | 138 | 5755.000 | 5725 to 5850 | Pass         |      |
| 802.11ac<br>(VHT20) | MIMO | 5240         | 20  | 138 | 5239.960 | 5150 to 5250 | Pass         |      |
| 802.11ac<br>(VHT40) | MIMO | 5755         | -30 | 120 | 5755.000 | 5725 to 5850 | Pass         |      |
| 802.11ac            |      | 5240         | -30 | 120 | 5240.040 | 5150 to 5250 | Pass         |      |
| (VHT20)             | MIMO | 5240         | -20 | 120 | 5239.980 | 5150 to 5250 | Pass         |      |
| 802.11ac            |      | <b>F7FF</b>  | -20 | 120 | 5754.960 | 5725 to 5850 | Pass         |      |
| (VHT40)             | MIMO | 5755         | -10 | 120 | 5755.000 | 5725 to 5850 | Pass         |      |
| 802.11ac<br>(VHT20) | MIMO | 5240         | -10 | 120 | 5239.960 | 5150 to 5250 | Pass         |      |
| 802.11ac<br>(VHT40) | MIMO | 5755         | 0   | 120 | 5754.920 | 5725 to 5850 | Pass         |      |

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 164 of 16BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Page 164 of 167

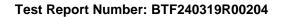


| 802.11ac            |      |      | 0    | 120 | 5239.960 | 5150 to 5250 | Pass         |              |
|---------------------|------|------|------|-----|----------|--------------|--------------|--------------|
| (VHT20)             | MIMO | 5240 | 10   | 120 | 5240.000 | 5150 to 5250 | Pass         |              |
| 802.11ac            |      |      | 10   | 120 | 5755.000 | 5725 to 5850 | Pass         |              |
| (VHT40)             | MIMO | 5755 | 30   | 120 | 5755.040 | 5725 to 5850 | Pass         |              |
| 802.11ac            |      |      | 50   | 120 | 5755.040 | 3723 10 3030 | 1 033        |              |
| (VHT20)             | MIMO | 5240 | 30   | 120 | 5239.960 | 5150 to 5250 | Pass         |              |
| 802.11ac<br>(VHT40) | MIMO | 5755 | 40   | 120 | 5754.960 | 5725 to 5850 | Pass         |              |
| 802.11ac            |      |      | 40   | 120 | 5240.000 | 5150 to 5250 | Pass         |              |
| (VHT20)             | MIMO | 5240 | 50   | 120 | 5239.900 | 5150 to 5250 | Pass         |              |
| (1111=0)            |      | 5755 | 50   | 120 | 5754.880 | 5725 to 5850 | Pass         |              |
|                     | -    |      |      | 102 | 5795.000 | 5725 to 5850 | Pass         |              |
|                     |      | 5795 | 20   | 120 | 5795.080 | 5725 to 5850 | Pass         |              |
|                     | -    | 5190 | 20   | 102 | 5190.040 | 5150 to 5250 | Pass         |              |
|                     | -    | 5795 | 20   | 138 | 5795.040 | 5725 to 5850 | Pass         |              |
|                     |      | 5190 | 20   | 120 | 5189.960 | 5150 to 5250 | Pass         |              |
|                     |      | 5795 | -30  | 120 | 5795.000 | 5725 to 5850 | Pass         |              |
|                     | _    |      | 20   | 138 | 5190.000 | 5150 to 5250 | Pass         |              |
|                     |      | 5190 | -30  | 120 | 5189.960 | 5150 to 5250 | Pass         |              |
|                     | -    | 5795 | -30  | 120 | 5795.000 | 5725 to 5850 | Pass         |              |
|                     | -    | 5190 | -20  | 120 | 5190.000 | 5150 to 5250 | Pass         |              |
|                     |      | 5190 | -20  | 120 | 5795.000 | 5725 to 5850 | Pass         |              |
|                     |      | 5795 |      | 120 | 5795.000 |              |              |              |
|                     | -    | 5190 | 0    |     | 5190.000 | 5725 to 5850 | Pass         |              |
|                     | мімо |      | -10  | 120 |          | 5150 to 5250 | Pass         |              |
|                     |      | 5795 | 10   | 120 | 5795.000 | 5725 to 5850 | Pass         |              |
|                     |      | 5190 | 0    | 120 | 5190.000 | 5150 to 5250 | Pass         |              |
| 802.11ac            |      | 5795 | 30   | 120 | 5794.920 | 5725 to 5850 | Pass         |              |
| (VHT40)             |      | 5190 | 10   | 120 | 5190.000 | 5150 to 5250 | Pass         |              |
|                     | -    |      | 30   | 120 | 5190.000 | 5150 to 5250 | Pass         |              |
|                     |      | 5795 | 40   | 120 | 5794.960 | 5725 to 5850 | Pass         |              |
|                     |      |      |      | 50  | 120      | 5795.040     | 5725 to 5850 | Pass         |
|                     |      |      | 5190 | 40  | 120      | 5189.960     | 5150 to 5250 | Pass         |
|                     | _    |      | 50   | 120 | 5190.080 | 5150 to 5250 | Pass         |              |
|                     |      |      |      | 102 | 5230.000 | 5150 to 5250 | Pass         |              |
|                     |      |      |      |     | 20       | 120          | 5230.000     | 5150 to 5250 |
|                     |      |      |      | 138 | 5230.040 | 5150 to 5250 | Pass         |              |
|                     |      |      | -30  | 120 | 5230.000 | 5150 to 5250 | Pass         |              |
|                     |      |      | -20  | 120 | 5230.000 | 5150 to 5250 | Pass         |              |
|                     |      | 5230 | -10  | 120 | 5230.000 | 5150 to 5250 | Pass         |              |
|                     |      |      |      | 0   | 120      | 5230.000     | 5150 to 5250 | Pass         |
|                     |      |      | 10   | 120 | 5230.000 | 5150 to 5250 | Pass         |              |
|                     |      |      | 30   | 120 | 5230.000 | 5150 to 5250 | Pass         |              |
|                     |      |      | 40   | 120 | 5230.000 | 5150 to 5250 | Pass         |              |
|                     |      |      | 50   | 120 | 5230.000 | 5150 to 5250 | Pass         |              |
|                     |      | 5775 | 20   | 102 | 5774.925 | 5725 to 5850 | Pass         |              |
|                     |      | 5210 | 20   | 102 | 5210.000 | 5150 to 5250 | Pass         |              |
|                     |      | 5210 | 20   | 120 | 5209.925 | 5150 to 5250 | Pass         |              |
| 000.44              |      | 5775 | 20   | 120 | 5774.925 | 5725 to 5850 | Pass         |              |
| 802.11ac            | MIMO | 5210 | 20   | 138 | 5209.925 | 5150 to 5250 | Pass         |              |
| (VHT80)             |      | 5775 | 20   | 138 | 5774.925 | 5725 to 5850 | Pass         |              |
|                     |      | 5210 | -30  | 120 | 5209.925 | 5150 to 5250 | Pass         |              |
|                     |      | 5775 | -30  | 120 | 5774.925 | 5725 to 5850 | Pass         |              |
|                     |      |      |      |     |          |              |              |              |

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 165 of 16BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

Page 165 of 167




| <b>F77F</b> | -20 | 120 | 5774.925 | 5725 to 5850 | Pass |
|-------------|-----|-----|----------|--------------|------|
| 5775        | -10 | 120 | 5774.925 | 5725 to 5850 | Pass |
| 5210        | -10 | 120 | 5210.000 | 5150 to 5250 | Pass |
| 5775        | 0   | 120 | 5775.000 | 5725 to 5850 | Pass |
| 5210        | 0   | 120 | 5209.925 | 5150 to 5250 | Pass |
| 5210        | 10  | 120 | 5209.925 | 5150 to 5250 | Pass |
| 5775        | 10  | 120 | 5774.925 | 5725 to 5850 | Pass |
| 5210        | 30  | 120 | 5210.000 | 5150 to 5250 | Pass |
| 5775        | 30  | 120 | 5774.925 | 5725 to 5850 | Pass |
| 5210        | 40  | 120 | 5210.000 | 5150 to 5250 | Pass |
| 5775        | 40  | 120 | 5774.925 | 5725 to 5850 | Pass |
| 5175        | 50  | 120 | 5775.000 | 5725 to 5850 | Pass |
| 5210        | 50  | 120 | 5209.925 | 5150 to 5250 | Pass |

## 6. Form731

### 6.1 Form731

### 6.1.1 Test Result

| Lower Freq (MHz) | High Freq (MHz) | MAX Power (W) | MAX Power (dBm) |
|------------------|-----------------|---------------|-----------------|
| 5745             | 5825            | 0.0356        | 15.52           |
| 5755             | 5795            | 0.0363        | 15.60           |
| 5180             | 5240            | 0.0272        | 14.34           |
| 5190             | 5230            | 0.0290        | 14.63           |
| 5775             | 5775            | 0.0352        | 15.47           |







BTF Testing Lab (Shenzhen) Co., Ltd.

F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China

www.btf-lab.com

# -- END OF REPORT --

Total or partial reproduction of this document without permission of the Laboratory is not allowed.Page 167 of 167BTF Testing Lab (Shenzhen) Co., Ltd.F101, 201 and 301, Building 1, Block 2, Tantou Industrial Park, Tantou Community, Songgang Street, Bao'an District, Shenzhen, China