

FCC RADIO TEST REPORT

Applicant	: SHENZHEN HENGSHANG ELECTRONIC CO., LTD		
Address	: Building 2, Zone B, Zhanmi Ling Industrial Zone, Xinmu Community, Pinghu Street, Longgang District, Shenzhen City, Guangdong Province		
Manufacturer	: SHENZHEN HENGSHANG ELECTRONIC CO., LTD		
Address	: Building 2, Zone B, Zhanmi Ling Industrial Zone, Xinmu Community, Pinghu Street, Longgang District, Shenzhen City, Guangdong Province		
Factory	: SHENZHEN HENGSHANG ELECTRONIC CO., LTD		
Address	: Building 2, Zone B, Zhanmi Ling Industrial Zone, Xinmu Community, Pinghu Street, Longgang District, Shenzhen City, Guangdong Province		
Product Name	[:] Wireless Mouse		
Brand Name	RECCAZR		
Model No	: M1, M500, WC500(For model difference refer to section 2.)		
FCC ID	: 2BDIRHS-M8100-M1		
Measurement Standard	: 47 CFR FCC Part 15, Subpart C (Section 15.249)		
Receipt Date of Samples	: October 30, 2023		
Date of Tested	: October 30, 2023 to November 24, 2023		
Date of Report	: December 12, 2023		

This report shows that above equipment is technically compliant with the requirements of the standards above. All test results in this report apply only to the tested sample(s). Without prior written approval of Dongguan Nore Testing Center Co., Ltd, this report shall not be reproduced except in full.

Prepared by

Rose Hu / Project Engineer

Table of Contents

1. Summary of Test Result	4
2. General Description of EUT	5
3. Test Channels and Modes Detail	8
4. Configuration of EUT	8
5. Modification of EUT	8
6. Description of Support Device	9
7. Test Facility and Location	10
8. Applicable Standards and References	10
9. Deviations and Abnormalities from Standard Conditions	11
10. Test Conditions	11
11. Measurement Uncertainty	12
12. Sample Calculations	13
13. Test Items and Results	14
13.1 Conducted Emissions Measurement	14
13.2 Radiated Spurious Emissions and Restricted Bands Measurement	16
13.3 20dB Bandwidth Measurement	24
13.4 Antenna Requirement	26
14. Test Equipment List	27

Revision History

Report Number	Description	Issued Date
NTC2310276FV00	Initial Issue	2023-12-12

1. Summary of Test Result

FCC Rules	Description of Test	Result	Remarks
§15.207 (a)	AC Power Conducted Emission	N/A ^{See note}	
§15.249(a)/ 15.209	Radiated Emissions	PASS	
§15.249(d)/ 15.205	Band Edge	PASS	
§15.215(c)	20dB Bandwidth	PASS	
§15.203 Antenna Requirement PASS			
Note: AC Power Conducted Emission is not applicable due to the EUT only can be powered by battery.			

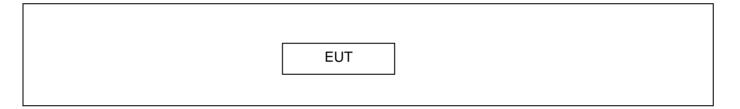
2. General Description of EUT

Product Information	
Product name:	Wireless Mouse
Main Model Name:	M1
Additional Model Name:	M500, WC500
Model Difference:	Model M1 is the model of Wireless mouse;
	Model M500, WC500 are the package model with wireless mouse, wireless keyboard and receiver.
S/N:	2310-5143
Brand Name:	RECCAZR
Hardware version:	Not stated
Software version:	Not stated
Rating:	DC 1.5V AA Battery
Typical arrangement:	Table-top
I/O Port:	Refer to user manual
Accessories Information	
Adapter:	N/A
Cable:	N/A
Other:	N/A

Additional Informa	ation	
Note:	According to the model differences, all the test were performed on the model M1.	
	This product has a variety of color design options: black, white, pink, pink and white	
	double color, blue, blue and white double color, purple, purple and white double color,	
	green, green and white double color, red, red and white double color, beige, beige	
	and red double color, orange, orange and white double color, yellow, yellow and	
	white double color, cyan, blue and white double color.	
Remark:	All the information above are provided by the manufacturer. More detailed feature of	
	the EUT please refers to the user manual.	

Technical Specification (2.4G Function)			
Frequency Range:	2403.65-2479.65MHz		
Modulation Type:	GFSK		
Number of Channel:	16 (refer to following channel list for details)		
Antenna Type:	PCB Antenna		
Antenna Gain:	3.85 dBi (Declared by manufacturer)		

Channel list				
Channel	Frequency (MHz)	Channel	Frequency (MHz)	
1	2403.65	9	2414.65	
2	2426.65	10	2436.65	
3	2441.65	11	2459.65	
4	2463.65	12	2473.65	
5	2407.65	13	2419.65	
6	2422.65	14	2439.65	
7	2445.65	15	2453.65	
8	2466.65	16	2479.65	



3. Test Channels and Modes Detail

I	Mode	Cha	nnel	Frequency (MHz)	Modulation
1	ТХ	Low	1	2403.65	GFSK
2	ТХ	Mid	3	2441.65	GFSK
3	ТХ	High	16	2479.65	GFSK
4.	Normal Mode				

Note: TX mode means that the EUT was programmed to be in continuously transmitting mode.

4. Configuration of EUT

5. Modification of EUT

No modifications are made to the EUT during all test items.

6. Description of Support Device

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

No.	Equipment	Brand	M/N	S/N	Cable Specification	Remarks

No.	Test Software	Modulation	Power Setting

7. Test Facility and Location

Test Site	:	Dongguan Nore Testing Center Co., Ltd. (Dongguan NTC Co., Ltd.)		
Accreditations and	:	The Laboratory has been assessed and proved to be in compliance with		
Authorizations		CNAS/CL01		
		Listed by CNAS, August 13, 2018		
		The Certificate Registration Number is L5795.		
		The Certificate is valid until August 13, 2024		
		The Laboratory has been assessed and proved to be in compliance with		
		ISO17025		
		sted by A2LA, November 01, 2017		
		The Certificate Registration Number is 4429.01		
		Listed by FCC, November 06, 2017		
		Test Firm Registration Number: 907417		
		sted by Industry Canada, June 08, 2017		
		The Certificate Registration Number. Is 46405-9743A		
Test Site Location	:	Building D, Gaosheng Science and Technology Park, Hongtu Road, Nancheng		
		District, Dongguan City, Guangdong Province, China		

8. Applicable Standards and References

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

Test Standards:

47 CFR Part 15, Subpart C, 15.249 ANSI C63.10-2013

References Test Guidance:

N/A

9. Deviations and Abnormalities from Standard Conditions

No additions, deviations and exclusions from the standard.

10. Test Conditions

		Test Voltage	Tested by	Remarks
AC Power Conducted Emission				
Radiated Emissions	1-4	DC 1.5V	Sean	See note 1
Band Edge	1-3	DC 1.5V	Sean	See note 1
20dB Bandwidth	1-3	DC 1.5V	Sean	See note 1
Antenna Requirement				
_	Radiated Emissions Band Edge 20dB Bandwidth	Radiated Emissions1-4Band Edge1-320dB Bandwidth1-3	Radiated Emissions1-4DC 1.5VBand Edge1-3DC 1.5V20dB Bandwidth1-3DC 1.5V	Radiated Emissions1-4DC 1.5VSeanBand Edge1-3DC 1.5VSean20dB Bandwidth1-3DC 1.5VSean

Note:

1. The testing climatic conditions for temperature, humidity, and atmospheric pressure are within: 15~35°C,

30~70%, 86~106kPa

2. Only the worst case was recorded in the report.

11. Measurement Uncertainty

No.	Test Item	Frequency	Uncertainty	Remarks
1.	Conducted Emission	150KHz ~ 30MHz	±2.52 dB	
		9kHz ~ 30MHz	±5.66 dB	
2.	Radiated Emission Test	30MHz ~ 1GHz	±5.66 dB	
۷.	Radiated Emission Test	1GHz ~ 18GHz	±5.19 dB	
		18GHz ~ 40GHz	±5.19 dB	
3.	RF Conducted Test	10Hz ~ 40GHz	±1.18 dB	
4.	Occupied Channel Bandwidth		±0.72%	

Note:

1. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

2. The measurement uncertainly levels above are estimated and calculated according to CISPR 16-4-2.

3. The conformity assessment statement in this report is based solely on the test results, measurement uncertainty is excluded.

12. Sample Calculations

	Conducted Emission										
Freq. (MHz)	Reading Level (dBuV)	Correct Factor (dB)	Measurement (dBuV)	Limit (dBuV)	Over (dB)	Detector					
0.1500	29.40	10.60	40.00	66.00	-26.00	QP					
Where,	Where,										
Freq.	= Emiss	ion frequency in MH	łz								
Reading Lev	el = Spect	rum Analyzer/Recei	ver Reading								
Corrector Fa	ctor = Inserti	ion loss of LISN + C	able Loss + RF Sv	vitching Unit	attenuation						
Measuremer	nt = Readi	ng + Corrector Factor	or								
Limit	Limit = Limit stated in standard										
Margin	Margin = Measurement - Limit										
Detector	Panding for Quani Bank (Average / Dank										

	Radiated Spurious Emissions and Restricted Bands									
Freq. (MHz)	Reading Level (dBuV)	Correct Factor (dB/m)	Measurement (dBuV/m)	Limit (dBuV/m)	Over (dB)	Detector				
38.7300	27.89	-8.59	19.30	40.00	-20.70	QP				
Where,										
Freq.	= Emiss	ion frequency in M⊦	lz							
Reading Lev	el = Spect	rum Analyzer/Recei	ver Reading							
Corrector Fa	ctor = Anten	na Factor + Cable L	oss - Pre-amplifier							
Measuremer	nt = Readi	ng + Corrector Factor	or							
Limit	Limit = Limit stated in standard									
Over	Over = Margin, which calculated by Measurement - Limit									
Detector	= Readi	ng for Quasi-Peak /	Average / Peak							

Note: For all conducted test items, the spectrum analyzer offset or transducer is derived from RF cable loss and attenuator factor. The offset or transducer is equal to the RF cable loss plus attenuator factor.

13. Test Items and Results

13.1 Conducted Emissions Measurement

LIMITS

According to the requirements of FCC PART 15.207, the limits are as follows:

Frequency (I	Frequency (MHz) Quasi-peak		Average				
0.15 to 0.5 66 to 56		66 to 56	56 to 46				
0.5 to 5	0.5 to 5 56		46				
5 to 30	5 to 30 60		50				
Note: 1.	If the I	imits for the average detector are met whe	n using the quasi-peak detector, then the limits				
	for the	measurements with the average detector a	are considered to be met.				
2.	The lower limit shall apply at the transition frequencies.						
3.	The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.5MHz.						

BLOCK DIAGRAM OF TEST SETUP

TEST PROCEDURES

- a. The EUT was placed on a wooden table 0.8m height from the metal ground plan and 0.4m from the conducting wall of the shielding room and it was kept at 0.8m from any other grounded conducting surface.
- b. All I/O cables and support devices were positioned as per ANSI C63.10.
- c. Connect mains power port of the EUT to a line impedance stabilization network (LISN).
- d. Connect all support devices to the other LISN and AAN, if needed.
- e. Scan the frequency range from 150KHz to 30MHz at both sides of AC line for maximum conducted interference checking and record the test data.

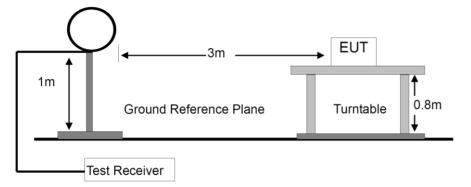
TEST RESULTS

Not applicable.

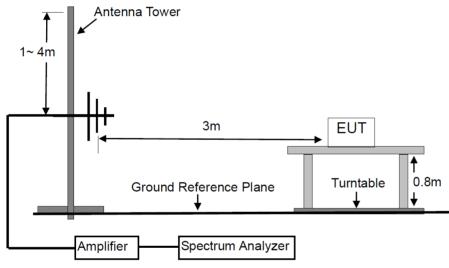
13.2 Radiated Spurious Emissions and Restricted Bands Measurement

LIMITS

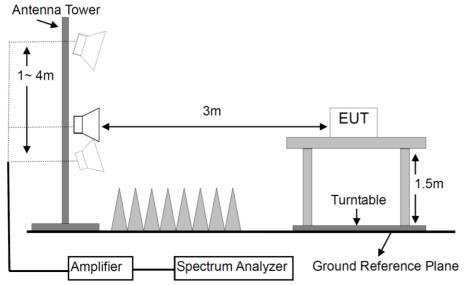
Frequency range	Distance Meters	Field Strengths	: Limit (15.209)		
MHz		μV/m			
0.009 ~ 0.490	300	2400/F	F(kHz)		
0.490 ~ 1.705	30	24000/	F(kHz)		
1.705 ~ 30	30	3	0		
30 ~ 88	3	100			
88 ~ 216	3	150			
216 ~ 960	3	200			
Above 960	3	500			
Frequency range	Distance Meters	Field Strengths	: Limit (15.249)		
MHz		mV/m (Field strength of fundamental)	μV/m (Field strength of Harmonics)		
902 ~ 928	3	50	500		
2400 ~ 2483.5	3	50	500		
5725 ~ 5875	3	50	500		
24000 ~ 2425000	3	250	2500		


Remark: (1) Emission level (dB) μ V = 20 log Emission level μ V/m

- (2) The smaller limit shall apply at the cross point between two frequency bands.
- (3) As shown in 15.35(b), for frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.
- (4) The frequency range scanned is from the lowest radio frequency signal generated in the device which is greater than 9 kHz to the tenth harmonic of the highest fundamental frequency or 40 GHz, whichever is lower.
- (5) §15.249(d) specifies that emissions which fall in the restricted bands, as defined in §15.205 comply with radiated emission limits specified in §15.209.



BLOCK DIAGRAM OF TEST SETUP


For Radiated Emission below 30MHz

For Radiated Emission 30-1000MHz

For Radiated Emission Above 1000MHz.

TEST PROCEDURES

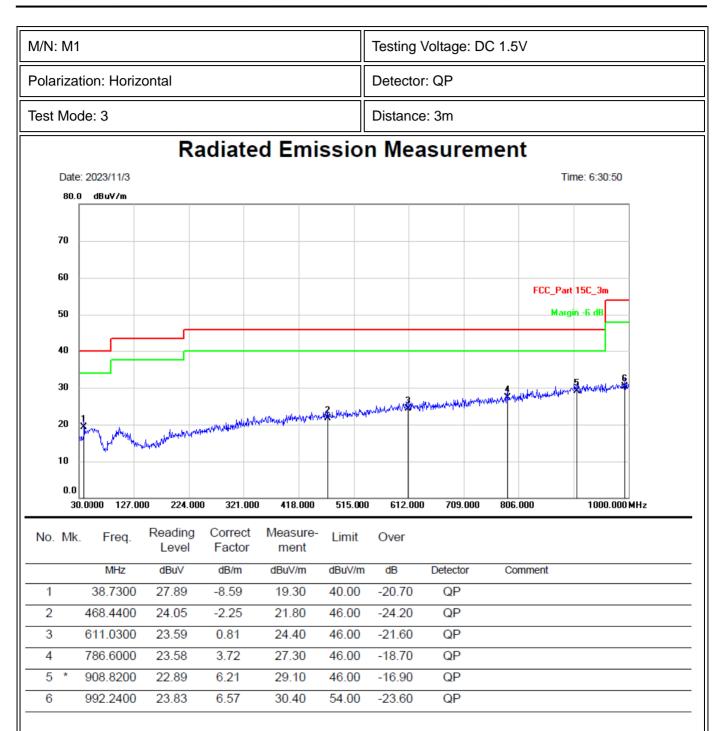
- a. Below 1GHz, the EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi- anechoic chamber room.
- b. For the radiated emission test above 1GHz:

The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter full anechoic chamber room. The table was rotated 360 degrees to determine the position of the highest radiation. Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

- c. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- d. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- e. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to peak detect function and specified bandwidth with maximum hold mode.
- f. A Quasi-peak measurement was then made for that frequency point for below 1GHz test. PK and AV for above 1GHz emission test.

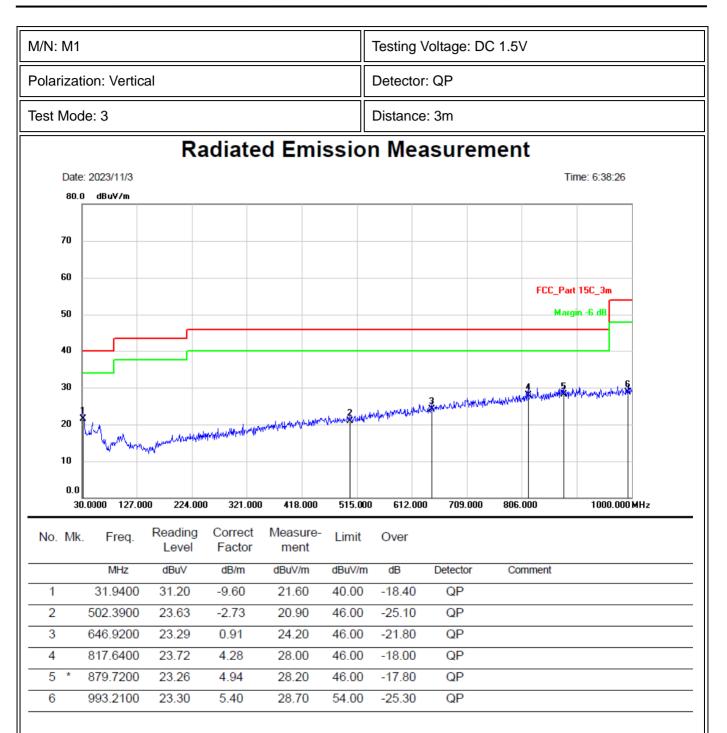
During the radiated emission test, the spectrum analyzer was set with the following configurations:

Frequency Band (MHz)	Detector	Resolution Bandwidth	Video Bandwidth
30 to 1000	QP	120 kHz	300 kHz
Above 1000	Peak	1 MHz	3 MHz
Above 1000	Average	1 MHz	10 Hz

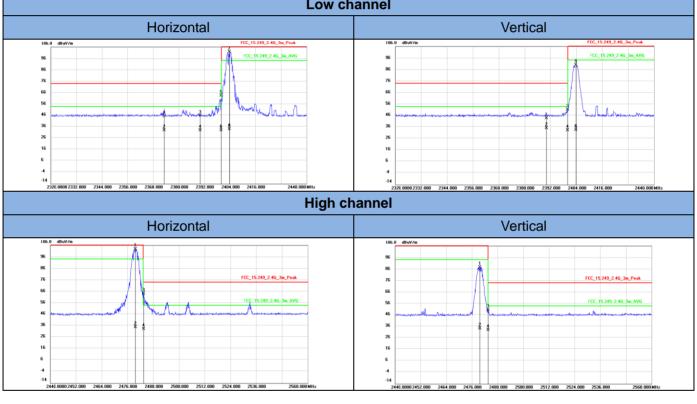


TEST RESULTS

PASS


Please refer to the following pages.

Note: Below 30MHz, the emissions are lower than 20dB below the allowable limit.


Note: Below 30MHz, the emissions are lower than 20dB below the allowable limit.

Nodulation:	Ant.	Read		sult: PASS	Emissio	n Level	Limit		ge: 1-25G Mar	
Freq. (MHz)	Pol.	Level(dBuV)	Factor (dB/m)	(dBu\	V/m)	(dBu	V/m)	(dl	3)
	(H/V)	PK	AV		PK	AV	PK	AV	PK	AV
Operation Mode: TX Mode (Low)										
2403.650	V	89.76	44.38	0.13	89.89	44.51	114.00	94.00	-24.11	-49.49
4807.300	V	44.78	31.48	6.32	51.10	37.80	74.00	54.00	-22.90	-16.20
7210.950	V	49.96	33.06	10.44	60.40	43.50	74.00	54.00	-13.60	-10.50
2403.650	Н	101.67	43.77	0.13	101.80	43.90	114.00	94.00	-12.20	-50.10
4807.300	Н	45.56	31.50	6.32	51.88	37.82	74.00	54.00	-22.12	-16.18
7210.950	Н	59.62	31.98	10.44	70.06	42.42	74.00	54.00	-3.94	-11.58
			Оре	ration Mo	de: TX Mo	de (Mid)				
2441.650	V	85.07	45.41	0.24	85.31	45.65	114.00	94.00	-28.69	-48.3
4883.300	V	44.73	31.51	6.61	51.34	38.12	74.00	54.00	-22.66	-15.88
7324.950	V	50.48	31.77	10.54	61.02	42.31	74.00	54.00	-12.98	-11.69
2441.650	Н	103.80	44.39	0.24	104.04	44.63	114.00	94.00	-9.96	-49.37
4883.300	Н	46.13	30.63	6.61	52.74	37.24	74.00	54.00	-21.26	-16.76
7324.950	Н	59.02	31.97	10.54	69.56	42.51	74.00	54.00	-4.44	-11.49
			Oper	ation Mod	de: TX Mo	de (High)				
2479.650	V	87.22	43.81	0.34	87.56	44.15	114.00	94.00	-26.44	-49.8
4959.300	V	44.63	31.15	6.89	51.52	38.04	74.00	54.00	-22.48	-15.96
7438.950	V	52.32	31.36	10.60	62.92	41.96	74.00	54.00	-11.08	-12.04
2479.650	Н	102.44	44.29	0.34	102.78	44.63	114.00	94.00	-11.22	-49.37
4959.300	Н	45.39	31.13	6.89	52.28	38.02	74.00	54.00	-21.72	-15.98
7438.950	Н	59.54	31.53	10.60	70.14	42.13	74.00	54.00	-3.86	-11.87
	Data of me of emissio			•					neans the	readine

Band edge										
2390.000	Н	45.90	32.96	0.09	45.99	33.05	74.00	54.00	-28.01	-20.95
2390.000	V	43.78	35.04	0.09	43.87	35.13	74.00	54.00	-30.13	-18.87
2399.900	Н	63.48	32.77	0.13	63.61	32.90	74.00	54.00	-10.39	-21.10
2399.900	V	51.07	32.99	0.13	51.20	33.12	74.00	54.00	-22.80	-20.88
2483.500	Н	63.85	32.88	0.34	64.19	33.22	74.00	54.00	-9.81	-20.78
2483.500	V	50.17	32.49	0.34	50.51	32.83	74.00	54.00	-23.49	-21.17
Note: Othe	r band edg	ge, the emis	sions are	lower tha	n 20dB be	low the all	owable lin	nit.		
				Low	v channel					
		Horizontal					Vei	rtical		
106.0 dBitW/m FCC_15.249_2.46_3m_AVG 96 76 76 66 88 88					106.0 96 86 76 66	dBuV/m			FCC_15.249_2.46_3m_ FCC_15.249_2.46_3m_	
66 56		4 44 2	M March	A	66 56					

13.3 20dB Bandwidth Measurement

LIMITS

There is no limit.

BLOCK DIAGRAM OF TEST SETUP

TEST PROCEDURES

The 20dB bandwidth of the emission was contained within the frequency band designated which the EUT operated. The effects, if any, from frequency sweeping, frequency hopping, other modulation techniques and frequency stability over excepted variations in temperature and supply voltage were considered, FCC Rule 15.215(c):

The antenna port of the EUT was connected to the input of a spectrum analyzer. Analyzer RBW was chosen so that the display was a result of the hopping channel modulation. For each RF output channel investigated, the spectrum analyzer center frequency was set to the channel carrier. Use the spectrum 20dB down delta function to measure the bandwidth.

TEST RESULTS

PASS

Please refer to the following table.

	GI	FSK	
Channel	Frequency (MHz)	20dB Bandwidth (MHz)	Result
1	2403.65	2.397	PASS
3	2441.65	2.374	PASS
16	2479.65	2.387	PASS
	2403.65MHz	2441.65M	Hz
C C C C C C C C C C C C C C C C C C C		Point	Maring 24460000 GHZ Basel Jotti Diske Jott
Spectrum Analyze 1 Smegt 33 KEVSIGHT Input III Car Control Con	0 Allen: 10.08 Tog Trans Run carls of the particular of the application of the particular of the application of the particular of the second Hard Control (Free 2.47060000 GHz) Particular of the particular of the particular of the second Hard Control (Free 2.47060000 GHz) Particular of the particular of the second Hard Control (Free 2.47060000 GHz) Particular of the second Hard Control (Free 2.4706000 GHz) Particular of the second Hard Control (Free 2.4706000 GHz) Particular of the second Hard Control (Free 2.4706000 GHz) Particular of the second Hard Control (Free 2.470600 GHz) Particular of the second Hard Control (Free 2.47060 GHz) Particular of the second Hard Contre second Hard <td>Blank</td> <td></td>	Blank	

13.4 Antenna Requirement

STANDARD APPLICABLE

According to of FCC part 15C section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

ANTENNA CONNECTED CONSTRUCTION

The antenna is PCB antenna that no antenna other than furnished by the responsible party shall be used with the device, and the best case gain of the antenna is 3.85 dBi, Therefore, the antenna is considered to meet the requirement.

14. Test Equipment List

ltem	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Interval
1.	Test Receiver	Rohde & Schwarz	ESCI7	100837	Mar. 13, 2023	1 Year
2.	Antenna	Schwarzbeck	VULB9162	9162-010	Mar. 23, 2022	2 Year
3.	Spectrum Analyzer	Rohde & Schwarz	FSU26	200409/026	Mar. 13, 2023	1 Year
4.	Spectrum Analyzer	Keysight	N9020A	MY54200831	Mar. 13, 2023	1 Year
5.	Spectrum Analyzer	Rohde & Schwarz	FSV40	101094	Mar. 13, 2023	1 Year
6.	Horn Antenna	Schwarzbeck	BBHA9170	9170-172	Mar. 23, 2022	2 Year
7.	Power Sensor	DARE	RPR3006W	15I00041SNO 64	Mar. 13, 2023	1 Year
8.	Horn Antenna	COM-Power	AH-118	071078	Mar. 23, 2022	2 Year
9.	Pre-Amplifier	HP	HP 8449B	3008A00964	Mar. 13, 2023	1 Year
10.	Pre-Amplifier	HP	HP 8447D	1145A00203	Mar. 13, 2023	1 Year
11.	Loop Antenna	Schwarzbeck	FMZB 1513	1513-272	Mar. 23, 2022	2 Year
12.	Test Receiver	Rohde & Schwarz	ESCI	101152	Mar. 13, 2023	1 Year
13.	L.I.S.N	Rohde & Schwarz	ENV 216	101317	Mar. 13, 2023	1 Year
14.	RF Switching Unit	Compliance Direction Systems Inc.	RSU-M2	38311	Mar.13, 2023	1 Year
15.	Temporary antenna connector	TESCOM	SS402	N/A	N/A	N/A
16.	Test Software	EZ	EZ_EMC NTC-3A1.1	N/A	N/A	N/A

Note: For photographs of EUT and measurement, please refer to appendix in separate documents.